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a b s t r a c t 

In this paper, we propose a general time-inhomogeneous continuous-time Markov chain 

(CTMC) framework for the approximation of the general one-dimensional and two- 

dimensional time-inhomogeneous diffusion processes. For the approximating CTMC, we 

can perform a change of measure, choose the minimal relative entropy measure to deter- 

mine the measure uniquely, and finally establish the convergence. Therefore, the proposed 

methodology covers the stochastic processes that are hard to perform a change of measure, 

and is applicable to valuation problems driven by models not only under the risk-neutral 

probability measure but also under the physical probability measure. 

© 2020 Elsevier Inc. All rights reserved. 

 

1. Introduction 

1.1. Continuous time Markov chain approximation technique 

Asset prices and interest rates are widely assumed to follow continuous-time stochastic processes with continuous state 

space, while there are only a limited number of models for a limited number of financial derivatives having analytical 

formulas. Mijatovi ́c and Pistorius [1] introduced such a continuous-time Markov chain (CTMC) approximation based val- 

uation framework to solve option pricing problems. They successfully applied the CTMC approximation technique with 

one-dimensional stochastic processes in the pricing of European and continuously monitored barrier options, and further 

established rigorous convergence properties for the approximation. The accuracy of the CTMC approximation method over 

other numerical methods has been fully tested and verified in different settings, and proved in terms of error analysis and

convergence rate in [2] and [3] . 

The CTMC technique was used to price other options with one-dimensional stochastic processes including, but are not 

limited to, the following excellent works: Eriksson and Pistorius [4] analyzed the solution of the optimal stopping problem 
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associated with the valuation of American options driven by CTMC; The discretely and continuously monitored arithmetic 

Asian options through numerical inversion of a double transform are studied in [5] ; Song et al. [6] extended the valuation

framework to a one-dimensional Markov process with regime-switching coefficients; Chatterjee et al. [7] developed a CTMC 

based approximation method for the pricing and hedging of short-maturity arithmetic Asian options; Meier et al. [8] de- 

veloped the CTMC approximation of one-dimensional diffusions with a lower sticky boundary and priced bond in a sticky 

short rate model for low-interest environment; Siu [9] priced bond under a Markovian regime-switching jump-augmented 

Vasicek model, provided that the market parameters switch over time according to a CTMC. 

Approximating a correlated two-dimensional diffusion process is much more challenging to all existing algorithms, for 

example the trees approach needs a transformation to give constant volatility or decorrelate the Brownian motions ( [10] and

[11] ) while that transformation is not intuitive. Cui et al. [12] and [13] developed a two-layer CTMC method to approximate

the stochastic (local) volatility model; Cui et al. [14] and [15] provided an alternative double-layer CTMC approximation for 

time-changed Markov processes and skew stochastic (local) volatility models, respectively; In contrast to the existing double- 

layer approach, Xi et al. [16] proposed a simultaneous two-dimensional CTMC approximation method, to approximate the 

general two-dimensional fully coupled Markov diffusion processes; Cai et al. [17] invented a unified analytical CTMC approx- 

imation framework for practically useful quantities including first passage times, running extrema, and time integrals; Elliott 

et al. [18] modeled unobservable states of the economy by a hidden CTMC and adopted a regime switching random Esscher

transform to determine an equivalent martingale pricing measure; Kirkby et al. [19] proposed a general CTMC approxima- 

tion for multi-asset option pricing with systems of correlated diffusions; Kirkby et al. [20] considered Bermudan and barrier 

options using CTMC approximation of stochastic volatility; Kirkby and Nguyen [21] efficiently priced Asian option under 

regime-switching jump diffusions and stochastic volatility models by combining CTMC approximation with Fourier pricing 

techniques. 

1.2. Motivation 

Firstly, in practical applications, model parameters such as the short rate or the volatility function are often taken to 

be time-dependent, such as for short rate models that perfectly fit the initial yield curve (see, e.g., [22,23] ) or for other

calibration purposes. Various effort s have been made to explicitly model the dependence of parameters on time, such as 

[24–26] . In recent years, time-dependent parameter modeling with financial time series have been researched with new 

techniques (see, e.g., [27–29] ). Stochastic processes that use time-dependent drift and/or diffusion coefficients, are time- 

inhomogeneous. When it comes to the valuation of financial derivatives whose underlying asset prices modeled by a time- 

inhomogeneous stochastic process, only very few models for certain types of options have analytical formulas available. In 

this paper, we are going to develop an efficient and accurate pricing framework that is generally applicable for the time-

inhomogeneous one-dimensional and two-dimensional models. 

Secondly, in mathematical finance, the fundamental theorem of asset pricing reveals that for a stochastic process the 

existence of an equivalent martingale measure plays a very important role, because it is essentially equivalent to the market 

being arbitrage-free (see [30] ). Starting from the economically meaningful assumption that a stochastic process, which does 

not allow arbitrage profits, enables the real probability measure to be replaced by an equivalent probability measure such 

that the process becomes a martingale, and then it is possible to use the rich machinery of martingale theory. 

The Girsanov theorem (see [31] ) is especially important in the theory of financial mathematics as it tells how to convert

from the physical measure to the risk-neutral measure, which is a very useful tool for pricing derivatives on the underlying

instrument. The Novikov’s condition (see [32] ) is a widely used sufficient condition for a stochastic process that takes the

form of the Radon-Nikodym derivative in the Girsanov’s theorem to be a martingale. The Kazamaki’s condition (see [33] ),

as a more general condition than the Novikov’s condition, gives a sufficient criterion ensuring that the Doléans-Dade ex- 

ponential of a local martingale is a true martingale. However, there are many cases for which the Girsanov theorem is not

applicable either because both Novikov’s condition and Kazamaki’s condition fail, or these two conditions are challenging to 

meet (see [34] ), which generates difficulties in performing a change of measure. 

1.3. Our contributions and structure of the paper 

So far all the stochastic processes being approximated by the CTMC technique for option pricing purposes are in the 

risk-neutral measure. In this paper, starting with the general time-inhomogeneous stochastic processes in the physical prob- 

ability measure, we provide a systematic approach, from time-inhomogeneous CTMC approximation, to settle the “closest”

martingale measure relative to the physical measure, and to price options based on the time-inhomogeneous approximat- 

ing CTMC after measure change. Our methodology is applicable to general stochastic processes that are hard to perform a 

change of measure. 

In Section 2 , we construct the time-inhomogeneous approximating CTMC. We firstly approximate the general one- 

dimensional time-inhomogeneous diffusion process given in (2.1) by a time-inhomogeneous CTMC in Section 2.1 , using the 

technique proposed in [35] . The two-dimensional time-inhomogeneous diffusion process given in (2.7) is approximated by 

a double-layer time-inhomogeneous CTMC in Section 2.2 , using the auxiliary process technique proposed in [13] but in the

time-inhomogeneous setting. 
2 
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In Section 3 , we perform a change of measure on the approximating time-inhomogeneous CTMC. For the reason that 

Markov chains have random jumps, there does not exist a unique equivalent martingale measure. To tackle this problem, 

we determine a “closest” martingale measure to the physical measure by choosing the one having the minimal relative 

entropy with respect to the physical measure. In the risk-neutral world, there exists possible destruction of the martingale 

property after approximating, while the proposed approach is able to preserve the martingale property after approximation. 

The convergence of the “chosen” equivalent martingale measure is established in Section 4 , by transforming the problem to 

determining whether the sequence of the Radon–Nikodym derivatives is convergent, as the cardinality of the discrete state 

space of the approximating CTMC goes to infinity. 

In Section 5 , we apply the approximating framework and obtain approximating formulae for pricing options in Euro- 

pean and barrier types. In Section 6 , we provide CTMC approximated option valuation and demonstrate the accuracy of the

proposed methodology. In Section 7 , we conclude and remark. 

2. The CTMC approximation 

2.1. One-dimensional diffusion 

We consider the following general diffusion process { S t } t ∈ [0, T ] with state space D on the probability space (�, F , F , P ) ,

where F = (F t ) t≥0 is the filtration and P is the physical measure. Here, S evolves according to 

dS t = μ(t, S t ) dt + σ (t, S t ) dB t (2.1) 

where B = (B t ) t≥0 is a standard Brownian motion under P . Suitable conditions are imposed on the functions μ and σ so

that (2.1) has a unique solution (see, e.g., Definition 1.1. and Theorem 1.2. on page 4 of [36] , for sufficient conditions for a

strong solution and the uniqueness, respectively). Let F 
S = F 

B be the natural filtration generated by B such that F 
B ⊆ F . That

is, we consider the general diffusion case that μ( t, x ) and σ ( t, x ) can be time-dependent functions. We further assume that

S t is a Feller process whose Feller property guarantees that there exists a version of the process with cádlág paths satisfying

the strong Markov property. 

Next, we illustrate the methodology introduced in [1] on the approximation of CTMC to S . For the general time-

inhomogeneous Markov process described in (2.1), on the same probability space (�, F , F , P ) its approximating process

is a time-inhomogeneous CTMC X ( N ) on the time interval [0, T ], whose finite state space is given by 

G 
(N) = { x 1 , . . . , x N } ⊂ D 

where x 1 represents the smallest element and x N represents the largest element. Define the boundary of G 
(N) as ∂G 

(N) :=
{ x 1 , x N } and denote the interior of G 

(N) simply as G 
(N) \ ∂G 

(N) . We further partition the time interval [0, T ] in the way that

T (m ) 
l 

= 
l 
m 
T for l ∈ { 0 , 1 , . . . , m } . 

