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ABSTRACT: Precipitation estimation based on passive microwave (MW) observations from low-Earth-orbiting sat-
ellites is one of the essential variables for understanding the global climate. However, almost all validation studies for
such precipitation estimation have focused only on the surface precipitation rate. This study investigates the vertical
precipitation profiles estimated by two passive MW-based retrieval algorithms, i.e., the emissivity principal components
(EPC) algorithm and the Goddard profiling algorithm (GPROF). The passive MW-based condensed water content
profiles estimated from the Global Precipitation Measurement Microwave Imager (GMI) are validated using the GMI +
Dual-Frequency Precipitation Radar combined algorithm as the reference product. It is shown that the EPC generally
underestimates the magnitude of the condensed water content profiles, described by the mean condensed water content, by
about 20%-50% in the middle-to-high latitudes, while GPROF overestimates it by about 20%-50% in the middle-to-high
latitudes and more than 50% in the tropics. Part of the EPC magnitude biases is associated with the representation of the
precipitation type (i.e., convective and stratiform) in the retrieval algorithm. This suggests that a separate technique for pre-
cipitation type identification would aid in mitigating these biases. In contrast to the magnitude of the profile, the profile shapes
are relatively well represented by these two passive MW-based retrievals. The joint analysis between the estimation perfor-
mances of the vertical profiles and surface precipitation rate shows that the physically reasonable connections between the
surface precipitation rate and the associated vertical profiles are achieved to some extent by the passive MW-based algorithms.
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1. Introduction one of the quantities that the TB is least directly sensitive to
(Haddad et al. 2017). Furthermore, precipitation that falls
near the surface is a manifestation of its associated vertical
precipitation structure nearby and above. This implies that a
more representative passive MW algorithm would have an
ability to jointly estimate the vertical structure and the
surface precipitation.

Some of the passive MW-based techniques estimate the
precipitation vertical structure as well as the surface precipi-
tation rate. For example, the Goddard profiling algorithm
(GPROF) (Kummerow et al. 2015) for NASA’s Global
Precipitation Measurement (GPM) mission provides the hy-
drometeor vertical profiles as a standard output. There are also
the passive MW-based techniques more specifically developed
for estimating the vertical precipitation profiles (e.g., Evans
et al. 1995; Skofronick-Jackson and Wang 2000; Bauer and
Mugnai 2003; Haddad and Park 2009).
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kuas.ac.jp only the surface precipitation rate. A major difficulty with

Global precipitation products capitalize upon the long
period of record of satellite-based passive microwave (MW)
radiometer observations (Aonashi and Ferraro 2020). The
passive MW brightness temperature (TB) represents the net
top-of-atmosphere upwelling radiation, after taking into
consideration the emission and scattering properties of hy-
drometeors within the top-to-bottom profile, including the
contribution from the surface emissivity. The surface pre-
cipitation represents the net flux of the condensed water at
the bottom of this profile as seen from space and is arguably

Denotes content that is immediately available upon publica-
tion as open access.

DOI: 10.1175/JHM-D-20-0160.1

© 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).
Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:35 PM UTC


http://journals.ametsoc.org/topic/IPC12
mailto:utsumi.nobuyuki@kuas.ac.jp
mailto:utsumi.nobuyuki@kuas.ac.jp
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

96 JOURNAL OF HYDROMETEOROLOGY

VOLUME 22

1C.GPM.GMI Datab
2B.GPM.DPRGMI atabase
MERRA2 development
Precipitation-| Radiative -
free transfer Determine
—| +pcA |—»| EPC=f(TB)
/ \ Apply
EPC=f(TB)

Per-orbit

DB files Precipitating
scenes

\./’

DB files indexed by
(EPC,, EPC,, EPC,)

FIG. 1. Block diagram of the a priori database development for the EPC algorithm. A
principal component analysis (PCA) uses the large collection of DPR precipitation-free
observations to compute the coefficients that transfer the TB observations to EPC space (blue
boxes) and index the a priori database by the first three EPC elements.

validating the full profile is that the 3D volumes sampled by
scanning ground-based radars and space-based measure-
ments are not aligned, and the ground radar scans do not
fully capture the full top-to-bottom cloud structure. On the
other hand, surface precipitation data are more widely collected
and disseminated, e.g., the Ground Validation Multi-Radar Multi-
Source (GV-MRMS) data in the United States (Kirstetter et al.
2012). Spaceborne radar observations are an exception, as these
can provide the vertical structure of precipitation on a global
scale. After the launch of the Tropical Rainfall Measuring
Mission (TRMM) satellite, the TRMM Precipitation Radar
(PR) and its successor, the GPM Dual-Frequency Precipitation
Radar (DPR), have contributed to better understanding of the
physics and characteristics of vertical structures of precipitation
systems (Hirose and Nakamura 2004; Yamamoto et al. 2006; Liu
and Zipser 2013; Kobayashi et al. 2018).

An improved depiction of the vertical precipitation profiles by
the satellite observations also has potential to benefit the surface
precipitation estimates. Based on TRMM PR observations,
Utsumi et al. (2019) demonstrated that taking into account the
precipitation vertical profile improves the satellite-based esti-
mations of surface rain accumulation on subhourly time scales
(e.g., 30 min). If passive MW retrievals can estimate precipita-
tion vertical profiles in a reasonable accuracy, the method pro-
posed by Utsumi et al. (2019) could be applicable to improving
passive MW-based estimations of subhourly surface precipita-
tion accumulation. Such a product could contribute to future
improvements of merged satellite precipitation products (e.g.,
Huffman et al. 2018; Joyce and Xie 2011; Kubota et al. 2020)
which provide subhourly precipitation estimates.

The objective of this study is to provide a comprehensive
evaluation of the vertical precipitation profiles estimated by
two radiometer algorithms, i.e., the version 5 GPROF and the
emissivity principal components (EPC) technique developed
by the authors. The GPM radar-radiometer (DPR + GMI)
combined algorithm (2B-CMB) (Grecu et al. 2016) precipita-
tion estimates, by virtue of collocation on the same GPM
spacecraft, are used as a common profile reference. Sections 2
and 3 describe the data and methods used and a brief
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description of each algorithm. Section 4 presents an evaluation
of the surface precipitation rate by the passive MW algorithms,
and sections 5-7 present evaluations of the vertical precipitation
profiles. In section 8, the joint verification of the vertical pre-
cipitation profiles and the surface precipitation rate is presented.
Section 9 is devoted to the discussion, and section 10 presents the
summary and concluding remarks.

