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1. Introduction
1.1. Continuous time Markov chain approximation technique

Asset prices and interest rates are widely assumed to follow continuous-time stochastic processes with continuous state
space, while there are only a limited number of models for a limited number of financial derivatives having analytical
formulas. Mijatovi¢ and Pistorius [1] introduced such a continuous-time Markov chain (CTMC) approximation based val-
uation framework to solve option pricing problems. They successfully applied the CTMC approximation technique with
one-dimensional stochastic processes in the pricing of European and continuously monitored barrier options, and further
established rigorous convergence properties for the approximation. The accuracy of the CTMC approximation method over
other numerical methods has been fully tested and verified in different settings, and proved in terms of error analysis and
convergence rate in [2] and [3].

The CTMC technique was used to price other options with one-dimensional stochastic processes including, but are not
limited to, the following excellent works: Eriksson and Pistorius [4] analyzed the solution of the optimal stopping problem
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associated with the valuation of American options driven by CTMC; The discretely and continuously monitored arithmetic
Asian options through numerical inversion of a double transform are studied in [5]; Song et al. [6] extended the valuation
framework to a one-dimensional Markov process with regime-switching coefficients; Chatterjee et al. [7] developed a CTMC
based approximation method for the pricing and hedging of short-maturity arithmetic Asian options; Meier et al. [8] de-
veloped the CTMC approximation of one-dimensional diffusions with a lower sticky boundary and priced bond in a sticky
short rate model for low-interest environment; Siu [9] priced bond under a Markovian regime-switching jump-augmented
Vasicek model, provided that the market parameters switch over time according to a CTMC.

Approximating a correlated two-dimensional diffusion process is much more challenging to all existing algorithms, for
example the trees approach needs a transformation to give constant volatility or decorrelate the Brownian motions ([10] and
[11]) while that transformation is not intuitive. Cui et al. [12] and [13] developed a two-layer CTMC method to approximate
the stochastic (local) volatility model; Cui et al. [14] and [15] provided an alternative double-layer CTMC approximation for
time-changed Markov processes and skew stochastic (local) volatility models, respectively; In contrast to the existing double-
layer approach, Xi et al. [16] proposed a simultaneous two-dimensional CTMC approximation method, to approximate the
general two-dimensional fully coupled Markov diffusion processes; Cai et al. [17] invented a unified analytical CTMC approx-
imation framework for practically useful quantities including first passage times, running extrema, and time integrals; Elliott
et al. [18] modeled unobservable states of the economy by a hidden CTMC and adopted a regime switching random Esscher
transform to determine an equivalent martingale pricing measure; Kirkby et al. [19] proposed a general CTMC approxima-
tion for multi-asset option pricing with systems of correlated diffusions; Kirkby et al. [20] considered Bermudan and barrier
options using CTMC approximation of stochastic volatility; Kirkby and Nguyen [21] efficiently priced Asian option under
regime-switching jump diffusions and stochastic volatility models by combining CTMC approximation with Fourier pricing
techniques.

1.2. Motivation

Firstly, in practical applications, model parameters such as the short rate or the volatility function are often taken to
be time-dependent, such as for short rate models that perfectly fit the initial yield curve (see, e.g., [22,23]) or for other
calibration purposes. Various efforts have been made to explicitly model the dependence of parameters on time, such as
[24-26]. In recent years, time-dependent parameter modeling with financial time series have been researched with new
techniques (see, e.g., [27-29]). Stochastic processes that use time-dependent drift and/or diffusion coefficients, are time-
inhomogeneous. When it comes to the valuation of financial derivatives whose underlying asset prices modeled by a time-
inhomogeneous stochastic process, only very few models for certain types of options have analytical formulas available. In
this paper, we are going to develop an efficient and accurate pricing framework that is generally applicable for the time-
inhomogeneous one-dimensional and two-dimensional models.

Secondly, in mathematical finance, the fundamental theorem of asset pricing reveals that for a stochastic process the
existence of an equivalent martingale measure plays a very important role, because it is essentially equivalent to the market
being arbitrage-free (see [30]). Starting from the economically meaningful assumption that a stochastic process, which does
not allow arbitrage profits, enables the real probability measure to be replaced by an equivalent probability measure such
that the process becomes a martingale, and then it is possible to use the rich machinery of martingale theory.

The Girsanov theorem (see [31]) is especially important in the theory of financial mathematics as it tells how to convert
from the physical measure to the risk-neutral measure, which is a very useful tool for pricing derivatives on the underlying
instrument. The Novikov’s condition (see [32]) is a widely used sufficient condition for a stochastic process that takes the
form of the Radon-Nikodym derivative in the Girsanov’s theorem to be a martingale. The Kazamaki’'s condition (see [33]),
as a more general condition than the Novikov’s condition, gives a sufficient criterion ensuring that the Doléans-Dade ex-
ponential of a local martingale is a true martingale. However, there are many cases for which the Girsanov theorem is not
applicable either because both Novikov’s condition and Kazamaki’s condition fail, or these two conditions are challenging to
meet (see [34]), which generates difficulties in performing a change of measure.

1.3. Our contributions and structure of the paper

So far all the stochastic processes being approximated by the CTMC technique for option pricing purposes are in the
risk-neutral measure. In this paper, starting with the general time-inhomogeneous stochastic processes in the physical prob-
ability measure, we provide a systematic approach, from time-inhomogeneous CTMC approximation, to settle the “closest”
martingale measure relative to the physical measure, and to price options based on the time-inhomogeneous approximat-
ing CTMC after measure change. Our methodology is applicable to general stochastic processes that are hard to perform a
change of measure.

In Section 2, we construct the time-inhomogeneous approximating CTMC. We firstly approximate the general one-
dimensional time-inhomogeneous diffusion process given in (2.1) by a time-inhomogeneous CTMC in Section 2.1, using the
technique proposed in [35]. The two-dimensional time-inhomogeneous diffusion process given in (2.7) is approximated by
a double-layer time-inhomogeneous CTMC in Section 2.2, using the auxiliary process technique proposed in [13] but in the
time-inhomogeneous setting.
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In Section 3, we perform a change of measure on the approximating time-inhomogeneous CTMC. For the reason that
Markov chains have random jumps, there does not exist a unique equivalent martingale measure. To tackle this problem,
we determine a “closest” martingale measure to the physical measure by choosing the one having the minimal relative
entropy with respect to the physical measure. In the risk-neutral world, there exists possible destruction of the martingale
property after approximating, while the proposed approach is able to preserve the martingale property after approximation.
The convergence of the “chosen” equivalent martingale measure is established in Section 4, by transforming the problem to
determining whether the sequence of the Radon-Nikodym derivatives is convergent, as the cardinality of the discrete state
space of the approximating CTMC goes to infinity.

