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ABSTRACT: Accurate, physically based precipitation retrieval over global land surfaces is an important goal of the
NASA/JAXA Global Precipitation Measurement Mission (GPM). This is a difficult problem for the passive microwave
constellation, as the signal over radiometrically warm land surfaces in the microwave frequencies means that the mea-
surements used are indirect and typically require inferring some type of relationship between an observed scattering signal
and precipitation at the surface. GPM, with collocated radiometer and dual-frequency radar, is an excellent tool for tackling
this problem and improving global retrievals. In the years following the launch of the GPM Core Observatory satellite,
physically based passive microwave retrieval of precipitation over land continues to be challenging. Validation efforts
suggest that the operational GPM passive microwave algorithm, the Goddard profiling algorithm (GPROF), tends to
overestimate precipitation at the low (<5mmh ') end of the distribution over land. In this work, retrieval sensitivities to
dynamic surface conditions are explored through enhancement of the algorithm with dynamic, retrieved information from a
GPM-derived optimal estimation scheme. The retrieved parameters describing surface and background characteristics
replace current static or ancillary GPROF information including emissivity, water vapor, and snow cover. Results show that
adding this information decreases probability of false detection by 50% and, most importantly, the enhancements with
retrieved parameters move the retrieval away from dependence on ancillary datasets and lead to improved physical

consistency.
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1. Introduction

Accurate, physically based precipitation retrieval over global
land surfaces is an important goal of the joint NASA/JAXA
Global Precipitation Measurement Mission (GPM) (Hou et al.
2014; Skofronick-Jackson et al. 2017). This is a challenging
problem for the passive microwave constellation component of
GPM, as the hydrometeor signal over radiometrically warm
land surfaces in the microwave frequencies means that the
measurements used in retrievals are more indirect than over
ocean. Over ocean, the multispectral emission and scattering
characteristics of hydrometeors can be used in algorithms for
microwave imagers such as the 13-channel GPM Microwave
Imager (GMI), whereas over land, retrievals typically reduce
to looking for an ice scattering signal associated with precipi-
tation (Levizzani et al. 2020; You et al. 2017; Petty and
Krajewski 1996). Additionally, the passive microwave (PMW)
brightness temperatures (Tbs) are sensitive to the column
integrated precipitation content, so additional assumptions
about the vertical distribution of hydrometeors are required to
calculate the surface precipitation rates desired by users of the
data (Smith et al. 1994). GPM, with collocated radiometer and

Corresponding author: Sarah Ringerud, sarah.e.ringerud@nasa.gov

DOI: 10.1175/JTECH-D-20-0048.1

dual-frequency (Ku/Ka band, or 14 and 35 GHz) precipitation
radar (DPR), along with a constellation of partner radiome-
ters, is an excellent tool for exploring these issues and rela-
tionships, with application toward the improvement of global
retrievals.

The operational NASA GPM retrieval for the PMW sensors
is the Goddard profiling algorithm (GPROF), a parametric
scheme applied for each constellation radiometer (Kummerow
et al. 2015). GPROF is a Bayesian-type retrieval and will be
more fully described in section 2. Early iterations of GPROF
did not use the Bayesian scheme over land surfaces, instead
employing more empirical relationships relating ice scattering
to surface precipitation (Gopalan et al. 2010); however, prod-
ucts in the GPM era (2014—present) have moved away from the
empirical schemes. Regardless of formulation, the scattering
signal forms the bulk of the information available to the re-
trieval over land simply due to the highly variable nature of the
surface emissivity.