Denote the time-dependent generator of X ( N ) as �(N) 
t = 

(
λ(N) 
i, j 

(t) 
)
i, j∈{ 1 , ... ,N} 

. In line with [37] , �(N) 
t is generated in each 

time interval [ T (m ) 
l−1 

, T (m ) 
l 

) for l ∈ { 1 , . . . , m } . Denote λ(N) 
i, j 

(t) := 

m ∑ 

l=1 

λ(l,N) 
i, j 

1 
[ T 

(m ) 
l−1 

,T 
(m ) 
l 

) 
(t) , then λ(l,N) 

i, j 
is constructed as follows: 

• For i = 2 , . . . , N − 1 , set ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

λ(l,N) 
i, j 

≥ 0 , ∀ j � = i. ∑ 

j � = i 
λ(l,N) 
i, j 

(x j − x i ) = μ(T (m ) 
l−1 

, x i ) , j = i − 1 , i + 1 . ∑ 

j � = i 
λ(l,N) 
i, j 

(x j − x i ) 
2 = σ 2 (T (m ) 

l−1 
, x i ) , j = i − 1 , i + 1 . 

λ(l,N) 
i,i 

= −λ(l,N) 
i,i −1 

− λ(l,N) 
i,i +1 

, j = i. 

λ(l,N) 
i, j 

, j � = i − 1 , i, i + 1 . 

(2.2) 

• For i = 1 , N, set 

λ(l,N) 
i, j 

= 0 , ∀ j ∈ { 1 , . . . , N} . 
Remark 1. The state space { x i } i ∈{ 1 , ... ,N} are formed by a nonuniform grid. For fixed x 1 and x N , we define { x 2 , . . . , x N−1 }
proposed in [38] : Assume that X 0 = x 0 > 0 , and for α ∈ (0, 1), 

x j := x 0 + α · (x N − x 1 ) · sinh 
(
k 2 

j 

N 

+ k 1 

(
1 − j 

N 

))
, j = 2 , . . . , N − 1 , (2.3) 

where 

k 1 := arcsinh 

(
x 1 − x 0 

α(x N − x j ) 

)
, k 2 := arcsinh 

(
x N − x 0 

α(x N − x j ) 

)
. (2.4) 
3 
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The sequence of time-inhomogeneous generator matrices �(N) 
t defined on the time-space grids [0 , T ] × G 

(N) , needs to

be close to the time-dependent generator of the time-inhomogeneous Markov process { S t } t ∈ [0, T ] . Consider the time-space 

Markov process ( Z, Y ). Here, Z = (Z t ) t≥0 and Y = (Y t ) t≥0 are defined as 

Z t := (Z 0 + t) ∧ T , Y t := S Z t , (2.5) 

for t > 0 and Z 0 ∈ [0, T ], where the state space of Y is D . For any s, t > 0 and bounded Borel function f : [0 , T ] × D 
→ R ,

the time-space Markov process ( Z, Y ) with state space [0 , T ] × D , satisfies 

(P t f )(s, x ) := E [ f (Z t , Y t ) | Z 0 = s, Y 0 = x ] = E [ f ((s + t) ∧ T , S (s + t) ∧ T ) | S s = x ] . 

Then P t generates a semigroup as defined in [35] , and its corresponding infinitesimal generator L 
′ is defined as 

L 
′ f (s, x ) = lim 

t↓ 0 t 
−1 [ P t f (s, x ) − f (s, x ) ] , (2.6) 

for all f in the domain of L 
′ , where suitable regularity condition are imposed on ( Z, Y ) to ensure the existence of the limit.

The convergence result is given in Corollary 2 of [37] . 

2.2. Two-dimensional diffusion 

In this subsection, we consider that the underlying security follows a two-dimensional diffusion process, {
dS t = μ(t, S t , W t ) dt + ν(S t ) σ (W t ) dB 

(1) 
t , 

d W t = α(W t ) d t + γ (W t ) d B 
(2) 
t , 

(2.7) 

where E 
P 

[ 
d B (1) 

t d B (2) 
t 

] 
= ρdt with −1 ≤ ρ ≤ 1 . We consider the general case that the coefficients μ( t, x, y ) is a time-

dependent function. Suitable conditions are imposed on the functions μ, σ , α, γ , and ν > 0, so that model (2.7) has a

unique-in-law weak solution that exits in its state space. Assume that 1 
ν is locally integrable on the state space S of S t ,

and σ
γ is locally integrable on the state space W of W t . We consider the case that (S t , W t ) is a Feller process whose Feller

property guarantees that there exists a version of the process with cádlág paths satisfying the strong Markov property. 

The rest of this section is to approximate this two-dimensional model (2.7) by a double-layer CTMC, using the auxiliary 

process technique proposed in [13] . 

2.2.1. The auxiliary process 

Define the functions g and h as 

g(x ) := 

∫ x 
·

1 

ν(u ) 
du and h (x ) := 

∫ x 
·

σ (u ) 

γ (u ) 
du, (2.8) 

and denote B ∗t = 

B 
(1) 
t −ρB 

(2) 
t √ 

1 −ρ2 
is a standard Brownian motion independent of B (2) 

t . We create an auxiliary process with state

space X as X t := g(S t ) − ρh (W t ) , then we can rewrite model (2.7) as {
dX t = ̃

 θ (t, X t , W t ) d t + 

√ 

(1 − ρ2 ) σ (W t ) d B 
∗
t , 

d W t = α(W t ) d t + γ (W t ) d B 
(2) 
t , 

(2.9) 

where ˜ θ (t, X t , W t ) := θ (t, g −1 (X t + ρh (W t )) , W t ) , 

and 

θ ( t, x, y ) = 

(
μ( t, x, y ) 

ν( x ) 
− ν ′ ( x ) 

2 
σ 2 ( y ) 

)
− ρ

(
α( y ) 

σ ( y ) 

γ ( y ) 
+ 

1 

2 

(
γ ( y ) σ ′ ( y ) − γ ′ ( y ) σ ( y ) 

))
. (2.10) 

Now, S is driven by W ’s approximating CTMC ω 
(n 1 ) instead, and denote the resulting S process as S ω . We further denote

˜ X t := g(S ω t ) − ρh (ω 

(n 1 ) 
t ) , (2.11) 

by Proposition 1 in [13] , one can show that 

d ̃  X t = ̃
 θ (t, ̃  X t , ω 

(n 1 ) 
t ) dt + 

√ 

(1 − ρ2 ) σ ( ω 

(n 1 ) 
t ) dB ∗t . (2.12) 

Note that ˜ X can be regarded as a regime-switching diffusion. 
4 
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2.2.2. CTMC approximation of (X t , W t ) 

Since ˜ X = ( ̃  X t ) t≥0 is a time-dependent process, we can approximate it in a similar way as that of in Section 2.1 : 

• First layer: We firstly approximate the diffusive variance process W = (W t ) t≥0 by a CTMC ω 
(n 1 ) = (ω 

(n 1 ) 
t ) t≥0 with state

space W 
(n 1 ) = { w 1 , . . . , w n 1 } . 

Denote the generator of ω 

(n 1 ) 
t as Q = 

(
q i, j 

)
i, j∈{ 1 , ... ,n 1 } , which is generated as a tri-diagonal matrix with zero row sums

and nonnegative elements as follows: 

For i = 2 , . . . , n 1 − 1 , ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 

j � = i 
q i, j (w j − w i ) = α(w i ) , j = i − 1 , i + 1 ∑ 

j � = i 
q i, j (w j − w i ) 

2 = γ 2 (w i ) , j = i − 1 , i + 1 , 

q i,i = −q i,i −1 − q i,i +1 , j = i, 
0 , j � = i − 1 , i, i + 1 , 

(2.13) 

and q 1 ,i = q n 1 ,i = 0 for j ∈ { 1 , . . . , n 1 } . 
Similarly, the states of ω 

(n 1 ) are nonuniform grids, which satisfy (2.3) and (2.4) . 

• Second layer: Then we approximate the process ˜ X = ( ̃  X t ) t≥0 by a CTMC ˜ X (n 2 ) = ( ̃  X 
(n 2 ) 
t ) t≥0 with state space 

X 
(n 2 ) = { ̃  x 1 , . . . , ̃  x n 2 } . 

For ω 
(n 1 ) taking value w k ∈ { w 1 , . . . , w n 1 } with k ∈ { 1 , . . . , n 1 } , the time-dependent generator matrix of ˜ X (n 2 ) is defined

accordingly as �k (t) := 

(
λk 
i, j 

(t) 
)
i, j∈{ 1 , ... ,n 2 } 

, where for l ∈ { 1 , . . . , m } 

λk 
i, j (t) = 

m ∑ 

l=1 

λk (l) 
i, j 

1 
[ T (m ) 

l−1 
,T (m ) 

l 
) 
(t) . (2.14) 

Then λ(l,N) 
i j 

should be constructed in the time interval [ T (m ) 
l−1 

, T (m ) 
l 

) as ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 

j � = i 
λk (l) 
i, j 

(x j − x i ) = ̃
 θ (T (m ) 

l−1 
, x i , w k ) , j = i − 1 , i + 1 , ∑ 

j � = i 
λk (l) 
i, j 

(x j − x i ) 
2 = (1 − ρ2 ) σ 2 (w k ) , j = i − 1 , i + 1 , 

λk (l) 
i,i 

= −λk (l) 
i,i −1 

− λk (l) 
i,i +1 

, j = i, 

0 , j � = i − 1 , i, i + 1 , 

(2.15) 

for i = 2 , . . . , n 2 − 1 , 

and λk (l) 
1 ,i 

= λk (l) 
n 1 ,i 

= 0 for i ∈ { 1 , . . . , n 2 } . 
Moreover, for notational convenience, we define the following sets X 

k , which correspond to �k ( t ) for each ω 

(n 1 ) 
t =

w k , k ∈ { 1 , . . . , n 1 } : 
X 

k := { ̃  x 1 , . . . , ̃  x n 2 } . 
One can see that the elements of X 

k are the same as in X 
(n 2 ) . An intuitive perception is that once ω 

(n 2 ) 
t = w k is fixed, X 

k is

the state space of the approximating CTMC with generator matrix �k ( t ). It is not hard to see that 

X 
1 = · · · = X 

n 1 . 