In Section 5, we apply the approximating framework and obtain approximating formulae for pricing options in Euro-
pean and barrier types. In Section 6, we provide CTMC approximated option valuation and demonstrate the accuracy of the
proposed methodology. In Section 7, we conclude and remark.

2. The CTMC approximation
2.1. One-dimensional diffusion

We consider the following general diffusion process {St}; < [o,rj With state space D on the probability space (2, F,F,P),
where F = (F¢);o is the filtration and P is the physical measure. Here, S evolves according to

ds; = M(t,st)dt+0'(t, St)dBt (21)

where B = (B¢);»o is a standard Brownian motion under P. Suitable conditions are imposed on the functions u and o so
that (2.1) has a unique solution (see, e.g., Definition 1.1. and Theorem 1.2. on page 4 of [36], for sufficient conditions for a
strong solution and the uniqueness, respectively). Let FS = FB be the natural filtration generated by B such that F8 c F. That
is, we consider the general diffusion case that wu(t, x) and o(t, x) can be time-dependent functions. We further assume that
S¢ is a Feller process whose Feller property guarantees that there exists a version of the process with cadlag paths satisfying
the strong Markov property.

Next, we illustrate the methodology introduced in [1] on the approximation of CTMC to S. For the general time-
inhomogeneous Markov process described in (2.1), on the same probability space (€2, F,F,P) its approximating process
is a time-inhomogeneous CTMC XN) on the time interval [0, T], whose finite state space is given by

(G(N) :{X],...,XN} cDh

where x; represents the smallest element and xy represents the largest element. Define the boundary of G as G :=
{x1,xy} and denote the interior of G™) simply as G\ dG®™ . We further partition the time interval [0, T] in the way that
T = LT for 1 € {0,1.....m}.

Denote the time-dependent generator of XM as AN = <kl(l;’) (t)) . In line with [37], AM) is generated in each

i,je{1,..,N}
m
time interval [T,(fq), Tl(m)) for [ € {1, ..., m}. Denote Alf’;) ©:=> Ai(l]’.N)I[T(m) T(””)(t)’ then Ai(l]’.N) is constructed as follows:
’ -1 -1 ’

e Fori=2,...,N—1, set

Al{’]zmlz 0, Vj#£i.

Z)»Ejm(xj—xi)ZM(TI(IT;)’X:‘)’ j=i-1i+1

J#i

Z/\;’jm(xj -x)? =0} (T, x),  j=i-1i+1. (2.2)

J¢(; N) (LN) (LN)
A== = A J=t

(LN) . . ..
)‘i,j , J#FI-1,1,i+1.

e Fori=1,N, set

MM=0,  Vje{l,....N}.

Remark 1. The state space {x;}i1 . ny are formed by a nonuniform grid. For fixed x; and xy, we define {x,,..., XN_1}
proposed in [38]: Assume that Xo = x¢ > 0, and for @ € (0, 1),

Xj:=Xp+a- (Xy—Xp)-sinh (I<21{J+k1<1 - I{I>> j=2,...,N—1, (2.3)
where
. X1 —Xo . XN — Xo
ki :=arcsinh{ ——— ), ky :=arcsinh| ——— ). 2.4
1 <0[(XN—X]‘)> 2 (a(XN_Xj)> ( )

3
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The sequence of time-inhomogeneous generator matrices At(N) defined on the time-space grids [0, T] x G™), needs to
be close to the time-dependent generator of the time-inhomogeneous Markov process {St}; ¢ [o,r}- Consider the time-space
Markov process (Z, Y). Here, Z = (Z;)¢s0 and Y = (Y);>o are defined as

Zi = (Zo+t) AT, Y: := Szt, (25)

for t > 0 and Zy € [0, T], where the state space of Y is D. For any s, t > 0 and bounded Borel function f:[0,T] x D — R,
the time-space Markov process (Z, Y) with state space [0, T| x D, satisfies

(Pef)(s, %) :=E[f(Z:.Y)|Zo =5, Yo = X] = E[f((s + ) AT, Ss41)7)|Ss = X].
Then P; generates a semigroup as defined in [35], and its corresponding infinitesimal generator £’ is defined as

£, =lim e [Pf(s.%) — £5.0) (2.6)

for all f in the domain of £/, where suitable regularity condition are imposed on (Z, Y) to ensure the existence of the limit.
The convergence result is given in Corollary 2 of [37].

2.2. Two-dimensional diffusion

In this subsection, we consider that the underlying security follows a two-dimensional diffusion process,

{dst = (t, Se, W)dt + v (Sr)o (Wr)dB, 2.7)

dWr = a(W,)dt + y W )dB®,

where EP[dBfl)dBt(z)] = pdt with —1 < p < 1. We consider the general case that the coefficients u(t, x, y) is a time-

dependent function. Suitable conditions are imposed on the functions u, o, «, y, and v > 0, so that model (2.7) has a
unique-in-law weak solution that exits in its state space. Assume that % is locally integrable on the state space S of S,
and % is locally integrable on the state space W of W;. We consider the case that (S;, W;) is a Feller process whose Feller
property guarantees that there exists a version of the process with cadlag paths satisfying the strong Markov property.

The rest of this section is to approximate this two-dimensional model (2.7) by a double-layer CTMC, using the auxiliary
process technique proposed in [13].

2.2.1. The auxiliary process
Define the functions g and h as

g(x) := fx ﬁdu and h(x) :=f

(1) (2)
By’ —pB;

*o(u)

4 (2.8)

and denote B} = is a standard Brownian motion independent of Bt(z). We create an auxiliary process with state

P
space X as X; := g(St) — ph(W;), then we can rewrite model (2.7) as

dX; = 6(t, X, Wodt + /(1 — p2)o (W;)dB;, (29)
dW, = a(W)dt + y (W;)dB®,

where
Ot X, W) 1= 0(t, g (Xc + phOV)), W),

and

9 /Ny ! ] I /
0t.xy) = (“ﬂf(z)” - ”é’”o%) - p(a@)‘;g; £ (rmo'm) v (y)o(y))) (210)

Now, S is driven by W’s approximating CTMC w(™) instead, and denote the resulting S process as S®. We further denote
X: := g(S) — ph(w™), (2.11)

by Proposition 1 in [13], one can show that
dX. = 0(t. X, ™)dt + /(1 = p2)o (w™)dB:. (2.12)

Note that X can be regarded as a regime-switching diffusion.
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2.2.2. CTMC approximation of (Xt, W)
Since X = (X¢);>o is a time-dependent process, we can approximate it in a similar way as that of in Section 2.1:

First layer: We firstly approximate the diffusive variance process W = (W)= by a CTMC ™) = (wt("l))tzo with state

space W) = {wy, ..., wp,}.
Denote the generator of a)t(”l) as Q= (qij)ije{l ) which is generated as a tri-diagonal matrix with zero row sums
g JJent, ..., 1
and nonnegative elements as follows:
Fori=2,...,n; -1,
ZQi,j(Wj*Wi)=a(Wi)s j=i-1,i+1
J#i
Zqi,j(wj_wi)ZZVZ(Wi)’ ]:l—],l+l, (2]3)
J# o
dii = —qii-1 — Gii+1> J=1
0, j#I-1,1i+1,

and gy =q,, ;=0 for je{l,....ni}.