2. Data
a. Emissivity principal components algorithm product

The EPC (Turk et al. 2018) algorithm is designed around the
collection of the GPM Microwave Imager (GMI) observations
coincident with DPR for precipitation-free conditions (Fig. 1).
The precipitation-free condition is declared for each GMI
field-of-view (FOV) pixel when any range bin of the DPR’s
normal scan (NS; Ku band) and matched scan (MS; Ka band)
3 X 3 radar reflectivity profiles surrounding the center of the
GMI FOV do not exceed a sufficiently small threshold (15 dB).
From the precipitation-free scenes inferred from the DPR
profiles, together with the Modern-Era Retrospective Analysis
for Research and Applications version 2 (MERRA-2) (Gelaro
et al. 2017) temperature and water vapor profile, the surface
emissivity for GMDs first nine (89 GHz and below) channels is
estimated by the emissivity retrieval method of Mathew et al.
(2008) with the successive order of interaction (SOI) radi-
ative transfer model (Heidinger et al. 2006), regardless of
the surface. For each precipitation-free pixel observation,
the emissivity state vector is defined using the emissivity at
these nine GMI channels and three corresponding envi-
ronmental variables:

10V _10H 18V _18H 23V 36V _36H _89V 89H T
se et et e e e, e, e TQV, T, T, )",
1)

where x is the emissivity state vector for a cloud-free pixel
observation; e¢ is the emissivity at a frequency channel ¢; and
the TQV, T}, and 75, are the total column water vapor, surface
temperature, and 2-m air temperature from MERRA-2,

x=(e
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FIG. 2. Block diagram of the EPC constellation radiometer precipitation profile estimation
technique. The EPC retrieval is similar to the facility GPROF algorithm, except that the ob-
servations and database entries are weighted in EPC space. The surface precipitation rate and
condensed water content g profiles are estimated at the same time.

respectively. From the large set of the precipitation-free ob-
servations, we obtained a collection of the emissivity state
vector, denoted X:
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where n is the number of the precipitation-free observations. Each
emissivity state vector [i.e., each column of the right-hand side of
the Eq. (2)] can be transformed into its 12 principal components
via a transformation expressed by an orthogonal matrix, whose
columns are the eigenvectors of the covariance matrix of X.

The principal components of the emissivity state vector, or the
EPCs, have nonlinear relationships with the observed TB (Turk
et al. 2016). In the EPC algorithm, each EPC vector term is re-
gressed against the nonlinear combination of the observed TB
(the nonlinear TB combinations are included to represent the
nonlinearities between emissivity and TB). For example, the first
emissivity principal component element u, is regressed as

13 13

ot ZbT' +2.2.¢,Ty T +Zdl

i=1j=i

i+1 i
L O
(TS +Ty)
where u is the regressed u;, Tg(i =1, 2,...,13) are the GMI
TBs at the 13 frequency channels (10V, 10H, .. ., 183 ® 7V), ay,
bicijd;i (i=1,2,...,13;j=14,i+1,...,13) are the regression
coefficients for the first emissivity principal component ele-
ment. The other 11 elements of the emissivity principal com-
ponents are regressed against TBs in the same way. This
provides a transformation for computing the EPC vector directly
from TB without a radiative transfer calculation. The correlation
coefficient between the actual EPC and the estimated EPC ex-
ceeds 0.9 (not shown), suggesting that these EPC can be well
represented by the GMI TB.

A separate a priori database is developed based on one year
(January-December 2017) collection of GMI and the com-
bined radar-radiometer algorithm product (2B.GPM.DPRGMIL.
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CORRA V06; Grecu et al. 2016) (CMB product hereafter) that
includes both precipitation-free and precipitating scenes. For each
GMI FOV pixel, the 3 X 3 pixel average of the surface precipi-
tation rate (variable name: “precipTotRate”) and the condensed
water content profiles (variable name: “precipTotWaterCont”) at
the normal scans from the CMB product are assigned. Other
variables such as precipitation type from the CMB product, un-
corrected radar reflectivity profile from the DPR-Ku product, and
the environmental variables (TQV, Ty, T,) from MERRA-2 are
also included in the database for analysis purposes. The a priori
database is indexed by the first three EPC terms derived from
Eq. (3). While the transformation for the TB into EPC [Eq. (3)] is
specifically derived from the DPR noncloud TB scenes, it can be
applied to all TB for discriminating the presence of precipitation
affected scenes against the natural variability in the precipitation-
free surface emissivity. There is no conceptual distinction made
for the surface type, since all such distinctions are embedded in the
transformation coefficients used for each a priori database. The
EPC algorithm (Fig. 2) is based upon a Bayesian minimization
between the observed EPC vector and the EPC vector from
database candidate profiles. The EPC algorithm produces a
Bayesian average of the near-surface precipitation rate and a
Bayesian average of the corresponding condensed water content
profile that best agrees with the TB observation in the Bayesian
minimum-EPC distance sense (Fig. 2).

b. GPROF product

Another passive MW-based precipitation estimate in-
vestigated in this study is the GPM GPROF product for
GMI (2AGPROFGMI V05; GPROF hereafter) distributed
by the NASA’s Precipitation Processing System (PPS). This
product provides surface precipitation rate and vertical
hydrometeor profiles estimated by the Goddard profiling
algorithm (Kummerow et al. 2015).

Like the EPC, GPROF employs a Bayesian approach to
estimate precipitation profiles and surface precipitation rate,
but with a different database stratification and minimization
scheme. GPROF for GMI uses an a priori database primarily
built upon the precipitation profiles and surface precipitation
estimated by the CMB and DPR-Ku products and their cor-
responding TBs observed by GMI for September 2014—-August
2015 (Passive Microwave Algorithm Team Facility 2018).
The major distinction between the EPC and GPROF is that
GPROF uses ancillary information [i.e., total precipitable
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water, 2-m temperature, and the land surface classification type
derived from the Tool to Estimate Land Surface Emissivities at
Microwave frequencies (TELSEM; Aires et al. 2011)] to subset
the database, whereas the EPC is based on the emissivity
structure and does not require any prior surface classification.
Such technical difference in subsetting database may affect the
retrievals particularly over complex surfaces with mixed emis-
sivity structures (e.g., coast). GPROF estimates the surface pre-
cipitation rate and corresponding vertical precipitation profiles
(hydrometeor content profiles) based on the Bayesian minimi-
zation of the observed TB and the TB from the a priori database,
whereas EPC carries out its Bayesian minimization by comparing
the observed EPC and the EPC from its a priori database.

