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Abstract
Strictly subadditive, subadditive andweakly subadditive labelings of quivers were introduced
by the second author, generalizing Vinberg’s definition for undirected graphs. In our previous
work we have shown that quivers with strictly subadditive labelings are exactly the quivers
exhibiting Zamolodchikov periodicity. In this paper, we classify all quivers with subadditive
labelings. We conjecture them to exhibit a certain form of integrability, namely, as the T -
system dynamics proceeds, the values at each vertex satisfy a linear recurrence. Conversely,
we show that every quiver integrable in this sense is necessarily one of the 19 items in our
classification. For the quivers of type Â ⊗ A we express the coefficients of the recurrences in
terms of the partition functions for domino tilings of a cylinder, called Goncharov–Kenyon
Hamiltonians. We also consider tropical T -systems of type Â ⊗ A and explain how affine
slices exhibit solitonic behavior, i.e. soliton resolution and speed conservation. Throughout,
we conjecture how the results in the paper are expected to generalize from Â ⊗ A to all other
quivers in our classification.
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Introduction

A quiver Q is a directed graph without 1-cycles (i.e. loops) and directed 2-cycles. For a
vertex v of a quiver, one can define a certain operation called a mutation, which produces
a new quiver denoted μv(Q) (see Definition 1.1.5). We say that a quiver is bipartite if its
underlying graph is bipartite, in which case we say that a map ε : Vert(Q) → {0, 1}, v �→ εv

is a bipartition if for every edge u → v of Q we have εu �= εv . Here Vert(Q) is the set of
vertices of Q.

It is clear from Definition 1.1.5 that μu and μv commute if u, v are not connected by an
edge in Q. Therefore, we can define

μ◦ =
∏

u:εu=0

μu; μ• =
∏

v:εv=1

μv.

We say that Q is recurrent if μ◦(Q) = μ•(Q) = Qop where Qop is the same quiver as Q
but with all the arrows reversed.

Let Q be a bipartite recurrent quiver. Denote x := {xv}v∈Vert(Q) to be the set of indeter-
minates, one for each vertex of Q, and let Q(x) be the field of rational functions in these
variables. The T -system associated with Q is a family Tv(t) of elements of Q(x) satisfying
the following relations for all v ∈ Vert(Q) and all t ∈ Z:

Tv(t + 1)Tv(t − 1) =
∏

u→v

Tu(t) +
∏

v→w

Tw(t).

Here the products are taken over all arrows connecting the two vertices.
It is clear that the parity of t + εv in all of the terms is the same, so the T -system

associated with Q splits into two completely independent ones. Without loss of generality
we may consider only one of them. From now on we assume that the T -system is defined
only for t ∈ Z and v ∈ Vert(Q) satisfying

t + εv ≡ 0 (mod 2).

The T -system is set to the following initial conditions:

Tv(εv) = xv

for all v ∈ Vert(Q).
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Quivers with subadditive labelings: classification and integrability 947

Let us say that the T -system associated with a recurrent quiver Q is integrable if for every
vertex v ∈ Vert(Q), there exists an integer N and elements J0, J1, . . . , JN ∈ Q(x) satisfying
J0, JN �= 0 and

N∑

j=0

J j Tv(t + 2 j) = 0

for all t ∈ Z with t + εv even. We also refer to a recurrent quiver Q as Zamolodchikov
integrable if the associated T -system is integrable. If the recurrence has the formTv(t+2N ) =
Tv(t) for all t ∈ Z and v ∈ Vert(Q), then we call Q Zamolodchikov periodic.

Just as in the periodic case, we call a quiver Zamolodchikov integrable when the bipartite
T -system is integrable. More general notions of T -systems can be found in [28].

Zamolodchikov periodicity for the case when Q is a tensor product of two finite ADE
Dynkin diagrams has been studied extensively (see [10,12,14,24,25,31,37,41,42]) and was
proven in full generality in [20] and later in [17,18], where tropical Y -systems played a
major role. By analyzing tropical T -systems (see Part 4), we have classified Zamolodchikov
periodic quivers in [13], where we showed that these are exactly the quivers admitting a
strictly subadditive labeling (Definition 1.1.4).

Besides thermodynamic Bethe ansatz [42], T -systems and Y -systems arise naturally in
a lot of different contexts in physics and representation theory, e.g. [11,22,23,25,27,29,32],
see [26] for a survey.

Assem, Reutenauer and Smith [1] showed that the affine Dynkin diagrams of types Â
and D̂ are Zamolodchikov integrable, and later Keller and Scherotzke [21] extended this
result to all affine Dynkin diagrams. Conversely, it was shown in [1] that if every vertex of
a Zamolodchikov integrable quiver Q is either a source or a sink then Q is necessarily an
affine Dynkin diagram.

In Sects. 1.2 and 4.2 we prove (Theorem 1.2.5) that if a bipartite recurrent quiver is
Zamolodchikov integrable then it admits a subadditive labeling (see Definition 1.1.4).

We then classify (Theorem 2.2.5) quivers that admit subadditive labelings in Part 2. We
conjecture all of them to be Zamolodchikov integrable (Conjecture 3.6.1).

When Q is a tensor product (see Definition 1.1.1) of type Â ⊗ A, it was shown in [30]
that Q is Zamolodchikov integrable. In Sects. 3.1–3.4, we express the recurrence coefficients
J1, . . . , JN for the vertices of such Q in terms of partition functions of domino tilings on the
cylinder, called Goncharov–Kenyon Hamiltonians. See Theorem 3.2.5 and Corollary 3.4.2.

In Sect. 3.5 we show that the above Goncharov-Kenyon Hamiltonians belong to the upper
cluster algebra.

In Part 4, we analyze the tropical T -system associatedwith quivers admitting a subadditive
labeling. We show (Corollary 4.2.3) that when t 	 0 or t 
 0, every affine slice of the
tropical T -system moves with some constant speed. We explain how this can be seen as
soliton resolution in Sect. 4.2, and then we proceed to show speed conservation in Sect. 4.3:
for the quiver of type Â2n−1 ⊗ Am , the speeds of the solitons at t 	 0 are equal to the speeds
of solitons at t 
 0 after one applies a diagram automorphism to Am . See Example 4.3.2 for
an illustration of these solitonic phenomena.

Finally, in Sects. 3.6 and 4.4 we conjecture most of our results for all other quivers in our
classification.
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948 P. Galashin, P. Pylyavskyy

Part 1. Zamolodchikov integrable quivers.

1.1 Preliminaries

1.1.1 Bigraphs

In [36] Stembridge studies admissible W -graphs for the case when W = I (p) × I (q) is a
direct product of two dihedral groups. These W -graphs encode the structure of representa-
tions of Iwahori-Hecke algebras, and were first introduced by Kazhdan and Lusztig in [19].
The following definitions are adapted from [36] with slight modifications. A bigraph is an
ordered pair of undirected loopless graphs (�,�) which share a common set of vertices
V := Vert(�) = Vert(�) and do not share edges. A bigraph is called bipartite if there is a
map ε : V → {0, 1} such that for every edge (u, v) of � or of � we have εu �= εv .

There is a simple one-to-one correspondence between bipartite quivers and bipartite
bigraphs. Namely, to each bipartite quiver Q with a bipartition ε : Vert(Q) → {0, 1} we
associate a bigraph G(Q) = (�(Q),�(Q)) on the same set of vertices defined as follows:

• �(Q) contains an (undirected) edge (u, v) if and only if Q contains a directed edge
u → v with εu = 0, εv = 1;

• �(Q) contains an (undirected) edge (u, v) if and only if Q contains a directed edge
u → v with εu = 1, εv = 0.

Similarly, we can direct the edges of any given bipartite bigraph G to get a bipartite quiver
Q(G).

It is convenient to think of (�,�) as of a single graph with edges of two colors: red for
the edges of � and blue for the edges of �.

Definition 1.1.1 Let S and T be two bipartite undirected graphs. Then their tensor product
S ⊗ T is a bipartite bigraph G = (�,�) with vertex set Vert(S)×Vert(T ) and the following
edge sets:

• for each edge {u, u′} ∈ S and each vertex v ∈ T there is an edge between (u, v) and
(u′, v) in �;

• for each vertex u ∈ S and each edge {v, v′} ∈ T there is an edge between (u, v) and
(u, v′) in �;

An example of a tensor product is given in Fig. 1.

Fig. 1 A tensor product of a square (type Â3) and a single edge (type A2)
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Quivers with subadditive labelings: classification and integrability 949

1.1.1.1 Reformulation of the dynamics in terms of bigraphs

Let G = (�,�) be a bipartite bigraph with a vertex set V . Then the associated T -system for
G is defined as follows:

Tv(t + 1)Tv(t − 1) =
∏

(u,v)∈�

Tu(t) +
∏

(v,w)∈�

Tw(t);

Tv(εv) = xv.

It is easy to see that this system is equivalent to the corresponding system defined for Q(G)

in the Introduction.

1.1.2 Finite and affine ADEDynkin diagrams and their Coxeter numbers

By a finite ADE Dynkin diagram we mean a Dynkin diagram of type An, Dn, E6, E7, or
E8. An affine ADE Dynkin diagram is a Dynkin diagram of type Ân, D̂n, Ê6, Ê7, or Ê8,
see Fig. 2.

The following characterizationoffinite and affine ADE Dynkin diagrams is due toVinberg
[40]:

Theorem 1.1.2 Let G = (V , E) be an undirected graph with possibly multiple edges. Then:

• G is a finite ADE Dynkin diagram if and only if there exists a map ν : V → R>0 such
that for all v ∈ V ,

2ν(v) >
∑

(u,v)∈E

ν(u).

• G is an affine ADE Dynkin diagram if and only if there exists a map ν : V → R>0 such
that for all v ∈ V ,

2ν(v) =
∑

(u,v)∈E

ν(u). (1.1.1)

The values of ν satisfying (1.1.1) are given in Fig. 2, normalized so that they are integers
with greatest common divisor equal to 1.

1 1

1 1

1 1

1 1

2 2 2

1 1

1

2

1 2 3 2 1
Â2n−1 D̂n Ê6

for n = 3 for n = 6

2

1 2 3 4 3 2 1

3

2 4 6 5 4 3 2 1
Ê7 Ê8

Fig. 2 Affine ADE Dynkin diagrams and their additive labelings
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950 P. Galashin, P. Pylyavskyy

Table 1 Coxeter numbers of
finite ADE Dynkin diagrams

� An Dm E6 E7 E8

h(�) n + 1 2m − 2 12 18 30

For each finite ADE Dynkin diagram� there is an associated integer h(�) calledCoxeter
number. We list Coxeter numbers of finite ADE Dynkin diagrams in Table 1. If �̂ is an affine
Dynkin diagram, we set h(�̂) = ∞.

It is well known that the Coxeter number has a nice interpretation in terms of eigenvalues
of the adjacency matrix:

Proposition 1.1.3 ([3, Exercise V.6.4])

• If � is a finite ADE Dynkin diagram then the dominant eigenvalue of its adjacency
matrix equals 2 cos(π/h(�));

• if �̂ is an affine ADE Dynkin diagram then the dominant eigenvalue of its adjacency
matrix equals 2.


�

In particular, the second claim justifies setting h(�̂) := ∞.

1.1.3 Subadditive labelings

Let G = (�,�) be a bipartite bigraph on vertex set V . A labeling of its vertices is a function
ν : V → R>0, which assigns to each vertex v of G a positive real label ν(v).

Definition 1.1.4 A labeling ν : V → R>0 is called

• strictly subadditive if for any vertex v ∈ V ,

2ν(v) >
∑

(u,v)∈�

ν(u), and 2ν(v) >
∑

(v,w)∈�

ν(w).

• subadditive if for any vertex v ∈ V ,

2ν(v) ≥
∑

(u,v)∈�

ν(u), and 2ν(v) >
∑

(v,w)∈�

ν(w).

• weakly subadditive if for any vertex v ∈ V ,

2ν(v) ≥
∑

(u,v)∈�

ν(u), and 2ν(v) ≥
∑

(v,w)∈�

ν(w).

Examples of each type can be found in Fig. 3.

Strictly subadditive, subadditive and weakly subadditive labelings of quivers have been
introduced in [30]. The terminology is motivated by Vinberg’s subadditive labelings [40] for
undirected graphs (see Theorem 1.1.2).
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2 3 2

3 4 3

2 3 2

5 5

3 3

6 6

3 3

5 5

2

2 2

1 1

2 2

3

2

2 1 2

2

a strictly subadditive labeling a subadditive labeling a weakly subadditive labeling

Fig. 3 Different kinds of labelings

a b

c d

a b

c d

a b

c d

a b

c d

Quiver Q Step 1 Step 2 Step 3. This is µa(Q)

Fig. 4 Mutating a quiver at vertex a

1.1.4 Quivers

Definition 1.1.5 For a vertex v of Q one can define the quiver mutation μv at v as follows:

(1) for each pair of edges u → v and v → w create an edge u → w;
(2) reverse the direction of all edges adjacent to v;
(3) if some directed 2-cycle is present, remove both of its edges; repeat until there are no

more directed 2-cycles.

Let us denote the resulting quiver μv(Q). See Fig. 4 for an example of each step.

Now, let Q be a bipartite quiver. Recall that μ◦ (resp., μ•) is the simultaneous mutation at
all white (resp., all black) vertices of Q, and that Q is recurrent if μ◦(Q) = μ•(Q) = Qop.

As we have observed in [13], this property translates nicely into the language of bigraphs:

Corollary 1.1.6 A bipartite quiver Q is recurrent if and only if the associated bipartite bigraph
G(Q) has commuting adjacency matrices A�, A�.

We define three variations of Stembridge’s admissible ADE bigraphs (see [36]):

Definition 1.1.7 Let G = (�,�) be a bipartite bigraph, and assume that the adjacency
|V | × |V | matrices A� and A� of � and � commute. In this case we encode the three
definitions in Table 2. For instance, G is an affine � finite ADE bigraph if each connected
component of � is an affine ADE Dynkin diagram and each connected component of � is
a finite ADE Dynkin diagram. We similarly define the notions of admissible and affine �
affine ADE bigraphs.

