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ABSTRACT: Precipitation estimation based on passive microwave (MW) observations from low-Earth-orbiting sat-

ellites is one of the essential variables for understanding the global climate. However, almost all validation studies for

such precipitation estimation have focused only on the surface precipitation rate. This study investigates the vertical

precipitation profiles estimated by two passive MW-based retrieval algorithms, i.e., the emissivity principal components

(EPC) algorithm and the Goddard profiling algorithm (GPROF). The passive MW-based condensed water content

profiles estimated from the Global PrecipitationMeasurement Microwave Imager (GMI) are validated using the GMI1
Dual-Frequency Precipitation Radar combined algorithm as the reference product. It is shown that the EPC generally

underestimates the magnitude of the condensed water content profiles, described by the mean condensed water content, by

about 20%–50% in the middle-to-high latitudes, while GPROF overestimates it by about 20%–50% in the middle-to-high

latitudes and more than 50% in the tropics. Part of the EPC magnitude biases is associated with the representation of the

precipitation type (i.e., convective and stratiform) in the retrieval algorithm. This suggests that a separate technique for pre-

cipitation type identification would aid in mitigating these biases. In contrast to the magnitude of the profile, the profile shapes

are relatively well represented by these two passive MW-based retrievals. The joint analysis between the estimation perfor-

mances of the vertical profiles and surface precipitation rate shows that the physically reasonable connections between the

surface precipitation rate and the associated vertical profiles are achieved to some extent by the passiveMW-based algorithms.
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1. Introduction

Global precipitation products capitalize upon the long

period of record of satellite-based passive microwave (MW)

radiometer observations (Aonashi and Ferraro 2020). The

passive MW brightness temperature (TB) represents the net

top-of-atmosphere upwelling radiation, after taking into

consideration the emission and scattering properties of hy-

drometeors within the top-to-bottom profile, including the

contribution from the surface emissivity. The surface pre-

cipitation represents the net flux of the condensed water at

the bottom of this profile as seen from space and is arguably

one of the quantities that the TB is least directly sensitive to

(Haddad et al. 2017). Furthermore, precipitation that falls

near the surface is a manifestation of its associated vertical

precipitation structure nearby and above. This implies that a

more representative passive MW algorithm would have an

ability to jointly estimate the vertical structure and the

surface precipitation.

Some of the passive MW-based techniques estimate the

precipitation vertical structure as well as the surface precipi-

tation rate. For example, the Goddard profiling algorithm

(GPROF) (Kummerow et al. 2015) for NASA’s Global

Precipitation Measurement (GPM) mission provides the hy-

drometeor vertical profiles as a standard output. There are also

the passive MW-based techniques more specifically developed

for estimating the vertical precipitation profiles (e.g., Evans

et al. 1995; Skofronick-Jackson and Wang 2000; Bauer and

Mugnai 2003; Haddad and Park 2009).

However, nearly all validation studies to date examine

only the surface precipitation rate. A major difficulty with
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validating the full profile is that the 3D volumes sampled by

scanning ground-based radars and space-based measure-

ments are not aligned, and the ground radar scans do not

fully capture the full top-to-bottom cloud structure. On the

other hand, surface precipitation data are more widely collected

anddisseminated, e.g., theGroundValidationMulti-RadarMulti-

Source (GV-MRMS) data in the United States (Kirstetter et al.

2012). Spaceborne radar observations are an exception, as these

can provide the vertical structure of precipitation on a global

scale. After the launch of the Tropical Rainfall Measuring

Mission (TRMM) satellite, the TRMM Precipitation Radar

(PR) and its successor, the GPM Dual-Frequency Precipitation

Radar (DPR), have contributed to better understanding of the

physics and characteristics of vertical structures of precipitation

systems (Hirose andNakamura 2004; Yamamoto et al. 2006; Liu

and Zipser 2013; Kobayashi et al. 2018).

An improveddepiction of the vertical precipitation profiles by

the satellite observations also has potential to benefit the surface

precipitation estimates. Based on TRMM PR observations,

Utsumi et al. (2019) demonstrated that taking into account the

precipitation vertical profile improves the satellite-based esti-

mations of surface rain accumulation on subhourly time scales

(e.g., 30min). If passive MW retrievals can estimate precipita-

tion vertical profiles in a reasonable accuracy, the method pro-

posed by Utsumi et al. (2019) could be applicable to improving

passive MW-based estimations of subhourly surface precipita-

tion accumulation. Such a product could contribute to future

improvements of merged satellite precipitation products (e.g.,

Huffman et al. 2018; Joyce and Xie 2011; Kubota et al. 2020)

which provide subhourly precipitation estimates.

The objective of this study is to provide a comprehensive

evaluation of the vertical precipitation profiles estimated by

two radiometer algorithms, i.e., the version 5 GPROF and the

emissivity principal components (EPC) technique developed

by the authors. The GPM radar–radiometer (DPR 1 GMI)

combined algorithm (2B-CMB) (Grecu et al. 2016) precipita-

tion estimates, by virtue of collocation on the same GPM

spacecraft, are used as a common profile reference. Sections 2

and 3 describe the data and methods used and a brief

description of each algorithm. Section 4 presents an evaluation

of the surface precipitation rate by the passive MW algorithms,

and sections 5–7 present evaluations of the vertical precipitation

profiles. In section 8, the joint verification of the vertical pre-

cipitation profiles and the surface precipitation rate is presented.

Section 9 is devoted to the discussion, and section 10 presents the

summary and concluding remarks.

2. Data

a. Emissivity principal components algorithm product

The EPC (Turk et al. 2018) algorithm is designed around the

collection of the GPMMicrowave Imager (GMI) observations

coincident with DPR for precipitation-free conditions (Fig. 1).

The precipitation-free condition is declared for each GMI

field-of-view (FOV) pixel when any range bin of the DPR’s

normal scan (NS; Ku band) and matched scan (MS; Ka band)

3 3 3 radar reflectivity profiles surrounding the center of the

GMI FOV do not exceed a sufficiently small threshold (15 dB).

From the precipitation-free scenes inferred from the DPR

profiles, together with theModern-Era Retrospective Analysis

for Research and Applications version 2 (MERRA-2) (Gelaro

et al. 2017) temperature and water vapor profile, the surface

emissivity for GMI’s first nine (89GHz and below) channels is

estimated by the emissivity retrieval method of Mathew et al.