Similarly, the states of (™) are nonuniform grids, which satisfy (2.3) and (2.4).

Second layer: Then we approximate the process X = (X¢);»o by a CTMC X(™2) = (Xt(nz))tzo with state space
XMm2) = {;(4], o ,5(}12}.

For w™) taking value wy, € {wy, ..., wn, } with ke {1,...,ny}, the time-dependent generator matrix of X™2) is defined
accordingly as Aj(t) := (A:‘ .(t)) , where for l € {1,...,m}
J ije{1,...n}
= k(D)
k
)\.i_j(t) = IX:)»U 1[7-1(7n1l).—l-l(m))(t). (2.14)
=1

Then )»S:N) should be constructed in the time interval [T,S"P, Tl(m)) as

DM (= %) =0T xi wi), j=i-li+1,
J#
Y AP —x)t= (1= podw),  j=i-T1i+1, (2.15)
J#
k) _ 5 kD) k(D) i—i
Ail =i = i J=t
0, j#FEI-1,i,i+1,
fori=2,...,np -1,

k(l k(I .
and A = )\;E)l =0forie{l,...,n}.

Moreover, for notational convenience, we define the following sets X¥, which correspond to A(t) for each wt("l) =
wy, kef{l,..., n}:
XK= (R, R )

(ny)

One can see that the elements of XK are the same as in X(™2). An intuitive perception is that once wp = wy is fixed, xk is

the state space of the approximating CTMC with generator matrix A(t). It is not hard to see that
X'=...=x™",
2.2.3. Regime-switching CTMC approximation to the second layer
By Theorem 1 in [6], we can embed the CTMC X("2) (the second layer covered in Session 2.2.2) in a Markov chain to

. . . . . =N
transfer the two-dimensional process (X;, W;) to an equivalent one-dimensional process X ~ with an enlarged state space

:(N) 1 2 n = = =
X =X'xX X--~><XIZ={X1,X2,...,XN}, N =nq - n.

As a natural extension, we have a result similar to [6] in time-inhomogenuous case:

Proposition 2. Consider X®2) gs the discrete state time-inhomogeneous regime-switching CTMC given in Section 2.2.2, and con-

. . . . . =N =(N) . .
sider another one-dimensional time-inhomogeneous CTMC X  with state space X ~ and N x N transition rate matrix

q1,11n, + A1 (D) G121, q1,nIn,
I I A, (t I
AN ) = Q241' ny q2,21n, + 2(t) ‘ ‘hn‘l n, ’ (2.16)
qn],llnz qnpzlrlz ce q”1~"11”2 + A”] (t)

5
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where I, is the ny x ny identity matrix, Q = (g; j)n,xn, is the time-independent generator matrix of ™) and Ay(t) is the
=(N)

time-dependent generator matrix of X("2) when w™) takes value w,. Define the mapping ¢ : XM2) x {1,....n1} > X by
A (X, k) = Xe_1yny 1

and its inverse ¢! TV L xm) o {1,....,n7} by
o) = (%1, k), st.n=(k—1)ny, +i.

Further define

~ ~ =(N) =(N)
X(nz) = (X[(HZ))OStST’ w(m) = (a)[(m))gstST’ X = (Xt ) ,
O<t<T

and then we have

(X)) ‘wénn —w K = Xi]

N\ =) =
=E |:§0 ¢ ( )‘ x(kl)n2+ii|

for any path-dependent payoff function ¢ such that the expectation on the left-hand side is finite.

2.2.4. Weak convergence

Denote the state space of the Markov process (t,X¢, W) as [0, T] x X x W. For any s, t > 0 and bounded Borel function
f:l0,T] x X x W — R, set ft: (x, w)—f(t, x, w). For function f; € CC“(X x W), by Eq. (2.9), the corresponding infinitesimal
generator £; acting on f; is given by

Lefr(x,w) =0(t,x, w)= ff +5 (l—,o )o (w)a Iy g (w)%+— *(w )gv{z‘
Denote
GCMm) =Xy, Xy} x Wy, W, )
the approximation error over G(-") is measured by
€M) (f) = max |A® foen,n, Ko W) = Lo fe (R W), (2.17)

te[0.T], (X.w)eGM1-n2)

where function fi n; n, = fe| i .n,) denotes the restriction of f; to GMm2) and AN = AN (t) is given in (2.16).

In the following proposition, we provide the weak convergence result of approximating two-dimensional time-
inhomogeneous diffusions, which represents an extension of Proposition 4 of [13] to the time-inhomogenous case. In its
proof, we employ the standard convergence results for Markov process in [35] and the techniques used in proving the weak
convergence result regarding one-dimensional time-inhomogeneous diffusions in the classical work [37].

Proposition 3. Let D*(£;) C D(L¢) denote a core of L. For any function f; € D*(L;), if €M) (f;) — 0 as ny, n, — oo, then
(a) ()?t(”z),a)t("l)) = (X¢, Wr) as ny, ny — 00,
() S™ — S as ny, ny — oo, for SV 1= g1 ()?t("Z) + pf(wf"”)),
where “=" denotes weak convergence.

Proof. See Appendix A. O

Remark 4. We note that the proposed CTMC approximation methodology is applicable on general multidimensional diffu-
sion processes if the corresponding Brownian motions are perfectly correlated or totally uncorrelated. That is, considering
X:={XD .. XM} for n > 2, where

XV = pit, X)dt + o6, X )dw,”

and IE:[th(i)th(j)] = p;jdt with [p;| < 1 fori,j=1,...,n and i # j, the proposed CTMC approximation methodology can
construct the approximating CTMCs if p;; = —1, 0, 1. However, when 0 < p;; < 1, there are multidimensional dependencies
in {X;}; which should be tackled to proceed.

3. The equivalent martingale measure

In this section, we perform a change of equivalent martingale measure for the time-inhomogeneous CTMC, by means of
the techniques in Section 11.3 of [39] and the references therein. Because Markov chains have random jumps, there does
not exist a unique equivalent martingale measure. To determine the “closest” martingale measure to the physical measure,
we choose the one having the minimal relative entropy with respect to the physical measure.
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3.1. Change of measure for time-inhomogeneous CTMC
Recall that XN) is the time-inhomogeneous CTMC with finite state-space G™) = {x4,...,xy} on the probability space

(., F.F,P). Let X™ be the filtration generated by X(™ such that *X™ c F.

