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ABSTRACT: Accurate, physically based precipitation retrieval over global land surfaces is an important goal of the

NASA/JAXA Global Precipitation Measurement Mission (GPM). This is a difficult problem for the passive microwave

constellation, as the signal over radiometrically warm land surfaces in the microwave frequencies means that the mea-

surements used are indirect and typically require inferring some type of relationship between an observed scattering signal

and precipitation at the surface. GPM, with collocated radiometer and dual-frequency radar, is an excellent tool for tackling

this problem and improving global retrievals. In the years following the launch of the GPM Core Observatory satellite,

physically based passive microwave retrieval of precipitation over land continues to be challenging. Validation efforts

suggest that the operational GPM passive microwave algorithm, the Goddard profiling algorithm (GPROF), tends to

overestimate precipitation at the low (,5mmh21) end of the distribution over land. In this work, retrieval sensitivities to

dynamic surface conditions are explored through enhancement of the algorithmwith dynamic, retrieved information from a

GPM-derived optimal estimation scheme. The retrieved parameters describing surface and background characteristics

replace current static or ancillary GPROF information including emissivity, water vapor, and snow cover. Results show that

adding this information decreases probability of false detection by 50% and, most importantly, the enhancements with

retrieved parameters move the retrieval away from dependence on ancillary datasets and lead to improved physical

consistency.
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1. Introduction

Accurate, physically based precipitation retrieval over global

land surfaces is an important goal of the joint NASA/JAXA

Global Precipitation Measurement Mission (GPM) (Hou et al.

2014; Skofronick-Jackson et al. 2017). This is a challenging

problem for the passive microwave constellation component of

GPM, as the hydrometeor signal over radiometrically warm

land surfaces in the microwave frequencies means that the

measurements used in retrievals are more indirect than over

ocean. Over ocean, the multispectral emission and scattering

characteristics of hydrometeors can be used in algorithms for

microwave imagers such as the 13-channel GPM Microwave

Imager (GMI), whereas over land, retrievals typically reduce

to looking for an ice scattering signal associated with precipi-

tation (Levizzani et al. 2020; You et al. 2017; Petty and

Krajewski 1996). Additionally, the passive microwave (PMW)

brightness temperatures (Tbs) are sensitive to the column

integrated precipitation content, so additional assumptions

about the vertical distribution of hydrometeors are required to

calculate the surface precipitation rates desired by users of the

data (Smith et al. 1994). GPM, with collocated radiometer and

dual-frequency (Ku/Ka band, or 14 and 35GHz) precipitation

radar (DPR), along with a constellation of partner radiome-

ters, is an excellent tool for exploring these issues and rela-

tionships, with application toward the improvement of global

retrievals.

The operational NASAGPM retrieval for the PMW sensors

is the Goddard profiling algorithm (GPROF), a parametric

scheme applied for each constellation radiometer (Kummerow

et al. 2015). GPROF is a Bayesian-type retrieval and will be

more fully described in section 2. Early iterations of GPROF

did not use the Bayesian scheme over land surfaces, instead

employing more empirical relationships relating ice scattering

to surface precipitation (Gopalan et al. 2010); however, prod-

ucts in theGPMera (2014–present) havemoved away from the

empirical schemes. Regardless of formulation, the scattering

signal forms the bulk of the information available to the re-

trieval over land simply due to the highly variable nature of the

surface emissivity.

Using coincident radar–radiometer observations from the

predecessor Tropical Rainfall Measuring Mission (TRMM),

Berg et al. (2006) showed that disagreement between rain-rate

estimates from the active and passive sensors displayed re-

gional patterns that could be correlated to regional climate

conditions. Subsequent versions of GPROF addressed this byCorresponding author: Sarah Ringerud, sarah.e.ringerud@nasa.gov
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constraining the TRMM (ocean only) GPROF retrievals by

two environmental parameters, namely total precipitable wa-

ter (TPW) and sea surface temperature (SST) (Kummerow

et al. 2011). Moving forward to GPM, these same techniques

were adapted to land surfaces, by replacing the SST with the

2m air temperature commonly available from forecast and

reanalysis models. In a series of papers describing and testing

the Cloud Dynamics and Radiation Database for Bayesian

precipitation retrieval, Casella et al. (2013) and Smith et al.

