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A phenomenological free energy model is proposed to describe the behavior of smectic liquid
crystals, an intermediate phase that exhibits orientational order and layering at the molecular scale.
Advantageous properties render the functional amenable to numerical simulation. The model is applied to a
number of scenarios involving geometric frustration, leading to emergent structures such as focal conic
domains and oily streaks and enabling detailed elucidation of the very rich energy landscapes that arise in

these problems.
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Smectic liquid crystals are complex fluids that exhibit
orientational order and a layered structure over macro-
scopic distances [1]. Since the layers are nearly incom-
pressible, an immediate consequence is that the material
prefers to locally adopt one of six families of surfaces (in
three dimensions) compatible with constant layer spacing
[2-5]. External constraints may force deformations of the
smectic that are incompatible with the layer constraint,
leading to geometric frustrations and the spontaneous
assembly of a wide variety of textures with characteristic
defect structures of the smectic phase [4,6]. Driven by
advances in surface control, there has been considerable
renewed interest in exploiting the ability of smectics to
repeatably self-assemble over device length scales by using
surface patterning [7,8], topographical features such as
grooves [9-12] or posts [13,14], confinement in droplets
[15-17], or curved surfaces more generally [18], to produce
emergent patterns [19,20] that are optically active as lenses,
gratings [21], photonic crystals [20], or lithographic tem-
plates [22]. Moreover, defect structures in the texture act to
efficiently trap dispersed microparticles or nanoparticles,
making smectics useful for hierarchical [23-25] or syner-
gistic [26] assembly processes that could potentially be
adopted for metamaterial, sensor, or solar cell production.
Since many of the remarkable properties of smectics arise
because of the geometric and topological consequences of
layering, they form a paradigmatic model system to under-
stand geometric frustration in other lamellar phases such as
block copolymers [27,28], membranes, and vesicles [29,30].

The very complicated structures that emerge in frustrated
smectics have, however, proven to be very challenging to
model mathematically. While many of the observed tex-
tures have been understood through elegant geometric
approaches [3,4,13,18-20,26,31-35] or by perturbing from
the nematic phase [36-38], to date there have been few
successful efforts to use numerical methods to predict the
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structures adopted by smectics in general configurations.
Such methods could be of great benefit to structure prediction
where the defects cannot be observed optically, for example,
in thin films [39—43]. Furthermore, scenarios where partial
smectic order exists, such as during the transition from the
nematic to the smectic phase, may exhibit very complicated
pretransitional structures [37,38,44,45], and few studies have
addressed the connection between pattern formation and the
peculiar critical behavior of liquid crystals at the nematic-
smectic transition [46]. Dynamical phenomena—such as
time-varying layer spacing [47], interactions between
embedded particles [31], and the evolution of smectic films
and bubbles [48-50]—also present difficult problems that
appear to require numerical modeling.

One major obstacle to successful modeling of smectics is
the complicated nature of the smectic order. In the original
theory of de Gennes [1], the smectic phase is characterized
by a complex order parameter w(r) = |y/(r)|e?™) that
contains both the amplitude and phase of the density
modulations. It is a remarkably successful approach,
providing a theory of the nematic-smectic-A transition
analogous to the Ginzburg-Landau theory of superconduc-
tivity. Nonetheless, it presents certain challenges, as
reviewed in Pevnyi ef al. [51]. The first issue is due to
the topology of the complex order parameter y itself:
Im(y) does not contain physical information. Second, this
model is formed on a coarse-grained basis; i.e., this energy
does not represent the local free energy density on the
length scale of the smectic layers themselves. To amend
these issues, Pevnyi et al. propose a theory formulated in
terms of a real-valued variation Sp(r) from the average
density and a director field n(r), the local axis of average
molecular alignment. Using a real-valued density variation
avoids many of the problems of alternative approaches such
as using double-valued complex order parameters [51].
Nonetheless, this theory, as presented, is not able to
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reproduce half-charge defects because of the presence of
director discontinuities in these defects [52], which cannot
be characterized by a continuous vector field. For example,
around a +1/2 defect where n rotates by +x degrees, a
discontinuity line where n reverses sign must exist. In
fact, since n enters the model only through the tensor
N=n®n= nn;, Pevnyi et al. solve for N in their
implementation, which allows them to represent half-
charge defects [52], but numerically enforcing that N is
a line field (i.e., of the form n ® n for some unit vector n)
in minimization is difficult [53].