Lemma 5. [Section 11.3, [39]] On the probability space (2, F,F,P), fori,je{l,....N},i#jand 0 <t <T, let
H™ =1 HY™ = 3 HVH]Y

O<u=<t

{XIKN) =xi}’

and then we have that the process (Mij(N))OStST defined as
t
ij(N) _ gyiji(N) (N) i(N)
M =HYY - /0)»“. (u)H, " du
is an F-martingale under P.

Consider a family {/ci(jN) ©)}ijepn
/cl.(l.N) (t) = 0. Define (n(N))0<t<T as

n™ =14 / Z P (w)dMd (31)

i,j=1
and we have the following proposition.

ny of bounded real-valued processes which is F-predictable, such that Ki(jN) (t) > -1 and

Proposition 6. The solution to Eq. (3.1) can be expressed as

N
n = T (14 X e @ - Hi™)), (3.2)
O<ust ij=1
where M{ = fo Z,] 1 K(N) (u)A(N)(u)H'(N)du Furthermore, n(N) is a strictly positive F-martingale under P such that E[n;N)] =1
Proof. By Lemma 5, we can rewrite Eq. (3.1) a

<N)_1+/ Zm@ W (w)dHi - / anSN) W WA @H du.

i,j=1 i,j=1
Let Mf = fo Z,] 1K(N) (u))L(N)(u)H’(N)du and then we have

a0 = e T (14 5 e (1 — M)

O<u<t i,j=1
=TT (14 2 e @™ - HI)).
O<u<t i,j=1

From the definition of Hij(N) we know that at most one HU(N) HU(N) is equal to 1 while the rest is equal to 0, and then
1+ Z,] 1K(N) (u)(HI™ — HIM)y js either equal to 1+ K(N) (u) for some i # j, or equal to 1. Hence n(N) is strictly positive.
By Lemma 5, we know that M”(N) is a martingale, and then by Eq. (3.1), we have that n(N) is a martingale such that
ElnfV]=1. O

Now, an equivalent probability measure Q™) on (€2, ) with any t € [0, T] can be defined by

do™ — g™
dp [, "

, P—a.s. (3.3)

The following result demonstrates that the approximating CTMC X(™) defined in Section 2.1 for the one-dimensional diffusion
case, is also a Markov chain with generator 1~\§N) under Q™). For the approximating CTMC ):((N) defined in Proposition 2, its
generator matrix K(N) (t) under equivalent martingale measure Q) can be generated analogously.

Proposition 7. [Section 11.3, [39]] For the probability measure QN) defined in Eq. (3.3), if the process {Xt(N)}Ofth is a Markov

chain under P with infinitesimal generator At(N) = (Af’? (t)) , then {Xt(N)}0<[<T is also a Markov chain under Q™) whose
’ ije(1,...N} -

corresponding infinitesimal generator 1~\§N) = (7»1.(]1.\') (t)) satisfies
i,je{1,..,N}

X,'(iN)(t) == Zj;aixi(]{v) (®,

A = A+ kMO (©), fori | G4
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3.2. Martingale conditions

3.2.1. One-dimensional models
Consider Q™) as a risk-neutral measure such that {e=""X™} is a martingale under Q") with risk-free rate r. If we set

(N)
PV f(0) = EFT I f XM
with any Borel functions f, it is know that Pt(N) forms a semigroup such that

Pl =P @M,

t+s

for all s, t > 0 and P((JN) f = f. Taking f(x) = x and by the Markov property, we have
E@"”[e—r(ws)xt(_'-l\ls) |Fs] = EQ("’>[e—r(t+s)X[(+lVS) |Xs(N)] _ e—r(t+s)p§N) (Xs(N))- (3.5)

Assume that the time inhomogeneous generator satisfies commutativity, i.e., P(N)P(N) = P(N)P(N) for s, t > 0. Then, by the
fact that PEN) = e'A" where A(N) (A(N) (t))i jeqr...ny is the generator of XM under Q™). and by the Eq. (3.5) and with

the fact that {e‘”Xt(N)} is a martingale, under risk-neutral measure Q®"), we have

= YA (N)(t) Xj

= Y0P ORD O -0 E (1P O O, G0

for every i e {1,..., N}. Setting Ki(jN) t) = Z K(I N) (t)I[T(m) T(,m)(t) and K(l)(t) =0 for fixed t € [0, T], Eq. (3.6) can be written
as
=y 1+ &M (% - x), (3.7)
J#

(LN)

which implies that K(’ Mty = ki constant for fixed i, j.

3.2.2. Two-dimensional models
In the case of two-dimensional models, by the analysis of Section 2.2, we can obtain analogous results as those in Section
3.1 of [13] that for any measurable function 1/, it holds that ]ng[e_rTl//(ST)] can be approximated by

(N)

—rTJ():éTN))]’ (38)

where n= (k—1)ny +1i, X, :g(s,») — ph(wy), 1/7()() =Y og 1 (x+ ph(wy)),
Egwl-]=E2[|So =5, Wp = w],

EZ), e Ty (SIV)] = E

™ ™ SN _ (1)
EZ k)[']Z]EQ ['lso =Si, Wy = wy].

(si, W,
. i . . . =N
Hence, we only need to focus on identifying the risk-neutral measure with the underlying X

. . . . =N)
Consider Q™) as a risk-neutral measure such that the discounted value of the regime-switching CTMC { e "X, } is a

~ =(N)
martingale under Q™) with risk-free rate r. Denote AM™)(t) as the generator matrix of X, ~under measure Q") whose
corresponding parameters kN)(t) satisfying

B0 ey
(nz) ) (n2)
IC t . K
K(N) (t) _ 2.1 22 ( ) . 2.1’!1 ’ (39)
: CEm
Kf(l?zl) Kr(:zz) T "1“1 (t)
where
m
~(N I, .
ki (€)= Yk T o (6), ie{l.....m}.
I=1
Here, /c(' ") and IC( 2) are n, x np-dimensional matrices for i, j € {1,..., nq}. Thus, similar to Eq. (3.6), we can obtain that
~ =N ; =
ANV X ) =r- X )Y, (3.10)
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=(N) . =(N) . . .
where X is the state space of X; , and the superscript T denotes transpose. By an analogous result to Proposition 7 in
the one-dimensional case, (3.10) is equivalent to

xri=y (1 +K<N>)x§f}>(§j —%), (3.11)
J#

for fixed i and i,j € {1,2,..., N}, where Kl-(jN) is the entry of «M)(t) given in (3.9) and ki('}') is the entry of AN)(t) given in
(2.16). Observing the expression of (3.11), one can set the parameters k™)(t) as

V) 0 o 0
0 ~<N> (t) ... 0
kN (t) = . . . . (3.12)
0 0 ... N:l’]\’gl (t)

Remark 8. From the form of (3.12) we can see that the martingale condition is independent of the first layer CTMC (i.e.
different regimes). Similar conclusions in the regime-switching diffusion case were obtained in [40].