(2008) with the successive order of interaction (SOI) radi-

ative transfer model (Heidinger et al. 2006), regardless of

the surface. For each precipitation-free pixel observation,

the emissivity state vector is defined using the emissivity at

these nine GMI channels and three corresponding envi-

ronmental variables:

x5(e10V, e10H, e18V, e18H, e23V, e36V, e36H, e89V, e89H, TQV,T
s
,T

2m
)T,

(1)

where x is the emissivity state vector for a cloud-free pixel

observation; ec is the emissivity at a frequency channel c; and

the TQV, Ts, andT2m are the total columnwater vapor, surface

temperature, and 2-m air temperature from MERRA-2,

FIG. 1. Block diagram of the a priori database development for the EPC algorithm. A

principal component analysis (PCA) uses the large collection of DPR precipitation-free

observations to compute the coefficients that transfer the TB observations to EPC space (blue

boxes) and index the a priori database by the first three EPC elements.
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respectively. From the large set of the precipitation-free ob-

servations, we obtained a collection of the emissivity state

vector, denoted X:
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wheren is the number of the precipitation-free observations.Each

emissivity state vector [i.e., each column of the right-hand side of

the Eq. (2)] can be transformed into its 12 principal components

via a transformation expressed by an orthogonal matrix, whose

columns are the eigenvectors of the covariance matrix of X.

The principal components of the emissivity state vector, or the

EPCs, have nonlinear relationships with the observed TB (Turk

et al. 2016). In the EPC algorithm, each EPC vector term is re-

gressed against the nonlinear combination of the observed TB

(the nonlinear TB combinations are included to represent the

nonlinearities between emissivity andTB). For example, the first

emissivity principal component element u1 is regressed as

u0
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where u0
1 is the regressed u1,T

i
B(i5 1, 2, . . . , 13) are the GMI

TBs at the 13 frequency channels (10V, 10H, . . . , 1836 7V), a0,

bi, cij, di (i5 1, 2, . . . , 13; j5 i, i1 1, . . . , 13) are the regression

coefficients for the first emissivity principal component ele-

ment. The other 11 elements of the emissivity principal com-

ponents are regressed against TBs in the same way. This

provides a transformation for computing theEPCvector directly

fromTBwithout a radiative transfer calculation. The correlation

coefficient between the actual EPC and the estimated EPC ex-

ceeds 0.9 (not shown), suggesting that these EPC can be well

represented by the GMI TB.

A separate a priori database is developed based on one year

(January–December 2017) collection of GMI and the com-

bined radar–radiometer algorithm product (2B.GPM.DPRGMI.

CORRA V06; Grecu et al. 2016) (CMB product hereafter) that

includes both precipitation-free and precipitating scenes. For each

GMI FOV pixel, the 3 3 3 pixel average of the surface precipi-

tation rate (variable name: ‘‘precipTotRate’’) and the condensed

water content profiles (variable name: ‘‘precipTotWaterCont’’) at

the normal scans from the CMB product are assigned. Other

variables such as precipitation type from the CMB product, un-

corrected radar reflectivity profile from theDPR–Kuproduct, and

the environmental variables (TQV, Ts, T2m) fromMERRA-2 are

also included in the database for analysis purposes. The a priori

database is indexed by the first three EPC terms derived from

Eq. (3).While the transformation for the TB into EPC [Eq. (3)] is

specifically derived from the DPR noncloud TB scenes, it can be

applied to all TB for discriminating the presence of precipitation

affected scenes against the natural variability in the precipitation-

free surface emissivity. There is no conceptual distinction made

for the surface type, since all such distinctions are embedded in the

transformation coefficients used for each a priori database. The

EPC algorithm (Fig. 2) is based upon a Bayesian minimization

between the observed EPC vector and the EPC vector from

database candidate profiles. The EPC algorithm produces a

Bayesian average of the near-surface precipitation rate and a

Bayesian average of the corresponding condensedwater content

profile that best agrees with the TB observation in the Bayesian

minimum–EPC distance sense (Fig. 2).

b. GPROF product

Another passive MW-based precipitation estimate in-

vestigated in this study is the GPM GPROF product for

GMI (2AGPROFGMI V05; GPROF hereafter) distributed

by the NASA’s Precipitation Processing System (PPS). This

product provides surface precipitation rate and vertical

hydrometeor profiles estimated by the Goddard profiling

algorithm (Kummerow et al. 2015).

Like the EPC, GPROF employs a Bayesian approach to

estimate precipitation profiles and surface precipitation rate,

but with a different database stratification and minimization

scheme. GPROF for GMI uses an a priori database primarily

built upon the precipitation profiles and surface precipitation

estimated by the CMB and DPR–Ku products and their cor-

responding TBs observed by GMI for September 2014–August

2015 (Passive Microwave Algorithm Team Facility 2018).

The major distinction between the EPC and GPROF is that

GPROF uses ancillary information [i.e., total precipitable

FIG. 2. Block diagram of the EPC constellation radiometer precipitation profile estimation

technique. The EPC retrieval is similar to the facility GPROF algorithm, except that the ob-

servations and database entries are weighted in EPC space. The surface precipitation rate and

condensed water content q profiles are estimated at the same time.
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water, 2-m temperature, and the land surface classification type

derived from the Tool to Estimate Land Surface Emissivities at

Microwave frequencies (TELSEM; Aires et al. 2011)] to subset

the database, whereas the EPC is based on the emissivity

structure and does not require any prior surface classification.

Such technical difference in subsetting database may affect the

retrievals particularly over complex surfaces with mixed emis-

sivity structures (e.g., coast). GPROF estimates the surface pre-

cipitation rate and corresponding vertical precipitation profiles

(hydrometeor content profiles) based on the Bayesian minimi-

zation of the observed TB and the TB from the a priori database,

whereas EPC carries out its Bayesianminimization by comparing

the observed EPC and the EPC from its a priori database.

The hydrometeor profiles provided by GPROF have five

categories, i.e., rainwater, cloud water, ice water, snow water,

and graupel and hail content. In this study, the total of the

rainwater, ice water, and graupel and hail content is consid-

ered as the precipitation profile, or the condensed water

content profile. The profiles are provided on the 500-m ver-

tical resolution up to 10-km height and 1-km vertical resolu-

tion from 10- to 18-km heights. In this study, the profile layers

above 10 km are simply divided to 500-m layers. Based on an

analysis with the CMB product over land regions, the bottom

of the lowest layers is considered to be at the actual surface

height. Because GPROF does not estimate hydrometeor

profiles over snow surfaces, the snow surface scenes are ex-

cluded from the analyses for the precipitation profiles for

both GPROF and EPC.

c. Surface type information

While the EPC does not use the surface index, it is in the

EPC database for analysis purposes, as a means to efficiently

separate the results of this study by fixed surface types. The

surface type information obtained from GPROF product

provides 14 surface type classes (i.e., ocean, sea ice, five

types of vegetation, four types of snow cover, standing wa-

ter, land/ocean or water coast, and sea ice edge) based on

self-similar emissivities derived from TELSEM (Aires et al.