(2013) showed that solution ambiguity is greatly reduced by

considering additional environmental parameters including

vertical velocity and convective available potential energy

(CAPE), which correlate to microphysical properties (Casella

et al. 2013; Smith et al. 2013). Petković and Kummerow (2017)

demonstrated that constraining the retrieval over land in

particular may require including other parameters that more

accurately relate storm dynamics and associated scattering

signals, with results suggesting the best constraint to be CAPE

over land surfaces. The authors found that stratifying by

CAPE, which describes the potential for vertical motion and

convection, decreased the variability in the relationship be-

tween surface precipitation and ice scattering aloft. While

this gives some good physical insight into the processes that

control the scattering–rain rate relationships, straight im-

plementation of this in the algorithm requires more reliance on

ancillary model data. Relying heavily on coarse model data

decouples the algorithm from the observations and may

potentially lead to problems near strong gradients, such as

cold fronts, where the retrieval may be assuming conditions

associated with different boundary layer and freezing level

heights, with different scattering signal–rain rate relationships

as a result.

While the Bayesian technique is adopted for operational

NASA GPM retrievals, NOAA has implemented a 1D varia-

tional (1DVAR) technique—theMicrowave IntegratedRetrieval

System (MiRS)—which does an iterative inversion of the ra-

diative transfer in the same way over all surfaces (Boukabara

et al. 2011; Meng et al. 2017). This method has the benefit of

being fully radiometrically consistent and having no reliance

on ancillary model data beyond initial offline development of

first-guess parameters from climatology. The downside is that

in retrieving all relevant parameters simultaneously in this

way, retrievals of this type are relatively underconstrained.

False alarms are often an issue in PMW retrievals, particu-

larly over land where dynamic surface characteristics can

sometimes be mistaken for a precipitation signal. For this

reason, many retrievals have historically employed techniques

for ‘‘screening’’ of nonraining pixels (Ferraro et al. 1998).

In the GPROF algorithm, the desire to be fully parametric

discourages any empirically based screening. Version 5 of

GPROF does this instead by running the retrieval, which

returns a probability of precipitation, twice. Following the first

pass, areas below a probability threshold are assumed non-

raining and set to zero (Kummerow et al. 2017). MiRS also

runs twice. In the first pass, the atmosphere is assumed to not

contain any hydrometeors. Areas that fail to converge under

emission-only conditions are identified and the retrieval is

run a second time in these areas with scattering enabled

(Boukabara et al. 2011). Even with a screening system in place,

the GPM GPROF algorithm tends to greatly overestimate

light precipitation as a result of false alarms. Kidd et al. (2018)

show relatively high false alarms from all GPROF products as

compared to surface radar and gauges, for both the continental

United States and Europe.

In this work, we explore a hybrid method, using output from

an optimal estimation (OE) retrieval similar in basis to the

MiRS 1DVAR first pass, as a first step to screen for precipi-

tation, and a Bayesian precipitation retrieval in areas where

the OE fails to converge. The Bayesian retrieval is constrained

using dynamic retrieved parameters describing the surface

and atmospheric conditions retrieved from the first step. In

this way the algorithm relies on dynamic and radiometrically

consistent information about the surface rather than solely

ancillary model data. The goal of this work is to explore pos-

sible information enhancements to the retrieval for improv-

ing light precipitation estimates where the surface signal is

important, while keeping generally within the operational

GPROF framework.

2. Algorithms and data

a. GPROF

GPROF, version 5, builds upon a long heritage and evolu-

tion of the PMW Bayesian retrieval (Kummerow and Giglio

1994; Olson et al. 1996; Kummerow et al. 2011, 2015), em-

ploying the same algorithm over all surfaces. Broadly, the

Bayesian inversion scheme retrieves the most likely precipi-

tation state using the full vector of observed Tb. The retrieval

space is defined by an a priori database constructed using the

GPMCombined Radar-Radiometer (2BCMB) product, which

retrieves precipitation profiles that best match all active and

passive observations from the GPM Core Observatory satellite

(Grecu et al. 2016). The 2BCMB retrievals are currently

(through version 6) carried out only in the presence of an active

radar signal. The database is constructed from 1 year of

2BCMB profiles and is organized by surface type (including

ocean, sea ice, coast, five land surface classes of varying vege-

tation level, and four classes of increasingly snow-covered

land), 2m temperature, and TPW derived from ancillary

model data, which serve to constrain the retrievals. (An ear-

lier iteration utilized an OE retrieval for the TPW field over

ocean only, but this has been discontinued.) It is important

to note that in this formulation, the 2BCMB retrievals consti-

tute the mechanically correct answer from an algorithm

perspective—GPROF cannot retrieve anything that does not

exist in the database, which means no retrievals of light pre-

cipitation below the sensitivity of the active radar. This is a

separate issue from the spurious widespread light precipitation

common in retrieval schemes of this type. Such values are

simply due to Bayesian weighting and the probabilistic nature

of the algorithm (Kummerow et al. 2015). Tb used for the re-

trievals are taken from the level 1C-R product, which delivers

calibrated Tb values in a format where each channel field of

view has been collocated to the same center point (NASA PPS

and X-Cal Working Group 2017).
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b. The OE emissivity retrieval