3.3. Minimal relative entropy martingale measure

The relative entropy (also called Kullback-Leibler divergence) is a measure of how one probability distribution is different
from another probability distribution. Similar to [41], in this paper, we consider the minimal entropy martingale measure
for CTMC. Specifically, the relative entropy H(Q™ || P) of measure Q") with respect to P is defined as

do®™ do®™ do®™
(N) _ Ny _
H@QM™ | P)_/log( = )d@ _/ o log (S )de.

When there does not exist a unique equivalent martingale measure, a natural strategy is to find the martingale measure
with the minimal relative entropy. Considering that X(V) is bounded, we have the uniqueness result below.

Theorem 9 (Theorem 2.1, [42]). If H@QW) || P) < oo, then there exists a unique minimal entropy martingale measure.

We firstly consider the one-dimensional case. For an equivalent martingale measure Q™) defined by (3.2), the relative
entropy in terms of the Q™W)-martingale is given by
dQo®
=E2"| 1o
&\ ~ap

N

T .
=5 [ 3 (- [ s o

H@Q™ | P)

+ ) log (1+/<i<j”>(u)(H;f<N>—H{'{EM)))]
O<u<T
N m

EQ(N)I: Z Z[ l(]l N)k<l N / 1[T(m> T<m))(f)Hl N)dt

i,j=11=1
LN) (gii(N) ij(N)
+ ) log(1+ k™ (H/™ — H ))1[T(Yq>]’<m,)(u)]],

O<u<T

where in the second equality we can move Z?’jﬂ to the outside because at most one HLJ(N) —HZ,{(N) is equal to 1 while
the rest is equal to 0. The minimization problem of finding the equivalent martingale measure with the minimum relative
entropy, is equivalent to minimizing

Z [ _ Ki(]].N))Ll.(.I}N) + lOg(] + Kj(]‘LN))]’
J

for fixed t and i, subject to (3.7).



K. Ding and N. Ning Applied Mathematics and Computation 392 (2021) 125732

We apply the method of Lagrange multipliers. Let y be the Lagrange multiplier associated with the constraint (3.7) and
L be the associated Lagrangian

(y Ku(l N)) _ Z [_KU(I,N)AESN) +log (1 +Ki;l4N)):| +y (Z <1 +K(1 N))X(l N)( Xi) 3 rx,-)
j

o
=y [—Ki;.l’N))»f”]iN) + log <1 + Ki;l’N))] +y (Z (l + Ki;I‘N))Ai(_’jN) (xj—x) - rxi),
J# J#

where the last equality follows from Ké”(t) = 0. Note that L(y,/ci(jl’N)) is a convex function in Ki(jl’N) € (-1, 00), for fixed
i,j=1,...,Nandj # i we let

8 (IN)L(V KUN)) - )\(l M + (IN) + V)»(IN)(X] _xl) - 0

L(y K<’N>) 2(1+K(1N))KUN)(X] x;) —1x; = 0,
Jj#i

(3.13)

by which the equivalent martingale measure with the minimum relative entropy can be determined.
An analogous result for the two-dimensional case can be obtained similarly, for fixed i, j=1,...,N and j # i,

3 (N)L(V K(N)) = )‘(N) (N) + V)‘(N)(X] _Xl) =

L(y Ky = Z(1+K(N)))»(N)(X] X;) — 1% =0,
J#

(3.14)

where K(J is the entry of kN)(¢) given in (3.12) and Ai(.'j) is the entry of AN)(t) given in (2.16).

4. Convergence of equivalent martingale measures

In this section, we investigate the limiting behavior of the equivalent martingale measure Q™) as N goes to infinity.
Note that by Proposition 6 we know that nt( is a strictly positive F-martingale under P such that E[n(N)] =1, and then by
Theorem 11.4 (Martingale Convergence Theorem) of [43] we know that n(N ) converges almost surely under P. Furthermore,
by Egs. (3.9) and (3.10) on page 29 of [44], and from the construction of Q™) in Eq. (3.3), we know that the convergence
of n[(N) implies the convergence of Q("), as N goes to infinity. For a fixed T e (0, oo), we consider (n[(N))OS[ST as a stochas-
tic process on a Skorohod topology space Ds[0, T] with complete and separable metric space (S, d). In the following, we
investigate the limiting behavior of nt(N) as N goes to infinity.

4.1. Preliminary analysis
We firstly show that {n[(N)} is relatively compact by means of the technique in Chapter 3 of [44] and Chapter 3 of
NeN

[35]. The following two propositions conclude that the sequence of nw) is relatively compact.

Proposition 10. For every T > 0, it holds that

lim sup]P( sup [nV| > R) =0.
R—0c0 NeN te[0,T]

Proof. By submartingale inequality, and by the fact that n(N) is strictly positive and E[n(N)] =1, we have that for every
N e N,

E
P( sup |W§N)|ZR>S [777 =1—>0, as R — oo.
te[0.T] R R

O
Proposition 11. For q(x,y) := |x —y| A 1, there exist constants C > 0 and 6 > 1, such that for all N, one has
(N)
E (N n™IF 1<cu’,  0<t<T, O<us<T-t

Proof. See Appendix B. O
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4.2. Convergence for one-dimensional models

Next, we investigate the limiting behavior of the sequence of R-N derivatives {nt(N)} as N goes to infinity. We adopt the
techniques in [45,46] and [47] by firstly defining an operator A acting on f € S as

Lo [T (REY) — 1)
Af) = 5 f"(0x /0 Sy sy, forxe®, (41)
Proposition 12. For nt(N) given in Eq. (3.1), it holds that
tk+1 k
Jim EP[(f(nSZ?) — foi™) - / Aff(ni”))dS) I1 hz(m(,N))] =0, (42)
k =1
where 0 <ty <--- <ty q <oo for ke N and h; is a bounded measurable functions on S for1=1,2,....k

Proof. See Appendix C. O

4.3. Convergence for two-dimensional model

In this subsection, we investigate the weak limit of R-N densities for the two-dimensional model.
By the construction of approximating regime-switching Markov chain X() in Eqgs. (2.14) and (2.15), the martingale con-

- . =(N) . o
dition in Eq. (3.11), and the elements of X = are n; times repetition of the elements of X(™) we have that for every
ie{l,2,...,np} and a)t("l) =W,

m
MO =X = 30T W) lpm om) (©),

Jj#i 1=1

D MO =%)? = (1 - pHo?wy), (4.3)
J#i

S+ OF - ) = 1%,

J#

where Kllj (t) is the element of matrix EI({',:’) defined in (3.12), i.e., I(ikj(l') = (%i’l:’)),-j.
Denote

0C.) =00, w).0C.ws),....0(. . wp,))
and

0 :=(0(w),0(W),...,0(Wp)).