Using coincident radar-radiometer observations from the
predecessor Tropical Rainfall Measuring Mission (TRMM),
Berg et al. (2006) showed that disagreement between rain-rate
estimates from the active and passive sensors displayed re-
gional patterns that could be correlated to regional climate
conditions. Subsequent versions of GPROF addressed this by
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constraining the TRMM (ocean only) GPROF retrievals by
two environmental parameters, namely total precipitable wa-
ter (TPW) and sea surface temperature (SST) (Kummerow
et al. 2011). Moving forward to GPM, these same techniques
were adapted to land surfaces, by replacing the SST with the
2m air temperature commonly available from forecast and
reanalysis models. In a series of papers describing and testing
the Cloud Dynamics and Radiation Database for Bayesian
precipitation retrieval, Casella et al. (2013) and Smith et al.
(2013) showed that solution ambiguity is greatly reduced by
considering additional environmental parameters including
vertical velocity and convective available potential energy
(CAPE), which correlate to microphysical properties (Casella
et al. 2013; Smith et al. 2013). Petkovi¢ and Kummerow (2017)
demonstrated that constraining the retrieval over land in
particular may require including other parameters that more
accurately relate storm dynamics and associated scattering
signals, with results suggesting the best constraint to be CAPE
over land surfaces. The authors found that stratifying by
CAPE, which describes the potential for vertical motion and
convection, decreased the variability in the relationship be-
tween surface precipitation and ice scattering aloft. While
this gives some good physical insight into the processes that
control the scattering-rain rate relationships, straight im-
plementation of this in the algorithm requires more reliance on
ancillary model data. Relying heavily on coarse model data
decouples the algorithm from the observations and may
potentially lead to problems near strong gradients, such as
cold fronts, where the retrieval may be assuming conditions
associated with different boundary layer and freezing level
heights, with different scattering signal-rain rate relationships
as a result.

While the Bayesian technique is adopted for operational
NASA GPM retrievals, NOAA has implemented a 1D varia-
tional (1IDVAR) technique—the Microwave Integrated Retrieval
System (MiRS)—which does an iterative inversion of the ra-
diative transfer in the same way over all surfaces (Boukabara
et al. 2011; Meng et al. 2017). This method has the benefit of
being fully radiometrically consistent and having no reliance
on ancillary model data beyond initial offline development of
first-guess parameters from climatology. The downside is that
in retrieving all relevant parameters simultaneously in this
way, retrievals of this type are relatively underconstrained.

False alarms are often an issue in PMW retrievals, particu-
larly over land where dynamic surface characteristics can
sometimes be mistaken for a precipitation signal. For this
reason, many retrievals have historically employed techniques
for “screening” of nonraining pixels (Ferraro et al. 1998).
In the GPROF algorithm, the desire to be fully parametric
discourages any empirically based screening. Version 5 of
GPROF does this instead by running the retrieval, which
returns a probability of precipitation, twice. Following the first
pass, areas below a probability threshold are assumed non-
raining and set to zero (Kummerow et al. 2017). MiRS also
runs twice. In the first pass, the atmosphere is assumed to not
contain any hydrometeors. Areas that fail to converge under
emission-only conditions are identified and the retrieval is
run a second time in these areas with scattering enabled
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(Boukabara et al. 2011). Even with a screening system in place,
the GPM GPROF algorithm tends to greatly overestimate
light precipitation as a result of false alarms. Kidd et al. (2018)
show relatively high false alarms from all GPROF products as
compared to surface radar and gauges, for both the continental
United States and Europe.

In this work, we explore a hybrid method, using output from
an optimal estimation (OE) retrieval similar in basis to the
MiRS 1DVAR first pass, as a first step to screen for precipi-
tation, and a Bayesian precipitation retrieval in areas where
the OE fails to converge. The Bayesian retrieval is constrained
using dynamic retrieved parameters describing the surface
and atmospheric conditions retrieved from the first step. In
this way the algorithm relies on dynamic and radiometrically
consistent information about the surface rather than solely
ancillary model data. The goal of this work is to explore pos-
sible information enhancements to the retrieval for improv-
ing light precipitation estimates where the surface signal is
important, while keeping generally within the operational
GPROF framework.

2. Algorithms and data
a. GPROF

GPROF, version 5, builds upon a long heritage and evolu-
tion of the PMW Bayesian retrieval (Kummerow and Giglio
1994; Olson et al. 1996; Kummerow et al. 2011, 2015), em-
ploying the same algorithm over all surfaces. Broadly, the
Bayesian inversion scheme retrieves the most likely precipi-
tation state using the full vector of observed Tb. The retrieval
space is defined by an a priori database constructed using the
GPM Combined Radar-Radiometer (2BCMB) product, which
retrieves precipitation profiles that best match all active and
passive observations from the GPM Core Observatory satellite
(Grecu et al. 2016). The 2BCMB retrievals are currently
(through version 6) carried out only in the presence of an active
radar signal. The database is constructed from 1 year of
2BCMB profiles and is organized by surface type (including
ocean, sea ice, coast, five land surface classes of varying vege-
tation level, and four classes of increasingly snow-covered
land), 2m temperature, and TPW derived from ancillary
model data, which serve to constrain the retrievals. (An ear-
lier iteration utilized an OE retrieval for the TPW field over
ocean only, but this has been discontinued.) It is important
to note that in this formulation, the 2BCMB retrievals consti-
tute the mechanically correct answer from an algorithm
perspective—GPROF cannot retrieve anything that does not
exist in the database, which means no retrievals of light pre-
cipitation below the sensitivity of the active radar. This is a
separate issue from the spurious widespread light precipitation
common in retrieval schemes of this type. Such values are
simply due to Bayesian weighting and the probabilistic nature
of the algorithm (Kummerow et al. 2015). Tb used for the re-
trievals are taken from the level 1C-R product, which delivers
calibrated Tb values in a format where each channel field of
view has been collocated to the same center point (NASA PPS
and X-Cal Working Group 2017).
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FIG. 1. (top) September 2014-August 2015 annual mean emissivity for snow-covered GMI overpasses for the 18.7
and 89 GHz channels used for development of the snow-cover retrieval. (middle) Differences between snow-
covered and non-snow-covered emissivity. (bottom) Frequency differences for snow cover used in the final