The hydrometeor profiles provided by GPROF have five
categories, i.e., rainwater, cloud water, ice water, snow water,
and graupel and hail content. In this study, the total of the
rainwater, ice water, and graupel and hail content is consid-
ered as the precipitation profile, or the condensed water
content profile. The profiles are provided on the 500-m ver-
tical resolution up to 10-km height and 1-km vertical resolu-
tion from 10- to 18-km heights. In this study, the profile layers
above 10 km are simply divided to 500-m layers. Based on an
analysis with the CMB product over land regions, the bottom
of the lowest layers is considered to be at the actual surface
height. Because GPROF does not estimate hydrometeor
profiles over snow surfaces, the snow surface scenes are ex-
cluded from the analyses for the precipitation profiles for
both GPROF and EPC.

c¢. Surface type information

While the EPC does not use the surface index, it is in the
EPC database for analysis purposes, as a means to efficiently
separate the results of this study by fixed surface types. The
surface type information obtained from GPROF product
provides 14 surface type classes (i.e., ocean, sea ice, five
types of vegetation, four types of snow cover, standing wa-
ter, land/ocean or water coast, and sea ice edge) based on
self-similar emissivities derived from TELSEM (Aires et al.
2011; Passive Microwave Algorithm Team Facility 2018). In
the analysis of this study, these surface types are regrouped
into four types, i.e., ocean, vegetation (combined five veg-
etation types), snow cover (combined four snow cover
types), and coast (land/ocean or water coast in the original
surface type). Seaice, standing water, and sea ice edge types
are excluded in this study.

d. Reference datasets

Surface precipitation rate and precipitation water content
profiles from passive MW algorithms are compared to those
from the CMB product. The CMB product is based on the
observations by the dual-frequency radar (DPR) and radi-
ometer (GMI) carried on the GPM Core Observatory satel-
lite. It is designed to provide the most accurate surface
precipitation rate and vertical precipitation water content
distribution. In this study, the surface precipitation rates
(variable name: “precipTotRate””) and vertical profiles of
precipitation-size condensed water content (variable name:
“precipTotWaterCont™’) at the NS from the CMB product
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are used as the reference. Also, the freezing-level height and
precipitation type information provided by this product is
used in the analysis. The precipitation type of the CMB
product is a copy from the GPM DPR Ku-band product.
There are three categories in the precipitation type, i.e.,
stratiform precipitation, convective precipitation, and others,
which are identified according to Awaka et al. (2016).

A ground-based surface precipitation rate over the conti-
nental United States and surrounding water by the Ground
Validation Multi-Radar/Multi-Sensor (GV-MRMS) ground
radar data, projected to the GMI footprints (Kirstetter et al.
2012, 2018), is also used for the validation of the surface
precipitation rate. The precipitation rate by the GV-MRMS
is available at the GMI footprints for each GPM Core
Observatory satellite overpass.

3. Evaluation method

The surface precipitation rates and the condensed water
content profiles, or precipitation profiles, from the passive MW
algorithms are investigated for 1000 granules of the GPM Core
Observatory that are randomly sampled from a 1-yr period
(June 2014-May 2015). This period was chosen based on the
availability of EPC retrieval data. Note that it partially over-
laps the period used for building GPROF’s a priori database,
and therefore GPROF’s performance may be better in this
period than in other period. Passive MW-based estimates are
provided on GMI pixel locations (221 pixels/scan), whereas the
reference data from the CMB product is provided at the DPR
pixel locations. For each GMI pixel, the nearest CMB pixel on
the same granule is searched. The FOV size of GMI pixel is
relatively larger (approximately 32km X 19 km at 10 GHz and
7km X 4km at 89 GHz) than that of the CMB pixel (approx-
imately 5km X 5km). To reduce the analysis uncertainty due
to the footprint size difference, the variables from the CMB are
averaged over 3 X 3 pixels and matched up with the GMI pixel.
For each pair of the CMB (3 X 3 average) and GMI pixels, the
volumetric convective fraction is defined as follows:

volumetric convective fraction=P__ /P . 4)
conv' "~ total

where Py, and Py, are convective and total surface precipi-
tation rate by CMB product in the 3 X 3 CMB pixels, respectively.
If the volumetric convective fraction is greater than 0.5, the pair of
the observation is classified as the convective type. The other
cases are classified as the stratiform type. Most of the analyses in
this study (section 6 and after) are focused on the precipitating
pixels, where both the CMB product and the passive MW algo-
rithm have surface precipitation rate no less than 0.5mmh ™.
To mitigate the off-nadir angle effect of the CMB product
(where the surface clutter is manifested at low-level heights),
the analysis is limited to the estimates where the corresponding
CMB pixel is at the near-nadir angle bins (angle bin number
19-31). Also, the analysis for the precipitation water content
profiles is limited to the range bins higher than 1 km above the
actual surface. The condensed water content profiles from
CMB product and EPC algorithm are available at 250-m ver-
tical resolution while that of GPROF is at 500 m (below 10-km
height). In this study, all the condensed water content profiles
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FIG. 3. Overall performance of the surface precipitation estimates by the passive microwave algorithms. The colors of the two-
dimensional histograms show the number of the cases. The estimations are validated with the GV-MRMS over the continental United

States and surrounding water.

from CMB and EPC are averaged to 500-m vertical resolution
for analysis.

4. Surface precipitation rate

Before looking into the precipitation vertical profiles, the
surface precipitation rates from the two passive MW algo-
rithms are examined. Figures 3 and 4 show comparisons of the
surface precipitation rates with two different reference data
(GV-MRMS and CMB product). Performance metrics of the
passive MW algorithms computed with two different reference
data are also summarized in Tables 1 and 2. Three performance
metrics [i.e., root-mean-square error (RMSE), normalized
mean bias, and correlation coefficient (CC)] are calculated as
follows:

®)
1500
normalized mean bias = n"lnilt, (6)
w2
Z(x,' - )_C)(y,' 7?)
- 7

cc= n n ’
\/;(xi _x)z\/;(yi _y)Z
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where x; and y; are the surface precipitation rate of the refer-
ence and passive MW product, respectively, and X and y are the
mean of each variable. The number of observations is 7.

Although GPROF uses the GV-MRMS to build a priori
database for the surface precipitation rate over snow surface,
GV-MRMS is basically an independent data from the two
passive MW algorithms. On the other hand, the CMB product
is used to build a priori surface precipitation databases by EPC
algorithm and GPROF (except for the snow surfaces for
GPROF). In addition to the CMB product, GV-MRMS is also
used as a reference dataset which enables validation against
independent source. It is only used for the validation of surface
precipitation over the continental United States because of its
data availability, while the CMB product provides vertical
profiles globally (60°S—-60°N).