Munchak et al. (2020) describe an optimal estimation-based

emissivity retrieval for the GPM Combined algorithm, antici-

pated to be included in version 7 of the operational product.

The retrieval uses GMI Tb as input and retrieves surface

emissivity at the GMI frequencies along with the water vapor

profile. It should be noted that the emissivity retrieval uses

the Modern-Era Retrospective Analysis for Research and

Applications, version 2 (MERRA-2; Gelaro et al. 2017),

dataset as a first-guess value, meaning that this method is not

completely free of ancillary model data. Importantly, the

emissivity retrieval output includes an error parameter, FN,

which describes the ability of the OE forward model to con-

verge and match the observed Tb. The retrieval (like the first

step of MiRS) assumes a nonprecipitating, nonscattering at-

mosphere. Therefore, areas where this parameter indicates a

failure to converge likely are associated with characteristics not

accounted for under the nonscattering assumption, most likely

hydrometeors. This parameter then indicates likely areas of

precipitation.

c. The hybrid retrieval and dynamic constraints

The retrieval itself involves several steps. The presence or

absence of snow cover is first determined using Tb observations.

The OE parameters are then used to screen for areas of pos-

sible precipitation, where a Bayesian scheme is applied for the

actual precipitation retrieval and constrained using retrieved

information from the OE, in contrast to the GPROF con-

straints using ancillary model data. Each step is discussed in-

dividually in detail below.

1) STEP 1: SNOW COVER

Because of the large effect of the emissivity change due to

snow cover on observed Tb, the first step in the retrieval is to

determine whether snow on the ground is present. Within the

GMI frequencies, Tbs are sensitive to the presence, depth, and

character of snow, making quantitative measurement in this

framework difficult (Mätzler 1994; Chang et al. 2003; Kongoli

et al. 2007). The operational GPROF retrieval uses ancillary,

daily model data from the NOAAAutosnow product (Romanov

et al. 2000) to identify snow-covered areas (Kummerow et al.

2017). Snow cover can be a dynamic variable, with both its

presence and properties changing at time scales less than a day

and has a large effect on the surface emissivity and associated

Tb. In this application, the presence of snow cover is diagnosed

within the retrieval process using the Munchak et al. (2020)

OE-retrieved emissivities. Remote sensing of snow cover has a

long history, and PMW observations at lower frequencies are

FIG. 1. (top) September 2014–August 2015 annualmean emissivity for snow-coveredGMI overpasses for the 18.7

and 89GHz channels used for development of the snow-cover retrieval. (middle) Differences between snow-

covered and non-snow-covered emissivity. (bottom) Frequency differences for snow cover used in the final

formulation.
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particularly valuable due to sensitivity and the ability to sense

the surface in the presence of clouds at lower frequencies, with

greatest sensitivity to snow volume and shallow snow in the

vertical polarization, but better differentiation from dry soil in

the horizontal polarization (Dietz et al. 2012). At the lower

GMI frequencies, snowpack and its effect on the dielectric

properties of the surface leads to a positive emission signal,

whereas at the higher frequencies scattering tends to decrease

emissivity (Shahroudi and Rossow 2014). Munchak et al.

(2020) demonstrate a high information content in the retrieved

emissivities up to 89GHz for TPW values under about 50mm.

To lessen the effects of scattering due to vegetation, devi-

ations from the local mean non-snow-covered emissivity

are used, rather than absolute emissivity following the

technique of Shahroudi and Rossow. The 19 and 89 GHz

channels are chosen due to their presence on all GPM

constellation imagers.