. Lo =(N)
Hence one has the following equation in terms of X

2
( > AP O O F; - ) )? (2 BT X o o (O) = rxl-)
_ = = . 44
AN (0 &) - X)) (1-p?)o? 44
#

We adopt the techniques in [40] by firstly defining an operator B acting on f € S as

~ 2
e (Beyn )
Bef() =5 f (X)X/o Wl{g:y}dy, forx e R, (4.5)

where X is the regime-switching diffusion evolving according to (2.12).

Proposition 13. For nt(N) given in Eq. (3.1), it holds that

tk+l k
Jim EP[(f(nﬁSi) — fi™) - / Bsf(n§”>>ds> I1 hlmg”))} =0, (4.6)
k I=1
where 0 <ty <--- <ty q < oo for ke N and hy is a bounded measurable functions on S for1=1,2,...,k

Proof. See Appendix D. O

1
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5. Applications to option pricing

Recall that our approximation approach is under physical measure P. For one-dimensional diffusion case, under P
we have constructed the approximating CTMC X(™ in Section 2.1 with the time-dependent generator matrix At(N) =

m
(N) _ (LN)
)‘i,j t) = IX:)LU I[T,(E')T[(m))(t)'
=1
Under the equivalent martingale measure Q™) by Proposition 7, Xt(N) is a CTMC with generator matrix
m
AN _ A (LN)
AN = ’ZA Tz omy (),
=1

where AN = (XS‘N))LJ-G{L_”N} satisfies
T (N) _ ) 3 (LN TAN) _ ANy LN &
)‘ii - )‘ij ’ )‘ij = T ki ))‘ij LR
J#

. =) . . . . e
For the approximating CTMC X  defined in Proposition 2 for the two-dimensional diffusion case, whose generator ma-

. . . (N . .
trix is AM)(t) under P, its generator matrix A( )(t) under equivalent martingale measure Q") can be generated analogously
as the one-dimensional case

m
~(N) . ~ (LN)
A= }l A 1o pomy (©).
=1

In this section, we apply the approximating framework and obtain approximating formulae for pricing options in Euro-
pean and barrier types.

5.1. European options

+ One-dimensional models: For any payoff function f : E — R, the value of the European option with maturity T for the
underlying S can be approximated as

E[ef(X{V)] = exp (—1T) (exp (ATJU”")) ...exp (ATmK(mM)f) (x).

+ Two-dimensional models: Assume a)(()"l) = wy. By Eq. (3.8), for any payoff function f : E — R, the value of the European
option with maturity T shall approximately be

Es, [erTf(X;N)>:| = exp (—rT)(exp (ATTAV) .. exp (ATmKW’V))f) (%n).
where f(x) = fog 1 (x + ph(w)).

5.2. Barrier options

Assume a knock-out barrier option with maturity T have the continuation region £ and the knock-out region Ec=E \E,

. . . . . . =)
where E is the state space of the approximating CTMC (i.e., E = G™ for the one-dimensional case and E=X = for the
two-dimensional case). Denote T as the first passage time that the approximating CTMC belongs to the knock-out region.

¢ One-dimensional models: Define

AN (X, %) =1, X € E i=]

AP, j) = § AN (%, x;)), xicE x;eE, i+#],
0, X,'EEC, XJ‘EE,
where [ =1,...,m and r is the risk-free rate. Then the knock-out barrier option prices can be approximated as:

Proposition 14. ([37]) For any payoff function ¢ : E — R, it holds that
Ee O] = (exp (ATAL) - exp (ATuA™)) ().

12
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Table 1

Numerical results of option pricing on diffusion processes with time-
dependent diffusion function. The results are obtained by implementing
the number of time partition m = 50 and states N = 500, 1000. Com-
mon parameters are ¢ = 0.1,r = 0.035,« = —30, T = 0.25, S = 100 and
Br = 0.2 for each test.

CTMC Closed

T K N=500 N=1000
0.25 95 7.9667 7.9533 7.9629
100 5.1224 5.1102 5.1070
105 3.0487 3.0445 3.0433
0.5 95 9.8973 9.8889 9.8856
100 7.1184 7.1167 7.1125
105 49282 49278 49266

1 95 12.5508 12.5474 12.5455

100 9.7598 9.7569 9.7563
105 7.4206 7.4165 7.4153

(ny)

» Two-dimensional models: Assume w; '’ = w;. Similarly, define

IN) = = S cF iz
()(x,,xl)—r X €k, i=],

e PR &
A )) = (N)(x,,x]) XleE XJGE i# ],
0, X; € E°, X; ek,

where [ =1, ..., m and r is the risk-free rate. By Eq. (3.8), for any payoff function ¢ : E — R, the knock-out barrier option
prices can be approximated by

Ey [e*r(“”a():(“,)] = (exp (ATl Kﬁl)) ...exp (Ameyn))qZ) &),
where ¢(x) = ¢ o g (x+ ph(wy)).
6. Numerical examples
6.1. Diffusion process with time-dependent diffusion function

Brigo and Mercurio [48] and [49] proposed a shifted geometric Brownian motion process with deterministic coefficients
that allows for skews in the implied volatility, and then this model can be used to fit market volatility structures that
are skewed. Here, the term “skew” describes the shape where low-strikes implied volatilities are higher than high-strikes
implied volatilities. [48] assumed that the asset process S has a constant drift coefficient and a time-dependent diffusion
coefficient v(t, S;). To determine v, we start from a process X, which is a simple extension of the Black-Scholes model,
evolving according to

dX[ = MXtdt + ,BtX[dB[

where p is a constant and fB; is a time-dependent (deterministic) volatility function. Consider that the asset process S is
given by an affine transformation of X, i.e., S; = X; + ae#t, where « is a constant. Then S is driven by the following time-
dependent model:

dSt = /,LS[dt + ,Bt(St — Ole’“)dBt. (61)

The explicit form of European option prices is given by

us
lnf{ 5;1‘*'[: (r+1B2)du K g:rT +f[ (r— ’IBu)

—(K—aeT)e T ,
N ( ) ST B2du

where 0 < t < T, r denotes the risk-free rate, and ® is the standard normal distribution function.

To illustrate the accuracy of our method, Table 1 reports the results of European call option prices under the model
(6.1) based on our CTMC method and the closed-form (6.2), from which we can see that our results are very close to the
closed-form in all cases.