Figure 3 shows the validation of the two passive MW algo-
rithms with GV-MRMS over the United States and sur-
rounding water. In general, the two passive MW algorithms
show reasonably good agreement with GV-MRMS, especially
over ocean and vegetation surfaces. Over ocean, vegetation,
and coast, EPC shows smaller RMSE and higher CC than
GPROF (Table 1). Over snow surfaces, on the other hand,
GPROF shows better RMSE and CC than EPC for some
precipitation range. This could be because the GPROF uses
GV-MRMS in its a priori database over snow surfaces. As
for the normalized mean bias, the weak precipitation (0.1-
1mmh™!) tends to be underestimated by EPC over all surface
types. One of the reasons of such underestimation could
be attributed to the skewed probability distribution of the
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FIG. 4. As in Fig. 3, but the estimations are validated with CMB product over the globe (60°S-60°N).

precipitation rate in the a priori database, which can cause
systematic biases of the Bayesian-type retrievals (Seo et al.
2007). Interestingly, on the other hand, GPROF shows over-
estimations for the same range (0.1-1 mm h ') except for snow
surfaces (Table 1). The reason of the opposite biases of EPC
and GPROF for weak precipitation range needs further in-
vestigation in the future study. Note that very light precipita-
tion range (less than 0.lmmh™"') is not included in the
assessment (Table 1). The performance evaluation for such
very light range is more prone to the precipitation detection
skill of the algorithms and the reference data, which is not the
focus of this study. The heavy precipitation (more than
10mmh ™) are generally underestimated by the two passive
MW algorithms (Table 1), which is a known bias for both
Bayesian and non-Bayesian type passive MW-based algo-
rithms (e.g., Utsumi and Kim 2018). Over snow surfaces, the
two passive MW algorithms generally underestimate the

surface precipitation rate (Table 1), which could be due to a
difficulty in separating TB signatures of precipitation against
the background emissivity over snow surfaces (Liu and Seo
2013). GPROF shows bimodal features with peak occurrences
around 0.3 and 1.0mmh ™! over coasts and around 0.2 and
1.0mm h ™! over snow surfaces (Fig. 3h). Similar bimodal fea-
tures by GPROF are reported for the retrievals from the
sounders [i.e., Advanced Technology Microwave Sounder
(ATMS) and Microwave Humidity Sounder (MHS)] over
ocean (You et al. 2020), although it remains to be clarified if
they are rooted in the same causes. Such bimodal features are
not apparent for the EPC algorithm.

Figure 4 shows the validation of the two passive MW algo-
rithms with the CMB product over the globe (60°S—-60°N). It
shows similar results to the GV-MRMS case although the
overall performances of the passive MW algorithms are better
when they are validated with the CMB product (Fig. 4 and

TABLE 1. Performance metrics of the passive MW algorithms relative to GV-MRMS product. Metrics are shown for different precipi-
tation ranges defined by the reference (GV-MRMS) product.

RMSE Normalized mean bias CC
Range (mmh™!) =01 01-1 1-10 =10 =0.1 0.1-1 1-10 =10 =0.1 01-1 1-10 =10
Ocean EPC 3.1 0.8 3.1 12.7 —-0.04 —0.09 0.08 —-0.25 0.70 0.25 0.53 0.41
GPROF 32 0.8 33 12.8 -0.02 0.02 008 —0.21 0.71 023 0.51 0.43
Vegetation EPC 2.8 0.8 2.6 15.1 —-0.35 —-0.15 —-0.28 —0.58 0.61 0.21 0.41 0.34
GPROF 3.0 1.0 2.9 15.4 -0.15 026 —0.07 —0.56 0.56 0.22 0.39 0.28
Coast EPC 2.8 0.8 3.0 14.0 —-0.28 —-0.26 —0.20 —0.46 0.61 0.20 0.44 0.32
GPROF 31 14 32 14.6 -0.12 027 —0.03 —0.56 0.50 0.17 0.36 0.24
Snow EPC 1.0 0.5 1.7 17.9 -0.77 —0.80 —-0.74 —0.87 0.42 0.14 0.38 —-0.03
GPROF 0.9 0.5 1.5 18.2 -056 —049 —-0.62 —0.90 0.41 0.16 0.39 -0.23
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TABLE 2. As in Table 1, but relative to CMB product.

RMSE Normalized mean bias CC

Range (mm hfl) =0.1 0.1-1 1-10 =10 =0.1 0.1-1 1-10 =10 =0.1 0.1-1 1-10 =10
Ocean EPC 1.4 0.3 1.5 10.0 -0.13 -0.14 —0.09 -0.25 0.85 0.51 0.77 0.56
GPROF 1.4 0.4 1.6 9.1 —0.14 -0.17 —0.10 —0.20 0.86 0.40 0.74 0.64

Vegetation EPC 1.8 0.6 2.1 10.6 —-0.34 —-0.23 —-0.33 —-0.49 0.69 0.29 0.52 0.33
GPROF 2.0 0.7 2.4 10.9 —0.08 0.26 —0.09 —0.42 0.64 0.32 0.46 0.28

Coast EPC 1.9 0.6 2.3 11.4 —-0.26 -0.19 —-0.26 —-0.31 0.72 0.30 0.54 0.44
GPROF 2.3 0.9 2.6 13.3 —0.12 0.21 —0.11 —0.54 0.56 0.29 0.41 022

Snow EPC 0.8 0.4 1.6 15.1 —-0.51 —-0.52 —-0.47 -0.79 0.49 0.32 0.32 0.11
GPROF 0.8 0.5 1.6 16.2 -0.27 —0.14 —0.42 —0.89 0.37 0.34 0.16 0.07

Table 2). Since both two passive MW algorithms use the CMB
product for their a priori databases, it is reasonable that they
inherit the nature of the CMB product and agree with it better
than GV-MRMS. A noticeable difference from the GV-MRMS
case is found over snow surfaces, where a cutoff pattern around
0.3mmh ™! is inconspicuous for the CMB case. Part of the dif-
ferences in the evaluation results could be due to the difference
in the threshold or sensitivity of the reference data at the lowest
precipitation rate, as well as the different spatial extent of the
validation data (i.e., over the United States in Fig. 3 and over
the globe in Fig. 4).

We note that GV-MRMS does not provide the associated
vertical structure of the precipitation profiles. In the following
sections, the CMB product is used as the reference dataset.

5. Example case of the retrieved profiles

On 14 October 2014, the GPM Core Observatory satellite
observed a frontal precipitation over the eastern United States.
The northern part of the precipitation band is over land and the
rest is over ocean (Gulf of Mexico) (Fig. 5). Figure 6 shows the
vertical cross section of the radar reflectivity (uncorrected for
attenuation) measured by DPR-Ku (Fig. 6a) as well as the
estimated radar reflectivity by EPC algorithm (Fig. 6b). The a
priori database of EPC algorithm contains “‘uncorrected” ra-
dar reflectivity taken from DPR—Ku product for analysis pur-
pose. Since the Bayesian average of the radar reflectivity is not
output of the EPC algorithm, the radar reflectivity of the a
priori database entries that are assigned the highest weight in the
Bayesian retrieval, which we call the “top-weighted profile,” are
used as the estimated profile of the reflectivity.

