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Abstract

We use inequalities to completely describe the set of boundary correlation matri-
ces of planar Ising networks embedded in a disk. Specifically, we build on a recent
result of Lis to give a simple bijection between such correlation matrices and points in
the totally nonnegative part of the orthogonal Grassmannian, which was introduced
in 2013 in the study of the scattering amplitudes of Aharony—Bergman—Jafferis—
Maldacena (ABJM) theory. We also show that the edge parameters of the Ising model
for reduced networks can be uniquely recovered from boundary correlations, solving
the inverse problem. Under our correspondence, the Kramers—Wannier high/low tem-
perature duality transforms into the cyclic symmetry of the Grassmannian, and using
this cyclic symmetry, we prove that the spaces under consideration are homeomorphic
to closed balls.
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1. Introduction

The Ising model, introduced by Lenz in 1920 as a model for ferromagnetism and
solved by Ising [30] in dimension 1, plays a central role in statistical mechanics and
conformal field theory. One of the main features of this model is that it undergoes
a phase transition in dimensions larger than 1. In particular, the critical tempera-
ture %log(ﬁ + 1) for the case of the 2-dimensional square lattice was computed
by Kramers and Wannier [39], who found a duality transformation exchanging sub-
critical and supercritical temperatures. The free energy of the model was computed
by Onsager [51] and Yang [62], and since then it has become a subject of active math-
ematical and physical research. Conformal invariance of the scaling limit was conjec-
tured in [5] and [4] in relation to conformal field theory, and proved more recently as
part of a series of groundbreaking results by Smirnov, Chelkak, Hongler, Izyurov, and
others (see, e.g., [9]-[11], [27], [60]).

Among the most important quantities associated with the Ising model are two-
point and multipoint correlation functions. In particular, their limit at criticality exists
and is conformally invariant (see [10]). It was shown in [21] and later generalized in
[35] that these correlation functions satisfy natural inequalities, and in particular, an
important question about characterizing correlation functions coming from the Ising
model was raised in the appendix of [35].

A starting point for our results was the recent insightful work of Lis [44], where
he discovered a deep connection between the planar Ising model and total positivity,
and used it to prove new inequalities on boundary two-point correlation functions in
the planar case. He relied on the results of Postnikov [53] and Talaska [61] on the
totally nonnegative Grassmannian Gr>g(k,n), which is the subset of the Grassman-
nian Gr(k,n) of k-dimensional subspaces of R” where all Pliicker coordinates are
nonnegative. The space Grs¢(k,n) is a special case of the totally positive part of a
partial flag variety introduced by Lusztig in [47] and [49] as an application of his
theory of canonical bases in [46]. The totally nonnegative Grassmannian was studied
from combinatorial point of view in [53], and since then it has attracted lots of atten-
tion due to its unexpected connections to various areas such as cluster algebras and
the physics of scattering amplitudes (see, e.g., [2], [3], [17], [58]).

Despite the enormous amount of research on the planar Ising model, some basic
questions seem to have remained unanswered. Let us denote by X,, C Mat, (R) the
space of all boundary correlation matrices of planar Ising networks with n boundary
nodes embedded in a disk. This is a subspace of the space Mat, (R) of n x n matrices
with real entries. Every matrix in X, is symmetric and has diagonal entries equal to
1, but X, is neither a closed nor an open subset of the space of such matrices. Let
X, denote the closure of X, inside Mat,, (R), that is, X, is the space of boundary
correlation matrices of a slightly more general class of planar Ising networks, as dis-
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cussed in Section 6. We answer two fundamental questions about X, in this article
(see Theorem 2.3):

. Describe X, by equalities and inequalities inside Mat,, (R).

. Describe the topology of X,,.

Using a construction similar to the one in [44], we give a simple embedding ¢ of
the space X, into a subset of Grx¢(n,2n) which turns out to be precisely the torally
nonnegative orthogonal Grassmannian, introduced in [28] and [29] in the study of
Aharony—Bergman—Jafferis—Maldacena (ABJM) scattering amplitudes. This gives a
solution to the first question, and then we show that Yn is homeomorphic to an (g)-
dimensional closed ball using the techniques developed in [18], where an analogous
result (conjectured by Postnikov [53]) was shown for Gr>¢(k, 7).

We then apply our construction to study some other aspects of the planar
Ising model. For instance, we recognize (Theorem 3.4) the Kramers—Wannier dual-
ity in [39] as the well-studied cyclic shift operation on Grs¢(n,2n), and explain
(Remark 3.7) the connection between the planar Ising model at critical temperature
and the unique cyclically symmetric point inside Grso(n,2n), studied in [18] and
[33]. We also express (Theorem 3.13) generalized Griffiths’s inequalities of [21]
and [35] as manifestly positive linear combinations of the Pliicker coordinates of
our embedding. We explain in Corollary 3.10 how the known formula for Pliicker
coordinates in terms of the dimer model recovers one of Dubédat’s bosonization
identities (see [14]). Finally, we solve the inverse problem in Section 3.5: given a
boundary correlation matrix M € Mat, (R) of the Ising model on a planar graph G
embedded in a disk, we show that if G is reduced, then the edge weights of the Ising
model are uniquely and explicitly determined by M .

In many aspects, our results for the planar Ising model are analogous to known
results for planar electrical networks (see, e.g., [12], [13], [36], [42]). However, the
precise relationship between the two models remains completely mysterious to us.
See Section 9 for a discussion of this and other open problems motivated by our
approach.

This paper is organized as follows. We state our main result (Theorem 2.3) in
Section 2, and then list several applications of our construction in Section 3. We give
some background on the totally nonnegative Grassmannian in Section 4, and study the
totally nonnegative orthogonal Grassmannian in Section 5. After that, we prove our
main results. In Section 6, we show that the formula for boundary correlations in terms
of the dimer model indeed yields the same result as the embedding ¢ from Section 2.
In Section 7, we prove that X, is homeomorphic to a ball and discuss the cyclic
symmetry of this space. We explain how to express generalized Griffiths’s inequalities
as positive sums of Pliicker coordinates in Section 8, and list several conjectures in
Section 9.
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2. Main results

2.1. The Ising model

A planar Ising network is a pair N = (G, J), where G = (V, E) is a planar graph
embedded in a disk and J : E — R is a function assigning positive real numbers
to the edges of G. We always label the vertices of G on the boundary of the disk by
bi,...,b, € V in counterclockwise order. Given a planar Ising network N = (G, J),
the Ising model on N (with no external field and free boundary conditions) is a prob-
ability measure on the space {—1, 1}V of spin configurations on the vertices of G.
Given a spin configuration o : V' — {—1, 1}, its probability is given by

1
P(O—):ZE 1_[ exp(J{u,v}Uqu)a (2.1)
{u,v}eE

where Z is the partition function:

Z = Z l_[ exp(Ju,v)0u0y). 2.2)

oe{—1,1}V {u,v}eE

Our main focus will be boundary two-point correlation functions. Let [n] :=
{1,2,....n}. Given i,j € [n], we define the corresponding correlation function
by

(oi0j) = Z P(0)0p,;0p; . 2.3)

oe{-1,1}V
Clearly, we have (0,0;) = (0j0;), and if i = j, then the correlation function {o;0;)
is equal to 1. We denote by Mat,) (R, 1) C Mat, (R) the space of all n x n symmetric
real matrices with ones on the diagonal. Thus, we obtain a matrix M = M(G, J) :=

sym

(m; ;) e Mat; (R, 1) given by m; ; := (0;0;). Let us denote
Xy = {M(G, J) | (G, J) is a planar Ising network with n boundary vertices}.

Denote by X, the closure of X;,, in the space Mat, (R) of n x 1 real matrices. (In other
words, X, can be defined as the space of all boundary correlation matrices M(G, J)
where J is allowed to take values in [0, 00], or equivalently, where G is obtained
from a planar graph embedded in a disk by contracting some edges that may connect
boundary vertices, as we discuss in Section 6.) We will see later (Proposition 6.4)
that X, admits a natural stratification into cells indexed by matchings on [2n], that
is, by perfect matchings of the complete graph K5, (also called medial pairings). For
n = 3, all matchings on [2n] are shown in Figure 7.
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2.2. The orthogonal Grassmannian

The Grassmannian Gr(k,n) is the space of k-dimensional linear subspaces of R”.
We always view an element X € Gr(k,n) as the row span of a real k x n matrix of
rank k, thus we think of Gr(k, n) as the space of full rank k& x n matrices modulo row
operations. Let us denote by ([Z]) the set of all k-element subsets of [r]. Given a set
I e ([Z]) and a point X € Gr(k,n), the corresponding Pliicker coordinate Aj(X) is
defined to be the determinant of the k x k submatrix of X with column set /. (Such
determinants are also called maximal minors of X.) Pliicker coordinates are defined
up to a simultaneous rescaling, giving rise to the Pliicker embedding of Gr(k,n) into
the ((Z) — 1)-dimensional real projective space (see, e.g., [7, Section 2.4]).

Define the fotally nonnegative Grassmannian Grs(k,n) C Gr(k,n) as follows:

Grxo(k.n) := {X €Gr(k,n) | Ar(X)=O0forall I € ([Z])}

Definition 2.1
The orthogonal Grassmannian OG(n,2n) C Gr(n,2n) is defined by

OG(n,2n) := {X € Gr(n.2n) | A1(X) = A (X) forall I € ([2:])}_

Its totally nonnegative part OGso(n,2n) C Grso(n,2n) is the intersection

OGs>(n,2n) := OG(n,2n) N Grso(n,2n).

The space OG> (n,2n) was first considered in [28] in the context of the scatter-
ing amplitudes of ABJM theory. Postnikov defined a stratification of Gr>¢(k,n) into
positroid cells, which induces a stratification of OGx¢(n,2n). As it was observed in
[28] and [29], the strata of OGx¢(n,2n) are also naturally labeled by matchings on
[2n]. We prove this in Section 5.

2.3. An embedding

Given a matrix M = (m; ;) € Mat; " (R, 1), one can construct an element ¢(M) €
OG(n,2n) using the following rules. We will describe an n X 2n matrix M= (m; ;).
so that for all i, j € [n], each of ﬁ,-,zj,l and %i,zj is equal to either m; ; or —m; ;, as
in Figure 1. Explicitly, for i = j we put m;2—1 = M2 =m;; =1, and for i # j
we set

Minj_1 = —ilia; = (=) T TAE<Dyy, (2.4)

where 1(i < j) denotes 1 if i < j and 0 otherwise.
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1 mix miz ma 1 1 miz  —miz —miz mi3 mis —miy
M=|m2 1 ma3  moag > M= |2z M2 1 1 ma3  —m3 —M24  M2g
miz  ma3 1 m3q miz  —mi3 —ma3 M3 1 1 m3s  —m3g

mis M4 mM3g 1 —mi4 Mg ma4  —M24 —M34  M34 1 1

Figure 1. An example of the map M +— M forn = 4.

Remark 2.2

For each i € [n], the sum of columns 2i — 1 and 2i of M is equal to 2e;, where e; is
the ith standard basis vector in R”. Thus the matrix M has full rank, and we denote
by ¢ (M) € Gr(n,2n) its row span.

One can check that ¢ (M) in fact belongs to OG(n,2n) (see Corollary 5.6). We
have thus constructed a map ¢ : Maty; " (R, 1) — OG(n, 2n). Since boundary correla-
tion matrices of planar Ising networks belong to the space Mat,," (R, 1), ¢ restricts to
amap ¢ : X, — OG(n,2n). We are ready to state our main result.

THEOREM 2.3
The restriction ¢ : X, — OG(n,2n) is a stratification-preserving homeomorphism

between X, and OG> (n,2n). Moreover, both spaces are homeomorphic to an ('2’)—
dimensional closed ball.

We prove the second part of Theorem 2.3 in Section 7, where we also deduce its
first part from Theorems 5.17 and 6.5.

Remark 2.4

The second sentence of Theorem 2.3 is an application of the machinery developed in
[18]. The fact that the image ¢(X,) is a subset of Grx(n,2n) can be deduced in a
straightforward fashion from the work of Lis [44] (see Section 6.2).

Example 2.5
We illustrate Theorem 2.3 in the case n = 2. Let 01, := (0102). Then the boundary
correlation matrix M has the form

M = ( ! “12). (2.5)
012 1

By definition, 015 < 1, and we also have o1, > 0 by one of the Griffiths’s inequalities
[21, Theorem 1]. In fact, if G has a single edge connecting the vertices by and b,
then it is easy to check that depending on Jip, 5,), 012 can be any number strictly
between 0 and 1. If we remove the edge {b;, b, } from G, then we get o1, = 0. Thus,
X consists of all matrices M of the form (2.5) for 0 < 01, < 1. If we contract the
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edge {b1, b2}, we get 012 = 1. The resulting graph will no longer be embedded in a
disk, because the boundary vertices b; and b, will be identified. This is an example
of a generalized planar Ising network that we introduce in Section 6. We see that
the closure X, of X, consists of all matrices M of the form (2.5) for 0 < 01, < 1,
and is stratified into three cells {1, = 0}, {0 < 012 < 1}, and {012 = 1}. These three
cells correspond to three possible matchings on {1,2, 3,4}, namely, {{1,2},{3,4}},
{{1,3},{2,4}}, and {{1,4},{2, 3}}, respectively.
We have

— 1 1 —
W = 012 012 ’ (2.6)
—012 012 1 1

and ¢ (M) € Gr(n,2n) is the row span of M . The maximal minors of M are

A12(M) = Azy(M) = 2012, A1a(M) = Ap3(M) = 1 -0},
Ay3(M) = Dpy(M) =1+ 0.

It follows that ¢ (M) belongs to OG(n,2n) for all o1, € R, and moreover, we get
¢ (M) € OGx¢(n,2n) precisely when 0 < g1, < 1. Note that M is a matrix but ¢(M)
is an element of the Grassmannian, and thus the Pliicker coordinates of ¢ (M) are
only defined up to rescaling. Nevertheless, we can recover o1, from these minors as
follows:

_ An@M)
As@(M)) + Ars(@(M))’

Thus we see that for n = 2, the map ¢ is indeed a homeomorphism, and both spaces
X, and OG5 ¢(n,2n) are homeomorphic to [0, 1], which is an ((;) = 1)-dimensional
closed ball.

O12 2.7)

3. Consequences of the main construction
In this section, we give further results on the relationship between the Ising model
and the orthogonal Grassmannian.

3.1. Reconstructing correlations from minors

Our first goal is, given an element X € OGx¢(#n,2n), to find explicitly a matrix M =
(m;.;) € Maty™ (R, 1) such that X is the row span of M. For the case n = 2, this was
done in (2.7). In order to deal with the general case, we give the following important

definition.

Definition 3.1
Given a subset S C [n], we denote by &,(S) C ([2n"]) the collection of n-element
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subsets I of [2n] such that for each i € [n], the intersection N {2i — 1,2i} has even
size if and only if i € S.

The following result, proved in Section 6, is a simple consequence of Remark 2.2.

LEMMA 3.2
Let M = (m; ;) € Mat,, " (R, 1) be a matrix. Then for each i, j € [n], we have

_ Yregadigy Ar(@(M)) - Z

= Ar(M). 3.1
g Z[egn(g)AI(¢(M)) I( ) ( )

ITe&n({i,j})

We stress again that unlike M. , the maximal minors of ¢(M) are defined up to
a common scalar, so it only makes sense to talk about their ratios. However, for the
specific matrix M, we have

Yo AM)=2" (3.2)

1€€,(9)

by the multilinearity of the determinant (see Remark 2.2). Thus, (3.2) explains why
the two expressions for m; ; given in (3.1) are actually equal.
For example, for n = 2, (3.2) becomes

A13(M) + A1a(M) + Ayz(M) + Ayy(M) = 4,

and fori =1 and j = 2, Lemma 3.2 gives another expression for 01,:

= A12(p(M)) + Aszq(@(M))
A13(@(M)) + Ara(@(M)) + Axz(p(M)) + Aza(p(M))’

which is easily seen to be equivalent to (2.7).

012

3.2. Cyclic symmetry and the Kramers—Wannier duality

A nice application of Theorem 2.3 is a cyclic symmetry of the space X ,,, which comes
from the cyclic symmetry of OGs(n,2n). It turns out that the cyclic shift operation
on OGs¢(n,2n) corresponds to the Kramers—Wannier duality in [39] that switches
between the high and low temperature expansions for the Ising model.