For development of the snow-cover detection scheme, a 1-yr

0.258 3 0.258 climatology of emissivity, in the absence of pre-

cipitation (meaning none detected by the active radar), at each

frequency is computed and separated into snow-covered

and non-snow-covered, as determined by the GPROF an-

cillary data (NOAA Autosnow) for calibration. Light pre-

cipitation below the sensitivity of the radar or below the

ground clutter cutoff height has the potential to contami-

nate results here, but in such cases the impact on the

dominant surface emission signal is likely small and should

have little effect on the results. An exception would be in

cases where the Tb is affected by liquid water emission. In

cases where liquid clouds are present over snow cover, for

example, this technique may fail. It should also be noted

here that while the 18.7 and 89 GHz channel footprints

share the same scan line and have been collocated via the

1C-R product, the actual resolution of each channel differs,

so this is a possible source of error in that the signal from

the 19 GHz corresponds to a larger area than the 89. The

September 2014–August 2015 mean emissivities and (snow 2
nonsnow) emissivity differences are shown in Fig. 1 for the 18.7

and 89 GHz vertical polarization (V-pol) channels. The

left side of the figure demonstrates the emissivity effects

of snow cover at the 18.7 GHz V-pol channel. The top

panel illustrates the high values (near 1) for snow-covered

pixels, and the middle left, which plots the difference

between these values and the non-snow-covered mean,

shows the general net positive, emission-based signal from the

snowpack at this frequency. The right side plots the same indi-

cators for the 89.0GHz V-pol channel, illustrating the net de-

crease in emissivity associated with scattering from snow on the

ground. The bottom panel shows a nearly uniformly positive

value for the difference between the net emission signal at the

lower frequency, and net scattering signal at the higher fre-

quency. The relationship is positive everywhere with the ex-

ception of a few of the most equatorward points.

The snow-cover detection scheme is then tested using data

from September 2015 to May 2016 (the following year) for

all pixels. Several threshold values are tested for optimization

of the scheme. The statistical metrics probability of false de-

tection (POFD—the number of false alarms divided by the

number of times the event did not happen) and probability of false

alarm (POFA—the number of false alarms divided by the total

number detected) are computed as defined by the contingency

table in Barnes et al. (2009), along with the POD (probability of

detection, which gives the ratio of correct detections to all snow-

cover observations). The Heidke skill score (HSS) is also com-

puted, which gives a measure of retrieval skill as the proportion

of correct retrievals scaled with those expected from random

chance (Heidke 1926). Results, presented in Table 1, suggest

an inflection point at a threshold of 0.03, which maximizes HSS

for all three seasons. Skill is lowest in the fall season, suggesting

a particular difficulty in this type of early season snow. The

POD is maximized at a slightly lower threshold value, but the

lower values are also associatedwithmore false alarms. The final

relationship, balancing all factors, is determined as

D18:7V�2D89:0V�. 0:03, (1)

where the delta (D) indicates a difference between observed

emissivity at and 1 yr mean snow-free emissivity at each fre-

quency (i.e., D18.7V� is the difference in emissivity (�) from the

snow-free mean at 18.7GHz V-pol). This relationship is de-

signed to detect seasonal snow cover, leading to a deviation

from snow-free emissivity, and adjustments would be required

for application to the polar regions, for example, where snow

cover is the default state. It should be noted that the Autosnow

data, while used for calibration, are not to be viewed as pure

validation data as they are a daily product, whereas the scheme

here is intended to identify instantaneous snow cover. As this

designation is used for determining retrieval constraints, the

choice is made to err on the side of detection. Figure 2 shows

TABLE 1. Boreal winter 2015/16 global probability of false de-

tection, probability of false alarm, probability of detection, and

HSS for all tested values of snow emissivity cutoff values as de-

scribed by Eq. (1).

Snow cutoff value POFD POFA POD HSS

SON 2015

0.0 0.51 0.65 0.84 0.22

0.01 0.25 0.50 0.76 0.43

0.02 0.12 0.35 0.68 0.55

0.03 0.067 0.25 0.62 0.59

0.04 0.043 0.19 0.56 0.58

0.05 0.031 0.16 0.51 0.55

DJF 2015–16

0.0 0.51 0.19 0.93 0.46

0.01 0.32 0.13 0.90 0.60

0.02 0.19 0.086 0.87 0.66

0.03 0.12 0.058 0.84 0.67

0.04 0.083 0.042 0.80 0.65

0.05 0.06 0.032 0.77 0.62

MAM 2016

0.0 0.44 0.51 0.85 0.34

0.01 0.22 0.37 0.79 0.53

0.02 0.12 0.25 0.74 0.62

0.03 0.073 0.18 0.69 0.64

0.04 0.050 0.14 0.64 0.63

0.05 0.037 0.11 0.59 0.61
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the snow-cover detection results for the test period, September

2015–May 2016, broken down by season. As indicated by

the statistics in Table 1, the colder season snow (DJF) is

most consistently detected. Notable differences are located in

mountainous areas, particularly eastern Europe and the U.S.