The following fact is an easy consequence of [36, Lemma 4.3]:

Lemma 1.1.8 Let G = (�,�) be a bipartite bigraph and assume that the adjacency matrices
A�, A� commute. Then the dominant eigenvalues of all components of � are equal to the
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952 P. Galashin, P. Pylyavskyy

Table 2 Three types of bigraphs

Notion All components of � are All components of � are

Admissible ADE bigraph Finite ADE Dynkin diagrams Finite ADE Dynkin diagrams

Affine � finite ADE bigraph Affine ADE Dynkin diagrams Finite ADE Dynkin diagrams

Affine � affine ADE bigraph Affine ADE Dynkin diagrams Affine ADE Dynkin diagrams

same value λ� , and the dominant eigenvalues of all components of � are equal to the same
value λ�. Matrices A� and A� have a common dominant eigenvector v such that

A�v = λ�v; A�v = λ�v.

Corollary 1.1.9 Let G = (�,�) be a bipartite bigraph and assume that the adjacency matri-
ces A�, A� commute, and assume that all connected components of � and of � are either
affine or finite ADE Dynkin diagrams. Then all connected components of � have the same
Coxeter number denoted h(�), and all connected components of � have the same Coxeter
number denoted h(�).

Combining Lemma 1.1.8, Definitions 1.1.7, 1.1.4, Vinberg’s characterization (Theo-
rem 1.1.2), and Proposition 1.1.3, we get the following proposition, whose part (1) was
shown in [13, Proposition 5.1]. The proof for parts (2) and (3) is completely analogous and
we refer the reader to [13] for details.

Proposition 1.1.10 Let Q be a bipartite recurrent quiver Q and G(Q) = (�,�) be the
corresponding bipartite bigraph. Then

(1) Q admits a strictly subadditive labeling if and only if G(Q) is an admissible ADE
bigraph;

(2) Q admits a subadditive labeling which is not strictly subadditive if and only if G(Q) is
an affine � finite ADE bigraph;

(3) Q admits a weakly subadditive labeling which is not subadditive if and only if G(Q) is
an affine � affine ADE bigraph. 
�

1.2 Zamolodchikov integrable quivers admit weakly subadditive
labelings

Recall that a bipartite recurrent quiver Q is called Zamolodchikov integrable if for every
vertex v ∈ Vert(Q), there exists an integer N and rational functions J0, . . . , JN ∈ Q(x) such
that J0, JN �= 0 and

N∑

j=0

J j Tv(t + 2 j) = 0

for all t ∈ Z with t + εv even.
The following lemma is the first step towards the proof of Theorem 1.2.5.

Lemma 1.2.1 If a bipartite recurrent quiver Q is Zamolodchikov integrable then Q admits
a weakly subadditive labeling.
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Proof For v ∈ Vert(Q), t ∈ Z, define a positive number a(v, t) := Tv(2t + εv) |x:=1 to
be the value of Tv(2t + εv) if one substitutes xu := 1 for all u ∈ Vert(Q). By the Laurent
Phenomenon (see [9]), the numbers a(v, t) are integers which are positive since Tv(2t + εv)

can be written as a subtraction-free expression in x. Note that, unlike Tv(t), the numbers
a(v, t) are defined for all v, t , regardless of parity.

Since a(v, t) is always a positive integer, it is easy to see that the sequences a(v, ∗) :=
(a(v, t))t∈Z are either simultaneously bounded or simultaneously unbounded (for all v).
Assume for the sake of contradiction that for some vertex v, the sequence a(v, ∗) is
unbounded, but there is another vertex u for which the sequence a(u, ∗) is bounded, say,
a(u, t) < C for all t ∈ Z. We may assume that Q is connected and that u and v are neighbors
in Q. Let t be such that a(v, t) > C2. Then by the definition of the T -system, we have

a(u, t + 1) >
a(v, t)

a(u, t)
> C,

where the first inequality uses the fact that all the numbers involved are positive integers,
hence each of them is at least 1. This leads to an immediate contradiction.

If all the sequences are simultaneously bounded then they are periodic with the same
period. This implies that the T -system associated with Q is periodic for any initial data, see
[13, Remark 7.2]. In particular, such Q admits a strictly subadditive labeling by [13, Theorem
1.10]. Thus the only case left for us to consider is when the sequence a(v, ∗) is unbounded
for every v.

Weneed to show that if Q is Zamolodchikov integrable then Q admits aweakly subadditive
labeling. Theway to find such a labeling is going to be very similar to the proof of [1, Theorem
1].

The fact that Q is Zamolodchikov integrable implies that for each v, the sequences a(v, ∗)

satisfy a linear recurrence.Knowing that each of them is unbounded suggests using [1, Lemma
1] that describes the asymptotic behavior of sequences a(v, ∗). Beforewe state it, let us denote
A(k) ≈ B(k) for two functions of k if their ratio tends to a positive constant as k → ∞.

Lemma 1.2.2 (see [1, Lemma 1]) Let a(v, ∗) be an unbounded sequence of positive integers
satisfying a linear recurrence for each v ∈ Vert(Q). Then there exist:

• an integer p ≥ 1;
• real numbers λ(v, l) ≥ 1 for each v ∈ Vert(Q), l = 0, . . . , p;
• integers d(v, l) ≥ 0 for each v ∈ Vert(Q), l = 0, . . . , p;
• a strictly increasing sequence (nk)k∈Z≥0 of nonnegative integers

such that the following things hold:

(1) for every v ∈ Vert(Q) and every l = 0, . . . , p, a(v, pnk + l) ≈ λ(v, l)nk nd(v,l)
k ;

(2) for every v ∈ Vert(Q) there exists l = 0, . . . , p such that λ(v, l) > 1 or d(v, l) ≥ 1;
(3) for every v ∈ Vert(Q) we have λ(v, 0) = λ(v, p) and d(v, 0) = d(v, p).


�

Clearly, the sequences a(v, ∗) satisfy all the requirements of Lemma 1.2.2. For each
v ∈ Vert(Q), define

λ(v) :=
p−1∏

l=0

λ(v, l) ∈ R≥1; d(v) :=
p−1∑

l=0

d(v, l) ∈ Z≥0.
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954 P. Galashin, P. Pylyavskyy

For all v ∈ Vert(Q) and t ∈ Z, define

b(v, t) :=
p−1∏

l=0

a(v, t + l).

Applying Lemma 1.2.2 yields

b(v, pnk) ≈ λ(v)nk nd(v)
k . (1.2.1)

By property (3) of Lemma 1.2.2, we have a(v, pnk) ≈ a(v, pnk + p) for every v ∈
Vert(Q) and thus we can write

b(v, pnk)
2 ≈

p−1∏

l=0

a(v, pnk + l)a(v, pnk + l + 1)

=
p−1∏

l=0

Tv(2(pnk + l) + εv)Tv(2(pnk + l + 1) + εv)

=
p−1∏

l=0

(
∏

u→v

Tu(2(pnk + l) + εv + 1) +
∏

v→w

Tw(2(pnk + l) + εv + 1)

)

≥
⎛

⎝
∏

u→v

p−1∏

l=0

Tu(2(pnk + l) + εv + 1)

⎞

⎠

+
⎛

⎝
∏

v→w

p−1∏

l=0

Tw(2(pnk + l) + εv + 1)

⎞

⎠

≈
(

∏

u→v

b(u, pnk)

)
+

(
∏

v→w

b(w, pnk)

)
.

The last equality is justified as follows: if εv = 0 then Tu(2(pnk + l) + εv + 1) is indeed
equal to a(u, pnk + l). If εv = 1 then Tu(2(pnk + l) + εv + 1) = a(u, pnk + l + 1) and
then we again use a(u, pnk) ≈ a(u, pnk + p) in order to get to the last line.

By analyzing the asymptotics (1.2.1) of b(v, pnk), we see that for all v ∈ Vert(Q),

λ(v)2 ≥ max

(
∏

u→v

λ(u),
∏

v→w

λ(w)

)
; d(v) ≥ max

(
∑

u→v

d(u),
∑

v→w

d(w)

)
. (1.2.2)

Note that log λ(v) ≥ 0 and d(v) ≥ 0 for all v ∈ Vert(Q). Define ν(v) := log λ(v)+d(v).
By property (2) of Lemma 1.2.2, ν(v) > 0 for all v ∈ Vert(Q). By (1.2.2), ν is a weakly
subadditive labeling of Vert(Q). 
�

Applying Proposition 1.1.10, we get

Corollary 1.2.3 If a bipartite recurrent quiver Q is Zamolodchikov integrable then G(Q) is
either

(1) an admissible ADE bigraph, or
(2) an affine � finite ADE bigraph, or
(3) an affine � affine ADE bigraph. 
�
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Quivers with subadditive labelings: classification and integrability 955

Remark 1.2.4 We have shown in [13] that case (1) of the above corollary holds if and only if
Q is Zamolodchikov periodic, that is, the T -system associated with Q is periodic. Obviously,
this is a special case of Zamolodchikov integrability.

In fact, only cases (1) and (2) of Corollary 1.2.3 are possible when Q is Zamolodchikov
integrable:

Theorem 1.2.5 If a bipartite recurrent quiver Q is Zamolodchikov integrable then G(Q) is
either

(1) an admissible ADE bigraph, or
(2) an affine � finite ADE bigraph.

We postpone the proof of this theorem until Sect. 4.2.

Part 2. The classification of affine� finite ADE bigraphs

Each affine ADE Dynkin diagram �̂ has the associated dominant eigenvector v
�̂

:
Vert(�̂) → R corresponding to the eigenvalue 2. In other words, for every v ∈ �̂ we
have

2v
�̂
(v) =

∑

(v,w)∈Edges(�̂)

v
�̂
(w).

We normalize v
�̂
so that its entries are positive integers with the smallest entry equal to 1.

The values of v
�̂
are given in Fig. 2.

2.1 Self and double bindings

In this section, we classify all the bipartite affine � finite ADE bigraphs G = (�,�) such
that � has either one or two connected components. If � has just one connected component
then G is called a self binding, and if � has two connected components then G is called a
double binding. We start with self bindings.

Throughout this section we assume that h(�) > 2, i.e. that � has at least one edge
(because if h(�) = 2 then all connected components of � are of type A1).

2.1.1 Self bindings

Lemma 2.1.1 If G = (�,�) is a self binding then all the connected components of � are of
type A2.

Proof Let v : Vert(G) → R be the common eigenvector for A� and A� from Lemma 1.1.8.
Thus A�v = 2v. Since � has just one connected component, we may rescale v so that it is
equal to v� . Now, let λ� := 2 cos(π/h(�)) be the dominant eigenvalue for A�. We have
that for every v ∈ Vert(G),

∑

(v,w)∈�

v(w) = λ�v(v).
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Fig. 5 Self binding S5

Since there exists a vertex v for which v(v) = 1, it follows that λ� is an integer. This can
only happen when h(�) = 3, that is, when all the connected components of � have Coxeter
number 3. The only finite ADE Dynkin diagram with Coxeter number 3 is A2. 
�

Proposition 2.1.2 • For every n ≥ 1, there is a self binding S4n+1 = (�n,�n) where �n is
an affine ADE Dynkin diagram of type Â4n+1, that is, a single cycle with 4n +2 vertices,
and two vertices of �n are connected by an edge of �n iff they are the opposite vertices
of that cycle (see Fig. 5);

• There are no other self bindings.

Proof Let G = (�,�) be a self binding. By Lemma 2.1.1, all the components of � are
just isolated single edges. Let us define an involution i : Vert(G) → Vert(G) such that
v and i(v) are exactly the vertices connected by the edges of �. This is a fixed point free
involution, otherwise � would have a connected component of type A1. Moreover, since
G is bipartite, i should reverse the colors of vertices. Finally, if (u, v) ∈ � then one must
also have (i(u), i(v)) ∈ � because otherwise the adjacency matrices A� and A� would not
commute. Thus i is a color-reversing involutive automorphism of G without fixed points.
The only affine ADE Dynkin diagram admitting such an automorphism is Â4n+1 for n ≥ 1,
where the automorphism is just a rotation by 180◦. 
�

2.1.2 Double bindings: scaling factor

The classification of double bindings is going to be much richer than that of self bindings.
Throughout the rest of this section, we assume that G = (�,�) is a double binding, and that
Vert(G) = X � Y , where X and Y are the two connected components of �, and recall that
they are affine ADE Dynkin diagrams. A parallel binding is a bigraph of type �̂ ⊗ A2 and,
following [36], is denoted �̂ ≡ �̂.

Definition 2.1.3 The scaling factor of G (denoted scf(G)) is the number λ2� where λ� =
2 cos(π/h(�)) is the dominant eigenvalue for A�.

Proposition 2.1.4 The scaling factor scf(G) is an integer equal to either 1, 2, or 3. Moreover,

(1) if scf(G) = 1 then all connected components of � are of type A2;
(2) if scf(G) = 2 then all connected components of � are of type A3;
(3) if scf(G) = 3 then all connected components of � are either of type A5 or of type D4.

Proof We view maps τ : Vert(G) → R as pairs

(
τX

τY

)
where τX : Vert(X) → R and

τY : Vert(Y ) → R are restrictions of τ to the corresponding subsets. Let τ =
(

τX

τY

)
be the
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common dominant eigenvector for A� and A� from Lemma 1.1.8. We may rescale it so that
τX = αvX and τY = vY for some α ∈ R. Since the entries of the dominant eigenvector are
positive, we may assume α > 0. Since A�τ = λ�τ , we have

∑

(v,w)∈�

vY (w) = λ�αvX (v), ∀ v ∈ X; (2.1.1)

∑

(v,w)∈�

αvX (v) = λ�vY (w), ∀ w ∈ Y . (2.1.2)

If we substitute v ∈ X such that vX (v) = 1 in (2.1.1), we will get that λ�α ∈ Z>0. Similarly,
if we substitute w ∈ X such that vY (w) = 1 in (2.1.2), we will get that λ�/α ∈ Z>0.
Therefore their product λ2� belongs to Z>0 as well. A straightforward case analysis shows
that this can only happen when h(�) = 3, 4, or 6, and the result follows. 
�

A simple consequence of the proof is the following observation:

Corollary 2.1.5 Up to switching X and Y , we have:
∑

(v,w)∈�

vY (w) = scf(G)vX (v), ∀ v ∈ X; (2.1.3)

∑

(v,w)∈�

vX (v) = vY (w), ∀ w ∈ Y . (2.1.4)

Proof We know that λ2� ∈ {1, 2, 3} and thus λ� ∈ {1,√2,
√
3}. Thus the only α ∈ R

satisfying λ�/α ∈ Z>0 and λ�α ∈ Z>0 is either α = λ� or α = 1/λ�. 
�

By the same reasoning as in the proof of Proposition 2.1.2, if scf(G) = 1 then G is a
parallel binding. It remains to classify double bindings with scaling factor 2 and 3. We say
that a double binding is nontrivial if it is not a parallel binding, i.e. if the scaling factor is 2
or 3.