Let k < N, and consider a linear operator S : RY — R" mapping a row vector
v=(vi,....,on) €eRYN tov-S = (vz,v3,...,vN,(—l)k_lvl). As a matrix, S is
given by S;+1,; = 1 fori € [N — 1], and S; y = (—=1)¥~1. A simple observation is
that multiplying a k x N matrix A with nonnegative maximal minors by S on the right
yields another k x N matrix with nonnegative maximal minors. Since multiplication
on the right commutes with the left GL (R)-action, we get a cyclic shift operator
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on Grsq(k, N) mapping X € Gryo(k,N) to X - S € Grso(k, N). It is clear from
the definitions that for Grso(n,2n), this action restricts to a cyclic shift action on
OGs>¢(n,2n). For example, if X € OG>((2,4) is the row span of the matrix M given
in (2.6), then X - § is represented by

— 1 — 1
M-S = O12 —o12 . (3.3)
o2 1 1 012

One can check that the row span X - S of this matrix again belongs to OG>¢(2,4). By

Theorem 2.3, there must exist a matrix M’ = (U} 012) such that ¢(M’) = X - S in
— 12

0Gx(2,4) (i.e., such that M’ is obtained from the matrix in (3.3) by row operations).

The value of o{, can be found from the minors of X - S using (2.7):

Ol _ Alz(XS) _ 1—0122 _ 1—0’12
2T AB(XS) + A(X - S) l1+02 +2012 l+o12

Thus, the cyclic shift operation on OGx(n, 2n) yields an automorphism of X, which
has order 2n for n > 2 and order n for n = 1,2. For n = 2, it sends o015 to ;;‘;lé
Let us now recall the construction of the duality of [39].

Definition 3.3

Let N = (G, J) be a connected planar Ising network.' The dual planar Ising net-
work N* := (G*, J*) is defined as follows. The graph G* = (V*, E*) is the planar
dual graph of G, with boundary vertices by, ...,b; placed counterclockwise on the
boundary of the disk so that b is between b; and b; ;. For e € E, we denote by e*
the edge of G* that crosses e € E, and thus we have E* = {¢* | ¢ € E}. The edge
parameters J . € R are defined uniquely by the condition that

1
inh(2J%) = —— 3.4
Sinh(2Je) = i 70 34)

foralle e E.

For example, if G is the graph in Figure 4 (left), then its dual G* is shown
in Figure 4 (middle). Note that we have sinh(2¢) = 1/sinh(2¢) if and only if t =
%log(\/i + 1) is the critical temperature of the Ising model on the square lattice.
We also remark that applying the duality twice yields the same planar Ising network
except that its boundary vertex labels are cyclically shifted: (b)* = b; 1. We prove
the following result in Section 7.

!"This definition can be easily extended to all (not necessarily connected) generalized planar Ising networks.
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THEOREM 3.4

Let N = (G, J) be a connected planar Ising network with dual planar Ising net-
work N* := (G*,J*). Then the correlation matrices M := M(G,J) and M* :=
M(G*,J*) are related by the cyclic shift on OGsq(n,2n):

p(M)-S =¢(M").

According to [18, Theorem 1.1], the space Grso(k, N) is homeomorphic to a
closed ball. The main ingredient of the proof of this result is the cyclic symmetry of
Grso(k, N). In Section 7, we use the above cyclic symmetry of OGx>¢(n,2n) in a
similar way to show that it is a closed ball, which by the first part of Theorem 2.3
implies that the space X, of boundary correlation matrices is homeomorphic to a
closed ball as well.

The following fact can be found in [18, Lemma 3.1] or [33, (1.4)], where it is
stated more generally for all Grso(k, N).

PROPOSITION 3.5
There exists a unique point Xy € Gr>q(n,2n) that is cyclically symmetric, that is,
satisfies Xo - S = Xg. Its Pliicker coordinates Aj(Xy) for I € ([Zn"]) are given by

=D
Ar(Xo) = sin(~—-7). 3.5)
(Xo) ]11‘[1 - (
It will follow from our proof of Theorem 2.3 that this point X, actually belongs
to OGx¢(n,2n), and thus corresponds to some special planar Ising network with n
boundary vertices. For instance, for n = 2 this is the Ising network N with one edge e
such that J, = %10g(«/§ + 1). This planar Ising network is self-dual, that is, satisfies
N = N*. However, it is easy to see that for n = 3 there are no self-dual planar Ising
networks. Nevertheless, as our next result shows, for each n, there exists a (usually
not unique) planar Ising network N = (G, J) with n boundary vertices such that the
boundary correlation matrices of N and N* coincide: M(G,J) = M(G*,J™).

PROPOSITION 3.6

For each n > 1, there exists a unique boundary correlation matrix My € X of some
planar Ising network such that the element ¢ (My) € OGso(n,2n) is cyclically sym-
metric, that is, satisfies ¢p(My) - S = ¢(My). For any planar Ising network N =
(G, J) satisfying M(G,J) = My, we have M(G,J) = M(G*,J*).

See Section 7 for the proof.



ISING MODEL AND THE POSITIVE ORTHOGONAL GRASSMANNIAN 1887

Remark 3.7

Consider a planar Ising network N = (G, J) such that G is the intersection of the
square lattice of small side length § with a disk, and let J, = % log(+/2 + 1) be critical
for all e € E. The dual network N* = (G*, J*) is “very close” to N in the sense
that it is obtained by shifting N by (6/2,8/2) and making some adjustments near
the boundary of the disk. Thus, one could argue that the boundary correlations of
N are “very close” to being cyclically symmetric, in which case we can find them
explicitly from (3.2) and (3.5). The notion of being “very close” is asymptotic and
thus is left beyond the scope of this paper. We plan to apply this approach to studying
the universality of the scaling limit as § — 0 in future work.

3.3. Reduction to the dimer model
Lemma 3.2 shows that each two-point correlation function is a ratio of two sums of
minors of an element of OG>¢(n,2n). In the next section, we apply a well-known
result that each minor of an element of Gr>¢(k, N) is equal to a weighted sum of
matchings in a certain planar bipartite graph.

Suppose that we are given a planar Ising network N = (G, J). We introduce two
functions s,¢ : E — (0, 1) satisfying s? + cg =1 for each e € E, as follows. Given
ec E, we set

2
exp(2Je) + exp(—2J,)’
exp(2J,) —exp(—2Je)
exp(2J.) +exp(—2J,)"

Se := sech(2J,) =

(3.6)

Ce := tanh(2J,) =

Next, we transform G into a weighted planar bipartite graph (a plabic graph in
the sense of [53]) G- embedded in a disk, as in Figures 2 and 4: we replace each

d3 d2 d3 d2

b ® ® b, S e Se

d4 d] d4 dl
G GUY G*

Figure 2. (Color online) Transforming a graph G (left) with one edge e connecting two
boundary vertices b1 and b, into a bipartite graph GU (middle) with eight edges. Four of those
edges are incident to the boundary and have weight 1, and the rest have weights se, ce, Se, Ce, as
shown in the figure. The corresponding medial graph G* from Section 3.5 is shown on the right.
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edge e € E of G by a bipartite square as in Figure 2 (middle), and connect two
such squares if the corresponding edges of G share both a vertex and a face of G.
Additionally, we connect each of the 2n boundary vertices of GU, which we label
dy,...,ds, in counterclockwise order, to a unique vertex of G in the interior of the
disk in an obvious way (as in Figure 4). Thus, d; is a white (resp., black) vertex if i
is odd (resp., even). See Definitions 5.12 and 6.2 for a precise description of the rules
for constructing G from G. We call G the plabic graph associated with G .

Let us now describe the boundary measurement map of [53] and [61], as
explained in [41].

Definition 3.8

An almost-perfect matching of G is a collection #4 of edges of G such that every
vertex of GU is incident to at most one edge in #, and every nonboundary vertex of
GU is incident to exactly one edge in #. The boundary of # is a subset d() C [2n]
which consists of all odd indices i such that d; is not incident to an edge of 4 together
with all even indices i such that d; is incident to an edge of 4. We define the weight
wt(A) of A to be the product of weights of all edges in 4.

It is not hard to see that d(#) has size n for any almost-perfect matching 4
of GH. We are prepared to give a formula for the boundary correlation functions
which is very similar to Kenyon and Wilson’s grove measurement formula [38, The-
orem 1.2]. See Section 7 for the proof.

THEOREM 3.9

Let N = (G, J) be a planar Ising network, and let M = M(G, J) be its boundary
correlation matrix. Consider the element ¢(M) € OG> (n,2n), and let G be the
weighted planar bipartite graph described above. Then up to a common rescaling, for
every I € ([2"]) we have

n

Ar(¢(M) =Y wih), (3.7)

A:0(A)=1

where the sum is over almost-perfect matchings A of G5 with boundary I .

For example, consider the graph G5 in Figure 2 (middle). There is a single
almost-perfect matching of G with boundary {1, 2}, shown in Figure 3 (left). Sim-
ilarly, there are two almost-perfect matchings of G with boundary {1,3} and one
almost-perfect matching with boundary {1, 4}, also shown in Figure 3. Therefore, by
Theorem 3.9, we get

M) =ce.  Au(pM))=cl+s7=1 Au(p()=s.
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d3 Ce C/dz d30~ - Ce .dz dso‘ - Ce .dz a3 Ce - .d2
. Jp e j |-
ds® o e ) °d, ds® / Ce °d; ds® / Ce °d, ds Ce ‘ °d,
a(A) = {1,2} a(4) ={1,3} a(A) ={1,3} a(A) ={1,4}
wt(A) = ce wt(A) = 52 wt(A) = ¢2 wt(A) = Se

Figure 3. (Color online) Some almost-perfect matchings of GH, together with their boundaries
and weights.

up to a common rescaling. By (2.7), we should have

_ A12(¢(M)) _ Ce
Aiz(@(M)) + Aa(p(M)) 1+,

where s, = sech(2J,) and ¢, = tanh(2J,) are expressed in terms of J, as in (3.6).
Simplifying the expressions, we get

oo —exp(—Je)
12 — .
exp(Je) + exp(—Je)

O12 (3.8)

(3.9)
On the other hand, by the definition of the Ising model, the partition function is equal

to Z = 2(exp(Je) + exp(—J.)) and thus the correlation (o707) is

exp(Je) —exp(—Je)
exp(Je) + exp(—Je) ’

(0102) = %(exp(]e) —exp(—Je)) =

in agreement with Theorem 3.9.
Lemma 3.2 and Theorem 3.9 together recover the following elegant formula of
[14] for expressing boundary correlations in terms of almost-perfect matchings.”

COROLLARY 3.10
Let N = (G, J) be a planar Ising network. Then for all i # j € [n], the correspond-
ing boundary correlation function is given by

D Ad(A)EE (i, ) WHA)

(0i0;) = , (3.10)
’ 2 A A)eEn (@) WHA)

where the sums in the numerator and the denominator are over almost-perfect match-
ings A of GU.

2See Section 6.1 for further discussion.
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by

e7

bs bs b
G G*

Figure 4. (Color online) A planar graph G embedded in a disk (left), its dual G* (middle), and
the corresponding plabic graph GH (right).

3.4. Generalized Griffiths’s inequalities

As we have already noted, the fact that we have J, > 0 for all edges e implies that
all two-point correlation functions (0, 0,) are nonnegative (see [21]). Equation (3.1)
shows that (0,,0y) is a positive linear combination of the minors of M, and thus its
nonnegativity follows from Theorem 2.3. More generally, for every subset A C [n],
define

) =([Ton)= > P@[]on

ieA oe{-1,1}V ieA

to be the expectation of the product of the spins in A. The following generalized
Griffiths’s inequalities were proved in [35].

PROPOSITION 3.11 ([35, Section 2])
For every A C [n], we have

(OA) > 0.
For every A, B C [n], we have
(0408) —(04)(0B) = 0.

Here (0408) = ([[;caqp 0b;)» Where A® B = (A\ B) U (B \ A) denotes the
symmetric difference of A and B. We note that the inequalities of Proposition 3.11
hold more generally for not necessarily planar graphs G and arbitrary subsets A and
B of the vertex set of G.
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The goal of our next result is to explain how both inequalities in Proposition 3.11
also arise as positive linear combinations of the minors of the matrix M, where M =
M(G, J) is the boundary correlation matrix.

Definition 3.12

For A C [n], we define A= {2i —=1]i € A} U{2i |i € A}, and for € € {0, 1}, we let
DE(A) C ([zn"]) be the set of all ] € ([zn"]) such that the sum of elements of 7 N 4 is
equal to € modulo 2.

Recall also the notation &, (S) from Definition 3.1. We prove the following result
in Section 8.

THEOREM 3.13
For every A C [n], we have

(oa)=2"" > A;(M). (3.11)

1€8&,(A)

For every A, B C [n], there exists € € {0, 1}, given explicitly in (8.1), such that

(0408) — (04)(oB) =27""! > Ar(M). (3.12)
1€6,(A®B)ND<(B)

Thus, the inequalities of Proposition 3.1 1 become manifestly true when expressed
in terms of minors of M, which are nonnegative by Theorem 2.3.

For example, when n =2 and A = B = {1,2}, we have € = 1 by (8.1), and thus
(3.12) becomes

2 A1a(M) + Ay (M)
1—-o0;7, =
12 > .

3.5. Inverse problem
In this section, we concentrate on answering the following question.

Question 3.14

Given a planar Ising network N = (G, J), is it possible to reconstruct J from the
matrix M (G, J)? In other words, is it true that the function J : E — R is uniquely
determined by G and M (G, J)?

Of course, the answer to this question is negative if, for example, G has more
than (}) edges. In order to fix this, we introduce medial graphs. Namely, given a
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ds dy

b3 bz d5 d3

d>

b
4 dl
e7 eq

€6
bs be

G G

Figure 5. (Color online) A planar graph G embedded in a disk (left), the corresponding medial
graph G* (middle) and its medial strands (right).

planar graph G embedded in a disk, the medial graph G* associated with G is a
planar graph obtained from G as in Figure 2 (right) and Figure 5 (middle). It has 2n
boundary vertices di,...,dsn, each of degree 1, and |E| interior vertices, each of
degree 4. See Section 6 for a precise description.

Since each interior vertex of G* has degree 4, we define a medial strand in G* to
be a path that starts at a boundary vertex d; of G*, follows the only edge of G* inci-
dent to it, and then goes “straight” at each interior vertex of degree 4, until it reaches
another boundary vertex d; of G*. (More precisely, a medial strand is determined
by the condition that whenever two of its edges share a vertex, they do not share a
face.) Clearly there are n medial strands in G*, and each of them connects d; to d;
for some i, j € [2n], giving rise to a matching tg on [2n] called the medial pairing
associated with G:

G = {{i,j} C [2n] | a medial strand in G starts at d; and ends at dj}.

Thus, tg is a partition of [2x] into n sets, each of size 2. For example, for the graph
G in Figure 5 (left), there is a medial strand that starts at vertex d3, then follows the
midpoints of edges e, e3, eg, €7, and then terminates at vertex dg. Thus, the medial
pairing tg of G contains a pair {3, 8}. Following the other five medial strands (see
Figure 5 (right-side image)), we find that

6 = {{1,4),{2,11},{3,8},{5,9}, (6,10}, {7, 12} . (3.13)

Definition 3.15

Fori < j,i’ < j’ €[2n], we say that pairs {i, j } and {i’, j'} form a crossing if either
i<i'’<j<jori’<i<j < j.Foramatching t of [2n], we let xing(t) denote
the number of pairs in t that form a crossing.
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For example, if tg is given in (3.13), then xing(zg) = 9. We are now ready to
state an important definition introduced in [13].

Definition 3.16
We say that G is reduced if its number | E| of edges equals xing(z¢g).

For example, the graph G in Figure 5 (left) is reduced since it has |E| =9 =
xing(zg) edges.

We will see later in Proposition 6.4 that if we fix G and let J vary, then the space
of matrices M (G, J) obtained in such a way is an open ball of dimension xing(zg).
Since J varies over RE, we see that if G is not reduced (in which case clearly
|E| > xing(zg)), then the answer to Question 3.14 is negative. On the other hand, if
G is reduced, then the answer turns out to be always positive, as we show in Section 7.

THEOREM 3.17

Let N = (G, J) be a planar Ising network such that G is reduced. Then the map
J — M(G,J) is injective; that is, for each matrix M € Matf,ym(]R, 1), there is at
most one function J : E — R.¢ such that M = M(G, J).

Theorem 2.3 combined with our results in Section 5 gives a simple explicit way
to test whether for a given reduced graph G and a matrix M € Mat,’ " (R, 1) there
exists a function J : E — R~ such that M = M(G, J).

In order to describe a recursive way of reconstructing J from M (G, J), we intro-
duce operations of adjoining a boundary spike and adjoining a boundary edge to G.
An identical construction in the case of electrical networks has been considered in

[13].

Definition 3.18

Let N’ = (G’, J’) be a planar Ising network, where G’ = (V', E’) has n boundary
vertices. Given k € [n], we say that another planar Ising network N = (G, J) with
n boundary vertices is obtained from N’ by adjoining a boundary spike at k if the
vertex by in G is incident to a single edge e and contracting this edge in G yields G’.
Similarly, we say that N is obtained from N’ by adjoining a boundary edge between
k and k + 1 if G contains an edge e connecting by and bg 4y, and removing this
edge from G yields G’. In both cases, we additionally require that the restriction of
J:E—>R.gto E'=E\ {e} coincide with J": E’ — R.