2011; Passive Microwave Algorithm Team Facility 2018). In

the analysis of this study, these surface types are regrouped

into four types, i.e., ocean, vegetation (combined five veg-

etation types), snow cover (combined four snow cover

types), and coast (land/ocean or water coast in the original

surface type). Sea ice, standing water, and sea ice edge types

are excluded in this study.

d. Reference datasets

Surface precipitation rate and precipitation water content

profiles from passive MW algorithms are compared to those

from the CMB product. The CMB product is based on the

observations by the dual-frequency radar (DPR) and radi-

ometer (GMI) carried on the GPM Core Observatory satel-

lite. It is designed to provide the most accurate surface

precipitation rate and vertical precipitation water content

distribution. In this study, the surface precipitation rates

(variable name: ‘‘precipTotRate’’) and vertical profiles of

precipitation-size condensed water content (variable name:

‘‘precipTotWaterCont’’) at the NS from the CMB product

are used as the reference. Also, the freezing-level height and

precipitation type information provided by this product is

used in the analysis. The precipitation type of the CMB

product is a copy from the GPM DPR Ku-band product.

There are three categories in the precipitation type, i.e.,

stratiform precipitation, convective precipitation, and others,

which are identified according to Awaka et al. (2016).

A ground-based surface precipitation rate over the conti-

nental United States and surrounding water by the Ground

Validation Multi-Radar/Multi-Sensor (GV-MRMS) ground

radar data, projected to the GMI footprints (Kirstetter et al.

2012, 2018), is also used for the validation of the surface

precipitation rate. The precipitation rate by the GV-MRMS

is available at the GMI footprints for each GPM Core

Observatory satellite overpass.

3. Evaluation method

The surface precipitation rates and the condensed water

content profiles, or precipitation profiles, from the passiveMW

algorithms are investigated for 1000 granules of the GPMCore

Observatory that are randomly sampled from a 1-yr period

(June 2014–May 2015). This period was chosen based on the

availability of EPC retrieval data. Note that it partially over-

laps the period used for building GPROF’s a priori database,

and therefore GPROF’s performance may be better in this

period than in other period. Passive MW-based estimates are

provided onGMI pixel locations (221 pixels/scan), whereas the

reference data from the CMB product is provided at the DPR

pixel locations. For each GMI pixel, the nearest CMB pixel on

the same granule is searched. The FOV size of GMI pixel is

relatively larger (approximately 32 km3 19 km at 10GHz and

7 km 3 4 km at 89GHz) than that of the CMB pixel (approx-

imately 5 km 3 5 km). To reduce the analysis uncertainty due

to the footprint size difference, the variables from the CMB are

averaged over 33 3 pixels andmatched up with theGMI pixel.

For each pair of the CMB (33 3 average) and GMI pixels, the

volumetric convective fraction is defined as follows:

volumetric convective fraction5P
conv

/P
total

, (4)

where Pconv and Ptotal are convective and total surface precipi-

tation rate byCMBproduct in the 33 3CMBpixels, respectively.

If the volumetric convective fraction is greater than 0.5, the pair of

the observation is classified as the convective type. The other

cases are classified as the stratiform type. Most of the analyses in

this study (section 6 and after) are focused on the precipitating

pixels, where both the CMB product and the passive MW algo-

rithm have surface precipitation rate no less than 0.5mmh21.

To mitigate the off-nadir angle effect of the CMB product

(where the surface clutter is manifested at low-level heights),

the analysis is limited to the estimates where the corresponding

CMB pixel is at the near-nadir angle bins (angle bin number

19–31). Also, the analysis for the precipitation water content

profiles is limited to the range bins higher than 1 km above the

actual surface. The condensed water content profiles from

CMB product and EPC algorithm are available at 250-m ver-

tical resolution while that of GPROF is at 500m (below 10-km

height). In this study, all the condensed water content profiles
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from CMB and EPC are averaged to 500-m vertical resolution

for analysis.

4. Surface precipitation rate

Before looking into the precipitation vertical profiles, the

surface precipitation rates from the two passive MW algo-

rithms are examined. Figures 3 and 4 show comparisons of the

surface precipitation rates with two different reference data

(GV-MRMS and CMB product). Performance metrics of the

passiveMW algorithms computed with two different reference

data are also summarized in Tables 1 and 2. Three performance

metrics [i.e., root-mean-square error (RMSE), normalized

mean bias, and correlation coefficient (CC)] are calculated as

follows:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i

(y
i
2 x

i
)
2

n

vuuut
, (5)
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s , (7)

where xi and yi are the surface precipitation rate of the refer-

ence and passiveMWproduct, respectively, and x and y are the

mean of each variable. The number of observations is n.

Although GPROF uses the GV-MRMS to build a priori

database for the surface precipitation rate over snow surface,

GV-MRMS is basically an independent data from the two

passive MW algorithms. On the other hand, the CMB product

is used to build a priori surface precipitation databases by EPC

algorithm and GPROF (except for the snow surfaces for

GPROF). In addition to the CMB product, GV-MRMS is also

used as a reference dataset which enables validation against

independent source. It is only used for the validation of surface

precipitation over the continental United States because of its

data availability, while the CMB product provides vertical

profiles globally (608S–608N).

Figure 3 shows the validation of the two passive MW algo-

rithms with GV-MRMS over the United States and sur-

rounding water. In general, the two passive MW algorithms

show reasonably good agreement with GV-MRMS, especially

over ocean and vegetation surfaces. Over ocean, vegetation,

and coast, EPC shows smaller RMSE and higher CC than

GPROF (Table 1). Over snow surfaces, on the other hand,

GPROF shows better RMSE and CC than EPC for some

precipitation range. This could be because the GPROF uses

GV-MRMS in its a priori database over snow surfaces. As

for the normalized mean bias, the weak precipitation (0.1–

1mmh21) tends to be underestimated by EPC over all surface

types. One of the reasons of such underestimation could

be attributed to the skewed probability distribution of the

FIG. 3. Overall performance of the surface precipitation estimates by the passive microwave algorithms. The colors of the two-

dimensional histograms show the number of the cases. The estimations are validated with the GV-MRMS over the continental United

States and surrounding water.
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precipitation rate in the a priori database, which can cause

systematic biases of the Bayesian-type retrievals (Seo et al.