Pacific Northwest region, where snow cover is underdetected

as compared to Autosnow. In the fall and spring season,

the southern extent of snow-cover areas shows widespread

but very small in number false detections as compared to

Autosnow, though since the comparison is of an instantaneous

versus daily product this comparison is a bit ambiguous. While

the purpose of this simple scheme is purely to screen for the

likely presence of snow cover, there is certainly information

about the character of the snow within the multispectral

emissivity data (see Munchak et al. 2020 for a deeper discus-

sion of emissivity and snow characterization), and this will be a

topic of future work. The differences observed in areas with

more complex orography may indicate problems with the

scheme for particular snow types, and due to the orbital con-

straints of the GPM Core Observatory satellite there has been

no testing closer to the poles. Based upon the results in Table 1,

the detection performs reasonably well for the current appli-

cation, comparing nicely to the operational Autosnow product,

and will be used here to define the presence of snow cover

without the need for coincident ancillary data.

2) STEP 2: ERROR PARAMETER SCREENING

Due to the added complexities of retrieving precipitation

over snow-covered surfaces, this work will focus on non-snow-

covered surfaces only, with the snow-cover retrieval described

in Step 1 used for classification; snow-covered surfaces are

relegated to future work. After screening for snow cover, the

FIG. 2. Snow-cover detection occurrence for GMI overpasses from (top) theAutosnow product and (bottom) the

detection scheme described here over the period of boreal winter 2015/16 for the seasonal periods (a) September–

November (SON), (b) December–February (DJF), and (c) March–May (MAM).
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OE parameters are obtained. Figure 3 shows emissivity at the

18.7GHz horizontal polarization (H-pol) channel (upper right)

along with associated observed GMI Tb (upper left) for an

overpass of the GPM satellite on 4 June 2016 over the upper

Midwest region of the United States. Unusually low emissivities

are observed in southwestern Minnesota, associated with prior

precipitation. The observed Tb from the 89GHzV-pol channel

are shown in the middle-right panel, and the 183.3 6 3GHz

FIG. 3. Observed and retrieved parameters from a GMI overpass on 4 Jun 2016. (top left) Observed Tb and (top

right) retrieved emissivity at 18.7GHz. (middle left) The normalized error parameter from the OE retrieval and

(middle right) the observed 89V Tb. (bottom left) Observed Tb at 183 6 3GHz alongside (bottom right) re-

trieved TPW.
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V-pol in the bottom left. These observations suggest intense

convective precipitation associated with the cold scattering

cloud tops running diagonally over Wisconsin associated with

increased water vapor values. Retrieved TPW from the OE is

plotted in the lower right panel, and the normalized error in the

middle-left (for plotting purposes, theFN values are cutoff at a

value of 100) and are collocated with the clearly erroneous

TPW values in the areas associated with the scattering signal

in the Tb fields. Observed precipitation from the NOAA

Multi-RadarMulti-Sensor (MRMS) system (Zhang et al. 2011)

surface radar product at the overpass time is shown in Fig. 4,

and confirms that most of the radar observed precipitation is

associated with this scattering signal and in the areas of ele-

vated FN. These areas then are candidates for the Bayesian

precipitation retrieval, and the TPWand emissivity values here

are not to be used as the OE has difficulty converging.

3) STEP 3: DEFINE OBSERVATIONALLY BASED

CONSTRAINTS FOR BAYESIAN RETRIEVAL AND

DATABASE

As described previously, the operational GMI algorithm

constrains retrievals using ancillary parameters: static surface

types along with TPW and 2m temperature from model re-

analysis products. In an effort to make the constraints more

observationally based and fully utilize the information content

in the Tbs, the hybrid retrieval constrains are based upon

emissivity in the 18.7GHz H-pol channel and TPW, both as-

sociated with the OE output. Constraining the database by

emissivity at only a single frequency will not fully describe

variability in the surface state but adding further dimensions

to the database leads to the danger of overconstraint and a

sparsely populated database. The 18.7GHz is chosen as it

represents the lowest, and therefore most surface-sensitive,

frequency common to all of the GPM constellation imagers.