2.2.3. Regime-switching CTMC approximation to the second layer 

By Theorem 1 in [6] , we can embed the CTMC ˜ X (n 2 ) (the second layer covered in Session 2.2.2 ) in a Markov chain to

transfer the two-dimensional process (X t , W t ) to an equivalent one-dimensional process X 
(N) 

with an enlarged state space 

X 

(N) 
= X 

1 × X 
2 × · · · × X 

n 1 := { x 1 , x 2 , . . . , x N } , N = n 1 · n 2 . 
As a natural extension, we have a result similar to [6] in time-inhomogenuous case: 

Proposition 2. Consider ˜ X (n 2 ) as the discrete state time-inhomogeneous regime-switching CTMC given in Section 2.2.2 , and con- 

sider another one-dimensional time-inhomogeneous CTMC X 
(N) 

with state space X 

(N) 
and N × N transition rate matrix 

�(N) (t) = 

⎛ ⎜ ⎜ ⎝ 

q 1 , 1 I n 2 + �1 (t) q 1 , 2 I n 2 · · · q 1 ,n 1 I n 2 
q 2 , 1 I n 2 q 2 , 2 I n 2 + �2 (t) · · · q 2 ,n 1 I n 2 

. . . 
. . . 

. . . 
. . . 

q n 1 , 1 I n 2 q n 1 , 2 I n 2 · · · q n 1 ,n 1 I n 2 + �n 1 (t) 

⎞ ⎟ ⎟ ⎠ 

, (2.16) 
5 
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(˜ X (n 2 ) , ω 
(n

 

 

 

 

 

where I n 2 is the n 2 × n 2 identity matrix, Q = (q i, j ) n 1 ×n 1 is the time-independent generator matrix of ω 
(n 1 ) , and �k ( t ) is the

time-dependent generator matrix of ˜ X (n 2 ) when ω 
(n 1 ) takes value w k . Define the mapping φ : X 

(n 2 ) × { 1 , . . . , n 1 } → X 

(N) 
by 

φ( x i , k ) = x (k −1) n 2 + i , 

and its inverse φ−1 : X 

(N) → X 
(n 2 ) × { 1 , . . . , n 1 } by 

φ−1 ( x n ) = ( x i , k ) , s.t. n = (k − 1) n 2 + i. 

Further define 

˜ X (n 2 ) := 

(˜ X (n 2 ) t 

)
0 ≤t≤T 

, ω 
(n 1 ) := 

(
ω 

(n 1 ) 
t 

)
0 ≤t≤T 

, X 
(N) 

:= 

(
X 

(N) 

t 

)
0 ≤t≤T 

, 

and then we have 

 1 ) 
)∣∣∣ω 

(n 1 ) 
0 

= w k , ̃
 X (n 2 ) 
0 

= x i 

] 
= E 

[
ϕ ◦ φ−1 

(
X 

(N) 
)∣∣∣X (N) 

0 = x (k −1) n 2 + i 

]
for any path-dependent payoff function ϕ such that the expectation on the left-hand side is finite. 

2.2.4. Weak convergence 

Denote the state space of the Markov process (t, X t , W t ) as [0 , T ] × X × W . For any s, t > 0 and bounded Borel function

f : [0 , T ] × X × W → R , set f t : ( x, w ) 
→ f ( t, x, w ). For function f t ∈ C 2 , 2 c (X × W ) , by Eq. (2.9) , the corresponding infinitesimal

generator L t acting on f t is given by 

L t f t (x, w ) = ̃
 θ (t, x, w ) 

∂ f t 

∂x 
+ 

1 

2 
(1 − ρ2 ) σ 2 (w ) 

∂ 2 f t 
∂x 2 

+ α(w ) 
∂ f t 

∂w 

+ 

1 

2 
γ 2 (w ) 

∂ 2 f t 
∂w 

2 
. 

Denote 

G 
(n 1 ,n 2 ) := { ̃  x 1 , . . . , ̃  x n 2 } × { w 1 , . . . , w n 1 } , 

the approximation error over G 
(n 1 ,n 2 ) is measured by 

ε(n 1 ,n 2 ) ( f ) := max 
t∈ [0 ,T ] , ( ̃  x ,w ) ∈ G (n 1 ,n 2 ) 

| �(N) f t,n 1 ,n 2 ( ̃  x , w ) − L t f t ( ̃  x , w ) | , (2.17) 

where function f t,n 1 ,n 2 = f t | G (n 1 ,n 2 ) denotes the restriction of f t to G 
(n 1 ,n 2 ) , and �(N) = �(N) (t) is given in (2.16) . 

In the following proposition, we provide the weak convergence result of approximating two-dimensional time- 

inhomogeneous diffusions, which represents an extension of Proposition 4 of [13] to the time-inhomogenous case. In its 

proof, we employ the standard convergence results for Markov process in [35] and the techniques used in proving the weak

convergence result regarding one-dimensional time-inhomogeneous diffusions in the classical work [37] . 

Proposition 3. Let D 
∗(L t ) ⊂ D(L t ) denote a core of L t . For any function f t ∈ D 

∗(L t ) , if ε(n 1 ,n 2 ) ( f t ) 
→ 0 as n 1 , n 2 → ∞ , then 

( a ) ( ̃  X 
(n 2 ) 
t , ω 

(n 1 ) 
t ) �⇒ (X t , W t ) as n 1 , n 2 → ∞ , 

( b ) ̃  S (N) 
t �⇒ S t as n 1 , n 2 → ∞ , for ̃  S (N) 

t := g −1 
(˜ X 

(n 2 ) 
t + ρ f (ω 

(n 1 ) 
t ) 

)
, 

where “�⇒ ” denotes weak convergence. 

Proof. See Appendix A . �

Remark 4. We note that the proposed CTMC approximation methodology is applicable on general multidimensional diffu- 

sion processes if the corresponding Brownian motions are perfectly correlated or totally uncorrelated. That is, considering 

X := { X (1) , . . . , X (n ) } for n > 2, where 

X (i ) t = μi (t, X 
(i ) 
t ) dt + σi (t, X 

(i ) 
t ) dW 

(i ) 
t 

and E [ d W 
(i ) 
t d W 

( j) 
t ] = ρi j dt with | ρ ij | ≤ 1 for i, j = 1 , . . . , n and i � = j , the proposed CTMC approximation methodology can

construct the approximating CTMCs if ρi j = −1 , 0 , 1 . However, when 0 < ρ ij < 1, there are multidimensional dependencies

in { X i } i which should be tackled to proceed. 

3. The equivalent martingale measure 

In this section, we perform a change of equivalent martingale measure for the time-inhomogeneous CTMC, by means of 

the techniques in Section 11.3 of [39] and the references therein. Because Markov chains have random jumps, there does 

not exist a unique equivalent martingale measure. To determine the “closest” martingale measure to the physical measure, 

we choose the one having the minimal relative entropy with respect to the physical measure. 
6 
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3.1. Change of measure for time-inhomogeneous CTMC 

Recall that X ( N ) is the time-inhomogeneous CTMC with finite state-space G 
(N) = { x 1 , . . . , x N } on the probability space

(�, F , F , P ) . Let F 
X (N) 

be the filtration generated by X ( N ) such that F 
X (N) ⊆ F . 

Lemma 5. [Section 11.3, [39] ] On the probability space (�, F , F , P ) , for i, j ∈ { 1 , . . . , N} , i � = j, and 0 ≤ t ≤ T, let 

H 

i (N) 
t := 1 { X (N) 

t = x i } , H 

i j(N) 
t := 

∑ 

0 ≤u ≤t 

H 

i (N) 
u − H 

j(N) 
u , 

and then we have that the process (M 

i j(N) 
t ) 0 ≤t≤T defined as 

M 

i j(N) 
t = H 

i j(N) 
t −

∫ t 
0 

λ(N) 
i, j 

(u ) H 

i (N) 
u du 

is an F -martingale under P . 

Consider a family { κ(N) 
i j 

(t) } i, j∈{ 1 , ... ,N} of bounded real-valued processes which is F -predictable, such that κ(N) 
i j 

(t) > −1 and

κ(N) 
ii 

(t) = 0 . Define (η(N) 
t ) 0 ≤t≤T as 

η(N) 
t = 1 + 

∫ t 
0 

N ∑ 

i, j=1 

η(N) 
u − κ(N) 

i j 
(u ) dM 

i j 
u (3.1) 

and we have the following proposition. 

Proposition 6. The solution to Eq. (3.1) can be expressed as 

η(N) 
t = e −M 

c 
t 

∏ 

0 <u ≤t 

(
1 + 

N ∑ 

i, j=1 

κ(N) 
i j 

(u )(H 

i j(N) 
u − H 

i j(N) 
u − ) 

)
, (3.2) 

where M 
c 
t = 

∫ t 
0 

∑ N 
i, j=1 κ

(N) 
i j 

(u ) λ(N) 
i, j 

(u ) H 
i (N) 
u du . Furthermore, η(N) 

t is a strictly positive F -martingale under P such that E [ η(N) 
T 

] = 1 .

Proof. By Lemma 5 , we can rewrite Eq. (3.1) as 

η(N) 
t = 1 + 

∫ t 
0 

N ∑ 

i, j=1 

η(N) 
u − κ(N) 

i j 
(u ) dH 

i j(N) 
u −

∫ t 
0 

N ∑ 

i, j=1 

η(N) 
u − κ(N) 

i j 
(u ) λ(N) 

i, j 
(u ) H 

i (N) 
u du. 