2007). Interestingly, on the other hand, GPROF shows over-

estimations for the same range (0.1–1mmh21) except for snow

surfaces (Table 1). The reason of the opposite biases of EPC

and GPROF for weak precipitation range needs further in-

vestigation in the future study. Note that very light precipita-

tion range (less than 0.1mmh21) is not included in the

assessment (Table 1). The performance evaluation for such

very light range is more prone to the precipitation detection

skill of the algorithms and the reference data, which is not the

focus of this study. The heavy precipitation (more than

10mmh21) are generally underestimated by the two passive

MW algorithms (Table 1), which is a known bias for both

Bayesian and non-Bayesian type passive MW-based algo-

rithms (e.g., Utsumi and Kim 2018). Over snow surfaces, the

two passive MW algorithms generally underestimate the

surface precipitation rate (Table 1), which could be due to a

difficulty in separating TB signatures of precipitation against

the background emissivity over snow surfaces (Liu and Seo

2013). GPROF shows bimodal features with peak occurrences

around 0.3 and 1.0mmh21 over coasts and around 0.2 and

1.0mmh21 over snow surfaces (Fig. 3h). Similar bimodal fea-

tures by GPROF are reported for the retrievals from the

sounders [i.e., Advanced Technology Microwave Sounder

(ATMS) and Microwave Humidity Sounder (MHS)] over

ocean (You et al. 2020), although it remains to be clarified if

they are rooted in the same causes. Such bimodal features are

not apparent for the EPC algorithm.

Figure 4 shows the validation of the two passive MW algo-

rithms with the CMB product over the globe (608S–608N). It

shows similar results to the GV-MRMS case although the

overall performances of the passive MW algorithms are better

when they are validated with the CMB product (Fig. 4 and

FIG. 4. As in Fig. 3, but the estimations are validated with CMB product over the globe (608S–608N).

TABLE 1. Performance metrics of the passive MW algorithms relative to GV-MRMS product. Metrics are shown for different precipi-

tation ranges defined by the reference (GV-MRMS) product.

RMSE Normalized mean bias CC

Range (mmh21) $0.1 0.1–1 1–10 $10 $0.1 0.1–1 1–10 $10 $0.1 0.1–1 1–10 $10

Ocean EPC 3.1 0.8 3.1 12.7 20.04 20.09 0.08 20.25 0.70 0.25 0.53 0.41

GPROF 3.2 0.8 3.3 12.8 20.02 0.02 0.08 20.21 0.71 0.23 0.51 0.43

Vegetation EPC 2.8 0.8 2.6 15.1 20.35 20.15 20.28 20.58 0.61 0.21 0.41 0.34

GPROF 3.0 1.0 2.9 15.4 20.15 0.26 20.07 20.56 0.56 0.22 0.39 0.28

Coast EPC 2.8 0.8 3.0 14.0 20.28 20.26 20.20 20.46 0.61 0.20 0.44 0.32

GPROF 3.1 1.4 3.2 14.6 20.12 0.27 20.03 20.56 0.50 0.17 0.36 0.24

Snow EPC 1.0 0.5 1.7 17.9 20.77 20.80 20.74 20.87 0.42 0.14 0.38 20.03

GPROF 0.9 0.5 1.5 18.2 20.56 20.49 20.62 20.90 0.41 0.16 0.39 20.23
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Table 2). Since both two passive MW algorithms use the CMB

product for their a priori databases, it is reasonable that they

inherit the nature of the CMB product and agree with it better

than GV-MRMS. A noticeable difference from the GV-MRMS

case is found over snow surfaces, where a cutoff pattern around

0.3mmh21 is inconspicuous for the CMB case. Part of the dif-

ferences in the evaluation results could be due to the difference

in the threshold or sensitivity of the reference data at the lowest

precipitation rate, as well as the different spatial extent of the

validation data (i.e., over the United States in Fig. 3 and over

the globe in Fig. 4).

We note that GV-MRMS does not provide the associated

vertical structure of the precipitation profiles. In the following

sections, the CMB product is used as the reference dataset.

5. Example case of the retrieved profiles

On 14 October 2014, the GPM Core Observatory satellite

observed a frontal precipitation over the easternUnited States.

The northern part of the precipitation band is over land and the

rest is over ocean (Gulf of Mexico) (Fig. 5). Figure 6 shows the

vertical cross section of the radar reflectivity (uncorrected for

attenuation) measured by DPR–Ku (Fig. 6a) as well as the

estimated radar reflectivity by EPC algorithm (Fig. 6b). The a

priori database of EPC algorithm contains ‘‘uncorrected’’ ra-

dar reflectivity taken from DPR–Ku product for analysis pur-

pose. Since the Bayesian average of the radar reflectivity is not

output of the EPC algorithm, the radar reflectivity of the a

priori database entries that are assigned the highest weight in the

Bayesian retrieval, which we call the ‘‘top-weighted profile,’’ are

used as the estimated profile of the reflectivity.

The radar reflectivity signals are well reconstructed by the

EPC algorithm. The reconstructed reflectivity profile esti-

mated by EPC algorithm shows the locations of the strong

precipitation signals and the precipitation top heights are

very similar to the radar observation, although there are

some second-order discrepancies such as bright band sig-

nals observed by DPR–Ku (between pixel number 60 and

80) and a missing signature near the convection (pixel

number 12). The anvil-like structure in the south over

ocean (around pixel number 3–4) is also reconstructed.

This implies that the EPC passive MW algorithm has skill

in representing the precipitation profiles depicted by the

observed radar reflectivity.

Figure 7 shows the precipitation condensed water content

(condensed water content, hereafter) profiles from the CMB

product, EPC algorithm, and GPROF. The similarities be-

tween the CMB algorithm product and the passive MW-based

estimates are not as notable as that of the radar reflectivity

profile. The EPC algorithm tends to underestimate the con-

densed water content. Also, a precipitating column near the

strong convection (pixel number 12) is not reproduced in this

case. GPROF tends to show strong signatures that spread

wider both vertically and horizontally in space. Despite these

biases, the main features of this scene, e.g., the tall precipita-

tion around pixel number 9–12 and the precipitation system

around pixel number 70–90 with peaks of condensed water

content at 4–5.5 km, are reasonably represented by both pas-

sive MW algorithms. It suggests that the precipitation water

content profiles can also be estimated by passive MW algo-

rithms, even over land surfaces, with some biases.

6. Average profiles of condensed water content

Figure 8 presents the average precipitation water content

profiles over two surface types (ocean, vegetation) for con-

vective and stratiform precipitation. The bottom of the profiles

corresponds to the actual surface height. The analysis hereafter

is confined to the precipitating pixels.