When adjoining boundary edges, we allow for k = n, in which case we set k +
1:=1. We denote t := J,, and our first goal will be to reconstruct ¢ from the matrix
M(G,J).
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Definition 3.19
Let i € [2n]. Consider a total order <; on [2n] given by

I<;i+1=<;--=<i2n=<;1=<5---=<;0—1,

where the indices are taken modulo 2n. For a planar Ising network N = (G, J) and
i € [2n], define subsets Iimin(G),Iima"(G) € ([Zn"]) whose disjoint union is [2n] as
follows. For each unordered pair {a, b} of tg, we may assume that a <; b, and then
we leta € Iimi“(G) and b € I;"(G). In particular, we always have i € Iimin(G) and
i—1elI™(G).

For example, recall that if G is the graph from Figure 5 (left), then tg is given
by (3.13). Fori =7 and i = 12, we have

I'™(G)={7.8.9.10.11,1},  IM(G)={6,5.4.3.2.12},

, (3.14)
NGy ={12,1,2,3,5.6},  I™(G)=1{11,10,9,8.,7,5}.

We prove our next result in Section 7.

THEOREM 3.20

Let G be a reduced planar graph embedded in a disk.

(1)  Suppose that N = (G, J) is obtained from N' = (G',J’) by adjoining a
boundary spike e at k € [n]. Let M := M(G,J), let k := 2k — 1, and let
t :=Je. Then for I := I/?TI (G), we have

MGOD)
A G+ (@ (M)

(2)  Suppose that N = (G, J) is obtained from N’ = (G',J’) by adjoining a
boundary edge e between k € [n] and k + 1. Let M := M(G, J), let k := 2k,
and lett := J,. Then for I := Il%ni"l (G), we have

se = sech(2t) =

Ar(p(M))

Ce =tanh(2¢) = .
’ Aot (0 (M)

For example, the graph G in Figure 5 (left) can be obtained from another reduced
graph by adjoining a boundary spike e4 at k = 6, so we have k = 11 in part (1) of
Theorem 3.20. Since I = I{“;“(G) ={1,2,3,5,6,12} by (3.14), we have

_ A1,2,3,5,6,12) (¢ (M))
A 2356113(@(M))

Seq
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Similarly, G can be obtained from another reduced graph by adjoining a boundary
edge eg between k = 3 and k + 1 = 4, so we have k = 6 in part (2) of Theorem 3.20.
Since I = I7™(G) ={2,3,4,5,6,12} by (3.14), we have

_ Dp3as612(9(M))
’ Apsas712(@(M))

Since both functions sech, tanh : (0, co) — (0, 1) are strictly monotone, it follows
from Theorem 3.20 that we can reconstruct ¢ = J, uniquely from M (G, J) whenever

Ce

e is either a boundary spike or a boundary edge of G. This constitutes the first step of
our reconstruction algorithm, in view of the following result.

PROPOSITION 3.21

Suppose that G is a connected reduced planar graph embedded in a disk, having
at least one edge. Then G is obtained from another reduced graph G’ by adjoining
either a boundary spike or a boundary edge.

We note that the graph G’ above need not be connected. Also, if G itself is
not connected, then it is clearly enough to solve the inverse problem for each con-
nected component of G separately, and thus we may assume that G is connected. See
Lemma 5.18 for a generalization of Proposition 3.21.

Proposition 3.21 says that given a reduced graph G and a matrix M (G, J), we
can reconstruct J, for at least one edge e of G. A natural thing to do now would be
to contract e if it is a boundary spike and remove e if it is a boundary edge, obtain-
ing the reduced graph G’. Our next goal is to explain the relationship between the
matrices M(G,J) and M(G’,J’) in the case where N = (G, J) is obtained from
N’ = (G’, J’) by adjoining either a boundary spike or a boundary edge.

We note that these two operations look like they have a very different effect on
the boundary correlation matrix. For example, adjoining a boundary spike at k only
changes the correlation (0;0;) when either i or j is equal to k, but adjoining a bound-
ary edge between k and k + 1 in general changes all entries of the boundary corre-
lation matrix. Surprisingly, these two operations have exactly the same form when
written in terms of the matrix M, as we now explain. (In fact, it is clear that apply-
ing the duality from Section 3.2 switches the roles of boundary spikes and boundary
edges.)

Suppose that N = (G, J) is obtained from N’ = (G’, J') by adjoining a bound-
ary spike e at k € [n] (resp., a boundary edge e between k and k + 1). Define
ki=2k —1 (resp., k= 2k), t := Je, Se := sech(2t), c. := tanh(2¢), as in Theo-
rem 3.20, and let g = gz(7) be a 2n x 2n matrix which coincides with the identity
matrix except that it contains a 2 x 2 block Ry in rows and columns indexed by
k and k + 1. When k is odd, we set R; = ( 1ee xe/c"), and when k is even, we

se/ce 1/ce
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set Ry := (cle/ /Ssi) Cl"/sif‘ ). In the case where we have k = 2n, that is, when we are
adding a boundary edge between k = n and k 4+ 1 = 1, the relevant entries of g are
Zonon = 811 = 1/se and g1.2n = gan.1 = (=1)""c./s.. This sign twist is related
to the cyclic symmetry of Grs(n,2n) as we explained in Section 3.2. For example,

forn =2 and k = 1,4, we have

1/ce Sefce 0 O 1/se 0 0 —co/se
Sefce 1/ce 0 O 1 0 0
)= 1) =
g1(1) 0 0 1 ol ga(1) 0 0 1 0
0 0 0 1 —Ce/Se 0 0 1/se

Recall that given an element X € Gr(n,2n) and a 2n x 2n invertible real matrix
g, an element X - g € Gr(n,2n) is well defined as the row span of A - g where A is
any n X 2n matrix whose row span is X .

THEOREM 3.22

Suppose that N = (G, J) is obtained from N' = (G',J’) by adjoining a boundary
spike e at k € [n] (resp., a boundary edge e between k and k +1). Let M = M(G, J),
M’ = M(G',J"), and g (t) be as above. Then we have

p(M)=¢p(M')-gi(1).

Theorems 3.20 and 3.22 give the following inductive algorithm for reconstruct-
ing the function J : E — R for a given reduced graph G = (V, E) from the matrix
M = M(G, J). The problem is trivial when G has no edges. Otherwise, by Propo-
sition 3.21, there is either a boundary spike or a boundary edge e in G. The matrix
M gives an element ¢p(M) € OGs¢(n,2n), from which we compute either s, or ¢,
using Theorem 3.20 and thus find that t = J,. After that, we contract e in G if it is a
boundary spike and remove it if it is a boundary edge, and also modify the matrix M
accordingly: we let

X' :=¢(M)-(gz(1)) " €O0Gso(n,2n),

where (g¢ ())~! can be found using

-1
(1/Ce se/ce) _ ( 1/ce —se/ce)
Sefce 1/ce —Se/Ce 1/ce '
-1
(l/se ce/se) _ ( 1/se —ce/se)
Ce/Se 1/5e —Ce/Se 1/se )’
By Lemma 3.2, we have X' = ¢(M’) € OGs¢o(n,2n) for a unique matrix M’ €
Mat,)™ (R, 1). We then express the entries of M’ in terms of the Pliicker coordinates
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of X’ using (3.1). It follows that this n x n matrix M’ is equal to M(G’, J’), so we

set G := G’ and proceed recursively until G has no edges left, splitting G’ into con-

nected components if necessary. This finishes a constructive proof of Theorem 3.20.

Alternatively, we deduce Theorem 3.20 from Theorem 2.3 at the end of Section 7.
Another question similar to Question 3.14 is the following.

Question 3.23
Given an n x n matrix M € Mat,," (R, 1), does there exist a planar Ising network
N =(G,J) suchthat M = M(G, J)?

The answer to this question is provided by Theorem 2.3: the answer is “yes”
if and only if all minors of the matrix M are nonnegative. There are exponentially
many minorsfvto check, that is, (Zn"), and in general one needs to check all of them to
ensure that M is totally nonnegative. However, checking whether ¢ (M) € OG(n,2n)
belongs to OG~¢(n,2n) := OG(n,2n) N Grsg(n,2n) (defined in (4.1)), as opposed
to OGx¢(n,2n), can be done in polynomial time. More precisely, one needs to check
only 72 + 1 minors of M, as it follows from the results of [53]. These minors are alge-
braically independent as functions on Gr(n,2n), but when restricted to OG(n,2n),
this is no longer the case. Thus, if all of them are positive, then it follows that ¢p (M) €
OG- ¢(n,2n), but in general one could check fewer minors and arrive at the same con-
clusion. See Section 9 for further discussion.

4. Background on the totally nonnegative Grassmannian
In this section, we give a brief background on the totally nonnegative Grassmannian
of Postnikov [53]. Most of the results in this section can be found in either [53] or
[41].

Recall that the totally nonnegative Grassmannian Grs¢(k, N) is the subset of the
real Grassmannian Gr(k, N') where all Pliicker coordinates are nonnegative. Given a
point X € Gr>¢(k, N), define the matroid Mx C ([IIZ]) of X by

My = {J c <UZ]) ‘ Ay(X)> o}.

Given a collection M C ([IZ]), define the positroid cell T15) C Grso(k, N) by
50 :={X €Grxo(k.N) | Mx = M}.

N

)

For example, one can take M = ( , in which case the positroid cell Hj{o coin-

cides with the totally positive Grassmannian Grs.o(k,n):

Grao(k, N) := {X € Gr(k, N) ‘ A7(X)>0forall I € ([]Z])} @.1)
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A collection M C (UZ ]) is called a positroid if I15 is nonempty. Positroids are
special kinds of matroids, and have a very nice structure which we now explain.

Recall that for i € [V], the total order <; on [N]is givenbyi <; i +1<; --- <;
N<,‘1<i~--<,‘i—1.

Definition 4.1
For two sets 1, J € (UZ]),we write | <; Jif I ={iy <; - <;ixh, J ={j1 <i <
Jk}, and iy <; js for 1 <s < k. It turns out that if M is a positroid, then for each i it
has a unique <;-minimal element which we denote / imi" (M). Thus 1 imi“ (M) satisfies
Iimi“(M) =i J for all J € M. Similarly, we let I;"**(.M) be the unique =<;-maximal
element of M.

Definition 4.2
A sequence d := (I,...,Iy) of k-element subsets of [N] is called a Grassmann
necklace if for each i € [N] there exists j; € [N] such that I; 11 = I; \ {i} U {Ji}.

Here (and everywhere in this section) the index i 4 1 is taken modulo N.

There is a simple bijection between positroids and Grassmann necklaces, which
sends a positroid M to the sequence J (M) := (If‘i“(M), Ié"i“(e/%),...,lﬁi“(a%)),
which is a Grassmann necklace for each positroid M. Each Grassmann necklace d is
encoded by an associated decorated permutation wg : [N] — [N] which sends i € [N]
to the index j; from Definition 4.2. (When i is a fixed point of my, i.e., mg(i) =1,
there is an extra bit of data in 7y recording whether i € I; or i ¢ I;, but this will not
be important for our exposition.) The map J > 7y is a bijection between Grassmann
necklaces and decorated permutations.

Remark 4.3

Under the above correspondence, a positroid M gives rise to a decorated permutation
7 ¢ such that for i € [N], (i) is equal to the unique element of the set Ii“_‘;“l (M) \
1 l.mi" (M), if it is nonempty, and is equal to i otherwise. It is not hard to see that JTJ{I (1)
is the unique element of the set 7" (M) \ ;5] (M).

See [53, Section 16] for a detailed description of these objects and bijections
between them.

A plabic graph is a planar bipartite graph GZ = (V5. EF) embedded in a disk
such that it has N boundary vertices d1, ..., dy, each of degree 1. (Postnikov consid-
ers more general plabic graphs where vertices of the same color are allowed to be con-
nected by an edge, but for our purposes it is sufficient to work with bipartite graphs.)
Recall that the notion of an almost-perfect matching is given in Definition 3.8. Given
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an almost-perfect matching 4 of G, we define its boundary d(+A) C [N] to be the set

a(A) = {i €[N] | d; is black and is not incident to an edge of A}

U {i € [N] | d; is white and is incident to an edge of A}.

It turns out that for every G5 there exists an integer 0 < k < N such that every
almost-perfect matching 4 of GU satisfies |d(4)| = k. The number k is given explic-
itly in terms of the number of black and white vertices of GU (see [41, (9))).

Definition 4.4

Each plabic graph G gives rise to a decorated permutation g0, as follows. A strand
in GU is a path that turns maximally right (resp., maximally left) at each black (resp.,
white) vertex. Thus, every edge of GF belongs to precisely two strands traversing it
in opposite directions. If a strand that starts at b; ends at b; for some i, j € [N], then
we put w;o(i) := j, which defines a decorated permutation 750 : [n] — [n]. (For
each i such that 750 (i) =i, mgo also contains the information whether i was black
or white in G5.)

Since decorated permutations are in bijection with Grassmann necklaces and
positroids, each plabic graph G= gives rise to a Grassmann necklace Jdoo and a
positroid M ;0.

A weighted plabic graph is a pair (GU, wt), where G5 is a plabic graph and
wt : EY — R is a weight function assigning positive real numbers to the edges
of GU. For an almost-perfect matching # of G5, recall that wt(A) is the prod-
uct of weights of edges of 4. We can consider a collection Meas(G5,wt) :=

(A](GD,Wt))IG([N]) e RP()-1 of polynomials given for I € (UZ]) by
k

ArGowh = Y wih), (4.2)
A0 (A)=1

where the sum is over all almost-perfect matchings 4 of GH with boundary 7. It
turns out that (A7 (G5, wt)) 1e(™) is the collection of Pliicker coordinates of some
point X € Gr>¢(k, N). The following result is implicit in [54].

THEOREM 4.5 ([41, Corollary 7.14])
Given a weighted plabic graph (G5, wt), there exists a unique point X € Gr(k, N)
such that

Meas(G™, wt) = (A; (X)),e([izf])
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as elements of the projective space RIF”(]/\f])_l. The point X belongs to Grso(k,N)
and in fact to the positroid cell Hj(o 0 where M ;0 is the positroid whose decorated
G

permutation is wgo. Every point X € HQOGD arises in this way from some weight

function wt: ED — R,

The map Meas(G", ") : REOD — Gr>o(k, N) sending wt — X is not usually
injective. To see this, observe that each interior vertex of G is incident to precisely
one edge of each almost-perfect matching +. Thus, rescaling the weights of all edges
incident to a single interior vertex (i.e., applying a gauge transformation) does not
change the value of Meas. We denote by ]Rfo / Gauge the space of gauge-equivalence
classes of functions wt : EHY — R-q, so that wt and wt’ are the same in REE / Gauge
if and only if wt’ can be obtained from wt by a sequence of gauge transformations.
It is not hard to see that ]Rf(‘)j / Gauge is homeomorphic to an open ball of dimension
F(GY) — 1, where F(GP) denotes the number of faces of G5.

Thus, by Theorem 4.5, Meas gives rise to a map

Meas : REOD/Gauge — Hj{OGD C Grso(k,N)

which turns out to be injective for some plabic graphs G=. More precisely, let us say
that G= is reduced if all of the following conditions are satisfied:

6) no strand in GH intersects itself;

(i) there are no closed strands in G;

(iii)  no two strands in G have a bad double crossing.

Here two strands are said to form a bad double crossing if there are two vertices u, v €
V' such that both strands first pass through u and then through v. The following
result can be found in [53, Sections 3 and 4] and [41, Section 5].

THEOREM 4.6
For each positroid M, there exists a reduced plabic graph G5 such that M = MgO.
Given a reduced plabic graph G, the map Meas : REOD/Gauge — HleGD is a

homeomorphism. Thus, the positroid cell Hjuo 5 is homeomorphic to RF GD-1_
G

addition, we have

Grso(k, N) =| |13, (4.3)
M

where the union is over all positroids M C ([IZ]).
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The last ingredient from the theory of plabic graphs that we will need is Britto—
Cachazo—Feng—Witten (BCFW) bridges, introduced in [2] and [8]. Our exposition will
follow [41, Section 7].

Recall that each boundary vertex of a plabic graph is incident to a unique edge.

Definition 4.7

Given i € [N], we say that a plabic graph G5 has a removable bridge between i and
i + 1 if there exists a path of length 3 between d; and d; 4, in GU. (In particular,
these vertices have to be of different color.)

Here we again allow i = N and i + 1 = 1. We refer to the middle edge of this path
of length 3 as a bridge between i and i + 1. There are two types of bridges, since i can
be incident either to a white or to a black interior vertex. It turns out that the weight
of the bridge can always be recovered from the minors of the corresponding element
of the Grassmannian. The following result can be found in [41, Proposition 7.10] and
[42, Proposition 3.10], and is the main ingredient of the proof of Theorem 3.20.