Let M 
c 
t = 

∫ t 
0 

∑ N 
i, j=1 κ

(N) 
i j 

(u ) λ(N) 
i, j 

(u ) H 
i (N) 
u du and then we have 

η(N) 
t = e −M 

c 
t 

∏ 

0 <u ≤t 

(
1 + 

N ∑ 

i, j=1 

κ(N) 
i j 

(u )(M 

i j 
u − M 

i j 
u −) 

)
= e −M 

c 
t 

∏ 

0 <u ≤t 

(
1 + 

N ∑ 

i, j=1 

κ(N) 
i j 

(u )(H 

i j(N) 
u − H 

i j(N) 
u − ) 

)
. 

From the definition of H 

i j(N) 
u , we know that at most one H 

i j(N) 
u − H 

i j(N) 
u − is equal to 1 while the rest is equal to 0, and then

1 + 

∑ N 
i, j=1 κ

(N) 
i j 

(u )(H 

i j(N) 
u − H 

i j(N) 
u − ) is either equal to 1 + κ(N) 

i j 
(u ) for some i � = j , or equal to 1. Hence η(N) 

t is strictly positive.

By Lemma 5 , we know that M 

i j(N) 
t is a martingale, and then by Eq. (3.1) , we have that η(N) 

t is a martingale such that

E [ η(N) 
T 

] = 1 . �

Now, an equivalent probability measure Q 
(N) on (�, F t ) with any t ∈ [0, T ] can be defined by 

dQ 
(N) 

dP 

∣∣∣
F t 

= η(N) 
t , P − a.s. (3.3) 

The following result demonstrates that the approximating CTMC X ( N ) defined in Section 2.1 for the one-dimensional diffusion 

case, is also a Markov chain with generator ˜ �(N) 
t under Q 

(N) . For the approximating CTMC X 
(N) 

defined in Proposition 2 , its 

generator matrix ˜ �
(N) 

(t) under equivalent martingale measure Q 
(N) can be generated analogously. 

Proposition 7. [Section 11.3, [39] ] For the probability measure Q 
(N) defined in Eq. (3.3) , if the process { X (N) 

t } 0 ≤t≤T is a Markov

chain under P with infinitesimal generator �(N) 
t = 

(
λ(N) 
i, j 

(t) 
)
i, j∈{ 1 , ... ,N} 

, then { X (N) 
t } 0 ≤t≤T is also a Markov chain under Q 

(N) whose

corresponding infinitesimal generator ˜ �(N) 
t = 

(̃
 λ(N) 
i j 

(t) 
)
i, j∈{ 1 , ... ,N} 

satisfies 

˜ λ(N) 
ii 

(t) = −∑ 

j � = i ̃
 λ(N) 
i j 

(t) , ˜ (N) (N) (N) (3.4) 

λ
i j 

(t) = (1 + κ
i j 

(t )) λ
i j 

(t ) , for i � = j. 

7 
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3.2. Martingale conditions 

3.2.1. One-dimensional models 

Consider Q 
(N) as a risk-neutral measure such that { e −rt X (N) 

t } is a martingale under Q 
(N) with risk-free rate r . If we set 

P 

(N) 
t f (x ) := E 

Q (N) 

x [ f (X (N) 
t )] 

with any Borel functions f , it is know that P (N) 
t forms a semigroup such that 

P 

(N) 
t+ s f = P 

(N) 
t (P 

(N) 
s f ) , 

for all s, t ≥ 0 and P (N) 
0 

f = f . Taking f (x ) = x and by the Markov property, we have 

E 
Q (N) 

[ e −r(t+ s ) X (N) 
t+ s | F s ] = E Q 

(N) 

[ e −r(t+ s ) X (N) 
t+ s | X (N) 

s ] = e −r(t+ s ) P 

(N) 
t (X (N) 

s ) . (3.5)

Assume that the time-inhomogeneous generator satisfies commutativity, i.e., P (N) 
t P (N) 

s = P (N) 
s P (N) 

t , for s, t ≥ 0. Then, by the

fact that P (N) 
t = e t ̃

 �(N) 
t where ˜ �(N) 

t = ( ̃  λ(N) 
i, j 

(t)) i, j∈{ 1 , ... ,N} is the generator of X ( N ) under Q 
(N) , and by the Eq. (3.5) and with

the fact that { e −rt X (N) 
t } is a martingale, under risk-neutral measure Q 

(N) , we have 

rx i = 

∑ 

j ̃
 λ(N) 
i, j 

(t) · x j 
= 

∑ 

j � = i (1 + κ(N) 
i j 

(t )) λ(N) 
i, j 

(t ) · x j − x i 
∑ 

j � = i (1 + κ(N) 
i j 

(t )) λ(N) 
i, j 

(t ) , 
(3.6) 

for every i ∈ { 1 , . . . , N} . Setting κ(N) 
i j 

(t) = 

m ∑ 

l=1 

κ(l,N) 
i j 

(t ) 1 
[ T 

(m ) 
l−1 

,T 
(m ) 
l 

) 
(t ) and κ(l) 

ii 
(t) = 0 for fixed t ∈ [0, T ], Eq. (3.6) can be written

as 

rx i = 

∑ 

j � = i 
(1 + κ(l,N) 

i j 
(t)) λ(l,N) 

i, j 
(x j − x i ) , (3.7) 

which implies that κ(l,N) 
i j 

(t) ≡ κ(l,N) 
i j 

constant for fixed i, j . 

3.2.2. Two-dimensional models 

In the case of two-dimensional models, by the analysis of Section 2.2 , we can obtain analogous results as those in Section

3.1 of [13] that for any measurable function ψ , it holds that E 
Q 
s,w [ e 

−rT ψ(S T )] can be approximated by 

E 
Q (N) 

s i ,w k 
[ e −rT ψ( ̃  S (N) 

T 
)] = E 

Q (N) 

x n 
[ e −rT ˜ ψ ( X 

(N) 

T )] , (3.8) 

where n = (k − 1) n 2 + i, x n = g(s i ) − ρh (w k ) , 
˜ ψ (x ) = ψ ◦ g −1 (x + ρh (w k )) , 

E 
Q 
s,w [ ·] = E 

Q [ ·| S 0 = s, W 0 = w ] , 

E 
Q (N) 

(s i ,w k ) 
[ ·] = E 

Q (N) 

[ ·| ̃  S (N) 
0 

= s i , ω 

(n 1 ) 
0 

= w k ] . 

Hence, we only need to focus on identifying the risk-neutral measure with the underlying X 
(N) 

. 

Consider Q 
(N) as a risk-neutral measure such that the discounted value of the regime-switching CTMC 

{
e −rt X 

(N) 

t 

}
is a 

martingale under Q 
(N) with risk-free rate r . Denote ˜ �(N) (t) as the generator matrix of X 

(N) 

t under measure Q 
(N) whose

corresponding parameters κ( N ) ( t ) satisfying 

κ(N) (t) = 

⎛ ⎜ ⎜ ⎜ ⎝ 

˜ κ(N) 
11 (t) κ(n 2 ) 

1 , 2 
· · · κ(n 2 ) 

1 ,n 1 

κ(n 2 ) 
2 , 1 

˜ κ(N) 
22 (t) · · · κ(n 2 ) 

2 ,n 1 
. . . 

. . . 
. . . 

. . . 

κ(n 2 ) 
n 1 , 1 

κ(n 2 ) 
n 1 , 2 

· · · ˜ κ(N) 
n 1 n 1 

(t) 

⎞ ⎟ ⎟ ⎟ ⎠ 

, (3.9) 

where 

˜ κ(N) 
ii 

(t) = 

m ∑ 

l=1 

κ(l,n 2 ) 
i,i 

1 
[ T (m ) 

l−1 
,T (m ) 

l 
) 
(t) , i ∈ { 1 , . . . , n 1 } . 

Here, κ
(l,n 2 ) 

i,i 
and κ

(n 2 ) 

i, j 
are n 2 × n 2 -dimensional matrices for i, j ∈ { 1 , . . . , n 1 } . Thus, similar to Eq. (3.6) , we can obtain that 

˜ �(N) (t) · ( X 

(N) 
) T = r · ( X 

(N) 
) T , (3.10) 
8 
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where X 

(N) 
is the state space of X 

(N) 

t , and the superscript T denotes transpose. By an analogous result to Proposition 7 in

the one-dimensional case, (3.10) is equivalent to 

x i r i = 

∑ 

j � = i 
(1 + κ(N) 

i j 
) λ(N) 

i, j 
( x j − x i ) , (3.11) 

for fixed i and i, j ∈ { 1 , 2 , . . . , N} , where κ(N) 
i j 

is the entry of κ( N ) ( t ) given in (3.9) and λ(N) 
i, j 

is the entry of �( N ) ( t ) given in

(2.16) . Observing the expression of (3.11) , one can set the parameters κ( N ) ( t ) as 

κ(N) (t) = 

⎛ ⎜ ⎜ ⎜ ⎝ 

˜ κ(N) 
11 (t) 0 · · · 0 

0 ˜ κ(N) 
22 (t) · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · ˜ κ(N) 
n 1 n 1 

(t) 

⎞ ⎟ ⎟ ⎟ ⎠ 

. (3.12) 

Remark 8. From the form of (3.12) we can see that the martingale condition is independent of the first layer CTMC (i.e.

different regimes). Similar conclusions in the regime-switching diffusion case were obtained in [40] . 

3.3. Minimal relative entropy martingale measure 

The relative entropy (also called Kullback–Leibler divergence) is a measure of how one probability distribution is different 

from another probability distribution. Similar to [41] , in this paper, we consider the minimal entropy martingale measure 

for CTMC. Specifically, the relative entropy H(Q 
(N) ‖ P ) of measure Q 

(N) with respect to P is defined as 

H(Q 
(N) ‖ P ) = 

∫ 
log 

(
dQ 

(N) 

dP 

)
dQ 

(N) = 

∫ 
dQ 

(N) 

dP 

log 

(
dQ 

(N) 

dP 

)
dP . 