G = (St _ Cwrt)e(r—r)(T—t)cb

(6.2)

6.2. Diffusion process with time-dependent drift function

Ball and Torous [50] first put forward the dynamics of a default-free pure discounted bond price following a Brownian
bridge process, and investigated the equilibrium valuation of a call option. They realized that the Brownian bridge process

13
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Table 2

Numerical results of option pricing on diffusion processes with time-dependent drift function. Euro-
pean call options were priced with strike prices 100, 105, and 110, and the double barrier knock-out
call options were priced with strike prices 95, 100, and 105, under the geometric Brownian bridge
model. Other parameters we used are maturity T = 0.8, b =5, So = 100, and the number of time par-
tition m = 50. The lower and upper barriers are L =90 and U = 130, respectively. N stands for the
number of the states of the approximating CTMC.

European Barrier
N K=100 K=105 K=110 K=95 K=100 K=105
500 9.7145 5.0979 0.5256 14.3288 9.7132 5.0977
1000 9.7128 5.0955 0.5253 14.3253 9.7097 5.0941
1500 9.7098 5.0948 0.5250 14.3246 9.7090 5.0934
2000 9.7090 5.0932 0.5249 14.3244 9.7088 5.0932
2500 9.7086 5.0930 0.5248 14.3243 9.7087 5.0931

deserves many further financial applications. Next, we provide an approximate valuation for the Brownian bridge process.
Consider a security S whose logarithm log$ is a Brownian bridge model with diffusion coefficient o under physical measure
P, i.e., S is a geometric Brownian bridge process and satisfies

{ds[ = (2leS 4 1o2)Sdt + oS, dW;, 0<t<T,

6.3

50 = e, ( )
Table 2 reports the valuation results of European call options and double barrier knock-out call options under model (6.3),
using the proposed CTMC approximation methodology. We can see fast convergences to stable limiting prices under scenar-
ios of three strike prices.

7. Conclusion

In this paper, we have proposed a time-inhomogeneous CTMC approximation, equivalent martingale measure chang-
ing, and valuation methodology, for one-dimensional and two-dimensional time-inhomogeneous diffusion processes in the
physical probability measure. Considering that there does not exist a unique equivalent martingale measure, the “chosen”
equivalent martingale measure is the one having the minimal relative entropy with respect to the physical measure, whose
convergence as the cardinality of the discrete state space of the approximating CTMC goes to infinity, is established by
transforming the problem to determining whether the sequence of the Radon-Nikodym derivatives is convergent. Numeri-
cal examples have confirmed the accuracy of the proposed methodology. While this paper shed the light on option pricing
with time-inhomogeneous two-dimensional correlated stochastic processes in the physical probability measure, by means of
the time-inhomogeneous CTMC approximation technique, studying the effects of ambiguous volatility [51] and ambiguous
correlation [52] could be promising topics for further research.
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Appendix A. Proof of Proposition 3

For a fixed time T, define two processes Z = (Z;);>o and Y = (Y;)¢>0 by
Zii=Zo+ AT, Yoi=Xg, (A1)
for t > 0 and Zy € [0, T]. For any s, t > 0 and bounded Borel function f: [0, T] x X x W — R, it holds that
P f)(s,x, w) :=E[f(Z,Ye, W)|Zo =5, Yo = X, Wp = W]
=E[f((s+6) AT, Xsyt)ar. We)|Xs = X, Wo = w].

Then P; defines a strongly continuous contractive semigroup on Cy(E) (see [35] for details), and the corresponding infinites-
imal generator £’ is defined by

£fs.x.w) = lim ELEX W) — f5 X, w)
o £,0 ¢ ,

(A2)

We prove (a) by firstly approximating the time-space Feller Markov process (Z,Y, W) by a time-homogeneous Markov chain
(Z,XM) )y on T™) x GM-m) with TN = {0} USyN and 8 = T/(mN) for m € N. Assume that AGN) i=1 ... N are
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generator matrices approximating the generator £;r,y. Then the generator of Markov chain (Z, XM (M) is given by

t+6m, X, w) — f(t,x,w N ;
AN f(t, X, w) = it 8,3 it ) + Y (AN ) (X W) (o 1)mb <t <imbn) -

i=1

for (t,x,w) e T™ x GM:"2), From the analysis in [37], we can describe Z as 8, times a Poisson process with rate A = 1/8.
That is, for any t > 0, Z~follows a Poisson distribution with mean t and variance 8m~t = gVT/(mN). Then, Z; tends to t for
every fixed t > 0. When Z; taking value in [(i — 1)8m, i8m) and w; is independent to Z;, (X(2), @) is a Markov chain with
state space G(-"2) and generator matrix AGN),

For any natural number sequence (m(N))yey. consider the sequence of Markov chains (Z, X™2), (™)) with state space
TN x GM-m2) and generator matrices AN™), Given the condition that €(™:"2)(f;) > 0 as ny, n, — oo for any function
ft € D*(Lt), the construction of AN implies that, for all functions f in a core of £/ which is the generator of (Z, Y, W)
given in Eq. (A.2), as m, ny, n, — oo one has

emmm) (fy sup [ANM f (8 x,w) — L' f(t,x,w)| — 0, (A.3)

teTM, (x,w)eG™M-"2)

where fp, 0, = f|[0’Tle<n1'n2).
Recall that

P ) (s, x,w) =E[f(Z, Yo, WolZo =5, Yo = %, Wy = W]
and define
(P £y (s, x, W) = B[ f(Ze, X, w)|Zg = 5, X{"™ = x, 0™ = w]
for t € [0, T]. By Theorem 1.6.1 in [35], Eq. (A.3) implies that
(P £ (s, %, W) — (Pef) (5., W).
Hence, for any initial value (s, x, w) and applying Theorem 4.2.11 in [35], we have that
X", o) = X ).

Note that h and g~! defined in Eq. (2.8) are continuous functions, and by continuous mapping theorem, (b) can be
concluded from (a).

Appendix B. Proof of Proposition 11
Let
OV O .
AM;J( ) M;J( )—M;’f ),
O . v
AH;J( ) ng( )7H;J_( ),

and then by Eq. (5) we know that AM?(N) = AHt"j(N). By Itd’s formula for semimartingales (Proposition 8.19, [53]) we ob-
tain
(Mij(N))Z

:2/0 M;J_(N)dM;J(N) + (M”(N),M”(N))f

+ 31N ¢ AMIMYZ — (MIM)2 _2MIN . AMIM]

O<s<t
£t S .