THEOREM 4.8
Let (G, wt) be a weighted reduced plabic graph, and suppose that it has a remov-
able bridge between i and i + 1. Assume that the weights of the edges incident
to d; and d;4, are both equal to 1 (which can always be achieved using gauge
transformations). Let e € EU be the bridge between i and i + 1, and denote X =
Meas(G", wt) € Grso(k, N).
(1)  Ifi is white, then for I := Ii”i'i (Mgo), we have

Ar(X)
Aruting+1(X)
(2)  Ifi is black, then for I := [} (MgD), we have

Ar(X)
Arugi+iniy(X)

wt(e) =

wt(e) =

We will also need to explain how removing a bridge changes the corresponding
element of the Grassmannian. For i € [N — 1] and ¢ € R, define x;(¢) € Maty (R)
to be an N x N matrix with ones on the diagonal and a single nonzero off-diagonal
entry in row i and column i + 1 equal to . We also define xx (¢) to be the matrix
with ones on the diagonal and the entry in row N, column 1 equal to (—1)¥~1z. We
define y;(¢) to be the matrix transpose of x; (¢) fori € [N].

LEMMA 4.9 ([41, Lemma 7.6])
Let (GU, wt) be a weighted plabic graph, and suppose that it has a removable bridge
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between i and i + 1. Assume that the weights of the edges incident to d; and d; 41 are
both equal to 1. Let e € EU be the bridge between i and i + 1 with weight wt(e) =
t, and denote X := Meas(G5, wt) € Gr>o(k,N). Let (GD/,Wt/) be obtained from
(GU, wt) by removing e, and define X' := M(GD/, wt). Then for all I € ([1,\!]), we
have the following.

(1) Ifi is white, then X' = X - x;(—t), and

Ar(X)—tApng+nuy(X) ifi+l1el buti ¢1,

Ar(X) =
1) {AI(X) otherwise.

(2)  Ifi is black, then X' = X - y;(—t), and

. {AI(X)—tAI\{i}U{i+1}(X) ifielbuti+1¢1,

Ar(X) =
Ar(X) otherwise.

5. The totally nonnegative orthogonal Grassmannian
In this section, we discuss how the stratification of Gr(n,2n) induces a stratification
of the totally nonnegative orthogonal Grassmannian OGx¢(7,2n). We remark that
some of the statements below have appeared in [28] and [29], but mostly without
proofs.

Recall from Definition 2.1 that the orthogonal Grassmannian OG(n,2n) C
Gr(n,2n) is the set of X € Gr(n,2n) such that A;(X) = Ap,s(X) for all n-
element sets / C [2n]. In the literature, the term “orthogonal Grassmannian” usually
refers to the set of subspaces where a certain nondegenerate symmetric bilinear
form vanishes. Over the complex numbers, there is only one such bilinear form up
to isomorphism, but over the real numbers, one needs to choose a signature. Fol-
lowing [28], define a nondegenerate symmetric bilinear form 7 : R?" x R?” — R
by n(u,v) := u1v; — uvs + -+ + Uzp—1V2n—1 — U V2,. Let us also introduce
another subset OG_(n,2n) C Gr(n,2n) consisting of all X € Gr(n,2n) such that
Ar(X) = —Apn(X) for all n-element sets / C [2n].° We justify our terminology
as follows.

PROPOSITION 5.1

For a subspace X € Gr(n,2n), the following are equivalent:
(1) X € 0G(n,2n) UOG_(n,2n);
(2)  for any two vectors u,v € X C R?*, we have n(u,v) = 0.

Proof
Given a k x N matrix A = (a;,;), define another k x N matrix alt(4) := ((—1)ja,~,j).

3We thank David Speyer for suggesting that we consider both OG(n,21) and OG_ (1, 2n).
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Taking row spans and setting k :=n, N := 2n, we get a map alt : Gr(n,2n) —
Gr(n,2n). It is a classical result (see, e.g., [26, Section 7] or [32, Lemma 1.11])
that for X € Gr(n,2n) and I € (?"), we have Ap,s(@lt(X1)) = cAr(X),
where L denotes the orthogonal complement of X C R?" with respect to the
standard scalar product (-,-) on R?” and ¢ € R is some nonzero constant. Note
that n(u,v) = (alt(u),v) for u,v € R?", which shows that 1 vanishes on X if and
only if A7(X) = cApus(X) forall I € ([2n”]). Applying this equality twice, we
get Ar(X) = cApaps(X) = c>A7(X), and thus ¢ = +£1. We are done with the
proof. O

Remark 5.2

Lusztig [47] has defined the totally nonnegative part (G/P)>¢ of any partial flag
variety G/ P inside a split reductive algebraic group G over R. Rietsch showed that
the space Gr>o(k,n) is a special case of (G/P)so (see [41, Remark 3.8]). For a
specific choice of G = O(n,n) (i.e., the split orthogonal group, which corresponds
to the Dynkin diagram of type D,) and a maximal parabolic subgroup P == SL,(R)
(corresponding to the Dynkin diagram of type A,_1, obtained from D, by removing
a leaf adjacent to a degree 3 vertex), G/ P becomes equal to OG(n,2n). If we had
(G/P)>o = OGx¢(n,2n), then the fact that OG> (1, 2n) is a closed ball would fol-
low from the results of [19]. However, the relationship between Lusztig’s (G/P)so
and OGs¢(n,2n) remains unclear to us. For instance, the cell decomposition of
(G/P)so conjectured by Lusztig and proved by Rietsch in [55] and [56] appears to
have a different number of cells than the cell decomposition of OGx¢(n,2n) indexed
by matchings on [2r] that we consider in this paper.

Remark 5.3
A different relation between the Ising model and spin representations of the orthogo-
nal group can be found in [34], [57], and [52].

Remark 5.4
The generators g;(¢) from Section 3.5 belong to O(n,n), and moreover, they are

hyperbolic rotation matrices, since for t € R and ¢ := tanh(2¢), s := sech(2¢),

1/c s/c\ __ h(r(¢)) sinh(r(t))
s/c l/c) = () ch;h(r(t)))‘ It would

thus be interesting to find an analogue of the theory of [43] for the orthogonal group

there exists a unique r(¢) € R such that (
rather than the symplectic group.
Remark 5.5

A more standard choice of coordinates for OG(n, 2n) is to consider the set OG' (1, 2n)
of all X € Gr(n,2n) where another symmetric bilinear form, 1’ (1, v) := uyv,41 +
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U Vpy2 + -+ + U,y V2y,, vanishes. Consider a 2n x 2n matrix J with the only nonzero
entries given by Joj_1,; = J2j,; = J2j—1,j4n = 1/2, Joj j4n = —1/2, for all j €
[#]. Then the map X + X - J gives a bijection between OG(n,2n) U OG_(n,2n)
and OG'(n,2n). Moreover, for M € Mat,’" (R, 1), the matrix M - J has the form
[I,|M’ ] for a skew-symmetric matrix M’ given by m; ; = (— )it/ ; fori # j
and m; , =0 for i = j. A standard way to work Wlth 0G'(n,2n) is to consider
spinor coordmates which are essentially Pfaffians of the matrix M’ above (see, e.g.,
[24, Section 5]). It was shown in [23] that these Pfaffians are multipoint boundary
correlation functions for the Ising model, as we explain in Proposition 8.7. We thank
David Speyer for this remark.

Proposition 5.1 allows one to deduce that the image of the map ¢ is contained
inside the orthogonal Grassmannian.

COROLLARY 5.6
We have ¢ (Mat,)" (R, 1)) C OG(n,2n).

Proof

Let M € Maty™(R, 1). It is obvious from the definition of M that if u,v € R?"
are any two rows of M, then we have n(u,v) = 0, and thus by Proposition 5.1
we get ¢(Mat,," (R, 1)) C OG(n,2n) U OG_(n,2n). But note that OG(n,2n) and
OG_(n,2n) are not connected to each other inside OG(n,2n) U OG_(n,2n); how-
ever, Matly™(R, 1) =~ R() is connected. Thus ¢(Maty™ (R, 1)) is connected, and
clearly the image of the identity matrix I, € Mat,," (R, 1) belongs to OG(n,2n) and
not to OG_(n,2n). The result follows. O

PROPOSITION 5.7

Let X € OGx¢(n,2n), and let M := Mx be the positroid of X with decorated per-
mutation 7wy. Then mwy is a fixed-point free involution: if wy (i) = j, then i # j
and Ty (j) =1i.

Proof

It is clear from Definition 4.1 that we have [ imi“(M) = [2n] \ I;"*(M), because X €
OG(n,2n). Suppose now that 74 (i) = j and that i # j. By Remark 4.3, 7/} (i) is
the unique element of the set

IO\ I = (28] \ TP CA0) \ (28] \ T (M) = 5 (4O \ 1 (40,

which is equal to {mr ¢ (i)} = {j }. Thus, n;ll (i) = j;equivalently, w4 (j) =i, 50 7
is an involution. It remains to show that it is fixed-point free, that is, that w4 (i) # i
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for all i € [2n]. We can have 74 (i) =i if either i is a loop or a coloop of M, that is,
ifeitheri € [ forall I € M ori ¢ [ forall I € M, respectively. Choose some I € M.
Then [2n] \ I also belongs to M, which shows that i is neither a loop nor a coloop
of M. We are done with the proof. O

Remark 5.8

Recall that given a matching t on [2n], Definition 3.19 gives two disjoint sets imi" (7)
and I["(z) for each i € [2n]. It is easy to check that if 7 is the fixed-point free
involution corresponding to 7, then I™"(M) = I™"(t) and 1™ (M) = I™(7).

In Section 3.5, we described how to transform a planar graph G embedded in a
disk into a medial graph G*, and then how to obtain a medial pairing 7g from G*.
Not all matchings can be obtained in this way, for example, when n = 2, the matching
{{1,4},{2,3}} is not a medial pairing of any graph G. It will thus be more convenient
for us to work with medial graphs rather than matchings. In Section 6, we introduce
generalized planar Ising networks which correspond to all matchings on [2n].

Definition 5.9
A medial graph is a planar graph G* = (V*, E*) embedded in a disk, such that it has
2n boundary vertices dy,d>, ..., d2, € V' in counterclockwise order, each of degree

1, and such that every other vertex of G has degree 4.

The nonboundary vertices (the ones that have degree 4) are called interior ver-
ticesof G*,and welet V. := V> \{dy,..., d>,} denote the set of such vertices. Each
medial graph G* gives rise to a medial pairing tgx, as in Section 3.5. We say that a
medial graph G* is reduced if the number of its interior vertices equals xing(tgx).
Equivalently, G* is reduced if every edge of G* belongs to some medial strand con-
necting two boundary vertices, no medial strand intersects itself, and no two medial

strands intersect more than once.

LEMMA 5.10
For every matching t on [2n], there exists a reduced medial graph G satisfying
Gx =T.

Proof

For each pair {i, j } € 7, connect d; with d; by a straight line segment. Then perturb
each line segment slightly so that every point inside the disk would belong to at most
two segments, obtaining a pseudoline arrangement. Let G* be obtained from this
pseudoline arrangement by putting an interior vertex at each intersection point. It is
clear that G* is a reduced medial graph whose medial pairing is 7. Alternatively, G*
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can be constructed by induction on xing(t) in an obvious way using the poset P,
from Definition 5.15. O

Let us say that a medial network N> = (G*, J*) is a medial graph G* together
with a function J* : V. — Rx¢. Thus, if N = (G, J) is a planar Ising network, then
the edges of G correspond to the interior vertices of the corresponding medial graph
G and thus the Ising network N gives rise to a medial network N> = (G*, J*), as
described in Sections 3.5 and 6. In the remainder of this section, we will work with
medial networks rather than with planar Ising networks.

Every medial graph gives rise to a plabic graph. In order to describe this cor-
respondence, we first introduce a canonical way to orient each medial graph, as
described in [29].

PROPOSITION 5.11

Let G* be a medial graph. Then there exists a unique orientation of the edges of G*
such that:

(1)  fori €[2n], d; is a source if and only if i is odd;

2) each interior vertex v € V.

' of G* is incident to two incoming and two outgo-

ing arrows so that their directions alternate around v.

Proof

If G* is connected, then it is easy to see that there are just two orientations satisfying
the second condition, since we can color the faces of G* in a bipartite way and then
orient all black faces clockwise and all white faces counterclockwise, or vice versa.
One of these two orientations will satisfy the first condition. If G* has C connected
components, then there are 2€ orientations of G satisfying the second condition, but
there will still be one of them that satisfies the first condition, because the number of
vertices of each connected component is even. O

Definition 5.12

Given a medial network N* = (G*,J*), the associated weighted plabic graph
(GY,wt) is constructed as follows. First, orient the edges of G* as in Proposi-
tion 5.11, and then for each oriented edge e of G, put a white vertex ¢° of G™ close
to the source of e and a black vertex e® of G= close to the target of e. If the source
(resp., the target) of e is a boundary vertex d;, then we set e® := d; (resp., e® := d;).
Now, for each edge e € EF of G, connect e® and e® by an edge of GU, and set its
weight to 1: wt({e®, e°}) := 1. Additionally, for every interior vertex v € V. of GH
incident to edges e1,e»,e3,e4 € E U in counterclockwise order so that v is the target
of e; and e3 and the source of e, and e4, add four edges {e},e5}, {€5,e3}, {e3. e},
{eg.el} to GY. The weights of these edges are given by
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wt({e].e5}) = wt({e5. e5}) == sv, wt({e5.e3}) = wt({eg.el}) :=cy,  (5.1)

where s, and ¢, are given by (3.6), that is,

2
exp(2J ) +exp(—2J))°
exp(2J)) —exp(—2J))
exp(2J) + exp(—2J )"

sy := sech(2J,) =

¢y = tanh(2J)) =

This defines a weighted plabic graph (G5, wt) associated to the medial network
N* = (G*,JX).

Recall that for a medial graph G*, the corresponding medial pairing 7gx =
{i1, j1}s ..., {in, jn}} is @ matching on [2n]. We define a permutation wgx : [2n] —
[2n] by setting wgx (i) := jr and wgx (ji) := iy for all k € [2n]. Thus, 7Gx is a
fixed-point free involution.

LEMMA 5.13
A medial graph G* is reduced if and only if the corresponding plabic graph G is
reduced. We have mgx = mgn.

Proof
This is straightforward to check from the definitions, since the medial strands corre-
spond to the strands in G= from Definition 4.4. O

PROPOSITION 5.14

Given a medial network N* = (G*, J*), let (GB, wt) be the corresponding weighted
plabic graph. Then Meas(GZ, wt) yields an element of Hj{O N OGx¢(n,2n), where
M = Mz, is the positroid corresponding to the fixed-point free involution 7.

Proof

By Lemma 5.13, we have ngx = mzo. Let X € Grxo(n,2n) be the point given by
Meas(G", wt). By Theorem 4.5, X belongs to I157, and it remains to show that X
belongs to OGsq(12,2n). Given an almost-perfect matching A of G5, let us define
S*(A) C E* to be the set of edges e of G* such that the edge {e®, ¢°} of G" belongs
to 4. We claim that for all sets R C E* of edges of G*, we have

DT owtA) = Y wiA), (5.2)

S>*(A)=R S*(A)=E>\R

where the sums are over almost-perfect matchings of G, The left-hand side of (5.2)

is equal to the product over all interior vertices v € V) of G of g(v), where g(v)
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is equal to either c,, S, cg + sez, 1, or 0, depending on which of the four edges of
G adjacent to v belongs to R. It is clear from Figure 3 that replacing R with its
complement does not affect this product. (The only nontrivial change is replacing
¢2 + 52 with 1, but recall that we have ¢Z + s2 = 1 by construction.) This proves
(5.2), and clearly if two almost-perfect matchings 4, A’ of GU satisfy S*(A') =
E*\ §*(+A), then they also satisfy d(A") = [2n] \ d(+A), finishing the proof. O

For a matching 7 on [2n], let M, be the positroid corresponding to the fixed-
point free involution 7 : [2n] — [2n] associated with 7, and denote by TT7° := TT77 .
Following [42], denote by P, the partially ordered set (poset) of all matchings
on [2n]. (It is easy to see that P, has %y elements.) The covering relations of
P, are described as follows. Given a matching 7 on [2n], suppose that the pairs

{i,j},{i’, j'} €  form a crossing, as in Definition 3.15. Introduce two matchings

=\ {0 U Y
=\ {3 O L

(5.3)

Definition 5.15

We say that t’ and t” are obtained from 7 by uncrossing the pairs {i, j} and {i’, j'}
(see Figure 6). In addition, if xing(z") + 1 = xing(t) (resp., xing(z”) + 1 = xing(7)),
then we write t” < 7 (resp., "/ < ), and let P, be the poset whose order relation <
is the transitive closure of <.

Remark 5.16

Equivalently, as explained in [42, Section 4.5], given a medial graph G with medial
pairing 7, we have v’ < t if and only if “uncrossing” the unique vertex v € V;> of
G* that belongs to the intersection of medial strands connecting d; to d; and dj to
djs yields a reduced medial graph with medial pairing t’. Here uncrossing an interior
vertex of a medial graph means replacing its neighborhood in one of the two ways

shown in Figure 6.

i i’

i i’ i i’
X — > < or \\/
v ] j/ J ~//\

J J J

T r/ r//

Figure 6. Uncrossing the pairs {i, j} and {i’, j'}.
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jogrey oY
\' ool RONoY
R4 AV
o) ‘oo’ lorz0l o) o)
Figure 7. The Hasse diagram of the poset P3.