Since we have found in a preliminary investigation that the

freezing level height largely affects the shape of the condensed

water content profiles, the analysis is conditioned on the typical

freezing level heights as well as latitude bands, i.e., (i) the

middle-to-high latitudes (358–608S and N) with the freezing

level conditioned on 0–1 km from the surface, which represent

the cold season cases, (ii) the middle-to-high latitudes with

the freezing level conditioned on 3–4 km, which represent the

warm season cases, and (iii) the tropics (158S–158N) with the

freezing level conditioned on a typical range in the tropics

(4–5 km).

The consistency of the passive MW-based profiles with the

reference data largely varies among different conditions. For

example, the average profile of the stratiform precipitation

over the ocean in the tropics estimated by EPC (Fig. 8i) is al-

most identical to the reference data. On the other hand, the

average profile of the cold season convective precipitation in

the middle-to-high latitudes over ocean (Fig. 8c) is better es-

timated by GPROF. In the following subsections, the passive

TABLE 2. As in Table 1, but relative to CMB product.

RMSE Normalized mean bias CC

Range (mmh21) $0.1 0.1–1 1–10 $10 $0.1 0.1–1 1–10 $10 $0.1 0.1–1 1–10 $10

Ocean EPC 1.4 0.3 1.5 10.0 20.13 20.14 20.09 20.25 0.85 0.51 0.77 0.56

GPROF 1.4 0.4 1.6 9.1 20.14 20.17 20.10 20.20 0.86 0.40 0.74 0.64

Vegetation EPC 1.8 0.6 2.1 10.6 20.34 20.23 20.33 20.49 0.69 0.29 0.52 0.33

GPROF 2.0 0.7 2.4 10.9 20.08 0.26 20.09 20.42 0.64 0.32 0.46 0.28

Coast EPC 1.9 0.6 2.3 11.4 20.26 20.19 20.26 20.31 0.72 0.30 0.54 0.44

GPROF 2.3 0.9 2.6 13.3 20.12 0.21 20.11 20.54 0.56 0.29 0.41 0.22

Snow EPC 0.8 0.4 1.6 15.1 20.51 20.52 20.47 20.79 0.49 0.32 0.32 0.11

GPROF 0.8 0.5 1.6 16.2 20.27 20.14 20.42 20.89 0.37 0.34 0.16 0.07
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MW-based profiles are investigated from two aspects, i.e., the

magnitude (section 6a) and the shape (section 6b).

a. Magnitude

To investigate the magnitude of the profiles, the condensed

water content at the peak heights of the profiles is examined.

Here, the peak heights are defined as the heights (above 1 km)

where the profile shows the largest condensed water content.

In general, the EPC algorithm tends to underestimate the

condensed water content of the convective precipitation (e.g.,

Figs. 8c,d,g,h,k,l). On the other hand, the profile magnitude of

the stratiform precipitation is well reproduced by EPC when

freezing level height is not very low (e.g., Figs. 8e,f,i,j).

GPROF systematically overestimates the magnitude of the

condensed water content profiles for stratiform precipitation.

In the tropics over the ocean, the average magnitude of the

stratiform cases (Fig. 8i) is even larger than the convective

cases (Fig. 8k). For convective precipitation, GPROF shows

both underestimations (e.g., Fig. 8g) and overestimations

(e.g., Fig. 8k) for the magnitude of the profiles depending on

the condition.

Although the CMBproduct is used as a reference dataset, it is

noteworthy that the CMB product also can be affected by some

algorithmic shortcomings. For example, CMB product tends to

show larger surface precipitation rate over land compared to

other global precipitation products (Skofronick-Jackson et al.

2017), whichmay affect the vertical profiles. Also, CMB product

may be missing high-latitude oceanic drizzle and snowfall over

land due to the DPR sensitivity (Passive Microwave Algorithm

Team Facility 2018). GPROF addresses this potential missing

problem of the CMB product by adjusting the hydrometeor

profiles. This may be one of the reasons of the different mag-

nitudes betweenGPROF and CMB product for middle-to-high-

latitude stratiform precipitation (Figs. 8a,b,e). However, such

potentialmissing problemof the CMBproduct does not apply to

the tropics. Also, the very light precipitation cases are excluded

in the current analysis (see section 3), and it should mitigate the

potential missing effect of the CMB in this comparison.

FIG. 5. Surface precipitation estimates for a frontal precipitation case on 14 Oct 2014, over the southeastern

United States (GMI granule number 3556). Only the pixels with precipitation rate no less than 0.5mmh21 are

shown. The parallel white solid lines show the boundaries of the GMI swath, and the white dashed line in between

them is the location of the cross section for Figs. 6 and 7.
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b. Shape

Figure 8 suggests that the shape of the mean condensed

water content profiles can be abstracted by the position of the

peak heights (which is defined earlier) of the profiles. In

general, the two passiveMW algorithms capture the shapes of

the mean condensed water content profiles with small biases

of the peak height (61-km range). It is evident from the

profiles of the CMB product that the mean peak height is

located near the freezing level height. This is reasonable

considering that the phase change from snowflakes to rain-

drops around the freezing level increases the falling velocity

of the precipitation particles. The faster falling velocity of the

raindrops leads to the rapid decrease in the condensed water

content below the freezing level. This reasoning could be

especially valid for stratiform precipitation, but a similar

pattern is found for convective precipitation as well (Fig. 8).

This result means that the two passive MW algorithms cap-

ture the average shape of the condensed water content both in

the ice (i.e., above freezing level) and liquid (i.e., below

freezing level) phases. Also, this result implies that the ex-

plicit consideration of the freezing level height may further

improve the representation of the shapes of the condensed

water content profiles by the passive MW algorithms.

In this section, it is found that the passive MW algorithms

have magnitude biases for the condensed water content pro-

files while they can represent the average shapes of the profiles

reasonably for typical precipitating cases. The potential causes

of the magnitude bias are further discussed in section 9.

7. Global pattern of the retrieval performance

Three metrics of the condensed water content profiles

(mean condensed water content, storm top height, and corre-

lation coefficients of the profiles between the CMB product

and passiveMWalgorithms) are investigated in sections 7a, 7b,

and 7c, respectively. The condensed water content profiles

of the CMB and passive MW products are paired at all

FIG. 7. Vertical cross section of the condensed water content. (a) Combined product. (b) EPC

algorithm. (c) GPROF.