Definition 2.1.6 When X is an affine ADE Dynkin diagram of type �̂ and Y is an affine
ADE Dynkin diagram of type �̂′ then we say that G is a double binding of type �̂ ∗ �̂′.

Note that Corollary 2.1.5 is not symmetric in X and Y , so if G is a double binding of type
�̂ ∗ �̂′ then necessarily X has type �̂, Y has type �̂′ and (2.1.3) and (2.1.4) hold. In other
words, we treat double bindings of types �̂ ∗ �̂′ and �̂′ ∗ �̂ differently.

A simple consequence of (2.1.4) is

Corollary 2.1.7 For any double binding G, the maximal value of vX is less than or equal to
the maximal value of vY .

Proof Let vX (u) be themaximal value of vX , then clearly vY (w) ≥ vX (u) for any (u, w) ∈ �

by (2.1.4). 
�

For p ∈ Z, denote by v−1
Y (p) the set of vertices u of Y with vY (u) = p.

Proposition 2.1.8 There are no non-trivial double bindings of type �̂ ∗ �̂ (i.e. when X and
Y have the same type).
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Proof Let M be the maximal value of vX and vY , and let W = v−1
X (M), U = v−1

Y (M) be
the sets of vertices where vX (resp., vY ) takes the maximal value. It is clear from (2.1.4)
that every vertex from U is �-connected to at most one vertex from W . By the same reason,
every vertex from Vert(Y ) \ U is not �-connected to any vertex from W . Thus every vertex
from W is allowed to be �-connected only to vertices from U , and by (2.1.3), each of them
should be connected to at least two vertices in U . We get a contradiction since the sizes of
W and U are supposed to be the same. 
�

2.1.3 Double bindings involving type Ê

We say that Y is one-two-bipartite if for every u, w ∈ Vert(Y ) with vY (u) = 1 and vY (w) =
2, we have εu �= εw (that is, all ones in vY are white and all twos in vY are black, or vice
versa). Note that if Y is of type Ê6 or Ê8 then Y is one-two-bipartite, see Fig. 2.

Lemma 2.1.9 Let G be a double binding, and assume that Y is one-two-bipartite. Then
scf(G) divides #v−1

Y (1).

Proof Let w ∈ v−1
Y (1). By (2.1.4), there is exactly one vertex v ∈ X with (w, v) ∈ �, and

moreover, vX (v) = 1. By (2.1.3),
∑

(v,u)∈�

vY (u) = scf(G).

Since scf(G) ≤ 3 and vY (w) = 1 is one of the terms in the left hand side, all the other
terms in the left hand side are equal to either 1 or 2. But all vertices u with (v, u) ∈ � must
be of the same color, since the graph is bipartite. The set of �-neighbors of v consists of
exactly scf(G) vertices u with vY (u) = 1. By (2.1.4), v is the only �-neighbor of each such
u. Therefore, the set v−1

Y (1) is partitioned into classes, and each class has scf(G) members
that have the same �-neighbor. 
�
Corollary 2.1.10 If G is a non-trivial double binding of type �̂ ∗ Ê6 then scf(G) = 3.

Proposition 2.1.11 (1) There are no non-trivial double bindings of type �̂ ∗ Ê8;
(2) the only non-trivial double binding of type Ên ∗ �̂ is the double binding Ê6 ∗ Ê7 depicted

in Fig. 6.

Proof To prove (1), just observe that if Y is of type Ê8 then #v−1
Y (1) = 1 and apply

Lemma 2.1.9.
To prove (2), we can first eliminate all the cases except for Ê6 ∗ Ê7:

• by (1), there are no bindings of type Ên ∗ Ê8;
• by Proposition 2.1.8, there are no bindings of types Ê6 ∗ Ê6 or Ê7 ∗ Ê7;
• by Corollary 2.1.7, there are no bindings of types Ê7 ∗ Ê6, En ∗ Am , or En ∗ Dm .

Now we need to prove that there is only one double binding of type Ê6 ∗ Ê7. Let
{w1, w2, w3} be all the vertices of X (which is of type Ê6) with vX (wi ) = 2 for i = 1, 2, 3.
Since Y is of type Ê7, it has 5, say, white vertices and 3 black vertices. Let {u1, u2, u3} be
these three black vertices. Since w1, w2, w3 are all of the same color, it is clear from (2.1.4)
that they are white (because if the left hand side of (2.1.4) is even then the right hand side
should be also even), and thus the other 4 vertices of X are black. To sum up, the edges of �

connect the vertices u1, u2, u3 to the vertices w1, w2, w3, and we have

vX (w1) = vX (w2) = vX (w3) = vY (u1) = vY (u3) = 2, vY (u2) = 4.
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A simple case analysis shows that u2 is�-connected to two vertices, say, tow1 andw2 while
u1 and u3 are then both connected to w3. Now, using the fact that the adjacency matrices A�

and A� commute, there is only one way to recover the rest of the double binding, and we get
exactly Ê6 ∗ Ê7 from Fig. 6. 
�

We conclude the analysis of double bindings for which one of the components is of type
Ên with the following proposition:

Proposition 2.1.12 (1) There are no non-trivial double bindings of type Âm ∗ Ên;
(2) there is exactly one non-trivial double binding of type D̂m ∗ Ê6, namely, the binding

D̂4 ∗ Ê6 depicted in Fig. 7;
(3) there is exactly one non-trivial double binding of type D̂m ∗ Ê7, namely, the binding

D̂6 ∗ Ê7 depicted in Fig. 7.

Proof First, we show (1). If X is of type Âm then vX (w) = 1 for all w ∈ X . If Y has type
Ê7 then there is a vertex u ∈ Y with vY (u) = 4 which is impossible since u has at most
three neighbors, so by (2.1.4), vY (u) ≤ 3. By Proposition 2.1.11, Y cannot be of type Ê8, so
assume now that Y is of type Ê6. Let v

−1
Y (1) = {u1, u2, u3}. Then there is a vertex w1 ∈ X

connected by � to each of u1, u2, u3. Let w2 be such that (w2, w1) ∈ �. Since w2 has
different color than w1, it can only be �-connected to vertices u ∈ Y with vY (u) = 2. But
the sum

∑
(u,w2)∈� vY (u) should be equal to 3 which is impossible because it is even. Thus

(1) follows.
Next, we prove (2), so assume X has type D̂m and Y has type Ê6. By Corollary 2.1.10, the

scaling factor in this case equals to 3. Let v−1
Y (1) = {u1, u2, u3}. Then each of u1, u2, u3 is

connected to some vertex w1 ∈ X with vX (w1) = 1. Therefore w1 has a unique �-neighbor
w2 ∈ X , and vX (w2) = 2. Since the adjacency matrices A� and A� commute, w2 should
be connected to all three vertices u4, u5, u6 of Y satisfying vY (ui ) = 2 for i = 4, 5, 6. Since
X has three more vertices w3, w4, w5 with vX (wi ) = 1 for i = 3, 4, 5, each of them has to
be connected to the remaining vertex u7 of Y with vY (u7) = 3. It follows that there are no
more vertices in X , so we are done with (2).

Finally, we show (3), so let X have type D̂m and let Y have type Ê7. Assume first that
the scaling factor is 2, and let u ∈ Vert(Y ) be a vertex with vY (u) = 3. Then by (2.1.3), if
(u, w) ∈ � for some w ∈ Vert(X), then vX (w) ≥ 2, but since X is of type D̂m , vX (w) must
be equal to 2. Since vY (u) is odd, this contradicts (2.1.4).

Thus the scaling factor has to be equal to 3. Because Y is of type Ê7, Y has 3, say, black
vertices u1, u2, u3, and 5 white vertices, and we have vY (u1) = vY (u3) = 2, vY (u2) = 4. It
follows now that:

• X has exactly 2 white vertices w1 and w2;
• one of the components of� has type A5 and connects the vertices u1−w1−u2−w2−u3.

Again, using commuting adjacency matrices, one can reconstruct the rest of the double
binding and see that it is in fact D̂6 ∗ Ê7 in Fig. 7. 
�

2.1.4 Double bindings involving type Â

One can identify the vertices of the cycle A2m−1 with Zm := Z/mZ. We define double and
triple coverings to be the following double bindings: in a double covering Â2n−1 ∗ Â4n−1,
a vertex j ∈ Z4m of Y is connected by a blue edge to a vertex i ∈ Z2m of X iff i ≡ j
(mod 2m). Similarly, in a triple covering Â2n−1 ∗ Â6n−1, a vertex j ∈ Z6m of Y is connected
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by a blue edge to a vertex i ∈ Z2m of X iff i ≡ j (mod 2m). These are obviously affine �
finite ADE bigraphs.

Proposition 2.1.13 The only possible double bindings of type Âm−1 ∗ Âk−1 are:

(1) parallel bindings Â2n−1 ≡ Â2n−1;
(2) double coverings Â2n−1 ∗ Â4n−1;
(3) triple coverings Â2n−1 ∗ Â6n−1.

Proof By (2.1.4), each vertex of Y has exactly one blue neighbor, and each vertex of X has
exactly scf(G) blue neighbors. Let (wi )i∈Zk be the vertices of Y listed in cyclic order, and
let (vi )i∈Zm be the vertices of X in cyclic order. Let f : Zk → Zm be the map such that
v f (i) is the unique blue neighbor of wi for all i ∈ Zk . Since the adjacency matrices have to
commute, we get that { f (i +1), f (i −1)} = { f (i)+1, f (i)−1} which immediately yields
the result of the proposition. 
�

By Corollary 2.1.7, there are no double bindings of type D̂m ∗ Ân so the only case left in
this section is Ân ∗ D̂m .

Proposition 2.1.14 The only possible double bindings of type Ân∗D̂m are the double bindings
of type Â2n−1 ∗ D̂n+2 in Fig. 6 and the exceptional double binding of type Â3 ∗ D̂5 in Fig. 7.

Proof We have two options: either scf(G) = 2 or scf(G) = 3. If scf(G) = 2 then we know
that each non-leaf vertex of Y is connected to exactly two vertices of X , and is the only blue
neighbor of each of them. On the other hand, there are two more vertices v1, v2 in X , and
each of them has two blue neighbors which are leaves in Y . Now using commuting adjacency
matrices condition one can easily recover that G is the double binding of type Â2n−1 ∗ D̂n+2

from Fig. 6.
Now assume that scf(G) = 3. This means that each vertex of X is connected to an odd

number of leaves of Y . Since Y has exactly four leaves, it follows that X has either two or
four vertices. If X has two vertices then the sum of values of vY is six so Y has type D̂4 but
then all the leaves of Y have the same color so one of the vertices of X is not going to be
connected to any of them. We are left with the case when X has four vertices and each of
them is connected to a leaf of Y and to a non-leaf of Y . Therefore Y has type D̂5 from which
one can quickly see that G is the unique double binding of type Â3 ∗ D̂5 from Fig. 7. 
�

2.1.5 Double bindings of type D̂m+1 ∗ D̂k+1

Proposition 2.1.15 The only possible double bindings of type D̂m+1 ∗ D̂k+1 are the double
bindings of type D̂n ∗ D̂2n−2 and the double bindings of type D̂n+1 ∗ D̂3n−1 constructed in
the proof of this proposition and depicted for small n in Fig. 7.

Proof Let v+
1 , v−

1 , v2, . . . , vm−1, v
+
m , v−

m be the vertices of X , the component of type D̂m+1,
and w+

1 , w−
1 , w2, . . . , wk−1, w

+
k , w−

k be the vertices of Y which has type D̂k+1. Here
we assume that v+

1 , v−
1 are the leaves attached to v2 and so on. By (2.1.4), each of

w+
1 , w−

1 , w+
k , w−

k is connected to exactly one leaf of X . Without loss of generality assume
that w+

1 is connected to v+
1 by a blue edge. Since the adjacency matrices commute, w2 has

to be connected to v2 by blue edges. We claim that w−
1 cannot be connected to v+

1 . Indeed,
otherwise there would be at least two blue–red paths and at most one red–blue path from v+

1
to w2, so the matrices would not commute. On the other hand, w−

1 is connected to a leaf, and
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Â2n−1 ∗ D̂n+2 Â2n−1 ∗ Â4n−1 D̂n ∗ D̂2n−2 Ê6 ∗ Ê7
for n = 4 for n = 1 for n = 6

Fig. 6 Three infinite and one exceptional family of double bindings with scaling factor 2. All blue components
have type A3 (color figure online)

this leaf has to be a neighbor of v2. So without loss of generality we may assume that w−
1 is

connected to v−
1 (we only make a choice here when Y has type D̂4 in which case all the four

leaves of Y are connected to w2).
By Proposition 2.1.8, we have m �= k and by (2.1.3–2.1.4) we actually have m < k. We

claim that for each i = 2, . . . , m−1,wi is connected to vi , and thus to nothing else by (2.1.4).
We show it by induction on i , where the base i = 2 has already been shown. Assume that wi

is connected to vi . Then there is a red-blue path from vi+1 to wi , and vi+1 is not connected
to wi−1 so it has to be connected to wi+1, and the claim follows for i = 2, . . . , m − 1. Now
there is a red–blue path from v+

m to wm−1 so by the same reasoning v+
m and v−

m are connected
to wm . Now there is a red–blue path from wm+1 to v+

m and to v−
m so wm+1 is connected to

vm−1. Again using induction we can show that for i = 1, 2, . . . , m − 2, wm+i is connected
to vm−i . This includes the fact that 2m − 2 < k which is true since before we stop we need
to add another blue edge to v+

1 in order to satisfy (2.1.3).
If scf(G) = 2 then (2.1.3) is satisfied for all vertices of X except for v+

1 and v−
1 so we

complete the construction of the graph by joining v+
1 tow+

k and v−
1 tow−

k , where necessarily

k = 2m − 1. This can considered to be the definition of D̂n ∗ D̂2n−2.
If scf(G) = 3 then (2.1.3) is not satisfied for v+

m yet so we note that 2m − 1 < k and thus
have to connect both v+

1 and v−
1 to w2m−1. But then there is a red-blue path from w2m to v+

1
so w2m has to be connected to v2. Now for i = 1, 2, . . . , m − 2 it follows that w2m+i−1 is
connected to vi+1. After that (2.1.3) fails only for v+

m and v−
m which we connect to w+

k and
w−

k respectively. Here k is necessarily equal to 3m − 1 yielding the double binding of type

D̂n+1 ∗ D̂3n−1. 
�

2.1.6 The classification of self and double bindings

We summarize the results of Sects. 2.1.1–2.1.5 in the following theorem:

Theorem 2.1.16 • The only possible self bindings are S4n+1 for n ≥ 1.
• all the double bindings with scaling factor 2 are listed in Fig. 6;
• all the double bindings with scaling factor 3 are listed in Fig. 7;
• the only other double bindings are parallel bindings �̂ ≡ �̂.