formulation.

b. The OE emissivity retrieval

Munchak et al. (2020) describe an optimal estimation-based
emissivity retrieval for the GPM Combined algorithm, antici-
pated to be included in version 7 of the operational product.
The retrieval uses GMI Tb as input and retrieves surface
emissivity at the GMI frequencies along with the water vapor
profile. It should be noted that the emissivity retrieval uses
the Modern-Era Retrospective Analysis for Research and
Applications, version 2 (MERRA-2; Gelaro et al. 2017),
dataset as a first-guess value, meaning that this method is not
completely free of ancillary model data. Importantly, the
emissivity retrieval output includes an error parameter, ®y
which describes the ability of the OE forward model to con-
verge and match the observed Tb. The retrieval (like the first
step of MiRS) assumes a nonprecipitating, nonscattering at-
mosphere. Therefore, areas where this parameter indicates a
failure to converge likely are associated with characteristics not
accounted for under the nonscattering assumption, most likely
hydrometeors. This parameter then indicates likely areas of
precipitation.

c. The hybrid retrieval and dynamic constraints

The retrieval itself involves several steps. The presence or
absence of snow cover is first determined using Tb observations.
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The OE parameters are then used to screen for areas of pos-
sible precipitation, where a Bayesian scheme is applied for the
actual precipitation retrieval and constrained using retrieved
information from the OE, in contrast to the GPROF con-
straints using ancillary model data. Each step is discussed in-
dividually in detail below.

1) STEP 1: SNOW COVER

Because of the large effect of the emissivity change due to
snow cover on observed Tb, the first step in the retrieval is to
determine whether snow on the ground is present. Within the
GMI frequencies, Tbs are sensitive to the presence, depth, and
character of snow, making quantitative measurement in this
framework difficult (Mitzler 1994; Chang et al. 2003; Kongoli
et al. 2007). The operational GPROF retrieval uses ancillary,
daily model data from the NOAA Autosnow product (Romanov
et al. 2000) to identify snow-covered areas (Kummerow et al.
2017). Snow cover can be a dynamic variable, with both its
presence and properties changing at time scales less than a day
and has a large effect on the surface emissivity and associated
Tb. In this application, the presence of snow cover is diagnosed
within the retrieval process using the Munchak et al. (2020)
OE-retrieved emissivities. Remote sensing of snow cover has a
long history, and PMW observations at lower frequencies are
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particularly valuable due to sensitivity and the ability to sense
the surface in the presence of clouds at lower frequencies, with
greatest sensitivity to snow volume and shallow snow in the
vertical polarization, but better differentiation from dry soil in
the horizontal polarization (Dietz et al. 2012). At the lower
GMI frequencies, snowpack and its effect on the dielectric
properties of the surface leads to a positive emission signal,
whereas at the higher frequencies scattering tends to decrease
emissivity (Shahroudi and Rossow 2014). Munchak et al.
(2020) demonstrate a high information content in the retrieved
emissivities up to 89 GHz for TPW values under about 50 mm.
To lessen the effects of scattering due to vegetation, devi-
ations from the local mean non-snow-covered emissivity
are used, rather than absolute emissivity following the
technique of Shahroudi and Rossow. The 19 and 89 GHz
channels are chosen due to their presence on all GPM
constellation imagers.