FIG. 6. Vertical cross section of the radar reflectivity. (a) Observed by DPR–Ku. (b) Top-

weighted profiles in the EPC algorithm’s Bayesian retrieval (see the text).
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precipitating pixels (i.e., pixels with surface precipitation rate

no less than 0.5mmh21 in both products). The metrics and

their difference between the CMB and passive MW products

are calculated for each pair of the profiles and the average and

the standard deviation of the metrics are calculated for 2.58 3
2.58 grid boxes globally (608S–608N).

a. Mean condensed water content

Figure 9 shows the global pattern of the mean condensed

water content (units of gm23), which is a metric of the mag-

nitude of the precipitation profiles. This metric is calculated by

averaging the condensed water content between 1 and 10 km

from the surface for each profile. Some profile data in the in-

vestigated products have layers with missing value. The layers

with the missing value are not used in the averaging. We used

the average (instead of total) of the condensed water content

for this analysis to avoid the negative bias due to the missing

data in the profiles. In the vertical averaging, we assume that

such missing happens randomly, which does not likely cause

systematic bias. The difference of the metrics between CMB

and passiveMWproducts is normalized by the mean condensed

water content of the CMB product for each observation.

FIG. 8. Average vertical profiles of the condensed water content over ocean (Ocean) and vegetation (Vege). (a)–(d) The cases

of freezing level 5 0–1 km in 358–608N and S. (e)–(h) The cases of freezing level 5 3–4 km in 358–608N and S. (i)–(l) The cases of

freezing level 5 4–5 km in 158S–158N. Thick sold lines: Combined product. Thin sold lines: EPC algorithm. Dashed lines: GPROF.
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As expected, the mean condensed water content (Fig. 9a)

has a similar global pattern to the surface precipitation rate,

although the land regions show higher mean condensed water

content than the ocean. A separate analysis for the condensed

water content at the peak height of the profiles (not shown)

shows a similar global pattern, which further confirms that the

magnitude of the precipitation profiles tends to be larger over

land than ocean.

The two passive MW algorithms show different global

patterns of the biases. The bias of EPC tends to be larger in

the middle-to-high latitudes while that of GPROF is larger in

low latitudes (Figs. 9c,e). On average, EPC shows 20%–50%

underestimation in the middle-to-high latitudes. In the low

latitudes, the EPC represents the profile magnitude reason-

ably well. Although the average profile analysis of Fig. 8

suggests the EPC’s underestimation of the profile magnitude

for the tropical convective precipitation, the average bias

does not exceed 220% in most of the tropics (Fig. 9c).

GPROF shows relatively larger bias in the profile magnitude.

It has more than 50% overestimation in the low latitudes and

some land regions in the middle latitudes, as well as 20%–

50% overestimation in the large part of the middle-to-high

latitudes. It is interesting that GPROF generally overesti-

mates mean condensed water content while the surface pre-

cipitation rate tends to be slightly underestimated (Tables 1

and 2). One of the reasons of the larger profile magnitude

could be due to the adjustment done for the profiles in the

GPROF a priori database (Passive Microwave Algorithm

Team Facility 2018; Ringerud et al. 2019).

The standard deviation of the normalized difference shows

the variability of the algorithms’ performance for estimating

the profile magnitude (Figs. 9d,f). In general, EPC shows

smaller standard deviations of the normalized difference than

GPROF. Both passive MW algorithms have relatively higher

standard deviation of the normalized difference in the low

latitudes, which means that the agreement of the profile mag-

nitude between the CMB and passive MW products for each

observation is highly variable in the region. It reflects the dif-

ficulty in capturing the large spatiotemporal variability of the

precipitation system in the low latitudes.

b. Storm top height

The storm top height (Fig. 10), or the precipitation top height, is

one of the properties that characterize the vertical structure of the

precipitation. The CMB product provides the storm top height

variable (i.e., variable name ‘‘stormTopAltitude’’), which is de-

fined as the height of the highest range bin where the significant

DPR–Ku radar echoes are observed at least three consecutive

bins. On the other hand, the passive MW algorithms do not pro-

vide storm top height as a standard output variable. In this study,

the storm top height is defined as the height (relative to the sur-

face) of the highest profile layer where the condensed water

content exceeds a threshold (0.033 gm23). This threshold is the

average of the condensed water content of the CMB product

(3 3 3 pixel averaged) at the height of the ‘‘stormTopAltitude.’’

The storm top height analyzed in this study is defined using this

threshold by applying it to each of the condensed water content

profiles of the three products (CMB, EPC, and GPROF).

FIG. 9. Mean condensed water content. (a),(b) Combined product. (c)–(f) Normalized errors of the mean condensed water content by

the passivemicrowave algorithms. Left and right columns are the average and the standard deviation of themetrics. Gray color indicates a

location where no precipitation case is available.
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The storm top height by EPC is unbiased over most of the

regions with some patchy underestimation biases of 0.5–1 km

(Fig. 10c). GPROF has systematic overestimation bias of

;0.5–1 km in the middle-to-high latitudes (Fig. 10e). It also

shows overestimation bias of;1–1.5 km in the low latitudes as

well as some land regions in the middle latitudes (Fig. 10e).

These biases can be related to the bias of the magnitude of the

profiles (Fig. 9). The standard deviations of the storm top

height difference show similar global patterns for the two

passiveMW algorithms. The variability of the storm top height

error, measured by one standard deviation, is;2 km in the low

latitudes and ;0.5–1 km in the middle and high latitudes.

c. Similarity of the profile shapes

The similarity of the profile shapes between the CMB and

passive MW products is evaluated by the correlation coeffi-

cient of the profiles (Fig. 11):
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where xi and yi are themean condensed water content at the ith

vertical bin of the profile of the CMB and passiveMWproduct,

respectively; x and y are the vertically averaged mean con-

densed water content; and n is the number of 500-m vertical

layers. Since the majority of the condensed water content is

found below ;7 km in most cases (cf. Fig. 8), the CC calcula-

tion is confined to the layers between 1- and 7.5-km height

(from the surface) in order to better capture the shape simi-

larity of the condensed water content profiles. The higher CC

means the larger similarity of the profile shapes, regardless of

magnitude biases. Note that the mean and the standard devi-

ation of the CC is based on the CC computed for each pair of

the profiles at the precipitating GMI pixel.

In general, EPC shows a higher average CC than GPROF

(Fig. 11). As for the geographical pattern, the two passive MW

algorithms’ average performances for the profile shape are

better in themiddle-to-high latitudes over ocean (CC5 0.8 and

higher) than in the low latitudes and land regions (CC 5 0.4–

0.8 for the EPC and CC 5 0.2–0.8 for the GPROF) (Fig. 11).

The standard deviation of the CC, the metric for the variability

of the estimation performance, is higher in the low latitudes

(Figs. 10b,d). For a given latitude, the land regions tend to have

lower CC than the ocean, implying that the estimation of the

profile shape is more difficult over land. This difficulty is due to

the weak contrast of the precipitation and background signals

in the passive MW observations over land.