:2/ M;JfN)dM;J(N)—i— Z (AMISJ(N))z
0 O<s<t
to o o

:2/ M;j_(N)dM;](N)_'_ Z (AH;J(N))Z
0 O<s<t
£t s o

=2 /O MINdMI™ + 3 AHF®

O<s<t
£ 3 e ,
=2 [ MO 1 [ (@I 30 )R )
t ,
+/ )»f’}’)(s)H;(N)ds
) M

~ t .
:MH—/ )\i“}')(s)H;(N)ds
L
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where

=2 MU M i
is a martingale. Then

(MM iy, — /O ‘ A () HIM s

By Eq. (3.1) and the independence of the family of martingales {(M;'j(N))fzo} for different combinations of i, j € {1,..., N}
and i # j (see Lemma 5),

2
t+u .
Ef[nal? = EF [1 + /t n™ 3 kN (s)dMéJ(N):|
ij
t+u .
=1 +2E2”[ [ N)ZK<N)(s)dM“(N):| +Z f EF[ )2 (e ()20 (s)H{ M ]ds

=1+ Z/ ]E]P’ (n(N)) (Kl,(jN) (S))Z)L:_Ij) (S)H;’(N)]ds

For E,.(J.N) = sup K(N) (t) and )L(N) = sup )\(7) (t), considering that H'(N) indicates X(N) taking a specific value x;, we have
te[0.T] tefo.T] 7

E{[(n"M)?]ds.

t+u

E{UN] = 1+ sup Z(f““) 2 ft

Set M = sup sup Z(Ei(jN))z)\i(I;{) and by Gronwall’s Lemma,
e \

N

IE:]szt(N) P<1-eMy eM(t+u) (B.1)
Thus,

2
t+u
N N N N ij(N
B[ - n] EFU 1S dm i
ij

-3 / B ()2 (e ()20 (5 HI™ Jds
<M / EF[n™ J2ds
t

t+u
< M/ (1 — eMt 4 eMs)ds

Muzl — Mty 4 eM(t+u) _ oMt

eMT (eMu _ 1),

It is not hard to obtain that there exist C > 0 and 6 > 1, such that

eMT(eMu _ 1) < Cu@7

INIA

which completes the proof.
Appendix C. Proof of Proposition 12
By Itd’s formula, we have
F) =£ @+ [ 7 @an® 3 [ ™. n)

+ 3 F0 + Ay = FI) = F ) - AnV}

O<s<t

r0+ [ o+ £ 0+ Xk am)
ij

O<s<t
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N N N N ij(N
— £ = £ @) -0 3w o) ami )
iLj

—f(1) + / F@dn® + Y S [0+l )

O<s<t ij

— £ = @) 0 ()] AHI |
—fD)+M+ Y /0 [ra® a4 ©) - rar) @)
ij
10 1D )] x A ©HMds,

where

o= O™t + Y | t (P @+ ) - Fn™)
o s -~ o s— ij s—

— (M) M <N>(s))> AMI®)

is a martingale under P. Recalling the construction of approximating Markov chain in Eq. (2.2) and the martingale condition
in Eq. (3.7), for every i € {1, ..., N}, we have the following equations

ZMN)(I)(X, —X) = ZM( -1 v"l)l[r,ﬂ';).r,‘””)(t)’

ZM”)(r)(xj—x,-ﬂ Zo (R %) T om (8). (€2)

Z“ +re (O (r)(x] - %) =X,

then

2
(ZW O O - x) )2 (lz W X i g () = rxi)

T 5 = . (C3)
%: ij ( )(X] _xl) 202( 1-1 ’X')I[T]&";),I}(m))(t)
For the left side of Eq. (C.3), by the Cauchy-Schwarz inequality, for fixed t e [0, T], it holds that
(ZAP O O —x))?
< ZMN) (©) (M ()2 (C4)

Z)\‘””(t)(x —X;)?

Furthermore, the equality in the above equation holds by the linear relationship between /cl.(jN) (t) and (xj.N) —xi(N)), which

holds for every N for the reason that x(N) and xi(N) are finite grids and Kl.(].N) (t) is finite solved in (3.13). Hence, for fixed i,
we have
(SHY OO0 -x))?
J# (N) (N) 2
— ) A (O (6)7, (C.5)

> k3 (O = x)? O

J#
as N — oo.

Combining (4.1) and (C.1), we get that as N — oo

E[f(m(”)) —f(1) - /Ot Asf(n§”))ds]
= E[/: (IXJ: (f(77§5’)(1 +K,-(jN)(S))) — O™y — ™y . M <N)(s))

N iy 1, )y (0N ® (s, y) =1y
X)‘,‘,j (s)H; _if (15 )(775 )2/(; (W)zdy>ds]
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=5[ [ (X 377002060 62 6 HY
ij

L0y (2 [ s vy
Zf (ns )(775 ) o GZ(t,y) dy)ds]

2
m (/‘L(Tl(np’ xi)lsz(l'I)-Tl(m))(s) — TX,‘)

T [USN pr 0 ((0)2 -
_E[jw/o (;f (s )(’75 )lgl: JZ(TI(

m)
1> Xi)I[Tl(lq)J-’(m)) (S)

1 * (u(s.y) —ry)’
x 1{X5:Xi} - Ef//(ns(N))(ns(N))Z/(; w“&z&’}‘b’)ds]

— 0,

where ay =~ by means that IJim |ay — by| = 0. The second equality follows from Eqs. (C.3) and (C.5). The second limit holds

for Xt(N) = St, as N — oo. Considering that ]'[f:1 h,(nt(’N)) is bounded and Ftl—measurable. completes the proof.

Appendix D. Proof of Proposition 13

By Eq. (C.1), we know that
F) = 5 4o X [ [ (14 6076) = F0) - £ (1) 1006 | 0D M Vs,
ij

where

M= [ £+ 3 [ (500 60 - o)

ij
= 1) -0 (5)) )am ™,

is a martingale under P. Similar to the one-dimensional case,

B[ - £ - [ B n®as]

t
) E[/o (X (J02a +x060) - 1) - 7 o) 1P 5))
ij

i 1., - 5(5’}1) —
A OHY - 2 o) (o) [ ()Zdy)ds}

Ja-phe
' 1 4 ;
:EI:/(; (Z if ('75@)(7)5@)2(Ki(J-N)(S))Z)»,-(.Ij)(S)Hs(N)

ij

N 2

o (0(s,y) =1y

T Ny ()2 ( )
) [ dy)dsi|

~ 2
m (0(7‘1(7”;), Xl‘)l[-r,(jrll)‘TI(m)) (s) — rxi)

—E lft(XN:f//( ™) ()2 3
12 \ = s \s (1-p?)o?

=1

. 2
Towo ooz [~ (0(t,y) _ry)
X 1{§2N’=§} - Ef (ns )(ns ) /(; (-l — ,02)(72 1{§S—y}dy)dsi|

— 0,

which ends this proof.
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