For development of the snow-cover detection scheme, a 1-yr
0.25° X 0.25° climatology of emissivity, in the absence of pre-
cipitation (meaning none detected by the active radar), at each
frequency is computed and separated into snow-covered
and non-snow-covered, as determined by the GPROF an-
cillary data (NOAA Autosnow) for calibration. Light pre-
cipitation below the sensitivity of the radar or below the
ground clutter cutoff height has the potential to contami-
nate results here, but in such cases the impact on the
dominant surface emission signal is likely small and should
have little effect on the results. An exception would be in
cases where the Tb is affected by liquid water emission. In
cases where liquid clouds are present over snow cover, for
example, this technique may fail. It should also be noted
here that while the 18.7 and 89 GHz channel footprints
share the same scan line and have been collocated via the
1C-R product, the actual resolution of each channel differs,
so this is a possible source of error in that the signal from
the 19 GHz corresponds to a larger area than the 89. The
September 2014-August 2015 mean emissivities and (snow —
nonsnow) emissivity differences are shown in Fig. 1 for the 18.7
and 89 GHz vertical polarization (V-pol) channels. The
left side of the figure demonstrates the emissivity effects
of snow cover at the 18.7 GHz V-pol channel. The top
panel illustrates the high values (near 1) for snow-covered
pixels, and the middle left, which plots the difference
between these values and the non-snow-covered mean,
shows the general net positive, emission-based signal from the
snowpack at this frequency. The right side plots the same indi-
cators for the 89.0 GHz V-pol channel, illustrating the net de-
crease in emissivity associated with scattering from snow on the
ground. The bottom panel shows a nearly uniformly positive
value for the difference between the net emission signal at the
lower frequency, and net scattering signal at the higher fre-
quency. The relationship is positive everywhere with the ex-
ception of a few of the most equatorward points.

The snow-cover detection scheme is then tested using data
from September 2015 to May 2016 (the following year) for
all pixels. Several threshold values are tested for optimization
of the scheme. The statistical metrics probability of false de-
tection (POFD—the number of false alarms divided by the
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TABLE 1. Boreal winter 2015/16 global probability of false de-
tection, probability of false alarm, probability of detection, and
HSS for all tested values of snow emissivity cutoff values as de-
scribed by Eq. (1).

Snow cutoff value POFD POFA POD HSS
SON 2015
0.0 0.51 0.65 0.84 0.22
0.01 0.25 0.50 0.76 0.43
0.02 0.12 0.35 0.68 0.55
0.03 0.067 0.25 0.62 0.59
0.04 0.043 0.19 0.56 0.58
0.05 0.031 0.16 0.51 0.55
DIJF 2015-16
0.0 0.51 0.19 0.93 0.46
0.01 0.32 0.13 0.90 0.60
0.02 0.19 0.086 0.87 0.66
0.03 0.12 0.058 0.84 0.67
0.04 0.083 0.042 0.80 0.65
0.05 0.06 0.032 0.77 0.62
MAM 2016
0.0 0.44 0.51 0.85 0.34
0.01 0.22 0.37 0.79 0.53
0.02 0.12 0.25 0.74 0.62
0.03 0.073 0.18 0.69 0.64
0.04 0.050 0.14 0.64 0.63
0.05 0.037 0.11 0.59 0.61

number of times the event did not happen) and probability of false
alarm (POFA—the number of false alarms divided by the total
number detected) are computed as defined by the contingency
table in Barnes et al. (2009), along with the POD (probability of
detection, which gives the ratio of correct detections to all snow-
cover observations). The Heidke skill score (HSS) is also com-
puted, which gives a measure of retrieval skill as the proportion
of correct retrievals scaled with those expected from random
chance (Heidke 1926). Results, presented in Table 1, suggest
an inflection point at a threshold of 0.03, which maximizes HSS
for all three seasons. Skill is lowest in the fall season, suggesting
a particular difficulty in this type of early season snow. The
POD is maximized at a slightly lower threshold value, but the
lower values are also associated with more false alarms. The final
relationship, balancing all factors, is determined as

A18.7Ve — A89.0Ve > 0.03, 1)

where the delta (A) indicates a difference between observed
emissivity at and 1yr mean snow-free emissivity at each fre-
quency (i.e., A18.7Ve s the difference in emissivity (¢) from the
snow-free mean at 18.7 GHz V-pol). This relationship is de-
signed to detect seasonal snow cover, leading to a deviation
from snow-free emissivity, and adjustments would be required
for application to the polar regions, for example, where snow
cover is the default state. It should be noted that the Autosnow
data, while used for calibration, are not to be viewed as pure
validation data as they are a daily product, whereas the scheme
here is intended to identify instantaneous snow cover. As this
designation is used for determining retrieval constraints, the
choice is made to err on the side of detection. Figure 2 shows
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FIG. 2. Snow-cover detection occurrence for GMI overpasses from (top) the Autosnow product and (bottom) the
detection scheme described here over the period of boreal winter 2015/16 for the seasonal periods (a) September—