By [42, Lemma 4.13], the poset P, is graded with grading given by xing(r), and
by [25] and [40], P, is a shellable Eulerian poset. See Figure 7 for the case n = 3.
We are now ready to state the main result of this section.

THEOREM 5.17

(1) Given a reduced medial graph G*, let GP be the corresponding plabic graph
with positroid M := Mgo. Then the map J* + Meas(G", wt) is a homeo-
morphism between RE [ and T152 N OGxo(n,2n).

(i)  The set OGs(n,2n) is a disjoint union of cells

0Gso(n.2n) = | | (I7° N 0G5o(n.2n)). (5.4)

TepPy,

and each cell T17° N OGx¢(n,2n) is homeomorphic to Rxing(®)
(iii)  For t € Py, the closure of the cell T17° N OGxo(n,2n) in Gr(n,2n) equals

(M°N0Gso(n.2n)) = | | (17°N0Gso(n.2n)). (5.5)

oePy:0<t

Proof
As we have shown in Proposition 5.7, for every X € OGx¢(n,2n), the decorated
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permutation w = m ¢, associated with the positroid Mx of X is a fixed-point free
involution, and thus (5.4) follows from (4.3). The remainder of part (ii) (that each cell
is an open ball) follows from part (i), which we prove now. Thus, we fix a reduced
medial graph G* and the corresponding plabic graph G5, reduced by Lemma 5.13.
Let ¥ : REJ — Hj{‘) N OGs¢(n,2n) be the map that sends J* Meas(G, wt).
We first show that i is injective. By Theorem 4.6, it suffices to show that the map
J> Vi — Rsg can be reconstructed from the corresponding weight function wt €
Rf(‘)j / Gauge. Fix an interior vertex v € V, of G*, and consider the corresponding
four vertices v1,v,, V3,04 € V5 of GU on the four edges of G incident to v. Let
€12, €23, €34, €14 be the four edges of GU forming a square around v. We have
wt(e1z) = wt(esq) = s, and wt(ezs) = wt(ejq) = ¢y, as in (5.1). Suppose that we
have applied a gauge transformation to wt obtaining another weight function wt’.
Thus, we have rescaled all edges adjacent to the vertex v; by some number #; € R. g

for 1 <k < 4. Therefore,

Wt,(elz) =118y, wt’(e34) = 13148y,
wt'(e23) = tat3¢y, wt'(e14) = t114Cy.

X

- — Rso, we must have

In order for wt’ to come from some other map (J*)": V,
11128y = 13145¢ = 5, 1at3Cy = 114Ce = Cyy, (s> + (cp)* =1,

where s;, = sech(2(J*)!) and ¢, = tanh(2(J*)}). But the above equations imply
that t; =t, =t3 =14 = 1, and it follows that v is injective.

Clearly v is continuous, and we now prove that it is surjective, and that its inverse
is also continuous. We need the following simple observation, whose proof we leave
as an exercise to the reader.

LEMMA 5.18
Suppose that G* is a connected medial graph having at least one interior vertex. Then
there exist an interior vertex v € V. and an index i € [2n] such that v is connected

in G* to both d; and d; 11 (modulo 2n).

Note that Proposition 3.21 follows from Lemma 5.18 as an immediate corollary.

We now return to the proof of Theorem 5.17(i). Let T be a matching on [2#], let
7 be the corresponding fixed-point free involution, and let M = M be the corre-
sponding positroid. Choose a reduced medial graph G* with medial pairing tgx =t
(which exists by Lemma 5.10), and let G be the associated plabic graph. If G* is
not connected, then each of its connected components contains an even number of
vertices. Moreover, in this case G5 induces the same partition of boundary vertices
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into connected components, and it is clear from the definition of the map Meas and
Theorem 4.5 that each minor of Meas(G", wt) is a product of the individual minors
for each of the connected components. Thus, the problem naturally separates into
several independent problems, one for each connected component of G*, and in what
follows, we assume that G is connected.

Let X € Hjuo N OGs¢(n,2n). By Theorem 4.6, there exists a weight function
wt : EH — R. such that Meas(GY, wt) = X, and our goal is to show that there
exists a unique function J > : VX — R~¢ such that ¥ (J ) : EY — R. is obtained
from wt using gauge transformations. Choose v € V,; and i € [2n] as in Lemma 5.18.
Thus, G™ contains a removable bridge between i and i + 1 (modulo 21). Denote by
v and v, the vertices of GU adjacent to d; and d; 11, respectively, and denote by
v3 and v, the other two vertices of G5 so that vy, v,, v3, v4 surround v in counter-
clockwise order. Applying gauge transformations to v; and v,, we may assume that
wt({v1,d;}) = wt({va,di+1}) = 1. Let s := wt({v1, v2}) > 0. Applying gauge trans-
formations to v3 and v4, we may assume that wt({vs, v4}) = s, and wt({v1,v4}) =
wt({va,v3}) = ¢ for some ¢ € R-¢. Now, let [ := Ii“jr“} (M), and let J :=[2n]\ I =
Ii“jra’l‘(d%). Thus,i + 1€ I andi € J. Choose some n X 2n matrix representing X, and
denote by X € R” its kth column. For u € R” and k € [2n], let X(k — u) denote
the matrix obtained from X by replacing its kth column with u. We introduce linear
functions /y,hy : R" — R as follows:

hp(u):=Ar(X(@ +1—u)), hy(u):=As(X(@ - u)).

Denote u := X; and w := X;4+1. Since X € OG(n,2n), we get hy(w) = hy(u)
and hy(u) = hy(w). Let (GD/,wt’) be obtained from (GY,wt) by removing the
bridge {vy, v}, and let X’ € Grsg(n,2n) := Meas(G™', wt’). By Theorem 4.8(1),
we have s = hy(w)/hy(u). By Lemma 4.9, we have (X’); = u while (X'); 41 =
w — su. Now, after removing degree 2 vertices* vy and v, from GD/ and denot-
ing the resulting graph GD”, each of the vertices d; and d;4; changes color and
becomes adjacent to an edge of weight wt'({d;,v4}) = wt'({d;j+1,v3}) = c. Let us
define wt” to be the same as wt’ except that wt” ({d;,v4}) = wt”"({d;+1,v3}) := 1, and
let X" := Meas(GZ", wt”). It is clear from the definition of Meas that (X"); = cu
and (X");j41 = %(w — su). Finally, G has a removable bridge between i and i + 1

so by the second part of Theorem 4.8, the weight wt” ({vs, v4}) of this bridge must be
equal to

Ay(X") . hy(cu)
Ayuti+ingy (X)) by (2w —su))’

wt”’ ({vs, v4}) =

“It is well known that adding/removing vertices of degree 2 does not affect the result of Meas (see [41, Sec-
tion 4.5 (M2)]).
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which after substituting s := hy(w)/hy(u), hy(w) := hy(u), hy(u) := hy(w), and
using the linearity of /7, transforms into
*hy(whi(w)
! ’ = - LTI
Wt ({vs.val) hy(u)? —hy(w)?
By construction, wt”({vs,v4}) is equal to s, and thus after substituting Ay (w) :=
shy(u) the above equation becomes
. cAshy(w)> s
(A =s)hrw)?  1—s2

which is equivalent to ¢? + 5% = 1. Since we have s, ¢ > 0, it follows that 0 < s,¢ < 1
and thus there exists a unique ¢ € R satisfying s = sech(2¢) and ¢ = tanh(2t).
Moreover, it is clear that ¢ depends continuously on the minors of X, since the denom-
inators A7(X) = Ay (X) must be positive. Setting J* := ¢, we uncross (in the sense
of Remark 5.16) the interior vertex v in G* so that the corresponding graph GU
would be obtained by removing the bridges {vy,v,} and {vs, v4}, and proceed by
induction, finishing the proof of Theorem 5.17(i) (and therefore of Theorem 5.17(ii)
as well).

It remains to prove (5.5). There is a certain partial order (called the affine Bruhat
order) on the set of decorated permutations such that two decorated permutations 7, o
satisfy o < r if and only if the closure of the positroid cell Hj{oﬂ contains Hj{oa. We
have (see, e.g., [41, Theorem 8.1])

M, = | | T30
o<m
Moreover, the restriction of the affine Bruhat order to the set of fixed-point free invo-
lutions coincides with the poset P, from Definition 5.15. Thus, we have

(Mz°N0Gso(n.2m)) c | | (1;°N0Gso(n.2n)).

oceP,o<t

and it remains to prove that the left-hand side of (5.5) contains the right-hand side,
that is, that for all pairs o < t in Py, the cell H;O N OGsx¢(n,2n) is contained inside
the closure of IT7 %N OGsg(n,2n). Clearly it is enough to consider the case o < 7.
Then o is obtained from t by uncrossing some pairs {i, j} and {i’, j'}. Moreover,
since G is reduced, it contains a unique vertex v € ¥, which belongs to the medial
strands connecting i to j and i’ to j’, and one of the two ways of uncrossing v yields
a reduced medial graph with medial pairing o (see Remark 5.16). But the two ways
of uncrossing v correspond to sending J,* to either 0 or oo, or equivalently, sending
either s, - 1,¢, = 0 or s, = 0,c, — 1. By Theorem 5.17(i), we indeed see that
[12% N OGsxo(n,2n) is a subset of the closure of T17° N OGx(n,2n), finishing the
proof of Theorem 5.17. O
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6. From the Ising model to the orthogonal Grassmannian
In this section, we study the relationship between the space X, and the space
OGs>(n,2n).

We start by slightly extending the notion of a planar Ising network so that con-
tracting an edge in such a network would yield another such network. Throughout, we
assume that a planar graph embedded in a disk has no loops (i.e., edges connecting a
vertex to itself) or interior vertices of degree 1.

Definition 6.1

A generalized planar Ising network is a pair N = (G, J), where G = (V, E) is a
planar graph embedded in a disk and J : E — R~ U{oo}. We denote E = Eg, L E,
where Eo :={e € E | J, = oo}. The Ising model associated to N is a probability
measure on the space

{—1,1}V/E =5 :V - {~1,1} | oy = 0, forall {u,v} € Eco}.

The definitions of the probability P(c) of a spin configuration o € {—1,1}"/Eco,
the partition function Z, and a two-point boundary correlation (o;0;) are obtained
from the corresponding definitions (2.1), (2.2), and (2.3) by replacing {—1,1}" with
{—1,1}V/E and E with Eg,. As before, we let M(G, J) = ({(0:0;)) € Mat;)™ (R, 1)
denote the boundary correlation matrix. Thus, we have m; ; = 1 whenever there exists
a path connecting b; to b; by edges in Ew.

Definition 6.2

To each generalized planar Ising network N = (G, J) we associate a medial network
N>* = (G*,J>). First, suppose that £ = Ejy,, that is, that J only takes values in
Rs¢. Then the medial graph G* = (V*, E*) is obtained from G as in Figures 2
and 4. More precisely, the vertex set V> is given by

VX ={dy,....don} Ulve | e € E},

where the d, ..., d,, are boundary vertices placed counterclockwise on the bound-
ary of the disk so that b; is between dp;—1 and d»;, while v, is the midpoint of the
edge e € E of G. The edges of G* are described as follows. If ¢, ¢’ € E share both a
vertex and a face, then we connect v, to v, in G*. In addition, for each i € [n], we
connect do;_1 (resp., dp;) with v,, where e € E is the first in the clockwise (resp.,
counterclockwise) order edge of G incident to b;. If b; is isolated in G, then we con-
nect dp;_1 to dp; in G*. Thus, each vertex v, € V> has degree 4, and each boundary
vertex d;, i € [2n], has degree 1 in G*. Finally, we set J, := J.

Suppose now that £ # Ejgy, and thus J takes the value of co on some edges
of G. Let Ng, = (G, Jg,) be obtained from N by setting (Jgy)e := 1 for all e € Eo
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and (Jfn)e := Jo fore € Ey,. Let N := (Gy,, Ji,) be the medial network associated
to Ngy. Then the medial network N* = (G*, J*) associated to N is obtained from
N¢; by “uncrossing” (see Remark 5.16) the vertices v, of G, for all e € Eo,. There
are two ways to uncross the vertex v, as in Figure 6, and we choose the one where
no edge of the resulting graph G intersects the corresponding edge e of G. This
uniquely defines the medial graph G, and we set J, := J, for all e € Egp.

The notion of a generalized planar Ising network is equivalent to the notion of
a cactus network introduced by Lam in [42, Section 4.1], where he also assigns a
medial graph to it in the same way as in Definition 6.2.

Remark 6.3

Given a planar Ising network N = (G, J), the above procedure assigns a medial
network N* = (G*,J*) to it. In Section 5, we assign a weighted plabic graph
(G®,wt) to N*. It is trivial to check that the same weighted plabic graph (G-, wt)
gets assigned to N = (G, J) in the construction described in Section 3.3.

To each medial graph G* (and thus to each generalized planar Ising network) we
have associated a medial pairing t in Section 3.5. Let us denote

Xe:={M(G.J)|

N = (G, J) is a generalized planar Ising network with medial pairing ‘L'}.

The following stratification of X, will be deduced from Theorem 2.3 at the end of
Section 7.

PROPOSITION 6.4
The space X, decomposes as

Xn =[] X.. 6.1)

TePy,

and for each t € Py, Xy is homeomorphic to R¥"¢® with closure relations given by
the poset Py.

Given a (generalized) planar Ising network N = (G, J), we have described
two ways of assigning an element of X € OGx>¢(n,2n) to N. First, one can take
the boundary correlation matrix M = M(G,J), and let X := ¢p(M), as we did
in Section 2.3. Second, one can construct a medial network N* = (G*,J*) as
above, transform it into a weighted plabic graph (G, wt), and then put X' :=
M(GD, wt), as we did in Section 3.3. Theorem 5.17(i) shows that the second map
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J — Meas(G", wt) gives a homeomorphism between RE | and 129N 0G50 (n,2n),
where 7 is the medial pairing of G*. The goal of the rest of this section is to show
that the outputs X = ¢(M) and X’ = Meas(G", wt) of these two maps coincide.

THEOREM 6.5

Let N = (G, J) be a (generalized) planar Ising network with boundary correlation
matrix M = M(G, J). Define X := ¢(M). Let N* = (G*, J*) and (G5, wt) be the
medial network and the weighted plabic graph corresponding to N, and put X' :=
Meas(G5, wt). Then X = X' in Gr(n,2n).

We give two proofs of Theorem 6.5, one using Dubédat’s results in [14], and
one using a formula of Lis [44] for boundary correlations in terms of the random
alternating flow model. Note that it suffices to prove Theorem 6.5 only for planar Ising
networks, since the corresponding statement for generalized planar Ising networks is
obtained by taking the limit J, — oo for all ¢ € E.

Before we proceed with the proofs, we need several preliminary results.

Proof of Lemma 3.2

By (3.2), it is enough to show that m; ; = 27" 3 ;e i in Ar(M). For k € [n].
denote by e, € R” the kth standard basis vector, and for k& € [2n], denote by (M)
the kth column of M. Consider an n x n matrix A with columns

er,ez,....ei—1,(M)ai_1,(M)2,eiq1,....,€j_1,€j41,...,€n.

Since by Remark 2.2, 2¢, = (ﬁ)zk—l + (ﬁ)zk for all k € [n], we can expand det A
in terms of minors of M :

det4 =272 > Ar(M).
I1€8,{i,j}):2i—1,2iel

On the other hand, since most of the columns of A are basis vectors, we can compute
its determinant directly: det A = 2m; ;, where the sign in (2.4) is chosen so that we
would have det A = 2m; ; and not det A = —2m; ;. Similarly, we can define ann x n
matrix B with columns

e1.€2,...,6i—1,6i+1,....€j—1,(M)aj—1,(M)2j,€j+1,...,€n.
We have det B = 2m; ; as well, and

det B =27"*2 > Ar(M).
I1€€,({i,j}):2j—1,25¢€l

It remains to note that for all 7 € &, ({i, j}), we have either 2i —1,2i € I or 2j —
1,2j € I, but not both. Thus,
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4m;j =detA+detB=2""2 3" A(M),
I1€€,4({i.s})

finishing the proof. O

LEMMA 6.6
Let J :={1,3,...,2n — 1}, and let X' € OGxo(n,2n). Then for all I € (™), we
have

Ar(X') = Ay(X)).

Proof

This follows from Skandera’s inequalities in [59] for Grso(n,2n). Namely, by [16,
Theorem 6.1], we have A](X/)A[zn]\[ (X/) < AJ(X/)A[zn]\J(X/) for all X' €
Grso(n,2n). In particular, if X’ € OGx¢(n,2n), then this becomes (A7 (X'))? <
(Ay(X"))?, which finishes the proof. O

An important consequence of the above lemma is that for J :={1,3,...,2n —1}
and all X’ € OGx¢(n,2n), we have A y(X’) > 0, since we must have A7 (X’) > 0 for
some I € ([Zn"]).