In this Letter, we formulate a theory of smectics suitable
for finite element simulation and apply it to several partially
understood problems involving the configuration of smec-
tics between antagonistic boundary conditions, i.e., those
that favor opposing orientations incompatible with the layer
constraint. We quantitatively study the transition from
uniform layering to the formation of defects [54], examine
the role of imposed surface orientation on the configuration
of focal conic domains [44], and predict the structure of oily
streaks that occur in very thin smectic films [21,41,43].

We begin with Pevnyi et al.’s proposed energy [51],

Fopm = [ [g (60 + 2 60)* + & (00)*

K
+B[D%p + ¢’n @ nopl* + 5 [Vaf |, (1)

which is to be extremized to obtain stationary solutions dp
and n subject to the pointwise constraint n-n = 1. The
first three terms in Eq. (1) with coefficients a, b, and c are a
Landau—de Gennes expansion of the free energy and set the
preferred value of p in the uniform state; ¢ is the wave
number of the layering, B is a nematic-smectic coupling
parameter, D? denotes the Hessian operator, K is the elastic
constant, and € is the domain of integration. The functional
(1) can be derived from density-functional theory (based on
a molecular statistical description), analogous to earlier
work on smectics [55,56].

Noticing the fact that Eq. (1) depends only on elements
of the dyad n;n, Ball and Bedford [57] proposed to modity
Eqg. (1) by replacing m;n; by a uniaxial representation
(Q/s +14/d),;, leading to
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Here, s is the scalar order parameter, /,; (d € {2,3}) is the
identity matrix, and Q is a tensor-valued order parameter.
There is no longer any constraint imposed on the state
variables. They proved the existence of minimizers of
their modified model but did not pursue any numerical

analysis or realize any implementation. One can anticipate
numerical difficulties caused by having s on the denom-
inator, as it is likely to be near zero for defect structures of
physical interest.

Inspired by the modification from Ball & Bedford [57],
we propose the following alternative energy functional:
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where the nematic bulk energy density f,(Q) is
—1(tr(Q?)) + I(tr(Q?))*> in two dimensions and
=1/2(tr(Q%)) — 1/3(t(Q%)) + 1/2(e(Q?))*> in  three
dimensions.

We pause to contrast Eq. (3) with Ball & Bedford’s
formulation, Eq. (2). In order to avoid possible numerical
issues caused when s =~ 0, we instead weakly enforce s = 1
by adding the nematic bulk term f,. The global minimizer
of the nematic bulk energy [, f,(Q) is known to be a
uniaxial Q tensor with scalar order parameter s = 1 (see
Proposition 15 in Ref. [58]). Thus, inclusion of this term
promotes both the favorable scalar order parameter and a
tendency towards a uniaxial expression for Q.

A substantial difficulty in obtaining the numerical
solution of the minimization problem with Eq. (3) arises
from the presence of the Hessian term, which requires dp €
H? (i.e., square-integrable functions with square-integrable
first and second derivatives). A conforming discretization
requires the use of C'-continuous elements (i.e., the
approximation is continuous with continuous first deriva-
tives). Constructing these finite elements is quite involved
in practice, especially in the three-dimensional case.
Therefore, we use nonconforming discretizations following
the so-called C° interior penalty approach [59]. Essentially,
we use C'-conforming elements (i.e., continuous without
necessarily continuous first derivatives) and penalize inter-
element jumps in the first derivatives to weakly enforce C!
conformity. To this end, we add a penalty term to the energy
functional (3), leading to

F(00.0) = FOp.0) + 3 [ S (Ve )

ees;

Here, y is the penalty parameter (we fix y = 1 throughout this
work), &; is the set of interior facets (edges/faces) of a mesh,
h, denotes the size of an edge/face e, and the jump operator of
avector Vw on a facet e of two adjacent cells, labeled K _ and
K, is defined as [Vw] = (Vw)_-v_+ (Vw), - v, with
v_ and v, denoting the restriction of the outward normal to
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K_ and K, respectively. The numerical analysis of this
discretization will be reported elsewhere. Using a C* interior
penalty method has the advantages of both convenience and
efficiency: The weak form is simple, with only minor
modifications from a conforming method, and fewer degrees
of freedom are used than with a fully discontinuous method.
We now apply our discretization of Eq. (3) to a class
of problems that encompasses commonly used techniques to
induce self-organized structures in smectics. The liquid
crystal is confined between two substrates treated to promote
different preferred molecular orientations and must some-
how interpolate between them, but unlike a nematic liquid
crystal that can achieve this smoothly, a smectic may be
prevented from doing so because of the layer constraint.
As a simple example, proposed in the classic work
of Williams and Kléman [54], consider the situation
depicted in Fig. 1, where we impose the director n, =
(cos By, —sin 6,) for fixed 6, € [0, z/2] at the lower boun-
dary and n, = (cos 6y, sinf,) at the upper boundary. The
corresponding boundary data for the Q tensor derived from
n, are given in the Supplemental Material [60]. For 6, = 0,
the boundary conditions become identical, and the resulting
configuration has layers extending vertically between the
substrates in the “bookshelf” geometry. As 6, increases
from zero, the boundary conditions impose a bend defor-
mation on the smectic. This deformation can be accom-
modated in several ways: by distributing the deformation
over the vertical direction [Fig. 1(b)]; by localizing the bend
to a region in the center with the layers flat and tilted in
opposite directions in the top and bottom of the domain
[Fig. 1(c)]; or by introducing edge disclinations to relieve
the cost of elastic deformation [Figs. 1(d) and 1(e)].
Hence, the equilibrium structure as a function of 6 is
determined by an energetic competition between the cost of
bending and the cost of introducing disclinations. Using a
technique called deflation [73], we can compute a bifurca-
tion diagram for this scenario and quantitatively determine