November (SON), (b) December—February (DJF), and (c) March-May (MAM).

the snow-cover detection results for the test period, September
2015-May 2016, broken down by season. As indicated by
the statistics in Table 1, the colder season snow (DJF) is
most consistently detected. Notable differences are located in
mountainous areas, particularly eastern Europe and the U.S.
Pacific Northwest region, where snow cover is underdetected
as compared to Autosnow. In the fall and spring season,
the southern extent of snow-cover areas shows widespread
but very small in number false detections as compared to
Autosnow, though since the comparison is of an instantaneous
versus daily product this comparison is a bit ambiguous. While
the purpose of this simple scheme is purely to screen for the
likely presence of snow cover, there is certainly information
about the character of the snow within the multispectral
emissivity data (see Munchak et al. 2020 for a deeper discus-
sion of emissivity and snow characterization), and this will be a
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topic of future work. The differences observed in areas with
more complex orography may indicate problems with the
scheme for particular snow types, and due to the orbital con-
straints of the GPM Core Observatory satellite there has been
no testing closer to the poles. Based upon the results in Table 1,
the detection performs reasonably well for the current appli-
cation, comparing nicely to the operational Autosnow product,
and will be used here to define the presence of snow cover
without the need for coincident ancillary data.

2) STEP 2: ERROR PARAMETER SCREENING

Due to the added complexities of retrieving precipitation
over snow-covered surfaces, this work will focus on non-snow-
covered surfaces only, with the snow-cover retrieval described
in Step 1 used for classification; snow-covered surfaces are
relegated to future work. After screening for snow cover, the
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FI1G. 3. Observed and retrieved parameters from a GMI overpass on 4 Jun 2016. (top left) Observed Tb and (top
right) retrieved emissivity at 18.7 GHz. (middle left) The normalized error parameter from the OE retrieval and
(middle right) the observed 89V Tb. (bottom left) Observed Tb at 183 = 3GHz alongside (bottom right) re-
trieved TPW.

OE parameters are obtained. Figure 3 shows emissivity at the =~ Midwest region of the United States. Unusually low emissivities
18.7 GHz horizontal polarization (H-pol) channel (upper right)  are observed in southwestern Minnesota, associated with prior
along with associated observed GMI Tb (upper left) for an  precipitation. The observed Tb from the 89 GHz V-pol channel
overpass of the GPM satellite on 4 June 2016 over the upper  are shown in the middle-right panel, and the 183.3 + 3 GHz
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V-pol in the bottom left. These observations suggest intense
convective precipitation associated with the cold scattering
cloud tops running diagonally over Wisconsin associated with
increased water vapor values. Retrieved TPW from the OE is
plotted in the lower right panel, and the normalized error in the
middle-left (for plotting purposes, the ® values are cutoff at a
value of 100) and are collocated with the clearly erroneous
TPW values in the areas associated with the scattering signal
in the Tb fields. Observed precipitation from the NOAA
Multi-Radar Multi-Sensor (MRMS) system (Zhang et al. 2011)
surface radar product at the overpass time is shown in Fig. 4,
and confirms that most of the radar observed precipitation is
associated with this scattering signal and in the areas of ele-
vated ®,. These areas then are candidates for the Bayesian
precipitation retrieval, and the TPW and emissivity values here
are not to be used as the OE has difficulty converging.