When there does not exist a unique equivalent martingale measure, a natural strategy is to find the martingale measure 

with the minimal relative entropy. Considering that X ( N ) is bounded, we have the uniqueness result below. 

Theorem 9 (Theorem 2.1, [42] ) . If H(Q 
(N) ‖ P ) < ∞ , then there exists a unique minimal entropy martingale measure. 

We firstly consider the one-dimensional case. For an equivalent martingale measure Q 
(N) defined by (3.2) , the relative 

entropy in terms of the Q 
(N) -martingale is given by 

H(Q 
(N) ‖ P ) 

= E 
Q (N) 

[
log 

(
dQ 

(N) 

dP 

)∣∣∣F T ]
= E 

Q (N) 
[ N ∑ 

i, j=1 

(
−

∫ T 
0 

κ(N) 
i j 

(t) λ(m,N) 
i, j 

(t) H 

i (N) 
t dt 

+ 

∑ 

0 <u ≤T 

log 
(
1 + κ(N) 

i j 
(u )(H 

i j(N) 
u − H 

i j(N) 
u − ) 

))] 
= E 

Q (N) 
[ N ∑ 

i, j=1 

m ∑ 

l=1 

[
− κ(l,N) 

i j 
λ(l,N) 
i, j 

∫ T 
0 

1 
[ T (m ) 

l−1 
,T (m ) 

l 
) 
(t) H 

i (N) 
t dt 

+ 

∑ 

0 <u ≤T 

log (1 + κ(l,N) 
i j 

(H 

i j(N) 
u − H 

i j(N) 
u − )) 1 

[ T (m ) 
l−1 

,T (m ) 
l 

) 
(u ) 

]] 
, 

where in the second equality we can move 
∑ N 

i, j=1 to the outside because at most one H 

i j(N) 
u − H 

i j(N) 
u − is equal to 1 while

the rest is equal to 0. The minimization problem of finding the equivalent martingale measure with the minimum relative 

entropy, is equivalent to minimizing ∑ 

j 

[
− κ(l,N) 

i j 
λ(l,N) 
i, j 

+ log (1 + κ(l,N) 
i j 

) 
]
, 

for fixed t and i , subject to (3.7) . 
9 
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We apply the method of Lagrange multipliers. Let γ be the Lagrange multiplier associated with the constraint (3.7) and 

L be the associated Lagrangian 

L 

(
γ , κ( l,N ) 

ij 

)
= 

∑ 

j 

[ 
−κ( l,N ) 

ij 
λ( l,N ) 
i, j 

+ log 

(
1 + κ( l,N ) 

ij 

)] 
+ γ

( ∑ 

j � = i 

(
1 + κ( l,N ) 

ij 

)
λ( l,N ) 
i, j 

(
x j − x i 

)
− rx i 

) 

= 

∑ 

j � = i 

[ 
−κ( l,N ) 

ij 
λ( l,N ) 
i, j 

+ log 

(
1 + κ( l,N ) 

ij 

)] 
+ γ

( ∑ 

j � = i 

(
1 + κ( l,N ) 

ij 

)
λ( l,N ) 
i, j 

(
x j − x i 

)
− rx i 

) 

, 

where the last equality follows from κ(l) 
ii 

(t) = 0 . Note that L (γ , κ(l,N) 
i j 

) is a convex function in κ(l,N) 
i j 

∈ (−1 , ∞ ) , for fixed

i, j = 1 , . . . , N and j � = i we let ⎧ ⎨ ⎩ 

∂ 

∂ κ(l,N) 
i j 

L (γ , κ(l,N) 
i j 

) = −λ(l,N) 
i, j 

+ 
1 

1+ κ(l,N) 
i j 

+ γ λ(l,N) 
i, j 

(x j − x i ) = 0 , 

∂ 
∂γ

L (γ , κ(l,N) 
i j 

) = 

∑ 

j � = i 
(1 + κ(l,N) 

i j 
) λ(l,N) 

i, j 
(x j − x i ) − rx i = 0 , 

(3.13) 

by which the equivalent martingale measure with the minimum relative entropy can be determined. 

An analogous result for the two-dimensional case can be obtained similarly, for fixed i, j = 1 , . . . , N and j � = i , ⎧ ⎨ ⎩ 

∂ 

∂ κ(N) 
i j 

L (γ , κ(N) 
i j 

) = −λ(N) 
i, j 

+ 
1 

1+ κ(N) 
i j 

+ γ λ(N) 
i, j 

( x j − x i ) = 0 , 

∂ 
∂γ

L (γ , κ(N) 
i j 

) = 

∑ 

j � = i 
(1 + κ(N) 

i j 
) λ(N) 

i, j 
( x j − x i ) − r x i = 0 , 

(3.14) 

where κ(N) 
i j 

is the entry of κ( N ) ( t ) given in (3.12) and λ(N) 
i, j 

is the entry of �( N ) ( t ) given in (2.16) . 

4. Convergence of equivalent martingale measures 

In this section, we investigate the limiting behavior of the equivalent martingale measure Q 
(N) as N goes to infinity.

Note that by Proposition 6 we know that η(N) 
t is a strictly positive F -martingale under P such that E [ η(N) 

T 
] = 1 , and then by

Theorem 11.4 (Martingale Convergence Theorem) of [43] we know that η(N) 
t converges almost surely under P . Furthermore, 

by Eqs. (3.9) and (3.10) on page 29 of [44] , and from the construction of Q 
(N) in Eq. (3.3) , we know that the convergence

of η(N) 
t implies the convergence of Q 

(N) , as N goes to infinity. For a fixed T ∈ (0, ∞ ), we consider (η(N) 
t ) 0 ≤t≤T as a stochas-

tic process on a Skorohod topology space D S [0 , T ] with complete and separable metric space (S, d) . In the following, we

investigate the limiting behavior of η(N) 
t as N goes to infinity. 

4.1. Preliminary analysis 

We firstly show that 

{ 

η(N) 
t 

} 

N∈ N 
is relatively compact by means of the technique in Chapter 3 of [44] and Chapter 3 of

[35] . The following two propositions conclude that the sequence of η(N) 
t is relatively compact. 

Proposition 10. For every T > 0, it holds that 

lim 

R →∞ 

sup 
N∈ N 

P 

(
sup 
t∈ [0 ,T ] 

| η(N) 
t | ≥ R 

)
= 0 . 

Proof. By submartingale inequality, and by the fact that η(N) 
t is strictly positive and E [ η(N) 

T 
] = 1 , we have that for every

N ∈ N , 

P 

(
sup 
t∈ [0 ,T ] 

| η(N) 
t | ≥ R 

)
≤

E 

[
η(N) 
T 

]
R 

= 

1 

R 
→ 0 , as R → ∞ . 

�

Proposition 11. For q (x, y ) := | x − y | ∧ 1 , there exist constants C > 0 and θ > 1, such that for all N, one has 

E 
P [ q 2 (η(N) 

t+ u , η
(N) 
t ) |F 

η(N) 
t 

t ] ≤ Cu θ , 0 ≤ t ≤ T , 0 ≤ u ≤ T − t. 
Proof. See Appendix B . �

10 
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4.2. Convergence for one-dimensional models 

Next, we investigate the limiting behavior of the sequence of R-N derivatives { η(N) 
t } as N goes to infinity. We adopt the

techniques in [45,46] and [47] by firstly defining an operator A acting on f ∈ S as 

A t f (x ) = 

1 

2 
f ′′ (x ) x 2 

∫ ∞ 

0 

( μ(t, y ) − ry ) 
2 

σ 2 ( t, y ) 
1 { S t = y } dy, for x ∈ R . (4.1) 

Proposition 12. For η(N) 
t given in Eq. (3.1) , it holds that 

lim 

N→∞ 

E 
P 

[ (
f (η(N) 

t k +1 
) − f (η(N) 

t k 
) −

∫ t k +1 

t k 

A t f (η
(N) 
s ) ds 

)
k ∏ 

l=1 

h l (η
(N) 
t l 

) 

] 

= 0 , (4.2) 

where 0 ≤ t 1 < · · · < t k +1 < ∞ for k ∈ N and h l is a bounded measurable functions on S for l = 1 , 2 , . . . , k . 

Proof. See Appendix C . �

4.3. Convergence for two-dimensional model 

In this subsection, we investigate the weak limit of R-N densities for the two-dimensional model. 

By the construction of approximating regime-switching Markov chain ˜ X (n 2 ) in Eqs. (2.14) and (2.15) , the martingale con- 

dition in Eq. (3.11) , and the elements of X 

(N) 
are n 1 times repetition of the elements of X 

(n 2 ) , we have that for every

i ∈ { 1 , 2 , . . . , n 2 } and ω 

(n 1 ) 
t = w k , ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 

j � = i 
λk 
i j (t)( ̃  x j −˜ x i ) = 

m ∑ 

l=1 ̃

 θ (T (m ) 
l−1 

, ̃  x i , w k ) 1 [ T (m ) 
l−1 

,T (m ) 
l 

) 
(t) , ∑ 

j � = i 
λk 
i j (t)( ̃  x j −˜ x i ) 

2 = (1 − ρ2 ) σ 2 (w k ) , ∑ 

j � = i 
(1 + κk 

i j (t )) λ
(N) 
i j 

(t )( ̃  x j −˜ x i ) = r ̃  x i , 

(4.3) 

where κk 
i j 
(t) is the element of matrix ̃  κ(N) 

kk 
defined in (3.12) , i.e., κk 

i j 
(t) = ( ̃  κ(N) 

kk 
) i j . 