The radar reflectivity signals are well reconstructed by the
EPC algorithm. The reconstructed reflectivity profile esti-
mated by EPC algorithm shows the locations of the strong
precipitation signals and the precipitation top heights are
very similar to the radar observation, although there are
some second-order discrepancies such as bright band sig-
nals observed by DPR-Ku (between pixel number 60 and
80) and a missing signature near the convection (pixel
number 12). The anvil-like structure in the south over
ocean (around pixel number 3-4) is also reconstructed.
This implies that the EPC passive MW algorithm has skill
in representing the precipitation profiles depicted by the
observed radar reflectivity.
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Figure 7 shows the precipitation condensed water content
(condensed water content, hereafter) profiles from the CMB
product, EPC algorithm, and GPROF. The similarities be-
tween the CMB algorithm product and the passive MW-based
estimates are not as notable as that of the radar reflectivity
profile. The EPC algorithm tends to underestimate the con-
densed water content. Also, a precipitating column near the
strong convection (pixel number 12) is not reproduced in this
case. GPROF tends to show strong signatures that spread
wider both vertically and horizontally in space. Despite these
biases, the main features of this scene, e.g., the tall precipita-
tion around pixel number 9-12 and the precipitation system
around pixel number 70-90 with peaks of condensed water
content at 4-5.5km, are reasonably represented by both pas-
sive MW algorithms. It suggests that the precipitation water
content profiles can also be estimated by passive MW algo-
rithms, even over land surfaces, with some biases.

6. Average profiles of condensed water content

Figure 8 presents the average precipitation water content
profiles over two surface types (ocean, vegetation) for con-
vective and stratiform precipitation. The bottom of the profiles
corresponds to the actual surface height. The analysis hereafter
is confined to the precipitating pixels.

Since we have found in a preliminary investigation that the
freezing level height largely affects the shape of the condensed
water content profiles, the analysis is conditioned on the typical
freezing level heights as well as latitude bands, i.e., (i) the
middle-to-high latitudes (35°-60°S and N) with the freezing
level conditioned on 0-1 km from the surface, which represent
the cold season cases, (ii) the middle-to-high latitudes with
the freezing level conditioned on 3-4 km, which represent the
warm season cases, and (iii) the tropics (15°S-15°N) with the
freezing level conditioned on a typical range in the tropics
(4-5km).

The consistency of the passive MW-based profiles with the
reference data largely varies among different conditions. For
example, the average profile of the stratiform precipitation
over the ocean in the tropics estimated by EPC (Fig. 8i) is al-
most identical to the reference data. On the other hand, the
average profile of the cold season convective precipitation in
the middle-to-high latitudes over ocean (Fig. 8c) is better es-
timated by GPROF. In the following subsections, the passive
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F1G. 5. Surface precipitation estimates for a frontal precipitation case on 14 Oct 2014, over the southeastern
United States (GMI granule number 3556). Only the pixels with precipitation rate no less than 0.5mmh™" are

shown. The parallel white solid lines show the boundaries of the GMI swath, and the white dashed line in between
them is the location of the cross section for Figs. 6 and 7.

MW-based profiles are investigated from two aspects, i.e., the
magnitude (section 6a) and the shape (section 6b).

a. Magnitude

To investigate the magnitude of the profiles, the condensed
water content at the peak heights of the profiles is examined.
Here, the peak heights are defined as the heights (above 1 km)
where the profile shows the largest condensed water content.
In general, the EPC algorithm tends to underestimate the
condensed water content of the convective precipitation (e.g.,
Figs. 8c,d,g,h,k,1). On the other hand, the profile magnitude of
the stratiform precipitation is well reproduced by EPC when
freezing level height is not very low (e.g., Figs. 8e.f i,j).

GPROF systematically overestimates the magnitude of the
condensed water content profiles for stratiform precipitation.
In the tropics over the ocean, the average magnitude of the
stratiform cases (Fig. 8i) is even larger than the convective
cases (Fig. 8k). For convective precipitation, GPROF shows
both underestimations (e.g., Fig. 8g) and overestimations
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(e.g., Fig. 8k) for the magnitude of the profiles depending on
the condition.

Although the CMB product is used as a reference dataset, it is
noteworthy that the CMB product also can be affected by some
algorithmic shortcomings. For example, CMB product tends to
show larger surface precipitation rate over land compared to
other global precipitation products (Skofronick-Jackson et al.
2017), which may affect the vertical profiles. Also, CMB product
may be missing high-latitude oceanic drizzle and snowfall over
land due to the DPR sensitivity (Passive Microwave Algorithm
Team Facility 2018). GPROF addresses this potential missing
problem of the CMB product by adjusting the hydrometeor
profiles. This may be one of the reasons of the different mag-
nitudes between GPROF and CMB product for middle-to-high-
latitude stratiform precipitation (Figs. 8a,b,e). However, such
potential missing problem of the CMB product does not apply to
the tropics. Also, the very light precipitation cases are excluded
in the current analysis (see section 3), and it should mitigate the
potential missing effect of the CMB in this comparison.
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FIG. 6. Vertical cross section of the radar reflectivity. (a) Observed by DPR-Ku. (b) Top-
weighted profiles in the EPC algorithm’s Bayesian retrieval (see the text).

b. Shape

Figure 8 suggests that the shape of the mean condensed
water content profiles can be abstracted by the position of the
peak heights (which is defined earlier) of the profiles. In
general, the two passive MW algorithms capture the shapes of
the mean condensed water content profiles with small biases
of the peak height (=1-km range). It is evident from the
profiles of the CMB product that the mean peak height is
located near the freezing level height. This is reasonable
considering that the phase change from snowflakes to rain-
drops around the freezing level increases the falling velocity
of the precipitation particles. The faster falling velocity of the
raindrops leads to the rapid decrease in the condensed water
content below the freezing level. This reasoning could be
especially valid for stratiform precipitation, but a similar
pattern is found for convective precipitation as well (Fig. 8).
This result means that the two passive MW algorithms cap-
ture the average shape of the condensed water content both in

O
~

the ice (i.e., above freezing level) and liquid (i.e., below
freezing level) phases. Also, this result implies that the ex-
plicit consideration of the freezing level height may further
improve the representation of the shapes of the condensed
water content profiles by the passive MW algorithms.

In this section, it is found that the passive MW algorithms
have magnitude biases for the condensed water content pro-
files while they can represent the average shapes of the profiles
reasonably for typical precipitating cases. The potential causes
of the magnitude bias are further discussed in section 9.