LEMMA 6.7

The image ¢(Mat,," (R, 1)) contains OGsq(n,2n). Equivalently, for any X' €
OGsx¢(n,2n), there exists a matrix M’ € Mat;)" (R, 1) such that X' = $(M') as
elements of Gr(n,2n).

Proof

We are going to use Lemma 3.2. Choose some n x 2n matrix A representing X' in
Gr(n,2n), and let IN,, be the n x 2n matrix given by (I~n)i,2,-_1 = (IN,,)Z-,Z,- =1 and the
remaining entries being zero. Remark 2.2 says that for a matrix M’ € Mat,) (R, 1),
we have M’ - (i;)T = 21I,, where I, is the n x n identity matrix, and 7 denotes
matrix transpose. Let B := 4 - (f;,)T. We claim that if X’ € OGx¢(n,2n), then B
is an invertible matrix. Indeed, by the multilinearity of the determinant, we have
detB =) ;. &, @ A1(A). This sum contains only nonnegative terms, and the term
Ag1,3,...2n—1}(A) is positive by Lemma 6.6. Thus, B € GL,(R) is invertible, and
we can consider the matrix C :=2- B~ . A, which represents the same element
X’ in Gr(n,2n). The matrix C satisfies C - (I,)7 = 21I,; in particular, Cj»;_; =
—Cipj for i # j € [n]. We define the n x n matrix M’ = (m] ;) by m; ; := 1 and
m; = (—1)IT7+1G<NC; 5,y fori # j € [n], in agreement with (2.4). It turns out
that M’ is a symmetric matrix, since its entries can be recovered from the minors
of C as follows. As we have mentioned in the proof of Lemma 3.2, for each I €
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&,({i,j}), wehaveeither 2i —1,2i € [ or2j —1,2j € I, but not both. Thus, we can
write m} ;= 27"*23" A7(C), where the sum is over all I € &,({i, j}) such that
2i —1,2i € I. Similarly, we have m’; ; = 272 % Ar(C), where the sum is over
all I € &,({i,j}) such that 2j —1,2j € I. Since A;(C) = Apa1(C) (because
C represents X' € OGxo(n,2n)), we see that m; ; = m’; ;, and thus M’ belongs
to Mat,” ™ (R, 1). Similarly, using
2 Cinii= ). A(O)= Y AC)=2""Cia,
I1€&,(@):2i—1€l 1€8&,(0):2iel

and Cjpi—1 + Ca; =2, we get Cji—1 = Cjz; =1, and thus ¢(M') = X'. We are
done with the proof of Lemma 6.7. O

In order to prove Theorem 6.5, we need to show that X := ¢ (M) equals X' :=
Meas(G", wt) as an element of Gr(n,2n). By Theorem 5.17, we know that X’ €
OGs(n,2n).

By Lemma 6.7, we get a matrix M’ € Mat,)" (R, 1) such that ¢(M') = X’. Since
X =¢(M), we have X = X' if and only if M = M’. By Lemma 3.2, the entries
m;, j of M’ can be written as ratios of sums of minors of X’. By Theorem 4.5, each
such minor is a sum over almost-perfect matchings of G5 with prescribed boundary.
Putting it all together, we get the following: for i # j € [n],

. ;v WE(A
L AdReg () WA 62)

" D acdA) e, @) WEHA)

where the sums are over almost-perfect matchings in G™. Our goal is to show that
m; ; equals m; j := (0i0}).

6.1. Dubédat’s bosonization identity
In this section, we show that m;, j equals m; ; using the results of [14]. We thank the
anonymous referee for explaining the following argument to us.

Introduce a planar bipartite graph GU = (?D, E &) which is obtained from G
by simply adding an extra edge of weight 1 connecting d,;—1 to dy; for all i € [n].
We let Match((A} U) denote the set of perfect matchings of G". Given such a perfect
matching 4 € Match(@D), its weight is the product of weights of its edges. Given a
subset V' C VO of vertices of G O, denote by GU \ V' the graph obtained from GU
by removing the vertices in V’.

Recall from (2.2) that the partition function Z of the Ising model is given by
Z =) se(o1.1yv WH0), where wi(0) := [y, yye £ €XP(Jfu,0}0u0y). For i, j € [n],

Zij
let Zij =3 50,20, WHO) = D50, 5, WH(0), s0 that (0j0;) = =5+
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PROPOSITION 6.8 ([14, Lemma 1])
Let N = (G, J) be a planar Ising network with n boundary vertices. There exists a
constant h (depending only on N ) such that for all i # j € [n], we have

Z-h= Y wi(A), (6.3)
AeMatch(GD)
Zij-h= > wi(A) + 3 wi(A).  (6.4)
AeMatch(GO\{da;_1,d2;}) AeMatch(GO\{da;,d2; 1))
Proof

Let us restate the first part of [14, Lemma 1]:

<]j X(vsfs)>G<S1i[1 X*(fvy) ., = 2c<ﬁ Vb)) (6.5)

s=1

Before explaining this notation, we state two specializations of (6.5), one for k =0
(where each product is empty) and one for k = 2 with X, X* given in [14, Table 1,
line 5] (thus X(vf) = ¥ (vf) is the fermion of [31] and X *(fv) = 1):

(1>G : <1>G* =2c- (])dimera
(Wi NHY b N)g - (Nox =2¢-(Y(drio1dai)Y (daj—1daj)) ..

Let us now briefly describe the ingredients that go into (6.6). First, denote w, :=
exp(—2J,) and w, := exp(—2J%); thus, the statement sinh(2J.)sinh(2J)%) =1
of (3.4) is equivalent to the statement w, + w,, + wew, = 1 of [14, (2.1)]. Let
A = [l,egexp(—Je), and let Z = > oei—1.1}V wt(o), where wt(o) =
MiwsjeBiousto, Wes thus Z = AZ. Similarly, let Z; = Y q.4,25, Wi(0) —
D oioito; wt(o) = AZ;, ;. Finally, we choose the vertices vy := b; and v, := b;
(where by, ..., by, are the boundary vertices of G) while the faces f; and f; are both
taken to be the outer face f of G, where G is viewed as embedded in the plane. We
refer the reader to [14] for the following statements:

© (We=Zand (y(bi )HVb; )6 =(oiprojis)e = Zij (since p2 = 1);

(6.6)

. (1) is the partition function of the Ising model on (G*, J*) with 4+ bound-
ary conditions; )

. ¢ =[lecr *5% =leer Tregss’

* (D dimer = ZAeMatch(ﬁ':’) wi(A).

Next, in the notation of [14], we have

(Y (d2i-1d20)Y (d2j-142))) e = (O1(d2j)O—1(d2i—1)) gy s

+ ((91(d2,~)(9_1(d2j—1)>

dimer

dimer’ where
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(01(d2j)O-1(dai—1)) s = > wi(4)  and
AeMatch(GE\{da;—1,d2;})
(01(d21)0-1(d2j-1)) yer = > wi(A).
AGMatch(GD\{dzi,dzj_l})
Substituting h := % finishes the proof. O

PROPOSITION 6.9 ([14])
Let N = (G, J) be a planar Ising network with n boundary vertices. Let i, j € [n],
and choose some path P connecting b; to bj in G. Then the squared boundary cor-
relation function is given by

_ ZAGMatch(GD) Wi ('A’ P)

(0i0;)? = ) (6.7)
o 2 AeMaten(G0) WH(A)

Example 6.10
If G has two vertices and one edge as in Figure 2, then G has the following form:

We find that (1)g = Z =2(1 + we), (1)g* = 1 (because of the + boundary con-

ditions), ¢ = /Z\i’j = 2(1 — w,). There are five perfect matchings of G

1
1+ce+se” N
with weights s2, s, Se, 1, and ¢2, respectively. Each of the graphs G™' \ {d},d4} and
G5\ {d,, d3)} admits a single perfect matching of weight c,. Thus, (6.6) reads

2
21+ we) 1= ————— (1 + 25, + 52 +¢2),
(+ e) 1+Ce+se(+ €+e+e)
2
21— we) 1 = ——— - 2¢,.
( e) TTe g5 2c
—1_
Both of these identities are easily checked using s, = — and ¢, = e ¢
We  +We e TWe

Dividing the second identity by the first one, we obtain

1 —w, Ce
(0i0j) = = ,
I+we 145,

in agreement with (3.8).
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First proof of Theorem 6.5
Recall that our goal is to show thatm] ; = (0;07;), where m; ; is given by (6.2). A triv-

ial correspondence between perfect matchings of G" and almost-perfect matchings
of G yields - 4.54yee, @) WHA) = X 4 cntaen@D)y WHA) and

> wt(A) = > wit(A)

A:0(A)e€, ({i,7}) AEMatCh(GD\{dzl'_[,dzj H

+ > wi(sh).

AeMatch(GO\{da;,drj—1})

Dividing (6.4) by (6.3) yields the desired result. O

6.2. Random alternating flows of Lis

For our second proof, we use a formula due to Lis [44], which he proved using the
random currents model of [22] (see also [15], [45]). Let us say that a clockwise bidi-
rected edge (resp., a counterclockwise bidirected edge) is a directed cycle of length 2
in the plane which is oriented clockwise (resp., counterclockwise).

Suppose that we are given a planar Ising network N = (G, J) with n boundary
vertices and two disjoint subsets A, B C [n] of the same size. We define GAYE =
(VAUB  EAUB)Y 6 be the graph obtained from G by adding a boundary spike at b; for
alli e AU B.

An (A, B)-alternating flow F on G is a graph obtained from G428 by replacing
each edge {u,v} € EAYB of GAYB by either
(a) an undirected edge, or
(b) a directed edge u — v or v — u, or
(©) a clockwise or counterclockwise bidirected edge,
so that the vertex b; is incident to an outgoing (resp., incoming) edge if i € A (resp.,
if i € B), and so that every other vertex v € V of G is incident to an even number
of directed edges of F', and their directions alternate around v. The set of all (A, B)-
alternating flows on G is denoted ¥4,5(G).

For e € E, we put

exp(Je) —exp(—Je)

exp(Je) + exp(—Je)’
2

exp(Je) +exp(—Je)

Xe := tanh(J,) =

Ve := sech(J,) =

(Recall that x, and y,. are not the same as c, = tanh(2J,) and s, = sech(2J,).) Given
an edge e € EAY8 and an (A, B)-alternating flow F € Fa,8(G), we set
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2x¢/ ye2 if e is a directed edge in F,
W(F,e) = {2x2/y2 ifeis abidirected edge in F,

1 otherwise.
Following [44, (4.2)], the weight of an (A, B)-alternating flow F is given by

w(F) =24V TT w(F.e), (6.8)

ecEAUB

where V(F) denotes the set of vertices v € VAYB \ {b; | i € A U B} incident to a
directed or a bidirected edge in F (note that b; is always incident to a directed edge
in F wheni € AU B).

Remark 6.11
The equivalence of (6.8) and [44, (4.2)] is explained in the proof of [44, Lemma 4.2].

We will be interested in the two special cases A = B =0 and A = {a}, B = {b}
for a # b € [n]. We denote the corresponding graphs by G? and G%?, respectively.
Denote also F3(G) := Fp,g(G) and F, p(G) := Fiay, 1 (G).

LEMMA 6.12 ([44, Lemma 5.2])
Let N = (G, J) be a planar Ising network with n boundary vertices, and leti # j €
[n]. Then the boundary correlation {0;0}) equals

2 Feg, @) W(F)
> Fesyc) WF)

(0i0;) = (6.9)

Second proof of Theorem 6.5

For a flow F € F4,5(G), let U(F) denote the set of vertices v € VAUB that are not
incident to a directed or a bidirected edge of F. Thus |[U(F)| = |V|—|V(F)|, and we
set

W(F) =2V w(F) =2AHIUOL T w(F,e).

ecEAUB

Suppose that we are given a flow F € ¥4 5(G) together with a map « : U(F) —

{—1,1}. We say that the pair (F,«) is a spinned flow. The weight of a spinned flow is

defined to be W(F, o) = 24l [lecpavs W(F,e), sothat W(F) =3,y pue W(F,

«). We then define an order relation < on spinned flows by writing (F,«) < (F',&’)

if all of the following conditions are satisfied:

. F’ is obtained from F by making some undirected edges bidirected (thus
U(F') CU(F)),
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. the restriction of « to U(F’) equals o/, and

. for every vertex v € U(F) \ U(F’) such that a(v) = 1 (resp., a(v) = —1), all
bidirected edges of F’ incident to v are clockwise (resp., counterclockwise)
bidirected edges.

Even though o’ can be obtained from « by restricting it to U(F’) C U(F'), we can also

reconstruct « from (F’, a’), since every vertex v € U(F) \ U(F") is incident to at least

one bidirected edge of F’, and either all such edges are clockwise (in which case we

must have a(v) = 1) or counterclockwise (in which case we must have a(v) = —1).

Given a spinned flow (F,«), we say that an undirected edge e of F is active
if there exists a spinned flow (F’,a’) > (F,a) such that e is bidirected in F’. Thus,
any (F’,a’) > (F,a) is obtained from (F, o) by making some active edges bidirected.
(An active edge can become either a clockwise or a counterclockwise bidirected edge,
but not both.) Equivalently, for every undirected edge e of F and a vertex v incident to
e,weseta(v,e):=a)ifveU(F),and a(v,e) ;=1 (resp., x(v,e) :=—1)if v €
V \ U(F) and after replacing e by a clockwise (resp., counterclockwise) bidirected
edge, the directions of edges still alternate around v. Then an undirected edge ¢ =
{u,v} of F is active if and only if we have a(v,e) = a(u,e).

We say that a spinned flow (F, ) is minimal if it is minimal with respect to our
order relation <. Equivalently, (F,«) is minimal if F has no bidirected edges. We
denote 37;1“,113 (G) the set of all minimal spinned flows (F,«) where F € ¥4 p(G).
For (F,a) € ¥ "3 (G), we define its weight

W(Fa):= Y WF.o)=24" ] w(F.ae).

(F’,0)=(F,0) ecEAUB
where
_ 2x./y? if e is a directed edge in F,
w(F,a,e) = > o N2 e .
14+2x;/y; =1 +x7)/y; if eisanactive edge of (F, ),

1 otherwise. (6.10)

Here we used the fact that x2 + y2 = 1.
It thus follows that

> W(F) = > W(F.a.

FeF4.8(G) (F.)eF T (G)

Our goal is to give a map 6 from almost-perfect matchings of G- to minimal spinned
flows, which is locally defined in Figure 8. Namely, each edge e = {u, v} of G corre-
sponds to four interior vertices of G, as in Figure 2. Every almost-perfect matching
4 of GU assigns a single edge to each of those four vertices, and there are seven ways
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o\Ce/ o Ce ° o Ce/ \Ce ° \TCe(/ o Ce o o Ce °
Se -Se Se S Se -Se Set Se Ser Se Sl Se S+ Se
- o es ] -1

Ceo Ce Ce o To o

o “Co o Ce™S o o Ce o

Wi(A) = co wt(h) =co wit(h) =50 Wi(h) =sc wi(h) =1 wi(h) =52 wi(A) = c2

Figure 8. (Color online) The correspondence 6 between almost-perfect matchings of GH (top)
and minimal spinned flows (bottom), where + (resp., —) next to a vertex v denotes «(v,e) = 1
(resp., a(v,e) = —1).

to do so, as in Figure 8 (top). The product of the weights of edges of 4 incident to
one of the four vertices of GU equals, respectively, ¢, Ce, Se, Se, 1, sez, ce2 (see Figure 8
(top)).

Similarly, for every minimal spinned flow (F,«), e may be directed from u to v,
or directed from v to u, or undirected, in which case the functions «(u, e),a(v,e) €
{—1,1} are well defined. As shown in Figure 8, the two matchings of weight ¢, cor-
respond to the case where e is directed in F, and the remaining five matchings cor-
respond to e being undirected in F. Specifically, the two matchings of weight s,
correspond to the two cases where «(u, e) # «(v, e), the matching of weight 1 cor-
responds to the case «(u,e) = a(v,e) = 1, and the two matchings of weights sg, cZ
correspond to a single case a(u,e) = a(v,e) = —1.