Denote 

˜ θ(·, ·) := 

(
˜ θ (·, ·, w 1 ) , ˜ θ(·, ·, w 2 ) , . . . , ˜ θ (·, ·, w n 1 ) 

)
and 

σ := ( σ (w 1 ) , σ (w 2 ) , . . . , σ (w n 1 ) ) . 

Hence one has the following equation in terms of X 

(N) 
: (∑ 

j � = i 
λ(N) 
i, j 

(t) κ(N) 
i j 

(t)( x j − x i ) 
)
2 

∑ 

j � = i 
λ(N) 
i, j 

(t)( x j − x i ) 2 
= 

(
m ∑ 

l=1 

˜ θ(T (m ) 
l−1 

, x i ) 1 [ T (m ) 
l−1 

,T (m ) 
l 

) 
(t) − r x i 

)2 

(1 − ρ2 ) σ2 
. (4.4) 

We adopt the techniques in [40] by firstly defining an operator B acting on f ∈ S as 

B t f (x ) = 

1 

2 
f ′′ (x ) x 2 

∫ ∞ 

0 

(
˜ θ(t, y ) − ry 

)2 

(1 − ρ2 ) σ2 
1 { ̃  X t = y } dy, for x ∈ R , (4.5) 

where ˜ X is the regime-switching diffusion evolving according to (2.12) . 

Proposition 13. For η(N) 
t given in Eq. (3.1) , it holds that 

lim 

N→∞ 

E 
P 

[ (
f (η(N) 

t k +1 
) − f (η(N) 

t k 
) −

∫ t k +1 

t k 

B s f (η
(N) 
s ) ds 

)
k ∏ 

l=1 

h l (η
(N) 
t l 

) 

] 

= 0 , (4.6) 

where 0 ≤ t 1 < · · · < t k +1 < ∞ for k ∈ N and h l is a bounded measurable functions on S for l = 1 , 2 , . . . , k . 
Proof. See Appendix D . �

11 



K. Ding and N. Ning Applied Mathematics and Computation 392 (2021) 125732 

 

 

 

 

 

5. Applications to option pricing 

Recall that our approximation approach is under physical measure P . For one-dimensional diffusion case, under P 

we have constructed the approximating CTMC X ( N ) in Section 2.1 with the time-dependent generator matrix �(N) 
t = (

λ(N) 
i, j 

(t) 
)
i, j∈{ 1 , ... ,N} 

, where 

λ(N) 
i, j 

(t) = 

m ∑ 

l=1 

λ(l,N) 
i, j 

1 
[ T (m ) 

l−1 
,T (m ) 

l 
) 
(t) . 

Under the equivalent martingale measure Q 
(N) , by Proposition 7 , X (N) 

t is a CTMC with generator matrix 

˜ �(N) 
t = 

m ∑ 

l=1 

˜ �(l,N) 1 
[ T (m ) 

l−1 
,T (m ) 

l 
) 
(t) , 

where ˜ �(l,N) = 

(
˜ λ(l,N) 
i j 

)
i, j∈{ 1 , ... ,N} satisfies 

˜ λ(l,N) 
ii 

= −
∑ 

j � = i 
˜ λ(l,N) 
i j 

, ˜ λ(l,N) 
i j 

= (1 + κ(l,N) 
i j 

) λ(l,N) 
i j 

, i � = j. 

For the approximating CTMC X 
(N) 

defined in Proposition 2 for the two-dimensional diffusion case, whose generator ma- 

trix is �( N ) ( t ) under P , its generator matrix ˜ �
(N) 

(t) under equivalent martingale measure Q 
(N) can be generated analogously

as the one-dimensional case 

˜ �
(N) 

(t) =: 

m ∑ 

l=1 

˜ �
(l,N) 

1 
[ T (m ) 

l−1 
,T (m ) 

l 
) 
(t) . 

In this section, we apply the approximating framework and obtain approximating formulae for pricing options in Euro- 

pean and barrier types. 

5.1. European options 

• One-dimensional models: For any payoff function f : E → R , the value of the European option with maturity T for the

underlying S can be approximated as 

E x 

[
e −rT f 

(
X ( 

N ) 
T 

)]
= exp ( −rT ) 

(
exp 

(
�T 1 ̃  �( 1 ,N ) 

)
· · · exp 

(
�T m ̃

 �( m,N ) 
)
f 
)
( x ) . 

• Two-dimensional models: Assume ω 

(n 1 ) 
0 

= w k . By Eq. (3.8) , for any payoff function f : E → R , the value of the European

option with maturity T shall approximately be 

E 
x n 

[
e −rT ̃  f 

(
X 

( N ) 

T 

)]
= exp ( −rT ) 

(
exp 

(
�T 1 ̃  Λ( 1 ,N ) 

)
· · · exp 

(
�T m ̃

 Λ( m,N ) 
)
˜ f 
)(
x n 

)
, 

where ˜ f (x ) = f ◦ g −1 (x + ρh (w k )) . 

5.2. Barrier options 

Assume a knock-out barrier option with maturity T have the continuation region ˆ E and the knock-out region ̂ E c = E\ ̂  E ,

where E is the state space of the approximating CTMC (i.e., E = G 
(N) for the one-dimensional case and E = X 

(N) 
for the

two-dimensional case). Denote τ as the first passage time that the approximating CTMC belongs to the knock-out region. 

• One-dimensional models: Define 

˜ �(l) 
r (i, j) = 

⎧ ⎨ ⎩ 

˜ �(l,N) (x i , x j ) − r, x i ∈ ̂
 E , i = j, 

˜ �(l,N) (x i , x j ) , x i ∈ ̂
 E , x j ∈ E, i � = j, 

0 , x i ∈ 
ˆ E c , x j ∈ E, 

where l = 1 , . . . , m and r is the risk-free rate. Then the knock-out barrier option prices can be approximated as: 

Proposition 14. ( [37] ) For any payoff function φ : E → R , it holds that 

E x 

[
e −r(T ∧ τ ) φ(X (N) ) 

]
= 

(
exp 

(
�T 1 ̃  �(1) 

)
· · · exp 

(
�T m ̃

 �(m ) 
)
φ
)
(x ) . 
T ∧ τ r r 

12 
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Table 1 

Numerical results of option pricing on diffusion processes with time- 

dependent diffusion function. The results are obtained by implementing 

the number of time partition m = 50 and states N = 50 0 , 10 0 0 . Com- 

mon parameters are μ = 0 . 1 , r = 0 . 035 , α = −30 , T = 0 . 25 , S 0 = 100 and 

βt = 0 . 2 for each test. 

CTMC Closed 

T K N = 500 N = 10 0 0 

0.25 95 7.9667 7.9533 7.9629 

100 5.1224 5.1102 5.1070 

105 3.0487 3.0445 3.0433 

0.5 95 9.8973 9.8889 9.8856 

100 7.1184 7.1167 7.1125 

105 4.9282 4.9278 4.9266 

1 95 12.5508 12.5474 12.5455 

100 9.7598 9.7569 9.7563 

105 7.4206 7.4165 7.4153 

 

 

 

 

 

 

 

• Two-dimensional models: Assume ω 

(n 1 ) 
0 

= w k . Similarly, define 

˜ �
(l) 

r (i, j) = 

⎧ ⎨ ⎩ 

˜ �
(l,N) 

( x i , x j ) − r, x i ∈ ̂
 E , i = j, ˜ �

(l,N) 
( x i , x j ) , x i ∈ ̂

 E , x j ∈ E, i � = j, 

0 , x i ∈ 
ˆ E c , x j ∈ E, 

where l = 1 , . . . , m and r is the risk-free rate. By Eq. (3.8) , for any payoff function φ : E → R , the knock-out barrier option

prices can be approximated by 

E 
x n 

[ 
e −r(T ∧ τ ) ̃  φ( X T ∧ τ ) 

] 
= 

(
exp 

(
�T 1 ̃

 �
(1) 

r 

)
· · · exp 

(
�T m ̃

 �
(m ) 

r 

)˜ φ
)
( x n ) , 

where ˜ φ(x ) = φ ◦ g −1 (x + ρh (w k )) . 

6. Numerical examples 

6.1. Diffusion process with time-dependent diffusion function 

Brigo and Mercurio [48] and [49] proposed a shifted geometric Brownian motion process with deterministic coefficients 

that allows for skews in the implied volatility, and then this model can be used to fit market volatility structures that

are skewed. Here, the term “skew” describes the shape where low-strikes implied volatilities are higher than high-strikes 

implied volatilities. [48] assumed that the asset process S has a constant drift coefficient and a time-dependent diffusion 

coefficient ν( t, S t ). To determine ν , we start from a process X , which is a simple extension of the Black–Scholes model,

evolving according to 

d X t = μX t d t + βt X t d B t 

where μ is a constant and β t is a time-dependent (deterministic) volatility function. Consider that the asset process S is 

given by an affine transformation of X , i.e., S t = X t + αe μt , where α is a constant. Then S is driven by the following time-

dependent model: 

d S t = μS t d t + βt (S t − αe μt ) dB t . (6.1) 

The explicit form of European option prices is given by 

C t = 

(
S t − αe rt 

)
e ( r −r ) ( T −t ) �

( 

ln 
S t −αe rt 

K−αe rT 
+ ∫ T t ( r+ 1 2 β2 

u ) du √ ∫ T 
t β2 

u du 

) 

−
(
K − αe rT 

)
e −r ( T −t ) �

⎛ ⎝ 

ln S t −αe rt 

K−αe rT 
+ 

∫ T 
t 

(
r − 1 

2 
β2 
u 

)
du √ ∫ T 

t β2 
u du 

⎞ ⎠ , (6.2) 

where 0 ≤ t < T, r denotes the risk-free rate, and � is the standard normal distribution function. 