The normalized error parameter is used to screen out foot-

prints without reliable values. The threshold is fixed and

may include precipitating or nonprecipitating conditions.

Over these areas, TPW is interpolated and a recent (previ-

ous 1 year) climatology of retrieved seasonal emissivity is

used. To allow for dynamic variability associated with the

presence of precipitation, an expansion of the Bayesian

constraints is allowed in these areas and will be explained

further in the next section. This methodology differs from

the operational GPROF algorithm in that the constraints

(snow cover, TPW, and emissivity) are each associated with

the OE retrieval and thereby the observed Tb, rather than

ancillary model input.

4) STEP 4: BAYESIAN PRECIPITATION RETRIEVAL

Following the OE procedure and association of each foot-

print identified by the normalized error parameter as possible

for precipitation, Bayesian retrieval is performed on only these

identified footprints following the GPROF methodology de-

scribed in section 2. Each database profile is associated with a

TPW and emissivity value computed offline using the OE. The

database is searched within a region defined by the TPW in-

terpolated from the retrieved values, over a range up to 2mm

above the interpolated value, to allow for increases associated

with the precipitating area, and 18.7GHz H-pol emissivity

from the previous year’s climatology, plus a decreasing range

of 0.05 to allow for decreased emissivity due to recent precip-

itation (Munchak et al. 2020). Figure 5 shows retrieved pre-

cipitation for the overpass shown in Fig. 3, for six different

values ofFN cutoff from zero (Bayesian retrieval everywhere)

to 0.5. A clear pattern emerges as the cutoff value increases,

with widespread light precipitation areas decreasing with FN.

Values starting with 0.3 start to look quite similar to the surface

radar observations shown in Fig. 4. Note that values are trun-

cated at 0.1mmh21 to compare with the MRMS product,

which has a 0.1mmh21 minimum in order to be consistent with

DPR sensitivity.

The hybrid technique demonstrated here is run as described

for the 1-yr period September 2015–August 2016 globally for

non-snow-covered land surfaces. Results are discussed in

section 3.

3. Retrieval results and discussion

In heavily precipitating areas, the component of the Tb

signal from the surface becomes less important than the pre-

cipitation signal. It is assumed therefore, that use of the OE

emissivity retrieval in a ‘‘hybrid’’ configuration defining areas

for a GPROF-like Bayesian precipitation retrieval will have

the most impact on light precipitation cases and false alarms.

To explore these differences in a consistent manner, the re-

trieval is also performed for the same year using the GPROF

constraints—a climatological surface type (or Class) defined

by GPROF developers, model TPW, and model 2m temper-

ature. This is procedurally identical to the GPROF product,

with the following exceptions: Database entries are compared

to observations individually, rather than using clustered values

as GPROF does (Kummerow et al. 2017), and the first

‘‘screening’’ pass is not performed. The purpose of using this,

which will be labeled Class, for comparison, rather than the

operational GPROF product, is to examine differences in re-

trieval results using the exact same database profiles but

FIG. 4. MRMS surface radar rain rates for the 4 Jun 2016 case

shown in Fig. 3.

FEBRUARY 2021 R INGERUD ET AL . 173

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:29 PM UTC



FIG. 5. Retrieved precipitation for the 4 Jun 2016 case shown in Figs. 3 and 4. Each panel shows the retrieved

rates using different values of the normalized error parameter as a cutoff to define areas where the Bayesian

retrieval is performed.
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FIG. 6. Retrieved precipitation rates from a GMI overpass on 8 Sep 2015. (top left) Observed GMI Tb at the 89

and (top right) 18363GHz channels. (second row) GPM retrievals from (left) the active Ku radar and (right) the

operational GPROF retrieval are shown over Illinois. The additional rows show the hybrid retrievals using several

values of normalized error parameter as a cutoff for the Bayesian retrieval areas, and (bottom right) retrieval using

the GPROF classes.