It is straightforward to check that these rules give a well-defined map 6 from
the set of almost-perfect matchings of G to the set of minimal spinned flows on G.
Moreover, it is easy to check that the set J := d(+4) C [2n] uniquely determines two
disjoint sets A, B C [n] such that 8(A) € 37/‘1‘:}‘; (G). Namely, we have A = {i € [n] |
2i —1,2i ¢ Jyand B ={i €[n]|2i —1,2i € J}. Finally, let (F,a) € ?X:E‘}(G) be a
minimal spinned flow; then we claim that

1
WFa)==—— Y wi(A) (6.11)
[ee se A:0(A)=(F,)

where the sum is over almost-perfect matchings 4 of G, To see why this is the
case, note that the multiplicative contribution of an edge e € E to w(F,«) is given
by (6.10). On the other hand, it is clear from Figure 8 that for any two almost-perfect
matchings #, A’ such that 6(4) = 6(A’), we have S™(A) = S*(A’), where S (A)
is defined in the proof of Proposition 5.14. Thus, the total weight of almost-perfect
matchings in the preimage of (F,«) under 6 equals the product over all edges e € E
of g(e), defined in the proof of Proposition 5.14 as
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Ce if e is a directed edge in F,
qle) =q1=s52+c2 ifeisanactive edge of (F,a), (6.12)
Se otherwise.

Indeed, if e = {u,v} is an active edge of (F,«), then we either have a(u,e) =
a(v,e) =1, in which case e corresponds locally to a single matching of weight 1, or
we have a(u, e) = a(v,e) = —1, in which case e corresponds locally to two match-
ings of weights 52 and ¢2, which can be interchanged in every almost-perfect match-
ing in the preimage of (F,«) under 6. It remains to note that the right-hand side of
(6.12) can be obtained from the right-hand side of (6.10) by multiplying by s,:

2XeSe/ Y2 = ce if e is a directed edge in F,
seW(F,a,e) =1 (1+ xez)se/y(f =1 ifeisan active edge of (F,«),

Se otherwise.

Thus s,W(F,a,e) = q(e), which proves (6.11). This implies that the right-hand sides
of (6.9) and (6.2) are equal, finishing the second proof of Theorem 6.5. U]

7. Cyclic symmetry and a homeomorphism with a ball
By Theorems 6.5 and 5.17, the map ¢ is a stratification-preserving homeomorphism
from Y,, to OGs¢(n,2n), which is the first part of Theorem 2.3. In this section, we
follow the strategy of [18] to prove the second part of Theorem 2.3, which states that
X, is homeomorphic to a closed ball of dimension (3).

Recall that the cyclic shift 2n x 2n matrix S was defined in Section 3.2. We let
ST denote the matrix transpose of S. We recall the following result from [18].

LEMMA 7.1 ([18, Corollary 3.8])
For all X € Grso(k,N) and all t > 0, we have X -exp(t(S + ST)) € Gr=o(k, N).

Recall that the totally positive Grassmannian Grsq(k, N) is defined in (4.1). Let
us define the totally positive orthogonal Grassmannian to be the intersection

OGx¢(n,2n) := Grsg(n,2n) N OG(n,2n).

LEMMA 7.2
For all X € OGxq(n,2n) and all t > 0, we have X -exp(t(S + ST)) € 0G=¢(n,2n).

Proof
In view of Lemma 7.1, it suffices to show that X - exp(t(S + ST)) € OG(n,2n).
By Proposition 5.1, it is enough to prove that exp(t(S + ST)) belongs to the Lie
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group O(n,n) consisting of all 2n x 2n matrices g preserving the bilinear form 7,
that is, satisfying n(gu, gv) = n(u,v) for all u,v € R?". It is a standard fact from
Lie theory that exp(t(S + ST)) is such a matrix if and only if S 4+ S7 belongs to the
Lie algebra of O(n,n). Let D :=diag(1,—1,1,—1,...,1,—1) be a 2n x 2n diagonal
matrix with D; ; = (—1)"! for 1 <i < 2n. Then the Lie algebra of O(n,n) consists
of all 21 x 2n matrices B such that B- D = —D - BT It is easy to check that S + ST
belongs to this Lie algebra. We are done with the proof. O

Example 7.3
For n = 2, the computation we need to check that S + ST belongs to the Lie algebra
of O(n,n) goes as follows:

0 1 0 —1 1 0 0 0 0 -1 0 1
1 01 0 0 -1 0 0 1 0 1 0
T
.D= _
(S+57) 0 1 0 1 0 0 1 0 0 -1 0 -1}’
1 01 0 0 0 0 -1 -1 0 1 0
1 0 0 0 0 1 0 —1 0 1 0 -1
0 -1 0 0 1 01 0 -1 0 -1 0
D-(S+STHT = _
(S+57) 0 0 1 0 0 1 0 1 0 1 0 1
0 0 0 -1 -1 01 0 1 0 -1 0

This shows that (S +S7)-D =—-D - (S + ST)T forn =2.

Remark 7.4

For all X € Grso(n,2n), it was shown in [18] that the limit of X -exp(z(S + ST)) as
t — oo is the unique cyclically symmetric element Xy € Grso(n,2n) from Proposi-
tion 3.5. It follows from Lemma 7.2 that this point X belongs to OGs(n,2n).

Proof of Theorem 2.3

As we have already discussed, the first part is a direct consequence of Theorems 6.5
and 5.17. The second part follows from Lemma 7.2 together with an argument com-
pletely identical to the one in [18], which we briefly outline here. We refer the inter-
ested reader to [18] for more details.

Definition 7.5 ([ 18, Definition 2.1])

Amap f :R xR is called a contractive flow if the following conditions hold for f:

(1)  themap f is continuous;

(2) forall p eRY and 11,1, € R, we have f(0,p) = p and f(t; + t2,p) =
f, f(t2. p));

(3)  forall p#0and¢ >0, wehave || f(z, p)| < | pl-
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Here || - || denotes the Euclidean norm on R¥ . A useful feature of having a con-
tractive flow is the following result.

LEMMA 7.6 ([18, Lemma 2.3])

Let Q CRY be a smooth embedded submanifold of dimension d < N, and let f :
R xRN — R¥ be a contractive flow. Suppose that Q is bounded and satisfies the
condition

f(t,0)cQ fort>D0. (7.1)

Then the closure Q is homeomorphic to a closed ball of dimension d.

It was shown in the proof of [18, Theorem 1.1] that the space Gr>q(n,2n) can
be explicitly realized as a subset of RV so that the image of Gr (1, 21) would be an
embedded submanifold of RV, and that the action of exp((S + ST)) on Grs¢(n,2n)
extends to a contractive flow on RY . Since OG(n,2n) is an embedded submanifold
of Gr(n,2n), we see that Q := OGx¢(n,2n) becomes an embedded submanifold of
RY whose closure is @ :=0G5¢(n,2n) in RN, By Lemma 7.2, the contractive flow
exp(t(S + ST)) restricts to OGxo(n,2n) and satisfies (7.1). The result follows. [

Theorem 2.3 establishes the correspondence between the planar Ising model and
the totally nonnegative orthogonal Grassmannian. Having finished its proof, we are
in a position to deduce several other results stated in Section 3.

Proof of Theorem 3.4
This follows easily from studying the relationship of the map

(G.J) — (GB,wt) > Meas(G", wt) € 0G=(n,2n)

with the duality map (G,J) — (G*,J™*). Namely, if a planar Ising network
N = (G, J) corresponds to a weighted plabic graph (G, wt), then the dual planar
Ising network N* = (G*, J*) corresponds to a weighted plabic graph ((G*)™, wt*)
so that (G*)™ is obtained from G5 by switching the colors of all vertices and
cyclically relabeling boundary vertices (i.e., d*
from wt by swapping s, and c. for all e € E. More precisely, for each e € E
we have sinh(2J,)sinh(2J %) = 1 by (3.4). On the other hand, by (3.6), we have

sinh(2J,) = ‘;—z and sinh(2J%) = z":, SO Sex = Cp and Cex = §,. It thus follows

= d;j+1), and wt* is obtained

from the definition of Meas given in (4.2) that the minor A; of Meas(G", wt) equals
the minor A;/ of Meas((G*)", wt*), where I’ = {i + 1|i € I} (modulo 2n) for
all I € ([Zn"]). This is equivalent to having Meas(G", wt) - § = Meas((G*)Y, wt*),
which finishes the proof. O
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Proof of Proposition 3.6

We know by Proposition 3.5 that there exists a unique cyclically symmetric element
Xo € Gr>¢(n,2n), and by Remark 7.4, we have X¢ € OGx(n,2n). By Theorem 2.3,
X, corresponds to a unique boundary correlation matrix Mo € X of a planar Ising
network (i.e., ¢(My) = Xj). Since the operation N = (G,J) — N* = (G*,J%)
amounts to applying the cyclic shift on OGs¢(n,2n) by Theorem 3.4, we see that
My = M(G, J) if and only if M(G*,J*) = M(G,J). O

Proof of Theorem 3.9
This also follows easily from Theorem 2.3 combined with (4.2). O

Proof of Theorem 3.17

This follows from Theorems 2.3 and 5.17(1). O
Proof of Theorem 3.20
This follows from Theorems 4.8 and 2.3. U

Proof of Theorem 3.22

Indeed, adjoining a boundary spike e to G’ amounts to adding a pair of bridges
to (G')Y. Adding bridges to (G’) translates into acting by Xi(se) and yg . (se)
on M((G’ )=, wt’) by Lemma 4.9. However, we also rescale the edges incident to
k and k + 1 by c. between adding the two bridges, which amounts to multlplymg
Meas((G')", wt) by a diagonal matrix D i (ce) whose (k.k)th and (k + 1,k + Dth
entries are equal to ¢, and 1/c, respectlvely Thus, if N = (G, J) is obtained from
N’ = (G’,J’) by adjoining a boundary spike, then the matrices M = M(G, J) and
M’ = M(G’,J’) are related by

¢ (M) = Meas(G", wt) = Meas((G')", wt') - x;(se) - Di(ce) - vy, (se)
= Meas((G)™, wt) - g7 (0).

which is equal to ¢ (M’) - g;:(¢). Here x(s.) - Di(ce) - Viip1(Se) = gi(¢) reduces to
the following 2 x 2 matrix computation, which relies on s2 + ¢ = 1:

1 se ce O 1 0\ _ (1/ce sefce

0 1 0 1/ce se 1) \sefce 1/ce )’
We are done with the case of adjoining a boundary spike. The case of adjoining a
boundary edge is completely similar, and also follows by applying the duality from

Section 3.2, which switches between s, and ¢, due to (3.4). We are done with the
proof. O
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Proof of Proposition 6.4

It follows from Theorem 6.5 that ¢ sends X; homeomorphically onto the cell ITZ on
OGs>(n,2n), and thus the result follows from Theorem 2.3 combined with Theo-
rem 5.17(ii). O

8. Generalized Griffiths’s inequalities
In this section, our goal is to prove Theorem 3.13. Note that (3.11) follows from (3.12)
by taking disjoint A and B such that |B| = 1. We thus focus on proving (3.12). Let
us fix two subsets A, B C [n], and let C := A & B be their symmetric difference. If
C has odd size, then both sides of (3.12) become zero. Thus we assume that the size
of C is even. Recall that &,(C) C ([Zn"]) consists of all n-element subsets / of [2n]
such that 7 N {2i — 1,2i} has even size if and only if i € C. (In particular, &,(C) is
empty when C has odd size.)

Throughout, we also fix a matrix M = (m;,;) € Mat,; " (R, 1), and we treat the
entries m;,; = m; as indeterminates for i # j.

Our first goal is to give a formula for the minors Ay (1\7 ) for I € &,(C).

Definition 8.1

Denote n’ :=n — |C|/2. Let « : [2n] — [2n'] be the unique order-preserving map
such that @(2i — 1) = «(2i) if and only if i € C. Let § : [2n’] — [n] be the unique
order-preserving map such that the composition 8 o « : [2n] — [n] sends both 2i — 1
and 2i to i for alli € [n].

Example 8.2
Suppose that n = 4 and C = {1, 3}. Then n’ = 3, and the map « : [8] — [6] sends the
. . 1 213145 6|78 .
top row entries of the two-line array L1l ‘ sla alsle to the corresponding
bottom row entries (i.e., @(1) = «(2) = 1, «(3) = 2, etc.). Similarly, 8 : [6] — [4]
sends the top row entries of i ‘ ; ; ‘ ;‘ ’ i Z ‘to its bottom row entries, giving rise
1 2|3 4|5 6|7 8
to a composite map B o o represented by a three-line array | 1 1|2 3|4 4|5 6|
1 12 2]3 3[4 4

For disjoint subsets 7, J C [2N] of the same size, we say that 7 is a matching
between I and J if v contains |I| = |J| pairs, and for each pair {i, j } € 7w, we have
eitheri € I,j € Jori € J,j € I. The set of matchings between I and J is denoted
by Match(/, J). For a subset K C [2N] of even size, a matching on K is a partition
of K into |K|/2 disjoint subsets of size 2, and we let Match(K) denote the set of
matchings on K. Thus Match(/, J) C Match(I U J), and Match([2r]) is as a set
equal to P,. The function xing naturally extends to Match(/, J) and Match(K).
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For each I € §,(C), we denote I’ := «([]), and it is easy to check that we have
I e ([2n'i/]) for I € §,(C). Given a matching = on [2n'], we define a monomial
mp x = [l jren Mpa).p(H- Similarly, given a subset K C [n] of even size and a
matching 7= € Match(K), we set my = [[; iyer i, ;-

PROPOSITION 8.3
For I € &,(C), we have

Ap(M) =21€1/2 Y ()Emg
sweMatch(’,[2n'1\1")

Proof
This is essentially [53, Proposition 5.2] (see also [44, (2.2)]). O

Remark 8.4

Forany I € ([Zn"]), there exists a unique C C [n] such that I € &,(C). Thus, Proposi-
tion 8.3 actually gives a formula for all maximal minors of M in terms of the entries
of M.

Example 8.5

Let n =4, and let C = {1, 3} as in Example 8.2, so n’ = 3. The matrices M and M
are given in Figure 1. Let [ :={1,2,4,7}. We have I € §,(C) since |1 N {1,2}| =2
and |1 N {5,6}| = 0 are both even, while |/ N {3,4}| = |1 N {7,8}| = 1 are both odd.
Next, I’ =a(l) ={1,3,5} € ([Zn", ]). Computing the maximal minor A7 (M), we find
that

. )
Ar(M) =2(myamazmos — M13M5, + M12M2aM34 + M12M23 + M1aM34 + M13).

These six terms correspond to the six elements of Match(/’, [2n']\ I') = Match({1, 3,
5},{2,4,6}). For instance, the term —m13m§4 comes from the matching = =
{{1,4},{3, 6}, {5,2}} with xing(sr) = 3, while the term 13 comes from the matching
= {{1,4},{3,2},{5, 6}} with xing(7) = 0.

Definition 8.6
We introduce two disjoint subsets A’, B’ C [2n] by:

A={ie2n']|BG)e A\B}U{i e[2n']| (i) =BG +1) € AN B},

B :={ie2n']|B(i)e B\ A} U{i+1€[2n']|B(i) =BG +1)€ AN B}.
Define the number € € {0, 1} mentioned in Theorem 3.13 by

e=1+) i (mod2). (8.1)
i€B’
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Next, we state a classical result expressing correlations of the Ising model in
terms of Pfaffians. Given a set K C [n] of even size, we define

Pig(M):= Y (=)™ m,.
7w €Match(K)

If the size of K is odd, then we set Pfx (M) := 0. The following classical result
expresses multipoint correlations in terms of two-point correlations.

PROPOSITION 8.7 ([23, Theorem A])
Given a planar Ising network N = (G, J), let M = M(G, J) be its boundary corre-
lation matrix. Then for every set K C [n], we have

(ok) =Pix(M)= Y (D™ TT (oio;).

7 €Match(K) {i,jlen

Thus, Theorem 3.13 becomes a consequence of the following result.

THEOREM 8.8
We have

1 —
Plc (M) —Pfo(M) Pip(M) = —— > Ar(M).  (82)
1€8,(A®B)NDE(B)

Both sides of (8.2) are polynomials in the entries of M by Propositions 8.3
and 8.7.

Remark 8.9
It may look like the right-hand side of (8.2) is not symmetric with respect to A and
B, but in fact it is easy to see that

En(A® B)N D(B) = 6,(A® B) N D (A4),

where €' =1+n+) ;.4 i (mod 2).

Before we prove Theorem 8.8, we state a lemma which will be used repeatedly
later.

LEMMA 8.10

Let 2N] = K1 U K5 for two sets K1, K, of even size. Let mq € Match(K4), m, €
Match(K>), and let w1 U m, € Match([2N]) be obtained by superimposing w1 and
75. Then
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xing(mr; U 7mp) — xing(mry) — xing(mp) = |K1]/2 + Z i
iekKy

=|Kal/2+ ) i (mod2).  (8.3)

i€k,

Proof

Suppose that there is i € K such thati > 1 andi — 1 ¢ K;. Then replacing K; with
K1\ {i} U{i — 1} and modifying 7y, 7, accordingly changes the parity of each side
of (8.3). Applying this operation repeatedly until K; = [| K1 |], the result follows. [

Proof of Theorem 8.8

First, it is straightforward to check that if i € [n]\ (A U B), then removing i from [n]
does not affect the left- and right-hand sides of (8.2). Thus, from now on we assume
that AU B = [n].