�
Remark 2.1.17 In [13, Section 9.1], we introduced duality of symmetric bigraphs (not to be
confused with Stembridge’s dual bigraphs in [36]). Here we briefly list some pairs of dual
symmetric bigraphs for certain choices of the auxiliary data1 which we omit:

1 i.e. i, V+, V0, V−, X in the notation of [13].
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D̂n+1 ∗ D̂3n−1 Â2n−1 ∗ Â6n−1 Â3 ∗ D̂5 D̂6 ∗ Ê7 D̂4 ∗ Ê6
for n = 3 for n = 1

Fig. 7 Two infinite and three exceptional families of double bindingswith scaling factor 3.All blue components
have types A5 or D4 (color figure online)

• Â2n−1 ∗ D̂n+2 is dual to Â2n−1 ⊗ A3;
• Â2n−1 ∗ Â4n−1 is dual to Â4n−1 ⊗ A3;
• D̂n ∗ D̂2n−2 is dual to Â2n−1 ∗ Â4n−1;
• Ê6 ∗ Ê7 is dual to itself;
• D̂n+1 ∗ D̂3n−1 is dual to Â2n−1 ∗ Â6n−1;
• D̂6 ∗ Ê7 is dual to D̂4 ∗ Ê6;
• Â3 ∗ D̂5 is dual to the triple covering Â1 ∗ Â5.

2.2 The classification

To classify affine� finite ADE bigraphs, we mostly follow the strategy of [36]: we are going
to show that the component graph C of � defined below is a path with either at most one loop
(in case there is a self binding) or at most one non-parallel double binding.

Definition 2.2.1 Let G = (�,�) be a bigraph. Let C1, C2, . . . , Cm be the connected compo-
nents of �. Define the graph C = C(G) with vertex set [m] := {1, 2, . . . , m} such that (i, j)
is an edge of C iff there is a blue edge (u, v) ∈ � with u ∈ Ci and v ∈ C j .

Let G be an affine � finite ADE bigraph. We define its reduced version G̃ to be the same
as G but with all the blue edges removed from each self binding in G. Clearly, C(G̃) is C(G)

with all the loops removed. It is also clear that G̃ is going to be an affine � finite ADE
bigraph as well.

Several properties of affine � finite ADE bigraphs have literally the same statements as
their analogs for admissible ADE bigraphs of [36], so we list them with the corresponding
references to the parts of [36] where they are proved:

Lemma 2.2.2 Let G be an affine � finite ADE bigraph. Then:

(1) the component graph C(G̃) is acyclic (see [36, proof of Lemma 2.5(b)];
(2) in fact, C(G̃) is a path (see [36, Proof of (ii) in Section 5]);
(3) G contains at most one non-parallel double binding (see [36, Proof of (ii) in Section 5]).


�
These properties allow us to describe every affine � finite ADE bigraph by a string

of symbols Ân, D̂n, Ên,Sn with symbols ∗,≡ inserted between them, for example, �̂1 ≡
�̂1 ∗ �̂2 has three red connected components (i.e. m = 3) and C1 and C2 form a parallel
binding while C2 and C3 form a double binding of type �̂1 ∗ �̂2.
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Lemma 2.2.3 Assume that G is an affine � finite ADE bigraph containing a self binding.
Then it contains exactly one self binding and all the double bindings in G are parallel.

Proof Assume for the sake of contradiction that G has at least two self bindings. We may
remove everything else so that they occur at the ends of C(G̃) (which is a path on [m]).
After some relabeling, the edges of C(G̃) become exactly {(i, i + 1)}i∈[m−1]. We are going
to construct a blue cycle in G as follows: let v11 ∈ C1 be any vertex, then there is a blue path
v11, v

1
2, . . . , v

1
m with v1i ∈ Ci . Since Cm is a self binding, v1m is connected by a blue edge to

some other vertex v2m ∈ Cm , from which we can construct a blue path v2m, v2m−1, . . . , v
2
1 with

v2i ∈ Ci again. But now v12 is connected by a blue edge to some other vertex v13 ∈ C1, so we
may continue our path until it crosses itself yielding a blue cycle in G which is a contradiction
since all the finite ADE Dynkin diagrams are acyclic.

Assume now that there is a self binding and a non-parallel double binding in G. Again,
we may assume that the self binding occurs in C1 and the double binding occurs between
Cm−1 and Cm with C(G̃) being a path on [m]. Take the maximal blue path P in G. Since all
the vertices in C1, . . . , Cm−1 have blue degree at least 2, both endpoints of P belong to Cm

and have blue degree 1. But since the blue components of the double binding Cm−1 ∗ Cm are
either A3, A5, or D4 (see Proposition 2.1.4), the vertices of P adjacent to the endpoints have
blue degrees at least 3. Therefore they coincide because every finite ADE Dynkin diagram
contains at most one vertex of degree 3. So P has length at most 3, and therefore m = 2. It is
clear that adding a self binding to any of the double bindings involving type Â yields either
a cycle or a blue component with at least two vertices of degree 3. 
�
Proposition 2.2.4 The only affine � finite bigraphs involving self-bindings are

( Â4n+1)
m := S4n+1 ≡ Â4n+1 ≡ · · · ≡ Â4n+1 (m factors, m ≥ 1, n ≥ 1).

Proof If G is an affine � finite bigraph with a self binding then we know that C(G̃) is a path
by Lemma 2.2.2, so let C1, C2, . . . , Cm be its connected components with the self binding
happening inCl for some l ∈ [m]. If l �= 1, m then we immediately get two vertices of degree
3 in every blue component, so we may assume that l = 1. By Lemma 2.2.3, all the double
bindings are parallel and the result follows. 
�

Theorem 2.2.5 Let G be an affine � finite ADE bigraph. Then G is isomorphic to exactly
one of the following bigraphs:

(1) �̂ ⊗ �′ where �̂ and �′ are an affine and a finite ADE Dynkin diagram respectively;
(2) ( Â4n+1)

m (m ≥ 1, n ≥ 1);
(3) ( ÂD̂m−1)n := Â2n−1 ∗ D̂n+2 ≡ · · · ≡ D̂n+2 (m factors, m ≥ 2, n ≥ 2);
(4) ( Âm−1 D̂)n := Â2n−1 ≡ · · · ≡ Â2n−1 ∗ D̂n+2 (m factors, m ≥ 3, n ≥ 2);
(5) ( Â Âm−1)n := Â2n−1 ∗ Â4n−1 ≡ · · · ≡ Â4n−1 (m factors, m ≥ 2, n ≥ 1);
(6) ( Âm−1 Â)n := Â2n−1 ≡ · · · ≡ Â2n−1 ∗ Â4n−1 (m factors, m ≥ 3, n ≥ 1);
(7) (D̂ D̂m−1)n := D̂n ∗ D̂2n−2 ≡ · · · ≡ D̂2n−2 (m factors, m ≥ 2, n ≥ 4);
(8) (D̂m−1 D̂)n := D̂n ≡ · · · ≡ D̂n ∗ D̂2n−2 (m factors, m ≥ 3, n ≥ 4);
(9) Ê Êm−1 := Ê6 ∗ Ê7 ≡ · · · ≡ Ê7 (m factors, m ≥ 2);

(10) Êm−1 Ê := Ê6 ≡ · · · ≡ Ê6 ∗ Ê7 (m factors, m ≥ 3);
(11) Â2n−1 ≡ Â2n−1 ∗ D̂n+2 ≡ D̂n+2 (n ≥ 2);
(12) Â2n−1 ≡ Â2n−1 ∗ Â4n−1 ≡ Â4n−1 (n ≥ 1);
(13) D̂n ≡ D̂n ∗ D̂2n−2 ≡ D̂2n−2 (n ≥ 4);
(14) Â2n−1 ∗ Â6n−1;
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(Â4n+1)m (ÂD̂m−1)n
for n = 1, m = 3 for n = 2, m = 3

(Âm−1D̂)n Â2n−1 ≡ Â2n−1 ∗ D̂n+2 ≡ D̂n+2

for n = 2, m = 3 for n = 2

Fig. 8 Items (2), (3), (4), and (11) of our classification

(15) D̂n+1 ∗ D̂3n−1;
(16) Ê6 ≡ Ê6 ∗ Ê7 ≡ Ê7;
(17) Â3 ∗ D̂5;
(18) D̂6 ∗ Ê7 ;
(19) D̂4 ∗ Ê6.

Note that the infinite families are (1)–(15), so there are 15 infinite families and4 exceptional
bigraphs. Please see Fig. 8 for examples.

Proof By Proposition 2.2.4, we may assume that G has no self bindings. If all the double
bindings in G are parallel then G is a tensor product. Otherwise consider the unique double
binding Cl ∗ Cl+1 of G. If it has scaling factor 3 then all of its components are of type either
A5 or D4 by Proposition 2.1.4, so it is clear that adding an edge to all vertices of the same
color in A5 or in D4 does not produce a finite ADE Dynkin diagram (in fact, it always
produces an affine ADE Dynkin diagram). Therefore if the scaling factor is 3 then m = 2
and G is just the double binding itself. If the scaling factor is 2 then all the blue components
are of type A3 so obviously either l = 1 or l = m −1 and m is arbitrary, or l = 2 and m = 4,
and the theorem follows. 
�

Part 3. T-systems of type A ⊗ Â.

3.1 Variables via domino tilings

3.1.1 Speyer’s formula

In [34] Speyer gives the following formula for variables of the octahedron recurrence. One
can think of it as the T -system associated with the tensor product of type A∞ ⊗ A∞, where
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a

b c d

e f h k

l m n

o

v

a

b c d

e f h k

l m n

o

v

a

b c d

e f h k

l m n

o

v

Fig. 9 An Aztec diamond Zv(2), its domino tiling D, and the associated graph GD

A∞ is the infinite path graph with vertex set Z and edge set {(i, i + 1) | i ∈ Z}. The tensor
product is understood in the sense of Definition 1.1.1, which works the same way for infinite
graphs.

Let Zv(t) be the Aztec diamond of radius t centered at vertex v. By abuse of notation,
denoteZv(t) also the set of vertices ofZv(t) that are not its outer corners. LetD be a domino
tiling ofZv(t). Each domino has a cut edge that separates its two halves. Let GD be the graph
obtained by taking Zv(t) as the set of vertices, and the set of all cut edges in D as the set of
edges. For a vertex u ∈ Zv(t) let dD(u) be the degree of vertex u in graph GD. It is easy to
see that each dD(u) can take values 0, 1, 2 only.

Theorem 3.1.1 [34] The formula for the variable Tv(t) in an A∞ ⊗ A∞ T -system is as
follows:

Tv(2t + 1) = Tv(2t + 2) =
∑

D

∏

u∈Zv(2t+1)

u1−dD(u),

Tv(−2t) = Tv(−2t − 1) =
∑

D

∏

u∈Zv(2t)

u1−dD(u),

where t ≥ 0 and the sum is taken over all domino tilings D of Zv(2t + 1) and of Zv(2t),
respectively.

Example 3.1.2 In Fig. 9 we see an example of an Aztec diamond Zv(2), its domino tiling D,
and the associated graph GD. The Laurent monomial this tiling contributes is aln

cm , which is
easily seen to be one of the monomials in

Tv(−2) =
ev+bl

f
vk+dn

h + av+bd
c

ln+vo
m

v

= evk

f h
+ edn

f h
+ blk

f h
+ bldn

f hv
+ aln

cm
+ avo

cm
+ bdo

cm
+ bdln

cmv
.

Remark 3.1.3 Alternative approaches to giving explicit formulas for the octahedron recur-
rence can be found in the works of Di Francesco and Kedem [5–8] and Henriques [16]. We
shall use Speyer’s language as the most convenient for our purposes.

3.1.2 Formula with cylindric boundary conditions

Consider now the case of T -system of type Am ⊗ Â2n−1. The quiver is naturally embedded
on a cylinder. Consider the lifting of the quiver to the universal cover of the cylinder, where
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a a

1 1 1 1 1 1 1

v b c v b c v

e f g h e f g

j k l i j

1 1 1

Fig. 10 An example of region Zv(4) on the universal cover of a cylinder with n = 2 and m = 3

the vertex variables are periodic. We claim that the following variation of Speyer’s theorem
holds.

Let Zv(t) now be the intersection of the Aztec diamond of radius t centered at vertex v

with the universal cover of the cylinder, where we include two layers of frozen variables with
values 1 on both boundaries. An example for n = 2 and m = 3 is shown in Fig. 10. For each
domino tiling D of Zv(t) define GD and dD(u) as before, but now using the periodicity of
variables on the universal cover.

Theorem 3.1.4 The formula for the variable Tv(t) in an Am ⊗ Â2n−1 T -system is as follows:

Tv(2t + 1) = Tv(2t + 2) =
∑

D

∏

u∈Zv(2t+1)

u1−dD(u),

Tv(−2t) = Tv(−2t − 1) =
∑

D

∏

u∈Zv(2t)

u1−dD(u),

where t ≥ 0 and the sum is taken over all domino tilings D of Zv(2t + 1) and of Zv(2t),
respectively.

Proof We are going to apply Speyer’s theorem to the A∞ ⊗ A∞ case with variables as shown
in Fig. 11.

There are three logical steps to the proof. First, we claim that as we run the T -system
dynamics, the Laurent monomials with the minimal power of ε remain the same in the
verticeswhich carry variables 1, ε, ε2, . . . at the beginning,while at the same time theminimal
degree of ε in Laurent monomials in the rest of the vertices (i.e. the ones in the middle of the
universal cover) is 0. Indeed, let us argue this by induction. Applying a mutation at a vertex
with minimal Laurent monomial 1 (i.e. with value 1 + O(ε)), we see that the new value is

(1 + O(ε))(1 + O(ε)) + (ε + O(ε2))(O(1) + O(ε))

1 + O(ε)
,

where O(εk) denotes terms with ε-degree at least k. It is clear then that specializing at ε = 0
we get 1, which must be then the Laurent monomial with the smallest degree of ε in the
result. A similar argument applies in other locations carrying a power of ε at the beginning.