FEBRUARY 2021 R INGERUD ET AL . 175

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:29 PM UTC



organized into different database constraining schemes. An

example of successful light precipitation screening is shown in

Fig. 6 for a GMI overpass on 8 September 2015. The top panels

show observed GMI Tb at the 89 and 1836 3GHz frequencies

over the Great Lakes region of the United States. Cold Tb at

89GHz suggest high cold clouds in central Wisconsin as well as

south of Lake Michigan and a weak scattering signal over

southwestern Illinois. A strong gradient is apparent in the 183

6 3GHzwater vapor channel, suggesting a frontal boundary in

the area. Focusing in on the area of Illinois south of Lake

Michigan, the DPR Ku-band (DPR Ku) retrieved values as

well as the operational GPROF product are plotted in the

second row, with the hybrid retrievals at several FN cutoff

values below. Each of these panels shows an absence of any

retrieved precipitation, regardless of FN. The bottom-right

panel, labeled ‘‘Retrieved Class’’ shows the retrieval using the

same database organized into the GPROF classification.

Results are similar to the operational GPROF results. Here the

weak scattering signal over the center of the state appears to

have been identified by the Class formulation as precipitation,

whereas in the hybrid retrieval no precipitation is retrieved,

regardless of FN cutoff value. The MRMS validation data,

shown in Fig. 7 over the full Great Lakes region for a sense of

the larger scale situation, does not indicate precipitation in

this area. For this particular case, the normalized error pa-

rameter is around 1.0 over the area, so the reorganization of

the database entries appears to have led to the differences in

this case. A midlatitude cyclone is present here, associated

with a strong water vapor gradient as illustrated by the plot of

observed 183 6 3GHz V-pol Tb shown in the top row. As

there are no retrievals across the threshold values, the con-

straint of TPW from retrieved values versus model values has

clearly made a large difference here. The importance of the

TPW bin is further demonstrated in Fig. 8, which plots the

TPW values from the GPROF model-based classification

(left) and the TPW calculated from the OE procedure (right).

The 1DVAR is run over coastal and land surfaces only, re-

sulting in the absence of data over open water. The model-

derived TPW values are smoother and lower by up to 10mm

in the area of false alarms, which notably coincides with a

tight gradient. Therefore, each method, though using the

same profiles in the database, is constraining the retrieval

with significantly different TPW values in the same area,

yielding different results.

For a global comparison, the retrievals are run as described

for a 1-yr period. To compare with DPR active radar estimates,

FIG. 7. MRMS surface radar rain rates for the 8 Sep 2015 case

shown in Fig. 6.

FIG. 8. TPW values from the (left) GPROF model values and (right) OE retrieved values over the Great Lakes

region for the 8 Sep 2015 case shown in Fig. 6.
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the retrievals are compared over the center footprints corre-

sponding to the radar swath only. As the interest here is in

improving estimates of light precipitation, the DPR Ku-band

radar is used as a global comparison for calculation of false

alarms—cases where the passive retrieval has retrieved pre-

cipitation (above a value of 0.01mmh21) where the active

radar gives a value of zero. The radar has a minimum detect-

able rain rate of 0.30mmh21 (Hamada and Takayabu 2016),

and the 0.01mmh21 cutoff conservatively ensures that even

averaged over the 18.7GHz footprint precipitation is retrieved

and not simply a mathematical artifact of the probabilistic

Bayesian scheme. Recall that the retrieval database is con-

structed using the radar precipitation, so this is mechanically

the desired ‘‘right answer,’’ which may differ from ‘‘truth.’’

Results are plotted and shown in Fig. 9 as a ratio of false alarms

to total observations. The global distribution is similar in each

case and largely follows the distribution of precipitation. High

values are concentrated over the Amazon and Congo rain

FIG. 9. Ratio of retrieval false alarms (not detected by the active radar) to all obser-

vations for the 1-yr period September 2015–August 2016. (bottom) Results using the

GPROF classification scheme; (top three rows) results using the hybrid retrieval with

several values of normalized error parameter cutoff defining locations for the Bayesian

retrieval.
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forests. Given the relative uniformity of emissivity over the

tropical rain forest, which tends to be less dynamic due to year-

round vegetation and relative insensitivity to surface soil

moisture changes under the heavy canopy, this presents further

evidence that using a TPW value retrieved using the coincident

observations versus ancillary data has the potential to improve

theGPMPMWprecipitation algorithm. The false alarms using

the GPROF Class constraints are very similar to a FN cutoff

value of 0.1, and these results form a baseline from which the

number of false alarms decreases as the cutoff value increases.