3) STEP 3: DEFINE OBSERVATIONALLY BASED
CONSTRAINTS FOR BAYESIAN RETRIEVAL AND
DATABASE

As described previously, the operational GMI algorithm
constrains retrievals using ancillary parameters: static surface
types along with TPW and 2m temperature from model re-
analysis products. In an effort to make the constraints more
observationally based and fully utilize the information content
in the Tbs, the hybrid retrieval constrains are based upon
emissivity in the 18.7 GHz H-pol channel and TPW, both as-
sociated with the OE output. Constraining the database by
emissivity at only a single frequency will not fully describe
variability in the surface state but adding further dimensions
to the database leads to the danger of overconstraint and a
sparsely populated database. The 18.7 GHz is chosen as it
represents the lowest, and therefore most surface-sensitive,
frequency common to all of the GPM constellation imagers.
The normalized error parameter is used to screen out foot-
prints without reliable values. The threshold is fixed and
may include precipitating or nonprecipitating conditions.
Over these areas, TPW is interpolated and a recent (previ-
ous 1 year) climatology of retrieved seasonal emissivity is
used. To allow for dynamic variability associated with the
presence of precipitation, an expansion of the Bayesian
constraints is allowed in these areas and will be explained
further in the next section. This methodology differs from
the operational GPROF algorithm in that the constraints
(snow cover, TPW, and emissivity) are each associated with
the OE retrieval and thereby the observed Tb, rather than
ancillary model input.

4) STEP 4: BAYESIAN PRECIPITATION RETRIEVAL

Following the OE procedure and association of each foot-
print identified by the normalized error parameter as possible
for precipitation, Bayesian retrieval is performed on only these
identified footprints following the GPROF methodology de-
scribed in section 2. Each database profile is associated with a
TPW and emissivity value computed offline using the OE. The
database is searched within a region defined by the TPW in-
terpolated from the retrieved values, over a range up to 2 mm
above the interpolated value, to allow for increases associated
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FIG. 4. MRMS surface radar rain rates for the 4 Jun 2016 case
shown in Fig. 3.

with the precipitating area, and 18.7 GHz H-pol emissivity
from the previous year’s climatology, plus a decreasing range
of 0.05 to allow for decreased emissivity due to recent precip-
itation (Munchak et al. 2020). Figure 5 shows retrieved pre-
cipitation for the overpass shown in Fig. 3, for six different
values of @, cutoff from zero (Bayesian retrieval everywhere)
to 0.5. A clear pattern emerges as the cutoff value increases,
with widespread light precipitation areas decreasing with @y,
Values starting with 0.3 start to look quite similar to the surface
radar observations shown in Fig. 4. Note that values are trun-
cated at 0.lmmh™! to compare with the MRMS product,
which has a 0.1 mm h™! minimum in order to be consistent with
DPR sensitivity.

The hybrid technique demonstrated here is run as described
for the 1-yr period September 2015-August 2016 globally for
non-snow-covered land surfaces. Results are discussed in
section 3.

3. Retrieval results and discussion

In heavily precipitating areas, the component of the Tb
signal from the surface becomes less important than the pre-
cipitation signal. It is assumed therefore, that use of the OE
emissivity retrieval in a “‘hybrid” configuration defining areas
for a GPROF-like Bayesian precipitation retrieval will have
the most impact on light precipitation cases and false alarms.
To explore these differences in a consistent manner, the re-
trieval is also performed for the same year using the GPROF
constraints—a climatological surface type (or Class) defined
by GPROF developers, model TPW, and model 2 m temper-
ature. This is procedurally identical to the GPROF product,
with the following exceptions: Database entries are compared
to observations individually, rather than using clustered values
as GPROF does (Kummerow et al. 2017), and the first
“screening” pass is not performed. The purpose of using this,
which will be labeled Class, for comparison, rather than the
operational GPROF product, is to examine differences in re-
trieval results using the exact same database profiles but
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FIG. 5. Retrieved precipitation for the 4 Jun 2016 case shown in Figs. 3 and 4. Each panel shows the retrieved
rates using different values of the normalized error parameter as a cutoff to define areas where the Bayesian
retrieval is performed.
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FIG. 6. Retrieved precipitation rates from a GMI overpass on 8 Sep 2015. (top left) Observed GMI Tb at the 89
and (top right) 183 =3 GHz channels. (second row) GPM retrievals from (left) the active Ku radar and (right) the
operational GPROF retrieval are shown over Illinois. The additional rows show the hybrid retrievals using several
values of normalized error parameter as a cutoff for the Bayesian retrieval areas, and (bottom right) retrieval using
the GPROF classes.
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FIG. 7. MRMS surface radar rain rates for the 8 Sep 2015 case
shown in Fig. 6.