8. Relationships between the errors in surface
precipitation rate and profiles

As mentioned in section 1, the surface precipitation rate is

physically related to the structure of the condensed water

content profile through the mass transport. A physically

FIG. 10. Storm top height. (a),(b) Combined product. (c)–(f) Error of the storm top heights by the passive microwave algorithms. Left

and right columns are the average and the standard deviation of the metrics. Gray color indicates a location where no precipitation case is

available.
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complete passive MW retrieval should therefore attempt to

estimate these two quantities jointly. This is also an implicit

assumption in the passive MW algorithms for surface precipi-

tation retrieval, since the microwave signals are more related

to the hydrometeor content structure rather than to the pre-

cipitation rate at the ground surface. In this section, the joint

analyses of the errors in surface precipitation rate and con-

densed water content profiles are presented.

Figure 12 shows the joint histogram of the surface precipi-

tation rate error and two types of the profile metrics (i.e.,

normalized error of the mean condensed water content and the

CC of the profile shapes). The errors in the surface precipita-

tion rate and the mean condensed water content are normal-

ized as follows:

normalized error of the surface precipitation5
(P

pmw
2P

cmb
)

P
cmb

,

(9)

normalized error of the mean condensed water content
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where P and W are the surface precipitation rate and mean

condensed water content of each precipitating scan pixel, re-

spectively, and pmw and cmb mean the passive MW algorithm

and the CMB product, respectively. The normalized error of

the mean condensed water content is the same metric that was

investigated in section 7a.

The errors in the surface precipitation rate and the mean

condensedwater content are positively correlated (Figs. 12a,c).

Although there are some biases for the mean condensed water

content (negative bias for EPC and positive bias for GPROF),

the smaller error in the surface precipitation rate tends to be

accompanied by the smaller error in themean condensed water

content. This implies that there is a dependency between the

retrieval performances of surface precipitation rate and the

corresponding precipitation profile magnitude for the passive

MW algorithms. The profile CC (Figs. 12b,d) also shows a

certain relationship with the surface precipitation error. The

cases with smaller error in the surface precipitation tend to be

accompanied by higher profile correlation coefficient. This

implies, although the relationship is not as distinct as the mean

condensed water content, the better estimation of the surface

precipitation has more chance to be accompanied by a better

estimation of the associated profile shape.

The relationship between the error in the surface precipi-

tation rate and the profile metrics found in this analysis sug-

gests that the estimation of the surface precipitation rates and

the vertical precipitation profiles are physically connected to

each other. Also, it suggests that a good estimation of the

surface precipitation rate by passive MW algorithms is physi-

cally reasonable in terms of its accompanying precipitation

vertical profile too.

9. Discussion

It was found in section 8 that the profile magnitude, measured

by the mean condensed water content, is related to the surface

precipitation estimates. However, the passive MW algorithms

exhibit nonnegligible bias of the profile magnitude; i.e., underes-

timation by the EPC in the middle-to-high latitudes, and over-

estimation by GPROF over most of the global regions (Fig. 9).

The biases in the profile magnitude is discussed in this section.

Figures 13a–d compare the mean condensed water content

of the three products for the middle-to-high-latitude regions

(358–608N and S) and the tropics (158S–158N). They are

FIG. 11. Correlation coefficient of the condensedwater content profiles between the combined product and passivemicrowave products.

(a),(b) EPC algorithm. (c),(d) GPROF. Left and right columns are the average and the standard deviation of the metrics. Gray color

indicates a location where no precipitation case is available.
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classified by the precipitation type (convective and stratiform) of

the corresponding CMBproduct. EPC underestimates themean

condensed water content of the convective precipitation in both

regions (237% in the middle-to-high latitudes and228% in the

tropics) (Figs. 13a,c) and the middle-to-high-latitude stratiform

precipitation (;223%) (Fig. 13b). Considering the result of

the average profile analysis of Fig. 8, the underestimation for the

middle-to-high-latitude stratiform is mostly attributed to the

bias for the cold season cases (see Figs. 8a,b).On the other hand,

GPROF shows substantial overestimation of the mean con-

densed water content of the stratiform precipitation in both re-

gions (142% in the middle-to-high latitudes and 163% in the

tropics) (Figs. 13b,d). Here, it is hypothesized that the bias in the

precipitation type represented in the passiveMWretrieval is one

of the sources of the total bias.

Both passive MW algorithms provide the convective surface

precipitation rate as a standard output. In the same way as the

precipitation type classification based on the CMB product

(see section 3 for the method), the precipitation type can be

defined using the volumetric convective fraction based on the

passiveMW algorithms. For the convenience of the discussion,

the precipitation type based on the CMB product is called the

‘‘true’’ precipitation type hereafter.

Figures 13e–h compare the mean condensed water content

for the cases where both CMB and passive MW products show

the same precipitation type. They are, in other words, the cases

where the passiveMWproducts successfully represent the true

precipitation type. For the EPC algorithm, the noticeable

negative bias for the middle-to-high-latitude convective profile

magnitude that is found in Fig. 13a is largely reduced (from

237% to 225%; Figs. 13a,e), implying that the EPC’s con-

vective profile magnitude is less biased if the algorithm cor-

rectly identifies the precipitation type. This suggests that a

substantial part of the EPC’s underestimation bias found for

the middle-to-high-latitude convective profile magnitude is

due to the error in the precipitation type represented by the

EPC algorithm. In fact, only 29% of the true convective events

are correctly classified as the convective type by the EPC al-

gorithm in the region (Fig. 13i). The contamination of the

stratiform precipitation entries, which have generally smaller

mean condensed water content, in the Bayesian retrieval can

lead to the negative bias. Meanwhile, in the tropics, the un-

derestimation bias of the convective mean condensed water

content by EPC algorithm is only slightly reduced (from228%

to 225%; Figs. 13c,g). This means that the misrepresentation

of the precipitation type is not the major reason for the un-

derestimation bias for the convective cases in the tropics.

For GPROF algorithm, there are only slight reductions of

the overestimation bias for the mean condensed water con-

tent of the stratiform precipitation (from 142% to 140% in

the middle-to-high latitudes and from 163% to 161% in the

tropics; Figs. 13b, 13f, 13d, and 13h). It suggests that even if the

FIG. 12. Joint histograms of the metrics. (a),(c) Normalized surface precipitation error and normalized condensed

water content error. (b),(d)Normalized surface precipitation error and correlation coefficient between condensedwater

content profiles. Black lines in (b) and (d) are the average of the profile correlation coefficients. The color shows the

number of cases. The histograms of the metric along the vertical axis are also shown on the right side of each panel.
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precipitation type is correctly represented by the GPROF re-

trieval, the overestimation bias of the profile magnitude re-

mains. Another point that should be noted is that GPROF in

the tropics shows a larger profile magnitude for stratiform

precipitation than convective precipitation (Figs. 13g,h), which

is contrary to the reference (CMB) data.