7. Global pattern of the retrieval performance

Three metrics of the condensed water content profiles
(mean condensed water content, storm top height, and corre-
lation coefficients of the profiles between the CMB product
and passive MW algorithms) are investigated in sections 7a, 7b,
and 7c, respectively. The condensed water content profiles
of the CMB and passive MW products are paired at all
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FIG. 7. Vertical cross section of the condensed water content. (a) Combined product. (b) EPC
algorithm. (c) GPROF.
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FIG. 8. Average vertical profiles of the condensed water content over ocean (Ocean) and vegetation (Vege). (a)-(d) The cases
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freezing level = 4-5 km in 15°S-15°N. Thick sold lines: Combined product. Thin sold lines: EPC algorithm. Dashed lines: GPROF.

precipitating pixels (i.e., pixels with surface precipitation rate
no less than 0.5mmh™! in both products). The metrics and
their difference between the CMB and passive MW products
are calculated for each pair of the profiles and the average and
the standard deviation of the metrics are calculated for 2.5° X
2.5° grid boxes globally (60°S-60°N).

a. Mean condensed water content

Figure 9 shows the global pattern of the mean condensed
water content (units of gm ™), which is a metric of the mag-
nitude of the precipitation profiles. This metric is calculated by
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averaging the condensed water content between 1 and 10 km
from the surface for each profile. Some profile data in the in-
vestigated products have layers with missing value. The layers
with the missing value are not used in the averaging. We used
the average (instead of total) of the condensed water content
for this analysis to avoid the negative bias due to the missing
data in the profiles. In the vertical averaging, we assume that
such missing happens randomly, which does not likely cause
systematic bias. The difference of the metrics between CMB
and passive MW products is normalized by the mean condensed
water content of the CMB product for each observation.
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FIG. 9. Mean condensed water content. (a),(b) Combined product. (c)—(f) Normalized errors of the mean condensed water content by
the passive microwave algorithms. Left and right columns are the average and the standard deviation of the metrics. Gray color indicates a

location where no precipitation case is available.

As expected, the mean condensed water content (Fig. 9a)
has a similar global pattern to the surface precipitation rate,
although the land regions show higher mean condensed water
content than the ocean. A separate analysis for the condensed
water content at the peak height of the profiles (not shown)
shows a similar global pattern, which further confirms that the
magnitude of the precipitation profiles tends to be larger over
land than ocean.

The two passive MW algorithms show different global
patterns of the biases. The bias of EPC tends to be larger in
the middle-to-high latitudes while that of GPROF is larger in
low latitudes (Figs. 9c,e). On average, EPC shows 20%-50%
underestimation in the middle-to-high latitudes. In the low
latitudes, the EPC represents the profile magnitude reason-
ably well. Although the average profile analysis of Fig. 8
suggests the EPC’s underestimation of the profile magnitude
for the tropical convective precipitation, the average bias
does not exceed —20% in most of the tropics (Fig. 9c).
GPROF shows relatively larger bias in the profile magnitude.
It has more than 50% overestimation in the low latitudes and
some land regions in the middle latitudes, as well as 20%—
50% overestimation in the large part of the middle-to-high
latitudes. It is interesting that GPROF generally overesti-
mates mean condensed water content while the surface pre-
cipitation rate tends to be slightly underestimated (Tables 1
and 2). One of the reasons of the larger profile magnitude
could be due to the adjustment done for the profiles in the
GPROF a priori database (Passive Microwave Algorithm
Team Facility 2018; Ringerud et al. 2019).
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The standard deviation of the normalized difference shows
the variability of the algorithms’ performance for estimating
the profile magnitude (Figs. 9d.f). In general, EPC shows
smaller standard deviations of the normalized difference than
GPROF. Both passive MW algorithms have relatively higher
standard deviation of the normalized difference in the low
latitudes, which means that the agreement of the profile mag-
nitude between the CMB and passive MW products for each
observation is highly variable in the region. It reflects the dif-
ficulty in capturing the large spatiotemporal variability of the
precipitation system in the low latitudes.

b. Storm top height

The storm top height (Fig. 10), or the precipitation top height, is
one of the properties that characterize the vertical structure of the
precipitation. The CMB product provides the storm top height
variable (i.e., variable name “stormTopAltitude”), which is de-
fined as the height of the highest range bin where the significant
DPR-Ku radar echoes are observed at least three consecutive
bins. On the other hand, the passive MW algorithms do not pro-
vide storm top height as a standard output variable. In this study,
the storm top height is defined as the height (relative to the sur-
face) of the highest profile layer where the condensed water
content exceeds a threshold (0.033 gm™>). This threshold is the
average of the condensed water content of the CMB product
(3 X 3 pixel averaged) at the height of the “stormTopAltitude.”
The storm top height analyzed in this study is defined using this
threshold by applying it to each of the condensed water content
profiles of the three products (CMB, EPC, and GPROF).
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available.

The storm top height by EPC is unbiased over most of the
regions with some patchy underestimation biases of 0.5-1km
(Fig. 10c). GPROF has systematic overestimation bias of
~0.5-1km in the middle-to-high latitudes (Fig. 10e). It also
shows overestimation bias of ~1-1.5 km in the low latitudes as
well as some land regions in the middle latitudes (Fig. 10e).
These biases can be related to the bias of the magnitude of the
profiles (Fig. 9). The standard deviations of the storm top
height difference show similar global patterns for the two
passive MW algorithms. The variability of the storm top height
error, measured by one standard deviation, is ~2 km in the low
latitudes and ~0.5-1km in the middle and high latitudes.

c. Similarity of the profile shapes

The similarity of the profile shapes between the CMB and
passive MW products is evaluated by the correlation coeffi-
cient of the profiles (Fig. 11):

(x —X)(;—Y)
CC of the profile shape = ©)

\/Z(x - \/2@ iy

where x; and y; are the mean condensed water content at the ith
vertical bin of the profile of the CMB and passive MW product,
respectively; X and y are the vertically averaged mean con-
densed water content; and » is the number of 500-m vertical
layers. Since the majority of the condensed water content is
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found below ~7 km in most cases (cf. Fig. 8), the CC calcula-
tion is confined to the layers between 1- and 7.5-km height
(from the surface) in order to better capture the shape simi-
larity of the condensed water content profiles. The higher CC
means the larger similarity of the profile shapes, regardless of
magnitude biases. Note that the mean and the standard devi-
ation of the CC is based on the CC computed for each pair of
the profiles at the precipitating GMI pixel.