organized into different database constraining schemes. An
example of successful light precipitation screening is shown in
Fig. 6 for a GMI overpass on 8 September 2015. The top panels
show observed GMI Tb at the 89 and 183 + 3 GHz frequencies
over the Great Lakes region of the United States. Cold Tb at
89 GHz suggest high cold clouds in central Wisconsin as well as
south of Lake Michigan and a weak scattering signal over
southwestern Illinois. A strong gradient is apparent in the 183
+ 3 GHz water vapor channel, suggesting a frontal boundary in
the area. Focusing in on the area of Illinois south of Lake
Michigan, the DPR Ku-band (DPR Ku) retrieved values as
well as the operational GPROF product are plotted in the
second row, with the hybrid retrievals at several ® cutoff
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values below. Each of these panels shows an absence of any
retrieved precipitation, regardless of ®5. The bottom-right
panel, labeled “Retrieved Class™ shows the retrieval using the
same database organized into the GPROF classification.
Results are similar to the operational GPROF results. Here the
weak scattering signal over the center of the state appears to
have been identified by the Class formulation as precipitation,
whereas in the hybrid retrieval no precipitation is retrieved,
regardless of @y cutoff value. The MRMS validation data,
shown in Fig. 7 over the full Great Lakes region for a sense of
the larger scale situation, does not indicate precipitation in
this area. For this particular case, the normalized error pa-
rameter is around 1.0 over the area, so the reorganization of
the database entries appears to have led to the differences in
this case. A midlatitude cyclone is present here, associated
with a strong water vapor gradient as illustrated by the plot of
observed 183 = 3 GHz V-pol Tb shown in the top row. As
there are no retrievals across the threshold values, the con-
straint of TPW from retrieved values versus model values has
clearly made a large difference here. The importance of the
TPW bin is further demonstrated in Fig. 8, which plots the
TPW values from the GPROF model-based classification
(left) and the TPW calculated from the OE procedure (right).
The 1DVAR is run over coastal and land surfaces only, re-
sulting in the absence of data over open water. The model-
derived TPW values are smoother and lower by up to 10 mm
in the area of false alarms, which notably coincides with a
tight gradient. Therefore, each method, though using the
same profiles in the database, is constraining the retrieval
with significantly different TPW values in the same area,
yielding different results.

For a global comparison, the retrievals are run as described
for a 1-yr period. To compare with DPR active radar estimates,

FIG. 8. TPW values from the (left) GPROF model values and (right) OE retrieved values over the Great Lakes
region for the 8 Sep 2015 case shown in Fig. 6.
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FIG. 9. Ratio of retrieval false alarms (not detected by the active radar) to all obser-
vations for the 1-yr period September 2015-August 2016. (bottom) Results using the
GPROF classification scheme; (top three rows) results using the hybrid retrieval with
several values of normalized error parameter cutoff defining locations for the Bayesian

retrieval.

the retrievals are compared over the center footprints corre-
sponding to the radar swath only. As the interest here is in
improving estimates of light precipitation, the DPR Ku-band
radar is used as a global comparison for calculation of false
alarms—cases where the passive retrieval has retrieved pre-
cipitation (above a value of 0.01mmh™") where the active
radar gives a value of zero. The radar has a minimum detect-
able rain rate of 0.30mmh ™' (Hamada and Takayabu 2016),
and the 0.0l mmh™" cutoff conservatively ensures that even

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:29 PM UTC

averaged over the 18.7 GHz footprint precipitation is retrieved
and not simply a mathematical artifact of the probabilistic
Bayesian scheme. Recall that the retrieval database is con-
structed using the radar precipitation, so this is mechanically
the desired ‘‘right answer,” which may differ from “truth.”
Results are plotted and shown in Fig. 9 as a ratio of false alarms
to total observations. The global distribution is similar in each
case and largely follows the distribution of precipitation. High
values are concentrated over the Amazon and Congo rain
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forests. Given the relative uniformity of emissivity over the
tropical rain forest, which tends to be less dynamic due to year-
round vegetation and relative insensitivity to surface soil
moisture changes under the heavy canopy, this presents further
evidence that using a TPW value retrieved using the coincident
observations versus ancillary data has the potential to improve
the GPM PMW precipitation algorithm. The false alarms using
the GPROF Class constraints are very similar to a @, cutoff
value of 0.1, and these results form a baseline from which the
number of false alarms decreases as the cutoff value increases.
For a deeper look at the effect of the cutoff on retrieval re-
sults, error statistics for the full year are given in Table 2 for
precipitation values less than 2.0mmh~'. Correlations and
root-mean-square error (RMSE) tend to be associated with
precipitation at higher rain rates, and these are unchanged for
each retrieval formulation. Bias and probability of false de-
tection decrease with ®, value. When the ®y cutoff value is
increased from 0.1 to 0.3, probability of false detection de-
creases by half. A value of 0.5 decreases POFD by an order of
magnitude. Heidke skill score values increase with the more
stringent cutoff values. The probability of detection statistic
suggests caution however, as this value is also decreasing. The
statistics here indicate a possible optimal value of about 0.3 as a
middle ground for relative maximization of detection and
minimization of false detection as both are decreasing. The
HSS is not at a maximum here, however, and this is not
necessarily a final answer. Future implementation of this
technique should explore the possibility that the cutoff need
not be static and may vary by a yet to be determined location
or regime.