Next, we claim that plugging in ε = 0 into the formulas for the T -system of type A∞⊗ A∞
constructed as above returns exactly the formulas for T -system of type Am ⊗ Â2n−1. Again,
we can argue this by induction. At the very beginning the claim is obvious. The step is also
easy to see from the first claim above. This is because by induction assumption the exchange

123



Quivers with subadditive labelings: classification and integrability 967

1 1 1 1 1 1 1

1 1 11 1 111 1

11

. . .. . .
...

...

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

Fig. 11 An assignment of variables outside of the universal cover

1 1 1 1 1 1 1

2 2 2

3
r

r−1 r r

r r

r

r+1
3 3

2 2 2 2

Fig. 12 An assignment of variables outside of the universal cover

relations for A∞ ⊗ A∞ T -system specialize to exchange relations for Am ⊗ Â2n−1 T -system,
and all the powers of ε involved are non-negative.

Finally, we want to argue that Speyer’s formula applied to the above A∞ ⊗ A∞ case and
specialized at ε = 0 indeed returns the formula stated in the theorem. For that, we claim that
in order for a domino tilingD to contribute a term with degree of ε equal 0 (i.e. a term which
will not die after specializing) the chunks of Aztec diamonds Zv(t) that are outside of the
universal cover need to be tiled with horizontal tiles only. SuchD-s are then in bijection with
the tilings of the part of Zv(t) that is inside the universal cover strip, as desired.
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Let us look at a chunk ofZv(t) that falls outside of the universal cover. Give each potential
domino square weight εr equal to the larger weight a vertex adjacent to this square has.
Considering both ways a domino can be positioned, it is clear that the weight picked up by
the corresponding edge in GD is equal to the weight of its squares minus one (see Fig. 12):

r + (r − 1) = r + r − 1 and r + r = (r + 1) + r − 1.

From this it is easy to see that the dominos lying in this chunk can pick up maximal weight
of at most the weight of all squares minus potential number of dominos, which is

2 · R + 4 · (R − 1) + · · · + 2R · 1 − R(R + 1)/2,

where εR is the maximal power of ε in the chunk. On the other hand, the total weight to burn
in the chunk is

1 · R + 3 · (R − 1) + · · · + (2R − 1) · 1,
which is easily seen to be the same. Thus, in order for the ε to not enter the resulting overall
weight picked up by GD inside the chunk, we need the equality to hold, which happens only
if every square in the chunk is covered by a domino that lies in this chunk. This happens only
when the chunk is tiled by the horizontal dominoes. 
�

3.2 Boundary affine slices and Goncharov–Kenyon Hamiltonians

Let us refer to copies of Â2n−1 in Am ⊗ Â2n−1 as affine slices. We will distinguish bound-
ary affine slices which correspond to the two boundary vertices of the Dynkin diagram
Am , and internal affine slices which correspond to the internal vertices of the Dynkin dia-
gram Am . In this section, we identify the recurrence coefficients of boundary affine slices
as Goncharov–Kenyon Hamiltonians introduced in [15]. We shall see in Sect. 3.4 that the
recurrence coefficients of the internal affine slices can be expressed through the Goncharov–
Kenyon Hamiltonians using plethysm of symmetric functions. While we leave the question
of an explicit formula for internal affine slices coefficients open, we will be able to deduce
some of their properties in Sects. 3.4 and 3.5.

3.2.1 Thurston height

Recall from [39] the following definition of Thurston height function associated to a domino
tiling. Consider a cylinder Cm,2n which we can think of as (m + 1)× 2n rectangle with sides
of length m + 1 glued. We can identify the m × 2n non-boundary nodes with vertices of the
quiver Am ⊗ Â2n−1. Fix a chessboard coloring of the cylinder, and fix a node O at its bottom
boundary such that the square to the right of O is colored black. Let D be a domino tiling of
Cm,2n . Define the function

h : nodes of Cm,2n −→ Z

as follows:

• h(O) = 0;
• if a → b is a directed edge of a domino in D and the cell to the right of it is black, then

h(b) − h(a) = 1;
• if a → b is a directed edge of a domino in D and the cell to the right of it is white, then

h(b) − h(a) = −1.
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Fig. 13 Two cases to consider when constructing h and an example on C3,4

If there is no cell to the right, we can still decide between the two options by looking at the
cell to the left and assuming the cell to the right has an opposite color.

Theorem 3.2.1 Thurston height h is a well-defined function on the nodes of Cm,2n.

An example of a domino tiling of Cm,2n and the associated Thurston height function can
be seen in Fig. 13.

Proof It is known [39] that Thurston height function is well-defined for regions in the plane
without holes. Thus, it is well-defined on the infinite periodic tiling obtained by lifting D to
the universal cover of Cm,2n . It remains to argue that this height function is also periodic, and
thus can be folded back onto the cylinder. Assume it is not periodic, then it must steadily grow
or steadily decline as we circle around the cylinder. However, then it would reach arbitrary
high or arbitrary low values, which is impossible since any node is within distance m from
the lower boundary, which is filled with 0-s and −1-s. The contradiction implies the desired
property. 
�

We can now define the height of a tiling D as

h(D) = h(O ′) − h(O),

where O ′ is the node on the top boundary component opposite of O .

Proposition 3.2.2 The function h(D) takes values 4k, k = −(m + 1)/2, . . . , (m + 1)/2 if m
is odd, and takes values 4k + 1, k = −m/2 − 1, . . . , m/2 if m is even. There is a unique
tiling having minimal height and a unique tiling having maximal height.

Proof As we walk from O to O ′ straight up, at each step the height changes either by ±1 or
±3, depending on whether the step cuts a domino and what the colors on the sides are. The
claims of the proposition then easily follow. 
�

Let us refer to the tiling with the minimal height as the sea, and denote itS. One can give
an alternative definition of the height of a tiling h(D) as follows. For any tilingD, putS and
D on the same picture. What we get is a double dimer model, where all dominos will split
into closed cycles. An example of such superposition for the tiling in Fig. 13 is given in Fig.
14. The dominos of the sea S are shown in blue.
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Fig. 14 The superposition of S
and D

The cycles created in the process may include contractible cycles and non-contractible
cycles. Let us refer to the latter as hula hoops. Note that the contractible cycles may be just
double edges, ifS andD share dominos. The example in Fig. 14 has zero contractible cycles
and three hula hoops. Denote h(D) the number of hula hoops created by superposing D
and S.

Proposition 3.2.3 We have

h(D) = h(S) + 4h(D).

Proof One can always walk from O to O ′ so that the only steps that cross dominos, rather
than follow their boundaries, are the ones crossing the hula hoops. It is easy to see that each
such crossing is responsible for a difference of 4 between the accumulated parts of h(S)

and h(D). Furthermore, it is easy to see that since S is the tiling with minimal height, each
such crossing must make h(D) larger by 4 than h(S), as opposed to smaller. Otherwise we
could changeS by using the dominos ofD from the hula hoop, and decrease its height even
further, which is impossible. The proposition claim follows. 
�

3.2.2 The recurrence

Define Goncharov–Kenyon Hamiltonians to be the sums

Hr =
∑

h(D)=r

∏

u∈Cm,2n

u1−dD(u),

where dD(u) is as before the degree of u in the associated graph GD on the cylinder, and the
sum is taken over all tilings D of height 4r + h(S). Here on the boundary we always have
u = 1, whichmakes Hr -s into functions of variables at the vertices of the quiver Am ⊗ Â2n−1.

Example 3.2.4 Take m = 3 and n = 1. We have six variables a, b, c, d, e, f at the vertices of
the quiver A3⊗ Â1. Figure 15 shows the domino tilings contributing to H1 and themonomials
they contribute. As a result, we find

H1 = ab

de
+ a

be
+ b

ad
+ c

f
+ d

a
+ e f

bc
+ e

c f
.
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Fig. 15 The tilings D with height h(D) = −4

Similarly we find

H2 = abc

de f
+ ab

dc f
+ bc

ad f
+ ac

be
+ be

acd f
+ e f

ad

+a f

cd
+ e

b
+ cd

a f
+ de

ac f
+ b

e
+ d f

be
+ de f

abc
, and

H3 = bc

e f
+ c

be
+ b

c f
+ a

d
+ f

c
+ de

ab
+ e

ad
.

The only tiling contributing to H0 is the sea S, and it is easy to see that

H0 = H4 = 1.

Let v′ be the vertex diametrically opposite to v on the same affine slice. Let

v( j) =
{

v if j is even;

v′ if j is odd.

We are ready to state the main theorem of the section.

Theorem 3.2.5 For any vertex v on the top boundary affine slice of the quiver Am ⊗ Â2n−1

the T -system satisfies for any t the following recursion

Tv(0)(t + (m + 1)n) − H1Tv(1)(t + mn) + · · · + (−1)m Hm Tv(m)(t + n)

+(−1)m+1Tv(m+1)(t) = 0.

Similarly, for any vertex v on the bottom boundary affine slice and any t we have

Tv(0)(t + (m + 1)n) − Hm Tv(1)(t + mn) + · · · + (−1)m H1Tv(m)(t + n)

+(−1)m+1Tv(m+1)(t) = 0.

3.3 Proof of the recurrence

In this section we prove Theorem 3.2.5. We consider the case of v lying in the top affine slice
of the quiver Am ⊗ Â2n−1. The case of the bottom affine slice is similar.

As we have seen, the Laurent monomials entering both the Hi -s and the Tv-s have an
interpretation in terms of weights of domino tilings. We are going to construct an involution
which associates each Laurentmonomial in the expansion by linearity of Hi Tv(i)(t +(m+1−
i)n) to an equal Laurent monomial in either Hi−1Tv(i−1)(t +(m+2−i)n) or Hi+1Tv(i+1)(t +

123



972 P. Galashin, P. Pylyavskyy

Fig. 16 An example of superposition of DZ (red) and the universal cover of S (blue) (color figure online)

(m − i)n). This implies that all of the terms cancel out as desired, since thus created pairs of
Laurent monomials are equal but have opposite signs.

Let DC be a domino tiling of the cylinder, contributing a term into Hi . Let HC be the
topmost among i hula hoops created by superposing DC with the sea S.

LetZv(i)(t +(m +1− i)n) be the fragment of an Aztec diamond lying inside the universal
cover, as defined above. Let DZ be a domino tiling of Zv(i)(t + (m + 1− i)n), contributing
a term into Tv(i)(t + (m + 1 − i)n). Superpose DZ with the universal cover of the sea S,
which is a tiling of the universal cover of the cylinder. Consider the part of the result that
intersects Zv(i)(t + (m + 1 − i)n).

Lemma 3.3.1 The resulting double dimer contains a single chain of dominos, called the hose,
connecting the top left to the top right cells of Zv(v)(t + (m + 1− i)n). The rest is filled with
pairs of dominos that are shared by DZ and the universal cover of S.

Example 3.3.2 In Fig. 16 an example is presented of a superposition of DZ, shown in red,
with the universal cover of S, shown in blue. Here m = 3, n = 2, the vertex v(2) = v is
circled and Zv(4) is shown. One can clearly see the hose, while the rest of the dominos form
2-cycles.

Proof It is easy to see that the resulting double dimer inZv(i)(t + (m +1− i)n) must consist
of exactly one path and several cycles. This is because there are only two places where it
crosses the boundary of Zv(i)(t + (m + 1 − i)n), thus those two places must be the ends of
the path, i.e. the hose. To see why all cycles must have length 2 observe that the sea always
flows in the same direction once you start crossing between its dominos, and thus you can
never really turn around to form a long cycle. 
�

Now we are ready to define the involution. Assume we are given a pair (DC,DZ) with
corresponding Laurent monomials contributing to the product Hi Tv(i)(t + (m + 1 − i)n).
Take the hose associated with DZ and start following its edges on the cylinder Cm,2n . One
of the two events is going to occur:

• either the hose wrapping around Cm,2n will intersect itself first, without intersecting the
hula hoops of DC; or

• the hose will intersect the top hula hoop H of DC before intersecting itself.

In the first case, take the first such self-intersection, and extract from it the corresponding
hula hoop. By this we mean cut out from the hose the dominos of the part between endpoints
of self-intersection, and add the corresponding red dominos to DC instead of the blue ones
it is currently using. In the second case, take the first such intersection with H and insert H
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Fig. 17 The effect of the first event on a pair (DC,DZ)

to extend the hose, by pasting it at this first point of intersection. We then remove the red
edges of H fromDC, substituting the blue sea edges instead. In either case we get a new pair
(D′

C,D′
Z).

Lemma 3.3.3 The resulting pair is a well-defined pair of domino tilings that contributes
either to Hi−1Tv(i−1)(t + (m + 2 − i)n) or to Hi+1Tv(i+1)(t + (m − i)n), depending on
which of the two events occurred.

Example 3.3.4 An example of a pair (DC,DZ) contributing to H1Tv(1)(4) for which the
first event occurs is shown in Fig. 17. The new pair (D′

C,DZ)′ in this case contributes to
Hi+1Tv(i+1)(t + (m − i)n) = H2Tv(2)(2).

An example of a pair (DC,DZ) contributing to H1Tv(1)(4) for which the second event
occurs is shown in Fig. 18. The newpair (D′

C,DZ)′ in this case contributes to Hi−1Tv(i−1)(t+
(m + 2 − i)n) = H0Tv(0)(6).

In both cases, the fragments that get either extracted or inserted are circled by a green
dashed line.

Proof The only somewhat non-trivial part of the claim is why after a hula hoop is extracted
from a hose, what remains is still a proper hose. The reason is that all blue dominos in the hose
flow East, which means that the red dominos must flow North, East or South, but not West.
This means that the red and the blue dominos that we need to connect after the extraction are
compatible. 
�

The final claim we need to conclude the theorem is the following.

Lemma 3.3.5 This map is a weight-preserving involution on Laurent monomials.