In summary, a substantial part of the EPC’s underestimation

of the profile magnitude for the middle-to-high-latitude con-

vective cases is explained by the representation bias of the

precipitation type. On the other hand, the other biases of the

profile magnitude (i.e., EPC’s underestimation for the tropical

convective profile magnitude and GPROF’s overestimation

for the stratiform profile magnitude) would remain even if the

precipitation type were correctly represented in the passive

MW algorithms. Considering that more than 80% of the pre-

cipitation events in the middle-to-high latitudes are stratiform

(Fig. 14), the biases for the profile magnitude in the middle-to-

high latitudes by the two passive MW algorithms (Fig. 9) are

mostly due to the bias in the stratiform precipitation. It should

be noted that, however, the convective cases play a significant

role for severe weather events even in the middle-to-high

latitudes, and therefore an improved depiction of the convec-

tive precipitation is still important. In the tropics, although

about a half of the precipitation events are convective (Fig. 14),

theGPROF’s overestimation of the profile magnitude found in

Fig. 9 is mostly due to the significant overestimation for the

profile magnitude of stratiform precipitation.

10. Summary and concluding remarks

This study focused upon the condensed water content profiles

estimated by two passive MW-based retrieval algorithms (EPC

and GPROF), validated with the GPM radar–radiometer com-

bined (CMB) product as a reference. On average, these passive

MW algorithms have biases in the magnitude of the condensed

water content profile, notably near the freezing level. The EPC

tends to underestimate the profile magnitude especially for the

convective type precipitation, whereas GPROF shows sys-

tematic overestimation of the magnitude for stratiform cases.

The average error of the profile magnitude was found to be

smaller for EPC (tropics: less than 20%, middle-to-high lati-

tudes: 20%–50%) thanGPROF (tropics: 20%–50%and larger,

FIG. 13. Mean condensed water content and number fraction of correctly classified precipitation type cases. (a)–(d) Mean condensed

water content conditioned on the precipitation types by theCMBproduct. (e)–(h)Mean condensedwater content for the cases where both

CMBand passiveMWproducts agree in precipitation type. Two bars are shown for the CMB in themiddle row. The left bars are theCMB

product’s mean condensed water content for the cases where CMBandEPC agree in the precipitation type, while the right bars are for the

cases of CMB and GPROF pairs. The percentages shown for passive MW products on top and middle rows are the difference from CMB

product. Note that the upper limit of the vertical axes of (a) and (e) are different from other panels. (i)–(l) Number fraction of correctly

classified cases by each of the passive MW products. In all panels, ‘‘Mid-high’’ refers to the middle to high latitudes (358–608N and S) and

‘‘Tropics’’ to 158S–158N. The bottom and the top ends of the error bars show the 25th and 75th percentiles. ‘‘Conv’’ and ‘‘Strat’’ refer to

convective and stratiform precipitation type, respectively.
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middle-to-high latitudes: 20%–50%). Some biases of the storm

top height were also found. The storm top height defined from

the condensed water content profile is slightly underestimated

by the EPC and overestimated by the GPROF algorithm.

Such biases in the storm top height can be related to the bias

in the profile magnitude. Among the biases in the profile

magnitude, a substantial portion of the EPC’s underestima-

tion for the convective cases in the middle-to-high latitudes

can be attributed to the error in the representation of the

precipitation type in the algorithms. It has been pointed out by

previous studies that the representation error of precipitation

type is one of the causes of the passive MW algorithm’s esti-

mation error for surface precipitation rate (Petković et al. 2019;

Kirstetter et al. 2020). The result of this study suggests that the

estimation performance of the vertical precipitation profiles is

also affected by the representation error in precipitation type.

Such error may bemitigated by the separation technique of the

convective and stratiform precipitation developed for the

passiveMW algorithms (e.g., Petković et al. 2019). It should be

noted that the precipitation type information provided by the

CMB product, which is used as a reference in this study, may

have an error itself (Kirstetter et al. 2020). The analyses using

other sources of information, such as ground-based observa-

tions, are left for the future study.

Although the profile magnitude is biased, the shapes of the

average profile are well reconstructed by the EPC andGPROF

algorithms. The agreement between the profile shapes of the

CMB product and the passive MW algorithms are particularly

good in the middle-to-high-latitude ocean regions, where the

average correlation coefficient between the profiles is higher

than 0.8 by the EPC and 0.7 by GPROF. The relatively low

agreement over land surfaces indicates the relative difficulty in

estimating vertical precipitation profiles based solely on pas-

siveMW information. However, as for the average profiles, the

profile shapes are well captured by the passive MW algorithms

even over land regions, with the bias in the height of the peak

condensed water content less than 1 km.

The error in the surface precipitation is found to be related

to the error in the corresponding profiles. The error in the

mean condensed water content shows a clear positive rela-

tionship with the surface precipitation error. The correlation

coefficients of the profile shapes also show connection with

the surface precipitation error. This indicates that physically

reasonable connections between surface precipitation and its

associated profiles are achieved to some extent in these two

passive MW algorithms. This result also implies that properly

constraining physical parameters of the precipitation profiles

(e.g., storm top height, freezing level, total condensed water

content) would lead to the improvements of the surface pre-

cipitation estimates.

One of the motivations in this study to investigate the pre-

cipitation profiles by the passive MW algorithms originates

from the authors’ previous study (Utsumi et al. 2019), which

demonstrated that the estimation of the subhourly accumula-

tion of the surface precipitation is improved by taking into

account the associated vertical precipitation profile. The real-

istic representation of the profile shapes by the passive MW

algorithms found in this study is encouraging for the applica-

tion of the abovementioned method to the passive MW–based

surface precipitation accumulation, which will contribute to

the improvements in the global precipitation monitoring

products (e.g., Huffman et al. 2018; Joyce and Xie, 2011;

Kubota et al. 2020). Additionally, it will potentially lead to a

better understanding of the three-dimensional structure of the

precipitating weather systems (Utsumi et al. 2014, 2017) and

their evolutions with climate changes (Utsumi et al. 2016).

We focused the analysis only for the observations by GMI in

this study. The EPC has been adapted to work with other

sensors, including ATMS and MHS cross-track scanning sen-

sors in the GPM constellation, using additional information to

account for scan angle dependencies and spatial resolution.

Further investigation of the passive MW-based precipitation

profile analysis for all passive MW sensors in the GPM con-

stellation is currently underway.
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