In general, EPC shows a higher average CC than GPROF
(Fig. 11). As for the geographical pattern, the two passive MW
algorithms’ average performances for the profile shape are
better in the middle-to-high latitudes over ocean (CC = 0.8 and
higher) than in the low latitudes and land regions (CC = 0.4—
0.8 for the EPC and CC = 0.2-0.8 for the GPROF) (Fig. 11).
The standard deviation of the CC, the metric for the variability
of the estimation performance, is higher in the low latitudes
(Figs. 10b,d). For a given latitude, the land regions tend to have
lower CC than the ocean, implying that the estimation of the
profile shape is more difficult over land. This difficulty is due to
the weak contrast of the precipitation and background signals
in the passive MW observations over land.

8. Relationships between the errors in surface
precipitation rate and profiles

As mentioned in section 1, the surface precipitation rate is
physically related to the structure of the condensed water
content profile through the mass transport. A physically
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FIG. 11. Correlation coefficient of the condensed water content profiles between the combined product and passive microwave products.
(a),(b) EPC algorithm. (c),(d) GPROF. Left and right columns are the average and the standard deviation of the metrics. Gray color

indicates a location where no precipitation case is available.

complete passive MW retrieval should therefore attempt to
estimate these two quantities jointly. This is also an implicit
assumption in the passive MW algorithms for surface precipi-
tation retrieval, since the microwave signals are more related
to the hydrometeor content structure rather than to the pre-
cipitation rate at the ground surface. In this section, the joint
analyses of the errors in surface precipitation rate and con-
densed water content profiles are presented.

Figure 12 shows the joint histogram of the surface precipi-
tation rate error and two types of the profile metrics (i.e.,
normalized error of the mean condensed water content and the
CC of the profile shapes). The errors in the surface precipita-
tion rate and the mean condensed water content are normal-
ized as follows:

the smaller error in the surface precipitation rate tends to be
accompanied by the smaller error in the mean condensed water
content. This implies that there is a dependency between the
retrieval performances of surface precipitation rate and the
corresponding precipitation profile magnitude for the passive
MW algorithms. The profile CC (Figs. 12b,d) also shows a
certain relationship with the surface precipitation error. The
cases with smaller error in the surface precipitation tend to be
accompanied by higher profile correlation coefficient. This
implies, although the relationship is not as distinct as the mean
condensed water content, the better estimation of the surface
precipitation has more chance to be accompanied by a better
estimation of the associated profile shape.

The relationship between the error in the surface precipi-
tation rate and the profile metrics found in this analysis sug-

normalized error of the surface precipitation=-—"" P cmb)’ gests that the estimation of the surface precipitation rates and
P the vertical precipitation profiles are physically connected to
) each other. Also, it suggests that a good estimation of the
surface precipitation rate by passive MW algorithms is physi-
normalized error of the mean condensed water content cally reasonable in terms of its accompanying precipitation
(mew -W,_..) vertical profile too.
Wcmb '
(10) 9. Discussion

where P and W are the surface precipitation rate and mean
condensed water content of each precipitating scan pixel, re-
spectively, and pmw and cmb mean the passive MW algorithm
and the CMB product, respectively. The normalized error of
the mean condensed water content is the same metric that was
investigated in section 7a.

The errors in the surface precipitation rate and the mean
condensed water content are positively correlated (Figs. 12a,c).
Although there are some biases for the mean condensed water
content (negative bias for EPC and positive bias for GPROF),

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:35 PM UTC

It was found in section 8 that the profile magnitude, measured
by the mean condensed water content, is related to the surface
precipitation estimates. However, the passive MW algorithms
exhibit nonnegligible bias of the profile magnitude; i.e., underes-
timation by the EPC in the middle-to-high latitudes, and over-
estimation by GPROF over most of the global regions (Fig. 9).
The biases in the profile magnitude is discussed in this section.

Figures 13a—d compare the mean condensed water content
of the three products for the middle-to-high-latitude regions
(35°-60°N and S) and the tropics (15°S-15°N). They are
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classified by the precipitation type (convective and stratiform) of
the corresponding CMB product. EPC underestimates the mean
condensed water content of the convective precipitation in both
regions (—37% in the middle-to-high latitudes and —28% in the
tropics) (Figs. 13a,c) and the middle-to-high-latitude stratiform
precipitation (~—23%) (Fig. 13b). Considering the result of
the average profile analysis of Fig. 8, the underestimation for the
middle-to-high-latitude stratiform is mostly attributed to the
bias for the cold season cases (see Figs. 8a,b). On the other hand,
GPROF shows substantial overestimation of the mean con-
densed water content of the stratiform precipitation in both re-
gions (+42% in the middle-to-high latitudes and +63% in the
tropics) (Figs. 13b,d). Here, it is hypothesized that the bias in the
precipitation type represented in the passive MW retrieval is one
of the sources of the total bias.

Both passive MW algorithms provide the convective surface
precipitation rate as a standard output. In the same way as the
precipitation type classification based on the CMB product
(see section 3 for the method), the precipitation type can be
defined using the volumetric convective fraction based on the
passive MW algorithms. For the convenience of the discussion,
the precipitation type based on the CMB product is called the
“true” precipitation type hereafter.

Figures 13e-h compare the mean condensed water content
for the cases where both CMB and passive MW products show
the same precipitation type. They are, in other words, the cases
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where the passive MW products successfully represent the true
precipitation type. For the EPC algorithm, the noticeable
negative bias for the middle-to-high-latitude convective profile
magnitude that is found in Fig. 13a is largely reduced (from
—37% to —25%; Figs. 13a,e), implying that the EPC’s con-
vective profile magnitude is less biased if the algorithm cor-
rectly identifies the precipitation type. This suggests that a
substantial part of the EPC’s underestimation bias found for
the middle-to-high-latitude convective profile magnitude is
due to the error in the precipitation type represented by the
EPC algorithm. In fact, only 29% of the true convective events
are correctly classified as the convective type by the EPC al-
gorithm in the region (Fig. 13i). The contamination of the
stratiform precipitation entries, which have generally smaller
mean condensed water content, in the Bayesian retrieval can
lead to the negative bias. Meanwhile, in the tropics, the un-
derestimation bias of the convective mean condensed water
content by EPC algorithm is only slightly reduced (from —28%
to —25%; Figs. 13c,g). This means that the misrepresentation
of the precipitation type is not the major reason for the un-
derestimation bias for the convective cases in the tropics.