Proof If the first event occurred in (DC,DZ) and (D′
C,D′

Z) was created, then the second
event occurs in (D′

C,D′
Z) at exactly the same place, and (DC,DZ) is created. Same holds

vice versa. Thus, the map is an involution. The fact that it is weight preserving is easy to see
from the way we assign weights to domino tilings. 
�
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Fig. 18 The effect of the second event on a pair (DC,DZ)

3.4 Affine slices and plethysm

In this section, we explain how to express the recurrence coefficients of the affine slices in
Am ⊗ Â2n−1 through the Goncharov–Kenyon Hamiltonians Hi . Note that Theorem 3.2.5 did
not quite answer that yet for the boundary slices, since it involved variables at two vertices v

and v′, rather than a single v. We rely here on results of [30], as well as on the language of
tensors introduced there.

Recall that in [30] the T -system variables are interpreted as certain polynomial SLm+1-
invariants of a collection of 2n vectors inCm+1 and onematrix A ∈ SLm+1. The key theorem
is the following strengthening of [30, Theorem 1.11].

Theorem 3.4.1 The variables on the r-th slice of Am ⊗ Â2n−1, r = 1, . . . , m satisfy the same
recurrence as the exterior powers ∧r ( Âq), q ∈ Z, where Â = A2.

In particular, according to the Cayley–Hamilton theorem, the recurrence for r = 1 is given
by the characteristic polynomial of Â.

Proof Asq grows,wekeep repeating theDehn twists,which inserts Â⊗· · ·⊗ Â into the tensor.
Thus, we obtain the tensor Âq ⊗ · · · ⊗ Âq in the middle. Furthermore, this tensor is attached
to the anti-symmetrizing Levi-Cevita tensor, which results in the anti-symmetrization of
⊗r ( Âq), which is ∧r ( Âq). 
�
Corollary 3.4.2 The recurrence coefficients of the affine slices r = 1, . . . , m are expressed
in terms of the Goncharov–Kenyon Hamiltonians Hi as plethysms of elementary symmetric
functions and the power sum symmetric function e j [er [p2]] are expressed through the original
elementary symmetric functions ei = Hi .

Proof Theorem 3.2.5 tells us the recurrence satisfied by the sequence of Tv-s and Tv′ -s.
To obtain the recurrence satisfied by Tv-s only, we need to take every second term of the
sequence. In terms of the recurrence, this means we just need to square the roots of the
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recurrence polynomial. This means that if Hi = ei (λ), then the coefficients on boundary
levels are just the plethysms ei [p2], which of course can be expressed as polynomials in the
Hi -s.

Since in the construction of the ring of invariants in [30] the dimension count forces
the vectors and the matrix A to be generic, the r = 1 affine slice cannot satisfy any linear
recurrence of length shorter than 2n(m +1). This means that any two such linear recurrences
must coincide, and thus the plethysms ei [p2] of Goncharov–Kenyon Hamiltonians Hi are
the coefficients of the characteristic polynomial of Â.

Now, if λi , i = 1, . . . , m + 1 are the eigenvalues of Â, then products

λi1 · · · λir , 1 ≤ i1 < · · · < ir ≤ m + 1

are the eigenvalues of ∧r ( Â). Then the coefficients of the corresponding characteristic poly-
nomial of ∧r ( Âq) are exactly the plethysms e j [er [p2(λ)]]. 
�
Corollary 3.4.3 The Goncharov–Kenyon Hamiltonians Hi are conserved quantities of the
T -system.

Proof As in the previous proof, the minimal recurrence satisfied by the boundary affine slice
is unique, and thus its coefficients are the same no matter which moment we pick as t = 0.


�
Corollary 3.4.4 The recurrence for the rth affine slice has the form

Tv

(
t + 2n

(
m + 1

r

))
− · · · ± Tv(t) = 0

with exactly
(m+1

r

) + 1 terms on the left.

Proof This is clear since the size of ∧r ( Â) is
(m+1

r

)
. 
�

Corollary 3.4.5 The recurrence coefficients of r th and (m +1−r)th affine slices are the same
up to the reversal of the order. If m is odd, then the coefficients of the slice r = (m + 1)/2
are palindromic.

Proof Since Â ∈ SLm+1, we know that the constant term of the characteristic polynomial is
1. Alternatively, we have already seen that Hm+1 = 1. Either way, we see that

∏m+1
i=1 λi = 1.

This means that the eigenvalues of ∧r ( Âq) and of ∧m+1−r ( Âq) are inverses of each other,
and the claim follows. 
�
Example 3.4.6 Consider the case m = 3. In this case we have 3 affine slices, two boundary
and one internal. The recurrence relations satisfied by the T -system are as follows.

• If v lies on the r = 1 affine slice,

Tv(t + 8n) − (H2
1 − 2H2)Tv(t + 6n) + (H2

2 − 2H1H3 + 2)Tv(t + 4n)

−(H2
3 − 2H2)Tv(t + 2n) + Tv(t) = 0.

• If v lies on the r = 2 affine slice,

Tv(t + 12n) − (H2
2 − 2H1H3 + 2)Tv(t + 10n)

+((H2
1 − 2H2)(H2

3 − 2H2) − 1)Tv(t + 8n)

−((H2
1 − 2H2)

2 + (H2
3 − 2H2)

2 − 2(H2
2 − 2H1H3 + 2))Tv(t + 6n)

+((H2
1 − 2H2)(H2

3 − 2H2) − 1)Tv(t + 4n)

−(H2
2 − 2H1H3 + 2)Tv(t + 2n) + Tv(t) = 0.
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• If v lies on the r = 3 affine slice,

Tv(t + 8n) − (H2
3 − 2H2)Tv(t + 6n) + (H2

2 − 2H1H3 + 2)Tv(t + 4n)

−(H2
1 − 2H2)Tv(t + 2n) + Tv(t) = 0.

Here for example (H2
1 − 2H2)

2 + (H2
3 − 2H2)

2 − 2(H2
2 − 2H1H3 + 2) is determined by

the plethysm

e3[e2(λ1, λ2, λ3, λ4)] = e3(λ1λ2, λ1λ3, λ1λ4, λ2λ3, λ2λ4, λ3λ4)

= (λ31λ2λ3λ4 + · · · ) + (λ21 + λ22 + λ23 + · · · )
+2(λ21λ

2
2λ3λ4 + · · · ) = e4e21 + e23 − 2e2e4 = e21 + e23 − 2e2,

followed by the plethysm e1[p2] = e21 − 2e2, e2[p2] = e22 − 2e1e3 + 2, e3[p2] = e23 − 2e2.
Throughout we use e4 = 1.

3.5 Laurent property and positivity

Recall that the upper cluster algebra UA associated with a cluster algebra A is the algebra of
all elements of the fraction field of A that can be expressed as Laurent polynomials in any
cluster of A. Due to Laurent property of cluster algebras [9] we know that A ⊆ UA. The
equality holds in some cases, while in other cases UA is strictly larger. We refer the reader to
[2] for a rigorous definition and properties of upper cluster algebras.

Theorem 3.5.1 Goncharov–Kenyon Hamiltonians Hi are elements of the upper cluster alge-
bra associated with the quiver Am ⊗ Â2n−1.

Of course, the Hi -s are Laurent expressions in terms of the initial cluster of this T -system
by definition. Since we know they are conserved quantities, the same holds for any cluster
in the T -system. However, the claim of the theorem is much stronger, since the T -system
represents only one way to mutate the quiver, while the Laurentness is true for any such way.

Corollary 3.5.2 The coefficients of recurrence polynomials of all vertices of Am ⊗ Â2n−1 lie
in the upper cluster algebra.

Proof Since those coefficients are polynomials in the Hi -s by Corollary 3.4.2, the statement
follows. 
�

Sherman and Zelevinsky [33] have defined a positive cone inside the upper cluster algebra
UA to be the subset of all elements of UA that are expressible as positive Laurent expression
in any cluster of A.

Conjecture 3.5.3 Goncharov–Kenyon Hamiltonians Hi are elements of the positive cone of
the corresponding upper cluster algebras.

Again, by definition the Hi -s are positive in terms of the clusters along time evolution of
the T -system, but the claim of the conjecture is much stronger.

3.5.1 Proof of Theorem 3.5.1

We are going to use the standard proof technique, see, e.g., [2, Theorem 1.5]. Specifically,
to know that a certain Hi lies in the upper cluster algebra, it suffices to check the Laurent
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v

a b c

d e

f g h

v

a b c

d e

f g h

v

a b c

d e

f g h

Fig. 19 The two possible ways to get v in the denominator of the corresponding monomial

condition with respect to some seed together with all the seeds obtained from it by a single
mutation. The fact that the Hi -s are positive in the initial seed of the T -system is true by
definition. Thus, it remains to check positivity in all seeds obtained by mutating just a single
variable in the initial seed.

Let v be the variable that is mutated, and assume the surrounding variables are as in Fig.
19. Note that some of the variables may be equal to 1 if v is close to the boundary.

When we mutate at v, we make a substitution

v ←− bg + de

v′ .

Let us consider the effect of this substitution on the Laurent monomials entering Hi , which
as we know correspond to domino tilings D:

Hi =
∑

h(D)=i

∏

u∈Cm,2n

u1−dD(u).

For each tiling D where v does not appear at all in the monomial, i.e. where dD(u) = 1,
or where v appears in the numerator, i.e. dD(u) = 0, the Laurentness is not violated by the
substitution v ←− bg+de

v′ . Thus, it remains to consider the terms where v appears in the
denominator, i.e. dD(u) = 2.

The key observation is that such tilings D come in pairs. This is because locally around
vertex v they need to look in one of the two ways shown in Fig. 19. Furthermore, the local
move swapping between those two ways to tile the surrounding 2×2 square does not change
the height of the tiling. Thus, all tilings D contributing to the terms of Hi with v in the
denominator indeed come in pairs, differing by the application of this local 2 × 2 square
swap. Let D and D′ be such a pair. Then

∏

u∈Cm,2n

u1−dD(u) +
∏

u∈Cm,2n

u1−dD′ (u) =
(

bg

v
+ de

v

)
b−dD(b)g−dD(g)

∏

u∈Cm,2n ,u �=b,v,g

u1−dD(u).

We see that after the substitution this becomes
⎡

⎣
(

bg

v
+ de

v

)
b−dD(b)g−dD(g)

∏

u∈Cm,2n ,u �=b,v,g

u1−dD(u)

⎤

⎦

v←− bg+de
v′

= v′b−dD(b)g−dD(g)
∏

u∈Cm,2n ,u �=b,v,g

u1−dD(u),

which is a Laurent expression. The statement follows. 
�
Remark 3.5.4 Alternatively, both Theorem 3.5.1 and Corollary 3.4.3 can be deduced directly
from Urban Renewal Theorem, see, for example, [34, Section 5.2].
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3.6 Conjectures

Let v be any vertex of any of the quivers in the classification of Theorem 2.2.5. We formulate
here conjectures generalizing the results of this paper from Am ⊗ Â2n−1, which is a special
case of the first family, to all families from our classification.

The following conjecture generalizes Corollaries 3.4.2 and 3.4.4. In light of Theorem
2.2.5 this conjecture is a stronger version of [30, Conjecture 1.9].

Conjecture 3.6.1 For every vertex v, there exist numbers i and N and rational functions
J0 = 1, J1, . . . , JN , JN+1 = 1 in Q(x) such that

• The Jk-s are the conserved quantities of the T -system;
• For any t we have

J0Tv(t + i(N + 1)) − J1Tv(t + i N ) + · · · ± JN+1Tv(t) = 0.

Note that among the linear recurrences satisfied by the sequences there is a minimal one.
This is because if two recurrences are satisfied, then so is one given by the greatest common
divisor of their characteristic polynomials. Let us from now on assume that the choices of
i, N and Jk-s are made so that the resulting recurrence is minimal.

The following conjecture generalizes Theorem 3.5.1 and Corollary 3.5.2.

Conjecture 3.6.2 The Jk-s belong to the upper cluster algebra of the cluster algebra associ-
ated with Q. In particular, they are Laurent polynomials in the variables at any time t.

The following conjecture generalizes Conjecture 3.5.3.

Conjecture 3.6.3 The Jk-s are positive Laurent expressions in terms of any cluster of the
cluster algebra. In other words, they are elements of the positive cone inside the upper
cluster algebra, as defined by Sherman and Zelevinsky [33].

Our next conjecture is open even in Type Am ⊗ Â2n−1. Let Q be any affine� finite quiver
and let the Jk-s be as above. Consider an infinite Toeplitz matrix H = H(m, n) where the
entries are defined as follows:

Hi, j =
{

J j−i if 0 ≤ j − i ≤ m + 1;
0 otherwise.

Conjecture 3.6.4 All minors of H are either identically 0 or positive Laurent polynomials in
x.

In other words, we conjecture that the Ji -s form a totally positive sequence, or Pólya
frequency sequence, see [4] for the background. We also state the following weaker version
of Conjecture 3.6.4:

Conjecture 3.6.5 The roots of the recurrence polynomial

J (z) = zN+1 − J1zN + · · · ± JN z ∓ 1

are positive real numbers.
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Each of the types Am , Dm and E6 has a canonical involution on the Dynkin diagram,
sending the diagram to itself. Denote this involution η. Assume our T -system is of the tensor
product type, and more specifically of the form �′ ⊗ �̂, where �′ is a finite type Dynkin
diagram of type Am , D2m+1 or E6, and �̂ is an arbitrary extended Dynkin diagram. Let v′
be the vertex of �′ ⊗ �̂ having the same �̂ coordinate, but whose �′ coordinate is obtained
from that of v via involution η. The following conjecture generalizes Corollary 3.4.5.

Conjecture 3.6.6 The recurrence polynomials of v and v′ have the same coefficients but in the
opposite order. In particular, if v = v′, then the recurrence polynomial J (z) is palindromic.

Assume now we are in any other case, i.e. either our T -system belongs to a different
family of the classification, or it is a tensor product but �′ is not of type Am , D2m+1 or E6.
The following conjecture again generalizes Corollary 3.4.5.

Conjecture 3.6.7 The recurrence polynomial J (z) of v is palindromic.

Part 4. Tropical T-systems.

4.1 The behavior of tropical T-systems

4.1.1 Tropical T-systems: definition

Each bipartite recurrent quiver Q has the corresponding T -system which we will call the
geometric T -system associated with Q in order to distinguish it from another system which
we introduce in this section. We refer the reader to Example 4.3.2 for an illustration of most
of the statements that we prove in Sects. 4.1.1–4.3.