Assume first that A N B = @. This implies that C = A U B = [n], n is even,
n’=n/2, A = A, and B’ = B. For a matching = € Match([n]), we are going to
compare the coefficients of 7, on both sides of (8.2), and show that in all cases they
are equal.

We say, for two disjoint subsets / and J, that a matching & € Match(/ U J)
restricts to I and J and write = € Match | if for all {i, j} € m we have either
{i,jyc I or{i,j} C J. We denote by w|; € Match(/) and n|; € Match(J) the
corresponding restricted matchings. Thus, the set Match |7, C Match(/ U J) is in
bijection with Match(/) x Match(J).

For 7 € Match([n]), the coefficient of m in Pfc (M) —Pf4(M ) Pfg(M) is equal
to

(_1)xing(7r) _ (_1)xing(ﬂ|A)(_1)xing(n|3) if 7 € Match rjfB’

(—1)xing() otherwise.

Clefe(77) = {

For the right-hand side of (8.2), observe that by Definition 3.12, a given set I €
&,(C) belongs to D€(B) if and only if

Y i=1+) i (mod2),
ieINB i€B
because B = B’. Since C = [n], we have I € §,(C) if and only if 7 N {2i —1,2i}
has even size for all i € [n]. Let us say that a set [ € &,(C) is compatible with r if
7 € Match(Z’, [2n'] \ I’). It is clear that the coefficient of m, in the right-hand side
of (8.2) is equal to
n/2

S (DN (),

Cright(7T) 1=
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where N () is the number of I € &,(C) N D€ (B) compatible with 7. We claim that
N () is given by

2"/2if r e Match[§g and [B|/2=1+4);cpi (mod 2),
N(m)=30 if 7 € Match "5 and [B|/2 # 1 + Y iepl (mod?2), (84)
27271 if ¢ Match [ .

Indeed, assume first that 7 ¢ Match |ff;'g - Then there exists a pair {i, j } € & such
that i € A and j € B. Note that there are a total of 2"/ sets I € &,(C) compatible
with 7. Each such set satisfies either 2i — 1,2i € 1,2j —1,2j ¢ [ or2j — 1,2 €
1,2i —1,2i ¢ I, so they naturally split into pairs {/,1 & {2i —1,2i,2j —1,2j}}.
Exactly one set / in each pair satisfies ) ;c;~5i = € (mod 2). Thus, the total num-
ber N (i) of sets I € &,(C) N D€(B) compatible with 7 equals 22~ in this case.

Assume now that 7 € Match [’ 5. Then for any I € &, (C) compatible with r,
we have ) ;c;ng i =|B|/2 (mod 2). Thus, either all / compatible with 7 belong to
€,(C) N DE(B), in which case we get 2"/2 of them, or they all belong to &,(C) N
D'17¢(B), in which case we get N(m) = 0. It is easy to check that the former case
happens exactly when |B|/2=1+),.gi (mod 2). This shows (8.4), which, com-
bined with (8.3), clearly implies that cie () = Crign(7r). We are done with the case
ANB=4.

Assume now that A N B # @. Since we are assuming that A U B = [n], we have
2n'=n+|ANB|and [2n'| = A" UB’.

Fork,k + 1 € [2n'] such that (k) = B(k + 1) = j, let the flipping of a matching
7 € Match([2n']) at j be a matching 77’ obtained from 7" by “swapping” the elements
k,k + 1, thatis, 7’ = \ {{a,k},{b,k + 1}} U {{a,k + 1},{b,k}} for some a,b €
[2n']. Af {k,k + 1} € m, then we set 7’ := 7.)

Note that two different matchings 7, 7/ € Match([2n']) can yield the same mono-
mial mg  if they differ by a flipping at some j € A N B. In this case, we write
7 ~ 7’ and denote by IT = [r] the equivalence class of matchings 7 € Match([2n'])
with respect to this equivalence relation. Thus, we have mg , = mg - if and only if
7w ~ 7', and we denote mg 5] = mg .

We say that 7 is trivial on j € AN B, denoted 7 L j, if the pair {k,k 4+ 1} =
B~1(j) belongs to . We say that 7 is trivial on AN B, denoted 7 L AN B, if 7 is
trivial on all elements of A N B. It is easy to see that triviality depends only on the
equivalence class of m, justifying the notation IT L j and IT L A N B. In the case
IT L AN B, II consists of just a single element 7z, so we define xing(IT) := xing(x)
in this case.

Let © € Match([2n']) be a matching. Consider a graph T';, = ([2#'], E(r)) with
vertex set [2n'] and edge set
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E(w)=m U {{k.k + 1} | k € [2n'] is such that B(k) = B(k + 1)}
=xU{B~'(j)|jeANnB].

(Here if 7 is trivial on j, then the corresponding pair {k,k + 1} = B~1(;) belongs to
both w and {f71(j) | j € AN B}, so I’y contains two edges connecting k to k + 1.)

Each connected component of ', contains an even number of vertices and is
either a cycle or a path. We denote by Conn(I';) the set of connected components of
I’y and by Cyc(I';) C Conn(I';) the set of cycles of I';. Clearly, flipping 7 at j €
A N B preserves the set of vertices of each connected component of I';,. In particular,
we have cyc() := | Cyc(mr)| = | Cyc(n’)| for all # ~ 7/, and thus we set cyc([x]) :=
cyc(m).

We are going to compare, for each equivalence class IT of matchings, the coef-
ficients of mg 11 on both sides of (8.2), and show that they are equal. (Recall that we
have mg = mg 5 if and only if 7 ~ 7, and in particular we have mg 1 # mg
for IT #£ IT'.)

The coefficient of mg 17 in the left-hand side of (8.2) equals

(—1)*ine@Dif [T N Match %S 5, =@ and [T L AN B,
_(_1)xing(ﬂIA/)+xing(ﬂ|B/)zcyc(H)

if w € I N Match |75 5, and TT L AN B,
0 if TN Match |5} oy =@ and IT £ AN B.

Cleft(n) =

Note that the case IT N Match 7§75, # @, I1 L AN B is impossible because AN B #
@. For the second case r € IT N Match |’y g/, IT £ AN B, the parity of xing(m |4/) +
xing(7r|p) is uniquely determined, even if 7 itself may not be uniquely determined.
Indeed, any two 7, 7’ € IT N Match [’} 5, can be obtained from each other by flipping
all j € S forsome S C AN B such that B~1(S) is a union of cycles of I';, (and thus
a union of cycles of I';/). Clearly in this case we have xing(7|4/) + xing(w|p/) =
xing (7’| 47) + xing(7’| p’).

Recall that I € &, (C) is compatible with 7 if 7 € Match(I’, [2n] \ I’). In this
case we also say that I’ is compatible with 7. Note that the map I + I’ = a(I) is
injective on &, (C), and we denote by &, (C):={I"|1 € &,(C)} C ([zn”,/]) the image
of this map. Thus, I’ € &,,(C) if and only if [/’'| =n’ and |I' N{k,k + 1}| = 1 for all
k € [2n'] such that B(k) = B(k + 1).

It is clear that the coefficient of mg 17 in the right-hand side of (8.3) is equal to

2n—n’ )
Crgn(T) = 2= D (=1,
(. J)

where the sum is over all pairs (7, J) such that 7 € IT and J € &, (C) is compatible
with 7. We claim that this sum equals
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(—1)xineon’=1if T N Match 'S ,, =@ and [T L AN B,

A,B’
Z ingr) _(_1)xing(ﬂ\A/)+xing(7r\B/)zn’—l—i-cyc(l'[)
(_1)x1ng /g — )
) 1fneHﬂMatch|fZ§,B/ and [T £ AN B,
0 if [1 N Match |5} p, =@and [T L AN B.

Consider the first case IT N Match |§§’B, =0, 1 L AN B. Let = be the unique
element of IT. Pick some j € AN B, and let {k,k + 1} := B~(j). For each pair
{i,i'} € m except for {k,k + 1}, choose arbitrarily which of i and i’ belongs to J’
and which does not. There are a total of 2’1 ways to do this. For each of the -1
ways, the condition ) ;. ;,5i = € (mod 2) uniquely determines whether k or k + 1
must belong to J' in order for J to belong to &,(C) N D(B). We are done with the
first case.

Consider now the third case IT N Match |i§7 5, =@, IT £ AN B. It follows that
there is a pair {i,i’} common to all = € IT such that 8(i) € A\ B and B(i’) € B \ A.
There is also a pair {k,k + 1} = B~1(j) for some j € AN B such that k and k + 1
are not connected to each other in any 7 € I1. Consideramap y : &,(C) N D(B) —
&,(C) N DE(B) defined as follows. We put y(I) = J for I,J € §,(C) N D¢(B) if
J'=1"®{i,i' k,k+ 1}. Let 7’ be obtained from 7 by flipping at j. We claim that
1 € &,(C) N D(B) is compatible with 7 if and only if y(I) € &,(C) N D¢(B) is
compatible with 7’. Moreover, xing(x”) differs from xing(s) by 1. Thus, we have a
sign-reversing involution that cancels all the terms in Z(ﬂ’ n= 1)*n¢(™) | proving that
it is equal to O in the third case.

Finally, consider the second case 7 € I1 N Match |’ 5,, ITT £ AN B. We are
going to show that ’

Z (_1)xing(n) — _(_l)xing(n\A/)-f-xing(ﬂ\B/)2n’—1+cyc(H).
(7, )

Fix a matching 7 € IT N Match |’ ,. We claim that for any 5" € I, there exists
€z € {0, 1} such that for all I € &§,(C) compatible with 7/, we have I € D¢’ (B),
that is,

Indeed, each component of I';/ is a bipartite graph (a path or a cycle with an even
number of vertices) so let us color its vertices black and white in a bipartite way. It is
easy to check that I € &, (C) is compatible with 7’ if and only if for each connected
component of I/, I’ contains either all white vertices or all black vertices of this
component. Let S C [2n'] be the set of vertices of a connected component of T',
and let J € §,(C) be such that J' = I’ @ S (thus J’ is obtained from I’ by switch-
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ing from white to black inside the component §). It is straightforward to check that

because 7’ is equivalent to w € Match |5 ,, we have

Z i = Z i (mod 2).
ieINB ieJNB
We thus define €,/ := ) ,.;q51 for some I € &,(C) compatible with 7/, and we
have shown that €, does not depend on the choice of 7.

Next, flipping 7" at some j € A N B changes €,/ into 1 — €;. Thus, we have
€, = € for precisely half of the matchings 7’ € I, and for each such matching
7/, there are 2/ComTz)l — on'—lANB| gots J ¢ §,(C) compatible with 7. Since
Imn Match|’j§,B, # 0, we have I1 J j for each j € AN B, and thus |I1| = 2/4NBI.
Therefore, the total number of pairs (z’, J) such that 7’ € ITand J € §,(C)ND*(B)
equals 2”1, and for each of them, the parity of xing(r’) is the same, because it sat-
isfies

€ — € = xing() — xing(n').
Thus, in order to finish the proof, it suffices to show that
xing(mw) — xing(mw|4/) — xing(w|p/) # €x —e (mod 2). (8.5)
Let J € §,(C) be compatible with 7. Then by the definition of €,; and €, we have

€x—€= Y i+ i+1 (mod?2).

ieJNB i€B’

Combining this with Lemma 8.10, (8.5) transforms into

IB'/2+ Y i= Y i+ Y i (mod2),

i€eB’ ieJNB i€eB’

or equivalently, |B’|/2 =) ;c;n51 (mod 2), which follows in a straightforward
way since 7 € Match |f§§’ g/» J contains either all white or all black vertices in each
connected component of I';, and hence the contribution of each connected compo-
nent to the left- and right-hand sides is the same. We are done with the proof of

Theorem 8.8, which implies Theorem 3.13 as discussed previously. ([

9. Open problems and future directions
In this section, we briefly list several questions that in our opinion would be worth
exploring further.

According to (5.4), OGs¢(n,2n) is a union of cells labeled by matchings t on
[2n], and each such cell TT>° N OGs¢ (1, 21) is homeomorphic to R*"¢(® Tt would be
nice to understand the topology closures of these cells. In fact, we have a conjecture,
analogous to [53, Conjecture 3.6].



1936 GALASHIN and PYLYAVSKYY

Conjecture 9.1

The cell decomposition (5.4) gives a regular CW complex structure on OGx¢(n, 2n).
In other words, the closure of each cell I17° N OGxg(n,2n), given by (5.5), is home-
omorphic to a closed xing(t)-dimensional ball.

As we have already mentioned, the poset P, of cells in OGx(n,2n) has been
studied in the context of electrical networks. In particular, it has been shown to be
shellable and Eulerian by [40] and [25], which shows that P, is the face poset of
some regular CW complex by a result of [6]. This leads to our next question.

Question 9.2

Does there exist a natural stratification-preserving homeomorphism between the com-
pactification E, of the space of response matrices of planar electrical networks (as
studied in [42]) and the space X, of boundary correlation matrices of planar Ising
networks?

Recall that both spaces have cell decompositions into cells indexed by matchings
on [2n], and both spaces are homeomorphic to a closed (;)—dimensional ball by Theo-
rem 2.3 and [18, Theorem 1.3]. Similarly to Conjecture 9.1, the space E, is believed
to be a regular CW complex with face poset P,. There are many more surprising
analogies between the two spaces:

. In both cases, a planar graph yields a point in the cell corresponding to its
medial pairing.

. Two reduced planar graphs yield the same point if and only if they are con-
nected by the corresponding Y — A (or star-triangle) moves.’

. In both cases, there is an embedding of the space of boundary measurements
into the totally nonnegative Grassmannian, as in Theorem 2.3 and [42, Theo-
rem 5.8].°

. The cyclic shift inside the corresponding Grassmannian amounts to the duality

operation for Ising networks as in Section 3.2, and for electrical networks it
corresponds to taking the dual graph and replacing each conductance by its
reciprocal, as easily follows from the results of [42, Section 5].

5Tn fact, under our map G — G5, applying a ¥ — A move to G corresponds to applying the superurban
renewal of [37] to GU.

%The corresponding decorated permutations differ by a “shift by 17; that is, if 7 : [n] — [n] is a fixed-point
free involution, then Lam embeds the electrical response matrix into the cell H;,O of Gr>o(n — 1,2n), where
7t/(i) := (i) — 1 modulo n for all i € [n]. An analogous construction in the context of the amplituhedron of
[3] is related to going from the momentum space to the momentum-twistor space, where one performs a “shift
by 2.” It remains an open problem to define the amplituhedron and related objects in the context of ABIM
amplitudes. We thank Thomas Lam for pointing this out to us.



ISING MODEL AND THE POSITIVE ORTHOGONAL GRASSMANNIAN 1937

. Adding boundary spikes and boundary edges translates into adding pairs of
bridges to the corresponding plabic graph (see Theorem 3.20 and [42, Propo-
sition 5.12]).
Our next question is related to Remark 3.7.

Problem 9.3

Provide a rigorous explanation for the relationship between the scaling limit of planar
Ising networks at critical temperature and the unique cyclically symmetric point X €
OG> (n,2n) from Proposition 3.5.

Our main result establishes a correspondence between total positivity and planar
Ising networks, and thus potentially allows results and intuition to be applied from
one area to another. For example, asymptotic properties of plabic graphs have not yet
been studied, while asymptotic properties of planar Ising networks have a rich and
important well-studied structure. Similarly, the space Grs(k,n) is usually studied in
the context of cluster algebras and canonical bases of Lusztig (see, e.g., [17], [48]).
For instance, Theorem 3.13 expresses Griffiths’s inequalities as positive linear sums
of minors of ¢ (M ). But the theory of cluster algebras gives a much larger family of
rational functions of the minors that all take positive values on Grsg(k,n).

Problem 9.4
Give an interpretation of the values of other cluster variables in the cluster algebra of
the Grassmannian in terms of the planar Ising model.

Another direction is related to Question 3.23 and the discussion after it: What is
the minimal number of minors one needs to check in order to test whether a given
element X € OG(n,2n) belongs to OGx¢(n,2n)? A similar question for electrical
networks has been discussed in [36, Section 4.5.3]. This question also makes sense
when X belongs to a lower-dimensional cell inside OGx>¢(n,2n). Note also that in
the case of the Grassmannian, collections of such minors have a very nice structure
(see [50]) as they form clusters in the associated cluster algebra. It is not clear to us
whether there exists a similar “cluster structure” on OGx¢(n,2n).

Finally, there has been a rich interplay between the areas of scattering amplitudes
and total positivity, giving rise to canonical differential forms on positroid cells inside
Grso(k,n) (see [1]-[3], [20]). A similar result for electrical networks, which can
be found in [36, Theorem 4.13], gives an explicit expression for the Jacobian of a
certain natural map. In [29, Section 2.4.2], an expression for another Jacobian was
given for OGs¢(n,2n) in the context of ABJM scattering amplitudes. It would thus
be interesting to understand their Jacobian in the language of planar Ising networks,
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as well as develop an analogue of the amplituhedron in [3] for which OGx¢(n,2n)
plays the role of Gr>o(k,n).
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