For a deeper look at the effect of the cutoff on retrieval re-

sults, error statistics for the full year are given in Table 2 for

precipitation values less than 2.0mmh21. Correlations and

root-mean-square error (RMSE) tend to be associated with

precipitation at higher rain rates, and these are unchanged for

each retrieval formulation. Bias and probability of false de-

tection decrease with FN value. When the FN cutoff value is

increased from 0.1 to 0.3, probability of false detection de-

creases by half. A value of 0.5 decreases POFD by an order of

magnitude. Heidke skill score values increase with the more

stringent cutoff values. The probability of detection statistic

suggests caution however, as this value is also decreasing. The

statistics here indicate a possible optimal value of about 0.3 as a

middle ground for relative maximization of detection and

minimization of false detection as both are decreasing. The

HSS is not at a maximum here, however, and this is not

necessarily a final answer. Future implementation of this

technique should explore the possibility that the cutoff need

not be static and may vary by a yet to be determined location

or regime.

4. Conclusions

In this work we demonstrate enhancements to the GMI

PMW precipitation algorithm with more dynamic observa-

tionally based constraints supplied by a concurrently run OE

retrieval to maintain radiometric consistency and decrease

reliance on ancillary model data as constraint. Use of observed

emissivity for screening of snow cover eliminates potential

problems from dynamic changes to the emissivity due to fresh

snow or melting below the daily time scale of the ancillary

products used operationally. Constraining of the database us-

ing the OE retrieval parameters rather than model values has

an impact on detection as illustrated by the case shown in

Fig. 6. Global statistics indicate the potential of such a tech-

nique to reduce false alarms and spurious widespread light

precipitation often associated with pure Bayesian retrievals.

The idea of ‘‘false alarms’’ is of course a bit tricky for a

probabilistic retrieval, as an absolute zero value is highly

unlikely in such a scheme. As indicated in the algorithm de-

scription, the latest version of GPROF is run twice, and zero

values are assigned below a probability threshold. Spurious

light precipitation over land is still common, however, and

many users instead use self-defined cutoff values. The hybrid

technique eliminates the need for rate or probability-based

cutoffs by instead examining convergence of the OE, similar

to a MiRS-style variational retrieval. In the nonconverging

areas, a highly constrained Bayesian precipitation retrieval

is inserted, in contrast to the uniform MiRS or GPROF

formulations.

As a two-step process, with individual OE emissivity re-

trievals required for each constellation sensor, the hybrid

technique is not proposed as an operational scheme but is

presented here for use as an enhanced and more observa-

tionally based, radiometrically consistent retrieval system for

research. In particular, the inclusion of surface emissivity and

concurrent retrieved water vapor hasmany applications for use

in the study of land–atmosphere interaction. While the current

work has been demonstrated here only for the GMI sensor, the

inclusion of the OE retrieval has the potential to improve the

database Tb calculations for use with the constellation sensors

as well. This is relatively straightforward for similar imaging

instruments, but the GPM constellation also includes several

cross-track scanning platforms designed for atmospheric

sounding with frequencies focused on the higher end of those

described here (Hou et al. 2014). These high-frequency

sounders (many of which have a 23.8GHz channel near the

water vapor absorption line but do not have the 18GHz

window channel) are a bit trickier, but the surface is much less

important for sounder retrievals, and surface-related con-

straints may not be necessary in those cases. Dynamically

retrieved water vapor, however, may have significant poten-

tial for improving these retrievals, and this will be a direction

of upcoming work. For future use, the OE retrieval can be

easily adapted to each sensor and would remain physically

consistent for that platform. This consistency with observed

Tb is particularly important for applications such as data as-

similation and use of the GPM data to understand precipi-

tation processes and relation to the geophysical environment

and is the key enhancement presented in this work. The in-

clusion of the OE and dynamic surface information along

with water vapor retrieved from the observations create a

more robust, radiometrically consistent retrieval for process

studies and hydrologic applications.
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TABLE 2. Error statistics for 1 year of retrieved precipitation

over global snow-free surfaces. Each row gives statistics for the 1-yr

period using a different value of normalized error parameter as

cutoff for defining the area of Bayesian precipitation retrieval, with

the bottom column showing statistics using the GPROF classes.

Correlation Bias RMSE POFD POD HSS

FN . 0.1 0.47 0.044 1.04 0.29 0.91 0.20

FN . 0.2 0.47 0.043 1.04 0.22 0.89 0.26

FN . 0.3 0.47 0.038 1.04 0.15 0.84 0.33

FN . 0.4 0.46 0.037 1.04 0.11 0.79 0.40

FN . 0.5 0.47 0.035 1.04 0.08 0.75 0.46

Class 0.47 0.045 1.07 0.29 0.90 0.20
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