I
d
D)

R R )))D)))))

crystal. (a) Bifurcation diagram. (b)—(e) Stable stationary sol-
utions for different values of 6. The visualization displays the
density variation dp.

which of these solutions is the ground state as a function of
0y [Fig. 1(a)]. Readers may refer to the Supplemental
Material [60] for full details of the problem setup, an
extended presentation of more stationary configurations
computed in this scenario, and a video illustrating the
lowest-energy solutions found as 6, is varied (all of which
are stable).

A more extreme scenario is where the preferred align-
ment axes at each surface are perpendicular: One favors
planar and the other vertical alignment. The experimentally
observed configurations in this case are known as toroidal
focal conic domains (TFCDs): The smectic layers adopt a
configuration consisting of stacked interior sections of tori,
with a central line defect extending between the two
substrates. TFCDs may exist as isolated domains in a
background of vertically oriented smectic layers, or they
may self-assemble into a hexagonal lattice [37,38,44,45]. If
one of the boundary conditions is perturbed, such as by
introducing a small preferred tilt at either substrate,
asymmetric FCDs may arise where the layers form from
sections of Dupin cyclides [37,44].

Despite the centrality of TFCDs in the study of smectics,
and for applications, prior numerical work has been limited
to finding solutions using modifications of the nematic
theory [43]. Therefore, we verify that FCDs are stationary
solutions of our functional (3) and characterize their
response to tilted boundary conditions. Specifically, we
perturb the zenith angle 8, between the director and the z
axis in the boundary configuration (see detailed descrip-
tions in the Supplemental Material [60]). Displayed in
Fig. 2 is a sequence of solutions as a function of 6., the
preferred tilt away from the vertical at the upper substrate.
All solutions displayed are stable.

As can be seen in Fig. 2(c), we recover the cylindrically
symmetric TFCD for 6. =0; as 6. > 0, the solution

(a) N (b)

7
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0.=0 n/12 n/10 /8

FIG. 2. Focal conic domains under tilted boundary conditions.
Example solutions with (a) single- and (b) double-screw dis-
location defects at 8. = z/12. (c) Stable stationary solutions for
different values of 6.. Here, zero isosurfaces of the density
variation Jp are displayed to visualize the layer structure of the
smectic. Among the three solutions shown for 6. = z/12,
the FCD solution possesses the lowest energy value, while the
double-screw dislocation solution has the highest value.
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Oily streaks. (a)-(c) Candidate structures proposed in Michel et al. [42] consistent with x-ray diffraction. (d) Bifurcation

diagram of structures as a function of aspect ratio L/z. (e) Selected stationary states obtained at different aspect ratios L/z. The top row
represents the lowest-energy solution found. For each solution, the value of the energy functional per unit area is displayed below it, with

asterisks indicating stable profiles.

becomes asymmetric [Fig. 2(c)], and the central defect line
becomes a hyperbola, as expected from geometry [3,4,18].
Three examples of the solution structures [including the
single-screw dislocation defect presented in Fig. 2(b)] at
0. = n/12 are shown in the Supplemental Material [60].

For sufficiently thin films, the elastic energy cost of
two-dimensional curvature of the layers observed in the
FCD solutions becomes prohibitive. Instead, the smectic
adopts a configuration referred to as an “oily streak” texture
[21,41,43]. The structure is periodic in one direction
parallel to the substrate and spatially uniform in the other,
tangential direction; the periodicity L is experimentally
found to increase linearly with the film thickness z such that
L ~ Ly + 4.5t [42]. Addition of chiral dopants can be used
to control the orientation of the streaks [41].