For GPROF algorithm, there are only slight reductions of
the overestimation bias for the mean condensed water con-
tent of the stratiform precipitation (from +42% to +40% in
the middle-to-high latitudes and from +63% to +61% in the
tropics; Figs. 13b, 13f, 13d, and 13h). It suggests that even if the
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FIG. 13. Mean condensed water content and number fraction of correctly classified precipitation type cases. (a)-(d) Mean condensed
water content conditioned on the precipitation types by the CMB product. (¢)-(h) Mean condensed water content for the cases where both
CMB and passive MW products agree in precipitation type. Two bars are shown for the CMB in the middle row. The left bars are the CMB
product’s mean condensed water content for the cases where CMB and EPC agree in the precipitation type, while the right bars are for the
cases of CMB and GPROF pairs. The percentages shown for passive MW products on top and middle rows are the difference from CMB
product. Note that the upper limit of the vertical axes of (a) and (e) are different from other panels. (i)-(1) Number fraction of correctly
classified cases by each of the passive MW products. In all panels, “Mid-high” refers to the middle to high latitudes (35°~60°N and S) and
“Tropics” to 15°S-15°N. The bottom and the top ends of the error bars show the 25th and 75th percentiles. “Conv’’ and *‘Strat” refer to

[fraction]

convective and stratiform precipitation type, respectively.

precipitation type is correctly represented by the GPROF re-
trieval, the overestimation bias of the profile magnitude re-
mains. Another point that should be noted is that GPROF in
the tropics shows a larger profile magnitude for stratiform
precipitation than convective precipitation (Figs. 13g,h), which
is contrary to the reference (CMB) data.

In summary, a substantial part of the EPC’s underestimation
of the profile magnitude for the middle-to-high-latitude con-
vective cases is explained by the representation bias of the
precipitation type. On the other hand, the other biases of the
profile magnitude (i.e., EPC’s underestimation for the tropical
convective profile magnitude and GPROF’s overestimation
for the stratiform profile magnitude) would remain even if the
precipitation type were correctly represented in the passive
MW algorithms. Considering that more than 80% of the pre-
cipitation events in the middle-to-high latitudes are stratiform
(Fig. 14), the biases for the profile magnitude in the middle-to-
high latitudes by the two passive MW algorithms (Fig. 9) are
mostly due to the bias in the stratiform precipitation. It should
be noted that, however, the convective cases play a significant
role for severe weather events even in the middle-to-high

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:35 PM UTC

latitudes, and therefore an improved depiction of the convec-
tive precipitation is still important. In the tropics, although
about a half of the precipitation events are convective (Fig. 14),
the GPROF’s overestimation of the profile magnitude found in
Fig. 9 is mostly due to the significant overestimation for the
profile magnitude of stratiform precipitation.

10. Summary and concluding remarks

This study focused upon the condensed water content profiles
estimated by two passive MW-based retrieval algorithms (EPC
and GPROF), validated with the GPM radar-radiometer com-
bined (CMB) product as a reference. On average, these passive
MW algorithms have biases in the magnitude of the condensed
water content profile, notably near the freezing level. The EPC
tends to underestimate the profile magnitude especially for the
convective type precipitation, whereas GPROF shows sys-
tematic overestimation of the magnitude for stratiform cases.
The average error of the profile magnitude was found to be
smaller for EPC (tropics: less than 20%, middle-to-high lati-
tudes: 20%-50% ) than GPROF (tropics: 20%-50% and larger,
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FIG. 14. Number fraction of convective precipitation events es-
timated by CMB product. The convective precipitation event is
defined based on the convective volume fraction.

middle-to-high latitudes: 20%-50% ). Some biases of the storm
top height were also found. The storm top height defined from
the condensed water content profile is slightly underestimated
by the EPC and overestimated by the GPROF algorithm.
Such biases in the storm top height can be related to the bias
in the profile magnitude. Among the biases in the profile
magnitude, a substantial portion of the EPC’s underestima-
tion for the convective cases in the middle-to-high latitudes
can be attributed to the error in the representation of the
precipitation type in the algorithms. It has been pointed out by
previous studies that the representation error of precipitation
type is one of the causes of the passive MW algorithm’s esti-
mation error for surface precipitation rate (Petkovic et al. 2019;
Kirstetter et al. 2020). The result of this study suggests that the
estimation performance of the vertical precipitation profiles is
also affected by the representation error in precipitation type.
Such error may be mitigated by the separation technique of the
convective and stratiform precipitation developed for the
passive MW algorithms (e.g., Petkovi¢ et al. 2019). It should be
noted that the precipitation type information provided by the
CMB product, which is used as a reference in this study, may
have an error itself (Kirstetter et al. 2020). The analyses using
other sources of information, such as ground-based observa-
tions, are left for the future study.

Although the profile magnitude is biased, the shapes of the
average profile are well reconstructed by the EPC and GPROF
algorithms. The agreement between the profile shapes of the
CMB product and the passive MW algorithms are particularly
good in the middle-to-high-latitude ocean regions, where the
average correlation coefficient between the profiles is higher
than 0.8 by the EPC and 0.7 by GPROF. The relatively low
agreement over land surfaces indicates the relative difficulty in
estimating vertical precipitation profiles based solely on pas-
sive MW information. However, as for the average profiles, the
profile shapes are well captured by the passive MW algorithms
even over land regions, with the bias in the height of the peak
condensed water content less than 1 km.

The error in the surface precipitation is found to be related
to the error in the corresponding profiles. The error in the
mean condensed water content shows a clear positive rela-
tionship with the surface precipitation error. The correlation
coefficients of the profile shapes also show connection with
the surface precipitation error. This indicates that physically
reasonable connections between surface precipitation and its
associated profiles are achieved to some extent in these two
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passive MW algorithms. This result also implies that properly
constraining physical parameters of the precipitation profiles
(e.g., storm top height, freezing level, total condensed water
content) would lead to the improvements of the surface pre-
cipitation estimates.

One of the motivations in this study to investigate the pre-
cipitation profiles by the passive MW algorithms originates
from the authors’ previous study (Utsumi et al. 2019), which
demonstrated that the estimation of the subhourly accumula-
tion of the surface precipitation is improved by taking into
account the associated vertical precipitation profile. The real-
istic representation of the profile shapes by the passive MW
algorithms found in this study is encouraging for the applica-
tion of the abovementioned method to the passive MW-based
surface precipitation accumulation, which will contribute to
the improvements in the global precipitation monitoring
products (e.g., Huffman et al. 2018; Joyce and Xie, 2011;
Kubota et al. 2020). Additionally, it will potentially lead to a
better understanding of the three-dimensional structure of the
precipitating weather systems (Utsumi et al. 2014, 2017) and
their evolutions with climate changes (Utsumi et al. 2016).

We focused the analysis only for the observations by GMI in
this study. The EPC has been adapted to work with other
sensors, including ATMS and MHS cross-track scanning sen-
sors in the GPM constellation, using additional information to
account for scan angle dependencies and spatial resolution.
Further investigation of the passive MW-based precipitation
profile analysis for all passive MW sensors in the GPM con-
stellation is currently underway.
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