Definition 4.1.1 Let Q be a bipartite recurrent quiver, and let λ : Vert(Q) → Z be any map.
Then the tropical T -system associated with Q is a family of integers tλv(t) ∈ Z for every
v ∈ Vert(Q), t ∈ Z with t + εv even satisfying the following relations:

tλv(t + 1) + tλv(t − 1) = max

(
∑

u→v

tλu(t),
∑

v→w

tλw(t)

)
;

tλv(εv) = λ(v).

It is apparent from the definition that tλv(t) is the tropicalization of Tv(t). One can define a
tropical T -system with values inQ or R, but for our purposes it is sufficient to consider only
the integer-valued version (see also Remark 4.2.2). The defining recurrence relation can be
translated into the language of bigraphs as follows: if G(�,�) is a bipartite bigraph then the
relation becomes

tλv(t + 1) + tλv(t − 1) = max

⎛

⎝
∑

(u,v)∈�

tλu(t),
∑

(v,w)∈�

tλw(t)

⎞

⎠ .

If P(x) ∈ Z[x±1] is a multivariate Laurent polynomial in variables (xv)v∈Vert(Q) then
define P |x=qλ∈ Z[q±1] to be the univariate Laurent polynomial in q obtained from P

by substituting xv = qλ(v) for all v ∈ Vert(Q). Further, define degmax(q, P |x=qλ ) to be
the maximal degree of q in P |x=qλ . The following claim gives a connection between the
geometric and tropical T -systems:

123



980 P. Galashin, P. Pylyavskyy

Proposition 4.1.2 (see [13, Lemma 6.3]) For every v ∈ Vert(Q), t ∈ Z with t + εv even and
any λ : Vert(Q) → Z, we have

tλv(t) = degmax
(
q, Tv(t) |x=qλ

)
.

4.1.2 Linear algebraic properties of the affine Coxeter transformation

Let �̂ be a bipartite affine ADE Dynkin diagram, and let w and b be the numbers of white
and black vertices in �̂ respectively. One can view a map u : Vert(�̂) → Z as a vector(
uW

uB

)
∈ Zw+b. Then the adjacency matrix A

�̂
of �̂ has the form

A
�̂

=
(
0 A
At 0

)

where A is a w × b matrix and t denotes matrix transpose. Define the mutation matrices

ωW :=
(−Iw A

0 Ib

)
; ωB =:=

(
Iw 0
At −Ib

)
.

Here Ik is the identity k × k matrix. Finally, the Coxeter transformation for �̂ is defined as a

productC = ωBωW . By Lemma 1.1.8, thematrix A
�̂
has a dominant eigenvector v =

(
vW

vB

)

corresponding to the eigenvalue 2. This means

AvB = 2vW ; AtvW = 2vB .

Just as in Part 2, all the coordinates of v are assumed to be positive integers with greatest

common divisor equal to 1. For a vector u =
(
uW

uB

)
, we define three linear functionals as

follows:

SPEEDW (u) := 〈vB ,uB〉 − 〈vW ,uW 〉; SPEEDB(u) := −SPEEDW (u);
SUM(u) := 〈vW ,uW 〉 + 〈vB ,uB〉.

Here 〈·, ·〉 denotes the standard inner product in Rw and in Rb.

Proposition 4.1.3 For any vector u =
(
uW

uB

)
, the following holds:

SPEEDB(ωW (u)) = SPEEDW (u);
SPEEDW (ωB(u)) = SPEEDB(u);

SUM(ωW (u)) = SUM(u) + 2 SPEEDW (u);
SUM(ωB(u)) = SUM(u) + 2 SPEEDB(u).

Proof We will only prove the equalities for ωW , and the argument is a pretty straightforward
calculation:

SPEEDB(ωW (u)) = 〈vW , AuB − uW 〉 − 〈vB ,uB〉 = 〈AtvW ,uB〉 − 〈vW ,uW 〉 − 〈vB ,uB〉
= 〈vB ,uB〉 − 〈vW ,uW 〉 = SPEEDW (u);
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Table 3 (see [35, Table 4.1])
Affine Coxeter numbers of affine
ADE Dynkin diagrams

�̂ Â2n−1 D̂2n D̂2n+1 Ê6 Ê7 Ê8

ha(�̂) n 2n − 2 2(2n − 1) 6 12 30

θ(�̂) 2 1 2 1 1 1

SUM(ωW (u)) = 〈vW , AuB − uW 〉 + 〈vB ,uB〉 = 〈AtvW ,uB〉 − 〈vW ,uW 〉 + 〈vB ,uB〉
= 〈AtvW ,uB〉 − 〈vW ,uW 〉 + 〈vB ,uB〉 = SUM(u) + 2 SPEEDW (u).


�
Proposition 4.1.3 says that SPEED is preserved while SUM grows linearly as we mutate.

It turns out that up to a shift by v, the mutation action is periodic:

Proposition 4.1.4 For any affine ADE Dynkin diagram �̂, there exists an integer ha(�̂)

called the affine Coxeter number and an integer θ(�̂) such that for any vector u =
(
uW

uB

)
,

we have
Cha(�̂)u = u + θ(�̂)SPEEDW (u)v. (4.1.1)

Moreover,

θ(�̂) = 4ha(�̂)

〈v, v〉 ,

and the values of ha(�̂) and θ(�̂) are given in Table 3.

Proof Stekolshchik [35, Remark 4.3] gives complete information on the Jordan normal form
of C: all eigenvalues of C are roots of unity and the greatest common divisor of their periods
is ha(�̂). Moreover, all of them have multiplicity one except for one of them (λ = 1) which
has multiplicity 2. In our notation, the eigenvector attached to eigenvalue 1 is precisely v and

the adjoint vector is v′ := 1
4

(
vW

−vB

)
(see [35, Proposition 3.10]). We have Cv′ = v + v′,

and they are orthogonal to each other and to all other eigenvectors. The result follows. 
�

Example 4.1.5 Let �̂ = D̂4. Then ha(�̂) = 2 and the dominant eigenvector is given by
Fig. 2:

v = 1 1
2

1 1
.

Thus

θ(�̂) = 4 · 2
12 + 12 + 12 + 12 + 22

= 1.

Consider the following vector of initial values:

u = 1 1
2

1 2
.

Let us assume that the vertex in themiddle iswhite. Then SPEEDW (u) = 1+1+1+2−2·2 =
1. Since ha(�̂) = 2, we need to calculate

C2(u) = ωBωW ωBωWu.
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The sequence of vectors that we will get is:

u = 1 1
2

1 2

ωW−−→ 1 1
3

1 2

ωB−→ 2 2
3

2 1

ωW−−→ 2 2
4

2 1

ωB−→ 2 2
4

2 3
= u + v.

We indeed see that

Cha(�̂)(u) = C2(u) = u + v = u + θ(�̂)SPEED(u)v.

Wewould like to apply these observations to the tropical T -system tλv(t) defined above. Let
G = (�,�) be a bigraph, and let �̂ be a connected component of � isomorphic to an affine
ADE Dynkin diagram. We define tλ

�̂
(t) to be the vector in Rw for t even and in Rb for t odd

which sends v ∈ Vert(�̂) to tλv(t)when t +εv is even. In particular, the vectors

(
tλ
�̂
(2t)

tλ
�̂
(2t + 1)

)

and

(
tλ
�̂
(2t + 2)

tλ
�̂
(2t + 1)

)
belong to Rw+b. Moreover, they satisfy the following inequality:

(
tλ
�̂
(2t + 2)

tλ
�̂
(2t + 1)

)
≥ ωW

(
tλ
�̂
(2t)

tλ
�̂
(2t + 1)

)
.

Here ≥ means that each coordinate of the vector on the left hand side is at least the corre-
sponding coordinate of the vector on the right hand side. This inequality holds trivially by
the definition of the tropical T -system. Moreover, it is an equality if and only if for every
white vertex v of �̂, we have

∑

(u,v)∈�

tλu(2t + 1) ≥
∑

(v,w)∈�

tλw(2t + 1). (4.1.2)

Now, using the positivity of the coordinates of v and Proposition 4.1.3, we get that

SPEEDB

(
tλ
�̂
(2t + 2)

tλ
�̂
(2t + 1)

)
≥ SPEEDW

(
tλ
�̂
(2t)

tλ
�̂
(2t + 1)

)
;

SUM

(
tλ
�̂
(2t + 2)

tλ
�̂
(2t + 1)

)
≥ SUM

(
tλ
�̂
(2t)

tλ
�̂
(2t + 1)

)
+ 2 SPEEDW

(
tλ
�̂
(2t)

tλ
�̂
(2t + 1)

)
.

And again, each inequality becomes an equality if and only if (4.1.2) holds for every white
vertex v of �̂.

Define the following functions of t :

SPEED
�̂
(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

SPEEDW

(
tλ
�̂
(t)

tλ
�̂
(t + 1)

)
, if t is even;

SPEEDB

(
tλ
�̂
(t + 1)

tλ
�̂
(t)

)
, if t is odd;

SUM
�̂
(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

SUM

(
tλ
�̂
(t)

tλ
�̂
(t + 1)

)
, if t is even;

SUM

(
tλ
�̂
(t + 1)

tλ
�̂
(t)

)
, if t is odd.

We have thus shown the following:
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Proposition 4.1.6 Let G = (�,�) be a bipartite bigraph, and let �̂ be a connected compo-
nent of � isomorphic to an affine ADE Dynkin diagram. Then for every t ∈ Z we have

SPEED
�̂
(t + 1) ≥ SPEED

�̂
(t); SUM

�̂
(t + 1) ≥ SUM

�̂
(t) + 2 SPEED

�̂
(t).

Moreover, either (4.1.2) holds or both inequalities are strict. 
�

4.2 Solitonic behavior: soliton resolution

It turns out that for Zamolodchikov integrable quivers, the tropical T -system behaves linearly
for all but finitely many moments of time. Namely, let Q be a bipartite recurrent quiver and
assume Q is Zamolodchikov integrable but not Zamolodchikov periodic. LetG(Q) = (�,�)

be the corresponding bipartite bigraph. Then Corollary 1.2.3 together with Remark 1.2.4
imply that all connected components of � are affine ADE Dynkin diagrams.

The following proposition will be later illustrated by Example 4.3.2.

Proposition 4.2.1 Assume that Q is Zamolodchikov integrable and all connected components
of � are affine ADE Dynkin diagrams as above. Then for every map λ : Vert(Q) → Z there
exists an integer t0 such that for every |t | > t0 and for every v ∈ Vert(Q) with t + εv even
we have

∑

(u,v)∈�

tλu(t + 1) ≥
∑

(v,w)∈�

tλw(t + 1).

In other words, for any initial data λ, the inequality (4.1.2) is violated only finitely many
times.

Proof If the inequality (4.1.2) is violated infinitely many times, then there exists a connected
component �̂ of � such that SPEED

�̂
(t) → +∞ as t → +∞, because each time (4.1.2)

is violated, SPEED
�̂
(t) increases by at least 1 (see Proposition 4.1.6). In this case, again,

by Proposition 4.1.6, SUM
�̂
(t) grows superlinearly. By Proposition 4.1.2, SUM

�̂
(t) is just

a linear combination of degmax(q, Tv(t) |x=qλ) for v ∈ �̂, and thus there is a vertex v ∈ �̂

for which degmax(q, Tv(t) |x=qλ) grows superlinearly. But the values of Tv(t) satisfy a linear
recurrence, and thus degmax(q, Tv(t) |x=qλ) cannot grow faster than linearly. 
�
Remark 4.2.2 This proof works exactly the same way if the values of tλ are assumed to lie
in Q instead of Z. We do not know whether the result of Proposition 4.2.1 holds when the
values of tλ belong to R.

Now we are finally able to deduce Theorem 1.2.5:

Proof of Theorem 1.2.5 By Corollary 1.2.3, Remark 1.2.4 and Proposition 1.1.10, we need to
show that if all components of � and of � are affine ADE Dynkin diagrams then Q cannot
be recurrent. By Proposition 4.2.1, the inequality

∑

(u,v)∈�

tλu(t + 1) ≥
∑

(v,w)∈�

tλw(t + 1)

is violated finitely many times. By symmetry between � and �, the reverse inequality
∑

(u,v)∈�

tλu(t + 1) ≤
∑

(v,w)∈�

tλw(t + 1)
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is also violated finitely many times. Therefore after finitely many steps we will have
∑

(u,v)∈�

tλu(t + 1) =
∑

(v,w)∈�

tλw(t + 1) (4.2.1)

for all v ∈ Vert(Q). To see that this is impossible, consider the following integers yλ
v (t)

defined for t + εv even:

yλ
v (t) =

∑

(u,v)∈�

tλu(t + 1) −
∑

(v,w)∈�

tλw(t + 1).

It is well known that the numbers yλ
v (t) give (up to a sign) a solution to the tropical Y -system

associated with Q, see, for example, [17]. Since the mutations for the tropical Y -system are
involutions as well, they are invertible, so we get a contradiction with (4.2.1) because it states
that for all initial data λ, the tropical Y -system yλ

v (t) eventually becomes zero. 
�
Combining Proposition 4.2.1 with Proposition 4.1.4, we get the following corollary which

we call “soliton resolution”:

Corollary 4.2.3 Let Q be a Zamolodchikov integrable quiver and let �̂ be a component of �

isomorphic to an affine ADE Dynkin diagram. Then for every map λ : Vert(Q) → Z, there
exist integers SPEED+

�̂
(λ) and SPEED−

�̂
(λ) such that

• for all t 	 0 and all v ∈ �̂ we have

tλv(t + 2ha(�̂)) = tλv(t) + θ(�̂)SPEED+
�̂
(λ)v(v); (4.2.2)

• for all t 
 0 and all v ∈ �̂ we have

tλv(t − 2ha(�̂)) = tλv(t) + θ(�̂)SPEED−
�̂
(λ)v(v); (4.2.3)

In other words, the values of tλv grow linearly for |t | 	 0.

For instance, the integers SPEED+
�̂
(λ) and SPEED−

�̂
(λ) are calculated in example 4.3.2.

Let us explain the soliton terminology. Assume Q is an affine � finite ADE bigraph and
consider the associated tropical T -system tλ. Its restriction to each affine slice �̂ behaves
independently of other slices when |t | 	 0. We treat it as a particle (a 1-soliton). Then what
happens is that when t grows from −∞, the particles move independently with constant
speeds given by (4.2.3). Then for small values of t they start interacting with each other and
eventually they again start moving independently with constant speeds given by 4.2.2). Such
a phenomenon is commonly called soliton resolution, see [38].