X-ray diffraction experiments for films 0.15 ym <7 <
0.35 um (47-110 layers) indicate that the smectic-layer
normals are continuously and uniformly distributed in
orientation, with a significant additional peak for smectic
layers that are parallel to the plane of the substrate. An
approximate layer structure proposed by Michel et al. [42],
which is consistent with these data, comprises periodic
units incorporating sections of cylinders joined to planes
oriented parallel to the substrate [Fig. 3(a)]. However, this
structure implies significant deformations of the free inter-
face with singular points between units; while undulations
of the smectic-air interface are observed by atomic force
microscopy, the amplitude is only around 1/5 of the film
thickness once the finite size of the tip is accounted for. To
address this issue, the same authors consider more complex
structures incorporating curvature walls [21,43] [Fig. 3(b)
that necessarily imply local dilation of the layers or local
melting into the nematic phase along walls between units.

For even thinner films, 7 ~ 70 nm (approx. 22 layers),
x-ray diffraction reveals an apparent excess of the planar

region that cannot be explained by either structure dis-
cussed so far [43]; a possible structure that is consistent
with the X-ray data is depicted in Fig. 3(c); it incorporates
an approximately hemicylindrical rotating grain boundary
(RGB) that partitions the cylindrical component from the
planar component. Such a structure, with abruptly discon-
tinuous layers, is energetically very costly and was envi-
sioned in Ref. [43] as a mesoscopic approximation: At the
nanoscopic level, the RGB might contain a network of
dislocations to include the additional layers, or it might
locally melt into the nematic phase along the RGB.

Hence, while these ansatz models are very helpful in that
they provide an overall understanding of the structure and
facilitate interpretation of the experimental data, they
incorporate coarse-grained features such as the RGBs,
and moreover, they are not calculated stationary states of
an appropriate free energy functional. Understanding the
detailed structure of the oily streaks therefore remains an
important open problem.

We again use the deflation technique to explore the
stationary states of Eq. (3) on a rectangular domain of fixed
vertical dimension and varying aspect ratio L/z. For
simplicity, we do not allow for variation of the free surface,
which will be an area of future work, but we instead impose
weak anchoring conditions. As with the other numerical
experiments, full details of the boundary conditions,
solvers, and choices of parameters are documented in the
Supplemental Material [60]. Furthermore, a video showing
the lowest-energy configurations as the aspect ratio L/t
varies is also included; all of these configurations are stable.

A partially enumerated energy landscape is displayed in
Fig. 3(d), showing an extremely dense thicket of solutions
but qualitatively supporting earlier work in that an overall
minimizer occurs at an aspect ratio of around 3, which is
similar to experimental values even with no parameter
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tuning. Close examination of the energy landscape,
together with the corresponding solution set, shows many
small discontinuous jumps that result from delicate com-
mensurability effects, whereby certain domain sizes are
compatible with a given periodicity of the layers, as well as
from variations in the number of defects and their detailed
placement. Similar effects have been observed when other
periodic liquid crystals such as cholesterics are confined in
domains that promote geometric frustration [74].

The solution set we obtain contains examples reminis-
cent of previously proposed structures [Fig. 3(e)]. The
minimum energy states found at different aspect ratios
contain cylindrical sections mediated by a defect-filled
region reminiscent of the mesoscopic rotating grain boun-
daries. Other solutions, displayed in the lowest row of
Fig. 3(e), are quite different from those heretofore pro-
posed, where regions of relatively vertically oriented layers
sit atop cylindrical regions interspersed with defects. Each
of these incorporates a greater proportion of vertical layers
relative to the hemicylindrical-planar ansatz of Figs. 3(a)
and 3(b), and may provide alternative structures for oily
streaks in ultrathin films. In future work, the boundary
conditions at the top interface should be carefully recon-
sidered, including the incorporation of a free interface.

In conclusion, we have formulated a free energy func-
tional for smectics that is amenable to finite element
simulation, and we have applied it to scenarios involving
boundary conditions that are incompatible with uniform
smectic order; our new model successfully reproduces, even
without careful tuning of parameters, a number of exper-
imentally observed and theoretically expected phenomena;
in addition, it produces new candidate structures for thin
smectic films that are explicitly stationary states of an energy
functional. We also demonstrate how to overcome a less
obvious difficulty with numerical studies of smectics and
layered media, in general: The solution landscapes are
extremely dense because of the presence of defects. The
combination of our model and the deflation technique
enables detailed exploration of this landscape, allowing
us to isolate both the ground state and low-lying excited
states that may be observed in physical systems.
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