To illustrate the accuracy of our method, Table 1 reports the results of European call option prices under the model

(6.1) based on our CTMC method and the closed-form (6.2) , from which we can see that our results are very close to the

closed-form in all cases. 

6.2. Diffusion process with time-dependent drift function 

Ball and Torous [50] first put forward the dynamics of a default-free pure discounted bond price following a Brownian

bridge process, and investigated the equilibrium valuation of a call option. They realized that the Brownian bridge process 
13 
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Table 2 

Numerical results of option pricing on diffusion processes with time-dependent drift function. Euro- 

pean call options were priced with strike prices 100, 105, and 110, and the double barrier knock-out 

call options were priced with strike prices 95, 100, and 105, under the geometric Brownian bridge 

model. Other parameters we used are maturity T = 0 . 8 , b = 5 , S 0 = 100 , and the number of time par- 

tition m = 50 . The lower and upper barriers are L = 90 and U = 130 , respectively. N stands for the 

number of the states of the approximating CTMC. 

European Barrier 

N K = 100 K = 105 K = 110 K = 95 K = 100 K = 105 

500 9.7145 5.0979 0.5256 14.3288 9.7132 5.0977 

1000 9.7128 5.0955 0.5253 14.3253 9.7097 5.0941 

1500 9.7098 5.0948 0.5250 14.3246 9.7090 5.0934 

2000 9.7090 5.0932 0.5249 14.3244 9.7088 5.0932 

2500 9.7086 5.0930 0.5248 14.3243 9.7087 5.0931 

 

 

 

 

deserves many further financial applications. Next, we provide an approximate valuation for the Brownian bridge process. 

Consider a security S whose logarithm log S is a Brownian bridge model with diffusion coefficient σ under physical measure 

P , i.e., S is a geometric Brownian bridge process and satisfies {
d S t = ( b−log S t 

T −t 
+ 

1 
2 
σ 2 ) S t d t + σ S t d W t , 0 ≤ t < T , 

S 0 = e a . 
(6.3) 

Table 2 reports the valuation results of European call options and double barrier knock-out call options under model (6.3) ,

using the proposed CTMC approximation methodology. We can see fast convergences to stable limiting prices under scenar- 

ios of three strike prices. 

7. Conclusion 

In this paper, we have proposed a time-inhomogeneous CTMC approximation, equivalent martingale measure chang- 

ing, and valuation methodology, for one-dimensional and two-dimensional time-inhomogeneous diffusion processes in the 

physical probability measure. Considering that there does not exist a unique equivalent martingale measure, the “chosen”

equivalent martingale measure is the one having the minimal relative entropy with respect to the physical measure, whose 

convergence as the cardinality of the discrete state space of the approximating CTMC goes to infinity, is established by 

transforming the problem to determining whether the sequence of the Radon–Nikodym derivatives is convergent. Numeri- 

cal examples have confirmed the accuracy of the proposed methodology. While this paper shed the light on option pricing 

with time-inhomogeneous two-dimensional correlated stochastic processes in the physical probability measure, by means of 

the time-inhomogeneous CTMC approximation technique, studying the effects of ambiguous volatility [51] and ambiguous 

correlation [52] could be promising topics for further research. 
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Appendix A. Proof of Proposition 3 

For a fixed time T , define two processes Z = (Z t ) t≥0 and Y = (Y t ) t≥0 by 

Z t := (Z 0 + t) ∧ T , Y t := X Z t , (A.1) 

for t > 0 and Z 0 ∈ [0, T ]. For any s, t > 0 and bounded Borel function f : [0 , T ] × X × W → R , it holds that 

(P t f )(s, x, w ) := E [ f (Z t , Y t , W t ) | Z 0 = s, Y 0 = x, W 0 = w ] 

= E [ f 
(
(s + t) ∧ T , X (s + t) ∧ T , W t 

)| X s = x, W 0 = w ] . 

Then P t defines a strongly continuous contractive semigroup on C 0 (E) (see [35] for details), and the corresponding infinites-

imal generator L 
′ is defined by 

L 
′ f (s, x, w ) = lim 

t↓ 0 
P t f (s, x, w ) − f (s, x, w ) 

t 
, (A.2) 

We prove (a) by firstly approximating the time-space Feller Markov process (Z, Y, W) by a time-homogeneous Markov chain 

( ̃  Z , ̃  X (n 2 ) , ω 
(n 1 ) ) on T 

(N) × G 
(n 1 ,n 2 ) with T 

(N) = { 0 } ∪ δm N and δm = T / (mN) for m ∈ N . Assume that �( i,N ) , i = 1 , . . . , N are
14 
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generator matrices approximating the generator L iT /N . Then the generator of Markov chain ( ̃  Z , ̃  X (n 2 ) , ω 
(n 1 ) ) is given by 

�(N,m ) f (t, x, ω) = 

f (t + δm , x, w ) − f (t, x, w ) 

δm 

+ 

N ∑ 

i =1 

(�(i,N) f t )(x, w ) 1 { (i −1) mδm ≤t<imδm } , 

for (t, x, w ) ∈ T 
(N) × G 

(n 1 ,n 2 ) . From the analysis in [37] , we can describe ̃  Z as δm times a Poisson process with rate λ = 1 /δm .

That is, for any t > 0, ˜ Z t follows a Poisson distribution with mean t and variance δm t = tT / (mN) . Then, ˜ Z t tends to t for

every fixed t > 0. When ˜ Z t taking value in [(i − 1) δm , iδm ) and ω t is independent to ˜ Z t , ( ̃  X (n 2 ) , ω) is a Markov chain with

state space G 
(n 1 ,n 2 ) and generator matrix �( i,N ) . 

For any natural number sequence (m (N)) N∈ N , consider the sequence of Markov chains ( ̃  Z , ̃  X (n 2 ) , ω 
(n 1 ) ) with state space

T 
(N) × G 

(n 1 ,n 2 ) and generator matrices �( N,m ) . Given the condition that ε(n 1 ,n 2 ) ( f t ) 
→ 0 as n 1 , n 2 → ∞ for any function

f t ∈ D 
∗(L t ) , the construction of �( N,m ) implies that, for all functions f in a core of L 

′ which is the generator of (Z, Y, W)

given in Eq. (A.2) , as m, n 1 , n 2 → ∞ one has 

ε(n 1 ,n 2 ,m ) ( f ) = sup 
t∈ T (N) , (x,w ) ∈ G (n 1 ,n 2 ) 

| �(N,m ) f n 1 ,n 2 (t, x, w ) − L 
′ f (t, x, w ) | → 0 , (A.3) 

where f n 1 ,n 2 = f | 
[0 ,T ] ×G (n 1 ,n 2 ) 

. 

Recall that 

(P t f )(s, x, w ) = E [ f (Z t , Y t , W t ) | Z 0 = s, Y 0 = x, W 0 = w ] 

and define 

(P 

(m,n 1 ,n 2 ) 
t f )(s, x, w ) := E [ f ( ̃  Z t , ̃  X (n 2 ) t , ω t ) | ̃  Z 0 = s, ̃  X (n 2 ) 

0 
= x, ω 

(n 1 ) 
0 

= w ] 

for t ∈ [0, T ]. By Theorem 1.6.1 in [35] , Eq. (A.3) implies that 

(P 

(m,n 1 ,n 2 ) 
t f )(s, x, w ) → (P t f )(s, x, w ) . 

Hence, for any initial value ( s, x, w ) and applying Theorem 4.2.11 in [35] , we have that 

( ̃  X (n 2 ) t , ω 

(n 1 ) 
t ) �⇒ (X t , W t ) . 

Note that h and g −1 defined in Eq. (2.8) are continuous functions, and by continuous mapping theorem, ( b ) can be

concluded from ( a ). 

Appendix B. Proof of Proposition 11 

Let 

�M 

i j(N) 
t := M 

i j(N) 
t − M 

i j(N) 
t− , 

�H 

i j(N) 
t := H 

i j(N) 
t − H 

i j(N) 
t− , 

and then by Eq. (5) we know that �M 

i j(N) 
t = �H 

i j(N) 
t . By Itô’s formula for semimartingales (Proposition 8.19, [53] ) we ob-

tain 

(M 

i j(N) 
t ) 2 

= 2 

∫ t 
0 

M 

i j(N) 
s − dM 

i j(N) 
s + 〈 M 

i j(N) , M 
i j(N) 〉 c t 

+ 

∑ 

0 <s ≤t 

[ (M 

i j(N) 
s − + �M 

i j(N) 
s ) 2 − (M 

i j(N) 
s − ) 2 − 2 M 

i j(N) 
s − · �M 

i j(N) 
s ] 

= 2 

∫ t 
0 

M 

i j(N) 
s − dM 

i j(N) 
s + 

∑ 

0 <s ≤t 

(�M 

i j(N) 
s ) 2 

= 2 

∫ t 
0 

M 

i j(N) 
s − dM 

i j(N) 
s + 

∑ 

0 <s ≤t 

(�H 

i j(N) 
s ) 2 

= 2 

∫ t 
0 

M 

i j(N) 
s − dM 

i j(N) 
s + 

∑ 

0 <s ≤t 

�H 

i j(N) 
s 

= 2 

∫ t 
0 

M 

i j(N) 
s − d M 

i j(N) 
s + 

∫ t 
0 

(
d H 

i j(N) 
s − λ(N) 

i, j 
(s ) H 

i (N) 
s d s 

)
+ 

∫ t 
0 

λ(N) 
i, j 

(s ) H 

i (N) 
s ds 

= ̃
 M t + 

∫ t 
0 

λ(N) 
i, j 

(s ) H 

i (N) 
s ds 
15 
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where 

˜ M t := 2 

∫ t 
0 

M 

i j(N) 
s − dM 

i j(N) 
s + M 

i j(N) 
t 

is a martingale. Then 

〈 M 
i j(N) , M 

i j(N) 〉 t = 

∫ t 
0 

λ(N) 
i, j 

(s ) H 

i (N) 
s ds. 