Corollary 4.2.4 Let Q be a Zamolodchikov integrable quiver and let �̂ be a component of �

isomorphic to an affine ADE Dynkin diagram. Then for every map λ : Vert(Q) → Z, the
following are equivalent:

(1) SPEED+
�̂
(λ) = 0;

(2) SPEED−
�̂
(λ) = 0;

(3) tλv is a periodic sequence for every v ∈ Vert(Q).

Proof It is obvious that (3) implies (1) and (2). The fact that each of them implies (3) follows
from Corollary 4.2.3: if SPEED+

�̂
(λ) = 0 then tλv is periodic for t 	 0, but then it is periodic

for all t . 
�
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Fig. 20 The bigraph A3 ⊗ Â1 a b c

d e f

4.3 Solitonic behavior: speed conservation

In this section we show that the speeds with which affine slices move get preserved after the
scattering process is over, in the sense of Corollary 4.2.3. This can be viewed as a tropical
version of Corollary 3.4.5.

Specifically, let �̂1, . . . , �̂m be them affine slices of Am ⊗ Â2n−1, and for r = 1, 2, . . . , m
denote

SPEED+
r := SPEED+

�̂r
(λ); SPEED−

r := SPEED−
�̂r

,

where λ : Vert(Q) → Z is fixed throughout this section.

Theorem 4.3.1 For any 1 ≤ r ≤ m we have

SPEED+
r = SPEED−

m+1−r .

Example 4.3.2 Let us give an example of the kind of phenomenon in Theorem 4.3.1. Let us
say that m = 3 and n = 2, so our quiver Q is A3 ⊗ Â1 depicted in Fig. 20.

We will compactly draw this quiver as a b c
d e f . Let �̂1, �̂2, �̂3 be the three red connected

components, and assume we start our mutation sequence with black vertices. Then we have

SPEED
�̂1

(t) = d − a; SPEED
�̂2

(t) = b − e; SPEED
�̂3

(t) = f − c.

WedenoteS(t) = (SPEED
�̂1

(t),SPEED
�̂2

(t),SPEED
�̂3

(t)). Now, for t 
 0, SPEED
�̂r

(t)

= −SPEED−
r and for t 	 0, SPEED

�̂r
(t) = SPEED+

r for r = 1, 2, 3. The mutations and

speeds for initial values 6 6 7
3 10 5 are given in Table 4. It is clear from the table that

SPEED−
1 = SPEED+

3 = 3, SPEED−
2 = SPEED+

2 = 4, SPEED−
3 = SPEED+

1 = 2.

This agrees with the statement of Theorem 4.3.1. Next, it is also apparent from the table that
the entries of S(t) weakly increase, and each of them changes if and only if for at least one
vertex in the corresponding connected component, the sum of blue neighbors is strictly larger
than the sum of red neighbors. This is precisely the statement of Proposition 4.1.6. Finally,
observe that for every vertex v ∈ �̂r , we have

tλv(4) = tλv(2) + 2 SPEED+
r ,

which is an application of Corollary 4.2.3.

Let

H⊕
r = max

h(D)=r

∑

u∈Cm,2n

(1 − dD(u))λ(u),

be the tropicalizations of Goncharov–Kenyon Hamiltonians Hr . Here dD(u) is as before the
degree of u in the associated graph GD on the cylinder, and the sum is taken over all tilings
D of height 4r + h(S). Here on the boundary we always have u = 0.
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Lemma 4.3.3 The H⊕
r are conserved quantities of the tropical T -system of type Am ⊗ Â2n−1.

Proof Follows from Proposition 4.1.2 combined with the fact that Hr ’s themselves are con-
served quantities of the corresponding geometric T -system, see Corollary 3.4.3. 
�

Our strategy consists of proving the following proposition.

Proposition 4.3.4 Both SPEED+
r and SPEED−

m+1−r are equal to H⊕
r for respectively t 	 0

and t 
 0.

Example 4.3.5 Let us continue Example 4.3.2. Recall the formula for H1 calculated in Exam-
ple 3.2.4:

H1 = ab

de
+ a

be
+ b

ad
+ c

f
+ d

a
+ e f

bc
+ e

c f
.

Thus,

H⊕
1 = max(a + b − d − e, a − b − e, b − a − d, c − f , d − a, e + f − b − c, e − c − f ).

For instance, at t = −4 we have

H⊕
1 = max(2,−11,−2,−3, 2,−1,−9) = 2.

Or we can take t = 0 instead and get

H⊕
1 = max(0, 1, 2, 2, 1,−3, 2) = 2.

We encourage the reader to check that for other moments of time, H⊕
1 is always equal to 2,

which is a statement of Lemma 4.3.3. In agreement with Proposition 4.3.4, we have

H⊕
1 = SPEED+

1 = SPEED−
3 .

Theorem 4.3.1 follows trivially from Proposition 4.3.4 and Lemma 4.3.3, since as a con-
served quantity H⊕

r is the same at any point in time, including t 	 0 and t 
 0. Let us
prove Proposition 4.3.4. We are going to prove the SPEED+

r = H⊕
r part, the other part is

essentially verbatim. Let us formulate several key lemmas.
Consider the time t 	 0 large enough for all speeds to have stabilized. Adopt the con-

vention SPEED+
0 = SPEED+

m+1 = 0.

Lemma 4.3.6 The speeds form a weakly subadditive sequence, i.e. for any 1 < r < m we
have

2 SPEED+
r ≥ SPEED+

r−1 +SPEED+
r+1 .

Informally, our strategy is to show that the maximum in the definition of H⊕
r is achieved

on the term equal to SPEED+
r . Note that we do not claim that this is the only term where the

maximum is achieved, just that it is one of such terms. The following lemma is a major step.
We postpone its proof, and first show how to use it to imply Proposition 4.3.4.

Lemma 4.3.7 The maximum in the expression

max
h(D)=r

∑

u∈Cm,2n

(1 − dD(u))λ(u)

is achieved at one of the tilings D consisting entirely of horizontal dominos.
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Recall that we can compute h(D) by walking up from vertex O to vertex O ′ on the
cylinder, collecting a contribution of±1 or±3 on each step. Let εi = +1 if the i th step along
this path contributes a positive value and let εi = −1 if it contributes a negative value. It is
easy to see that

h(D) = m + 1 + ∑m+1
i=1 εi

2
.

If all dominos of D are horizontal, each layer of the cylinder Cm,2n has exactly two ways to
be tiled, one contributing εi = +1 and the other contributing εi = −1.

Lemma 4.3.8 If all dominos in D are horizontal, we have

∑

u∈Cm,2n

(1 − dD(u))λ(u) = 1

2

m+1∑

i=1

εi · (
SPEED+

i −SPEED+
i−1

)
.

Proof Depending on which of the two ways to tile the i th layer of Cm,2n is used, this part
of the tiling contributes into degrees dD(u) for exactly half of vertices on each of the affine
slices i and i − 1. Specifically, it either contributes to degrees of white u-s on the i th affine
slice and degrees of black u-s for the (i − 1)-st affine slice, or the other way around. The
statement of the lemma is the numerical expression of this observation. 
�

Now we are ready to prove Proposition 4.3.4.

Proof By Lemma 4.3.7 we know that the maximum in the definition of H⊕
r is achieved at

one of the tilings D with all dominos horizontal. There are 2m+1 such tilings, corresponding
to 2m+1 choices one can make for each εi : either εi = 1 or εi = −1. Furthermore, the
maximum is taken over D-s with h(D) = r , which means exactly r among ε-s are +1.

According to Lemma 4.3.6 we know that

SPEED+
1 = SPEED+

1 −SPEED+
0 ≥ SPEED+

2 −SPEED+
1 ≥ . . .

≥ SPEED+
m+1 −SPEED+

m = −SPEED+
m .

Thus the maximum is obviously achieved when the first r among ε-s are equal to +1, and
the rest of them are equal to −1. The terms cancel out resulting in

1

2

m+1∑

i=1

εi · (
SPEED+

i −SPEED+
i−1

) = SPEED+
r .

Thus, the maximal term in the expression for H⊕
r is equal to SPEED+

r , as desired. 
�

4.3.1 Proof of Lemma 4.3.7

Consider a domino tiling D of the cylinder Cm,2n which has vertical dominos. Our strategy
will be to construct a different tiling D′, which has strictly less vertical dominos thanD, and
such that

∑

u∈Cm,2n

(1 − dD(u))λ(u) ≤
∑

u∈Cm,2n

(1 − dD′(u))λ(u).

Recall that there is a distinguished tilingS which we call the sea, such that superposition
of S with any other tiling does not contain contractible closed cycles, except for possibly
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c0 c1 c2k+2c2k+1ck+2ck+1ck

b2k+2b2k+1bk+2bk+1bkb1b0

a0 a1 a2k+2a2k+1ak+2ak+1ak

c0 c1 c2k+2c2k+1ck+2ck+1ck

b2k+2b2k+1bk+2bk+1bkb1b0

a0 a1 a2k+2a2k+1ak+2ak+1ak

Fig. 21 The superpositions S ∪ D (top) and S ∪ D′ (bottom) at the local part where hula hoop H is being
straightened

double dominos. Consider the double dimer D ∪ S obtained by taking superposition of our
D andS. Several hula hoops are formed. In fact, if D is contributing to H⊕

r , then h(D) = r
and exactly r hula hoops are formed.

Consider the lowest of the hula hoops H which has vertical dominos. It exists because
we assume D has some vertical dominos, and the part of D ∪ S not covered by hula hoops
consists of horizontal double dominos. Choose one of the highest points in H and consider
the horizontal part of H that contains this point together with two vertical dominos on its
ends, see Fig. 21. Note that H may have several such parts, we just pick one of them. We
create D′ by straightening H in this local spot, as shown at the bottom of Fig. 21. It is clear
that D′ has strictly less vertical dominos than D does.

Proposition 4.3.9 We have
∑

u∈Cm,2n
(1 − dD(u))λ(u) ≤ ∑

u∈Cm,2n
(1 − dD′(u))λ(u).

Denote the vertices surrounding this part of H at time t by ai -s, bi -s, and ci -s, 0 ≤ i ≤
2k + 2 as shown in Fig. 21. Let us put μ(v) := tλv(t) for all v ∈ Vert(Q). We assume
t 	 0 is sufficiently large for the claim of Corollary 4.2.3 to hold. Then the time evolution of
a-s depends only on the values of μ at a-s, etc. More formally, the following lemma holds,
describing the values of the tropical T -system at time t + k for all 0 ≤ k ≤ n − 1:

Lemma 4.3.10 Define εk to be 0 if k is even and 1 if k is odd. Then we have

tλak+1
(t + k) =

k+1∑

i=1

μ(a2i−1) −
k∑

i=1

μ(a2i ),

tλbk
(t + k) =

k∑

i=0

μ(b2i ) −
k∑

i=1

μ(b2i−1),

tλbk+2
(t + k) =

k+1∑

i=1

μ(b2i ) −
k∑

i=1

μ(b2i+1),
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tλck+1
(t + k) =

k+1∑

i=1

μ(c2i−1) −
k∑

i=1

μ(c2i ).

Proof A straightforward application of recurrences

tλai
(t + j + 1) = tλai−1

(t + j) + tλai+1
(t + j) − tλai

(t + j − 1), etc.

which hold due to Proposition 4.2.1 and our choice of large enough initial time t . 
�
Now we are ready to prove Proposition 4.3.9.

Proof Each edge of G(D) subtracts from the corresponding term of H⊕
r two variables on its

ends. Thus, we will compare those contributions for G(D) and G(D). We want to show that
one is bigger than the other, which translates into

μ(b0) + μ(b1) +
k∑

i=1

(μ(a2i ) + 2μ(b2i ) + μ(c2i )) + μ(b2k+1) + μ(b2k+2)

≥
k∑

i=1

(μ(a2i−1) + 2μ(b2i−1) + μ(c2i−1)).

By Lemma 4.3.10 this is easily seen to be equivalent to

tλbk
(t + k) + tλbk+2

(t + k) ≥ tλak+1
(t + k) + tλck+1

(t + k),

which holds by Proposition 4.2.1 and our choice of large enough t . 
�

4.4 Conjectures

We conjecture that both soliton resolution and speed conservation properties hold for all
families of our classification in Theorem 2.2.5.

For soliton resolution, we make the following conjecture, generalizing Proposition 4.2.1.
It can also be viewed as a tropical analog of Conjecture 3.6.5.

Conjecture 4.4.1 For any quiver Q in our affine � finite classification and any initial condi-
tions either over Z, or more generally over R, there exists t0 such that for |t | > t0 the edges
of finite component graph � do not affect the dynamics, i.e. for any vertex v ∈ Q we have

∑

(u,v)∈�

tλu(t) ≥
∑

(v,w)∈�

tλw(t).

In other words, for large enough time in both directions the affine slices of Q evolve as
separate particles.

For speed conservation, we need to consider two cases, just as we did in Conjectures 3.6.6
and 3.6.7.

Each of the types Am , Dm and E6 has a canonical involution on the Dynkin diagram,
sending the diagram to itself. As before, denote this involution η. Assume our tropical T -
system is of the tensor product type, and more specifically of the form �′ ⊗ �̂, where �′ is a
finite type Dynkin diagram of type Am , D2m+1 or E6, and �̂ is an arbitrary extended Dynkin
diagram. Let �̂v and �̂η(v) be two affine slices of �′ ⊗ �̂ such that their �′ coordinates
are related by η. Let SPEED±

v and SPEED±
η(v) be the corresponding speeds for t 	 0 and
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t 
 0. Here we assume that Conjecture 4.4.1 holds and thus the speeds are well-defined. The
following conjecture generalizes Theorem 4.3.1. It can also be viewed as a tropical analog
of Conjecture 3.6.6.

Conjecture 4.4.2 We have

SPEED+
v = SPEED−

η(v) .

Assume now we are in any other case, i.e. either our tropical T -system belongs to a
different family of the classification, or it is a tensor product but �′ is not of types Am ,
D2m+1 or E6. Let �̂ be any affine slice of the quiver, and let SPEED±

�̂
be the corresponding

speeds as t 	 0 and t 
 0. The following conjecture again generalizes Corollary 3.4.5.

Conjecture 4.4.3 We have

SPEED+
�̂

= SPEED−
�̂

.
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