4. Conclusions

In this work we demonstrate enhancements to the GMI
PMW precipitation algorithm with more dynamic observa-
tionally based constraints supplied by a concurrently run OE
retrieval to maintain radiometric consistency and decrease
reliance on ancillary model data as constraint. Use of observed
emissivity for screening of snow cover eliminates potential
problems from dynamic changes to the emissivity due to fresh
snow or melting below the daily time scale of the ancillary
products used operationally. Constraining of the database us-
ing the OE retrieval parameters rather than model values has
an impact on detection as illustrated by the case shown in
Fig. 6. Global statistics indicate the potential of such a tech-
nique to reduce false alarms and spurious widespread light
precipitation often associated with pure Bayesian retrievals.
The idea of “‘false alarms’ is of course a bit tricky for a
probabilistic retrieval, as an absolute zero value is highly
unlikely in such a scheme. As indicated in the algorithm de-
scription, the latest version of GPROF is run twice, and zero
values are assigned below a probability threshold. Spurious
light precipitation over land is still common, however, and
many users instead use self-defined cutoff values. The hybrid
technique eliminates the need for rate or probability-based
cutoffs by instead examining convergence of the OE, similar
to a MiRS-style variational retrieval. In the nonconverging
areas, a highly constrained Bayesian precipitation retrieval
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TABLE 2. Error statistics for 1 year of retrieved precipitation
over global snow-free surfaces. Each row gives statistics for the 1-yr
period using a different value of normalized error parameter as
cutoff for defining the area of Bayesian precipitation retrieval, with
the bottom column showing statistics using the GPROF classes.

Correlation Bias RMSE POFD POD HSS
Oy > 0.1 0.47 0.044 1.04 0.29 091 0.20
Oy >02 0.47 0.043 1.04 0.22 0.89 0.26
by > 0.3 0.47 0.038 1.04 0.15 0.84 0.33
Oy > 04 0.46 0.037 1.04 0.11 0.79  0.40
Dy > 0.5 0.47 0.035 1.04 0.08 0.75 0.46
Class 0.47 0.045 1.07 0.29 0.90 0.20

is inserted, in contrast to the uniform MiRS or GPROF
formulations.

As a two-step process, with individual OE emissivity re-
trievals required for each constellation sensor, the hybrid
technique is not proposed as an operational scheme but is
presented here for use as an enhanced and more observa-
tionally based, radiometrically consistent retrieval system for
research. In particular, the inclusion of surface emissivity and
concurrent retrieved water vapor has many applications for use
in the study of land—atmosphere interaction. While the current
work has been demonstrated here only for the GMI sensor, the
inclusion of the OE retrieval has the potential to improve the
database Tb calculations for use with the constellation sensors
as well. This is relatively straightforward for similar imaging
instruments, but the GPM constellation also includes several
cross-track scanning platforms designed for atmospheric
sounding with frequencies focused on the higher end of those
described here (Hou et al. 2014). These high-frequency
sounders (many of which have a 23.8 GHz channel near the
water vapor absorption line but do not have the 18 GHz
window channel) are a bit trickier, but the surface is much less
important for sounder retrievals, and surface-related con-
straints may not be necessary in those cases. Dynamically
retrieved water vapor, however, may have significant poten-
tial for improving these retrievals, and this will be a direction
of upcoming work. For future use, the OE retrieval can be
easily adapted to each sensor and would remain physically
consistent for that platform. This consistency with observed
Tb is particularly important for applications such as data as-
similation and use of the GPM data to understand precipi-
tation processes and relation to the geophysical environment
and is the key enhancement presented in this work. The in-
clusion of the OE and dynamic surface information along
with water vapor retrieved from the observations create a
more robust, radiometrically consistent retrieval for process
studies and hydrologic applications.
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