By Eq. (3.1) and the independence of the family of martingales { (M 

i j(N) 
t ) t≥0 } for different combinations of i, j ∈ { 1 , . . . , N}

and i � = j (see Lemma 5 ), 

E 
P 
t [ η

(N) 
t+ u ] 

2 = E 
P 
t 

[ 

1 + 

∫ t+ u 
t 

η(N) 
s −

∑ 

i, j 

κ(N) 
i j 

(s ) dM 

i j(N) 
s 

] 2 

= 1 + 2 E 
P 
t 

[ ∫ t+ u 
t 

η(N) 
s −

∑ 

i, j 

κ(N) 
i j 

(s ) dM 

i j(N) 
s 

] 

+ 

∑ 

i, j 

∫ t+ u 
t 

E 
P 
t 

[
(η(N) 

s − ) 2 (κ(N) 
i j 

(s )) 2 λ(N) 
i, j 

(s ) H 

i (N) 
s 

]
ds 

= 1 + 

∑ 

i, j 

∫ t+ u 
t 

E 
P 
t 

[
(η(N) 

s − ) 2 (κ(N) 
i j 

(s )) 2 λ(N) 
i, j 

(s ) H 

i (N) 
s 

]
ds. 

For ̂  κ(N) 
i j 

= sup 
t∈ [0 ,T ] 

κ(N) 
i j 

(t) and ̂  λ(N) 
i, j 

= sup 
t∈ [0 ,T ] 

λ(N) 
i, j 

(t) , considering that H 
i (N) 
t indicates X (N) 

t taking a specific value x i , we have 

E 
P 
t [ η

(N) 
t+ u 

]
2 ≤ 1 + sup 

i 

∑ 

j 

( ̂  κ(N) 
i j 

) 2 ̂  λ(N) 
i, j 

∫ t+ u 
t 

E 
P 
t [(η

(N) 
s ) 2 ] ds. 

Set M = sup 
N 

sup 
i 

∑ 

j 

( ̂  κ(N) 
i j 

) 2 ̂  λ(N) 
i, j 

and by Gronwall’s Lemma, 

E 
P 
t [ η

(N) 
t+ u ] 

2 ≤ 1 − e Mt + e M(t+ u ) . (B.1) 

Thus, 

E 
P 
t 

[
η(N) 
t+ u − η(N) 

t 

]
2 = E 

P 
t 

[ ∫ t+ u 
t 

η(N) 
s −

∑ 

i, j 

κ(N) 
i j 

dM 

i j(N) 
s 

] 2 

= 

∑ 

i, j 

∫ t+ u 
t 

E 
P 
t 

[
(η(N) 

s − ) 2 (κ(N) 
i j 

(s )) 2 λ(N) 
i, j 

(s ) H 

i (N) 
s 

]
ds 

≤ M 

∫ t+ u 
t 

E 
P 
t [ η

(N) 
s ] 2 ds 

≤ M 

∫ t+ u 
t 

(1 − e Mt + e Ms ) ds 

≤ Mu (1 − e Mt ) + e M(t+ u ) − e Mt 

≤ e MT (e Mu − 1) . 

It is not hard to obtain that there exist C > 0 and θ > 1, such that 

e MT (e Mu − 1) ≤ Cu θ , 

which completes the proof. 

Appendix C. Proof of Proposition 12 

By Itô’s formula, we have 

f (η(N) 
t ) = f (1) + 

∫ t 
0 

f ′ (η(N) 
s − ) dη(N) 

s + 

1 

2 

∫ t 
0 

f ′′ (η(N) 
s − ) d〈 η(N) , η(N) 〉 c s 

+ 

∑ 

0 <s ≤t 

{ f (η(N) 
s − + �η(N) 

s ) − f (η(N) 
s − ) − f ′ (η(N) 

s − ) · �η(N) 
s } 

= f (1) + 

∫ t 
0 

f ′ (η(N) 
s − ) dη(N) 

s + 

∑ 

0 <s ≤t 

{ 

f 
(
η(N) 
s − (1 + 

∑ 

i, j 

κ(N) 
i j 

(s )�M 

i j(N) 
s ) 

)
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− f (η(N) 
s − ) − f ′ (η(N) 

s − ) · η(N) 
s −

∑ 

i, j 

κ(N) 
i j 

(s )�M 

i j(N) 
s 

} 

= f (1) + 

∫ t 
0 

f ′ (η(N) 
s − ) dη(N) 

s + 

∑ 

0 <s ≤t 

{ ∑ 

i, j 

[
f (η(N) 

s − (1 + κ(N) 
i j 

(s ))) 

− f (η(N) 
s − ) − f ′ (η(N) 

s − ) · η(N) 
s − κ(N) 

i j 
(s ) 

]
�H 

i j(N) 
s 

} 

= f (1) + M t + 

∑ 

i, j 

∫ t 
0 

[ 
f (η(N) 

s − (1 + κ(N) 
i j 

(s )) − f (η(N) 
s − ) (C.1) 

− f ′ (η(N) 
s − ) · η(N) 

s − κ(N) 
i j 

(s ) 
] 

× λ(N) 
i, j 

(s ) H 

i (N) 
s ds, 

where 

M t := 

∫ t 
0 

f ′ (η(N) 
s − ) dη(N) 

s + 

∑ 

i, j 

∫ t 
0 

(
f (η(N) 

s − (1 + κ(N) 
i j 

(s ))) − f (η(N) 
s − ) 

− f ′ (η(N) 
s − ) · η(N) 

s − κ(N) 
i j 

(s )) 
)
dM 

i j(N) 
s 

is a martingale under P . Recalling the construction of approximating Markov chain in Eq. (2.2) and the martingale condition

in Eq. (3.7) , for every i ∈ { 1 , . . . , N} , we have the following equations ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∑ 

j 

λ(N) 
i j 

(t)(x j − x i ) = 

m ∑ 

l=1 

μ(T (m ) 
l−1 

, x i ) 1 [ T (m ) 
l−1 

,T (m ) 
l 

) 
(t) , 

∑ 

j 

λ(N) 
i j 

(t)(x j − x i ) 
2 = 

m ∑ 

l=1 

σ 2 (T (m ) 
l−1 

, x i ) 1 [ T (m ) 
l−1 

,T (m ) 
l 

) 
(t) , ∑ 

j 

(1 + κ(N) 
i j 

(t )) λ(N) 
i j 

(t )(x j − x i ) = rx i , 

(C.2) 

then (∑ 

j 

λ(N) 
i, j 

(t) κ(N) 
i j 

(t)(x j − x i ) 
)
2 

∑ 

j 

λ(N) 
i, j 

(t)(x j − x i ) 2 
= 

(
m ∑ 

l=1 

μ(T (m ) 
l−1 

, x i ) 1 [ T (m ) 
l−1 

,T (m ) 
l 

) 
(t) − rx i 

)2 

m ∑ 

l=1 

σ 2 (T (m ) 
l−1 

, x i ) 1 [ T (m ) 
l−1 

,T (m ) 
l 

) 
(t) 

. (C.3) 

For the left side of Eq. (C.3) , by the Cauchy–Schwarz inequality, for fixed t ∈ [0, T ], it holds that (∑ 

j 

λ(N) 
i, j 

(t) κ(N) 
i j 

(t)(x j − x i ) 
)
2 

∑ 

j 

λ(N) 
i, j 

(t)(x j − x i ) 2 
≤

∑ 

j 

λ(N) 
i, j 

(t)(κ(N) 
i j 

(t)) 2 . (C.4) 

Furthermore, the equality in the above equation holds by the linear relationship between κ(N) 
i j 

(t) and (x (N) 
j 

− x (N) 
i 

) , which

holds for every N for the reason that x (N) 
j 

and x (N) 
i 

are finite grids and κ(N) 
i j 

(t) is finite solved in (3.13) . Hence, for fixed i ,

we have (∑ 

j � = i 
λ(N) 
i, j 

(t) κ(N) 
i j 

(t)(x j − x i ) 
)
2 

∑ 

j � = i 
λ(N) 
i, j 

(t)(x j − x i ) 2 
−→ 

∑ 

j � = i 
λ(N) 
i, j 

(t)(κ(N) 
i j 

(t)) 2 , (C.5) 

as N → ∞ . 

Combining (4.1) and (C.1) , we get that as N → ∞ 

E 

[ 
f (η(N) 

t ) − f (1) −
∫ t 
0 

A s f (η
(N) 
s ) ds 

] 
= E 

[ ∫ t 
0 

(∑ 

i, j 

(
f (η(N) 

s − (1 + κ(N) 
i j 

(s ))) − f (η(N) 
s − ) − f ′ (η(N) 

s − ) · η(N) 
s − κ(N) 

i j 
(s ) 

)
× λ(N) 

i, j 
(s ) H 

i (N) 
s − 1 
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f ′′ (η(N) 

s ) 
(
η(N) 
s 

)
2 

∫ ∞ (μ(s, y ) − ry 
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2 d y 

)
d s 

] 

0 
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−→ 0 , 

where a N � b N means that lim 

N→∞ 

| a N − b N | = 0 . The second equality follows from Eqs. (C.3) and (C.5) . The second limit holds

for X (N) 
t ⇒ S t , as N → ∞ . Considering that 

∏ k 
l=1 h l (η

(N) 
t l 

) is bounded and F t l 
-measurable, completes the proof. 

Appendix D. Proof of Proposition 13 

By Eq. (C.1) , we know that 
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(
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t 

)
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is a martingale under P . Similar to the one-dimensional case, 
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which ends this proof. 
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