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ABSTRACT: The spatial and temporal ordering of precipitation occurrence impacts ecosystems, streamflow, and water

availability. For example, both large-scale climate patterns and local landscapes drive weather events, and the typical speeds

and directions of these events moving across a basin dictate the timing of flows at its outlet. We address the predictability of

precipitation occurrence at a given location, based on the knowledge of past precipitation at surrounding locations. We

identify ‘‘dominant directions of precipitation influence’’ across the continental United States based on a gridded daily

dataset. Specifically, we apply information theory–based measures that characterize dominant directions and strengths of

spatial and temporal precipitation dependencies. On a national average, this dominant direction agrees with the prevalent

direction of weather movement from west to east across the country, but regional differences reflect topographic divides,

precipitation gradients, and different climatic drivers of precipitation. Trends in these information relationships and their

correlations with climate indices over the past 70 years also show seasonal and spatial divides. This study expands upon a

framework of information-based predictability to answer questions about spatial connectivity in addition to temporal

persistence. Themethods presented here are generally useful to understandmany aspects of weather and climate variability.
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1. Introduction

The focus of this paper is on the following question:

When looking for rainfall

which way is best:

Should I look north, south, east or west?

Or should I, say,

look multiple ways

to make a much better guess?

In prose, we will explore the predictability of precipitation at

one location, given information about past precipitation at one

or more surrounding locations. At your current location, the

knowledge of ‘‘Did it rain here yesterday?’’ is likely somewhat

predictive of today’s precipitation state due to the temporal

persistence of precipitation (Chin 1977; Gabriel and Neumann

1961; Hay et al. 1991; Roque-Malo and Kumar 2017; Goodwell

and Kumar 2019). However, the knowledge of past states at

neighboring or even distant locations could improve upon this

predictability. The temporal persistence of precipitation at a

single location relates to typical durations of wet or dry pe-

riods, and adding a spatial aspect of persistence relates to how

storms move across a landscape. Climate conditions, topogra-

phy, and regional land–atmosphere feedbacks drive these as-

pects of temporal persistence and spatial synchronicity of

precipitation, which in turn influence soil moisture, flows, and

vegetation. For example, the direction, speed, and size of a

storm event moving across a basin can impact downstream

flows and ecohydrologic processes. Goodwell and Kumar

(2019) explored temporal precipitation persistence and pre-

dictability, addressing the extent to which the knowledge of

past precipitation informs future states, and the associated time

delays. This study extends this work to address the predict-

ability of precipitation given not only past states at the location

of interest, but at neighboring locations as well.

It is important to understand both spatial and temporal

features of precipitation persistence from the perspectives of

climate change, weather variability, and the water cycle. For

example, Kunkel et al. (2012) distinguishes regions of the

continental United States in terms of dominant meteorological

causes of precipitation. Changes in these causes would likely

lead to shifts in storm lengths and movement. In a study of

South American rainfall, Boers et al. (2014) finds connections

between the synchronization of extreme precipitation and

large-scale climate patterns, which constitute linkages be-

tween climate and storm movement. Additionally, precipita-

tion patterns vary based on landscape properties, such as

eco-regions that show different trends in precipitation dura-

tions and frequencies (Roque-Malo and Kumar 2017).

Influences of global climate on regional precipitation have

been studied in the context of climate indices, or patterns of

pressure gradients and sea surface temperatures, that are
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linked to weather patterns in the United States. For example,

different phases of the North Pacific index (NP) are associated

with anticyclonic and cyclonic circulation in the U.S. West and

Southeast, respectively (NOAA 2019c). In the Great Plains in

the central United States, precipitation fluctuations are subject

to both tropical and northern Pacific sea surface temperatures

at different time scales (Ting and Wang 1997). The Pacific

decadal oscillation (PDO) has been found to influence winter

air temperatures and precipitation in North America (NOAA

2019d; Mantua et al. 1997), and multiple Pacific climate indices

have been linked to long-term U.S. droughts during the warm

season (Barlow et al. 2001). Meanwhile, the Atlantic multi-

decadal oscillation (AMO) is associated with summer climate

and Atlantic hurricane patterns (NOAA 2019a), and indices

related to ENSO are linked to severe weather patterns

throughout the United States (Gershunov and Barnett 1998).

In general, changes in phases or amplitudes of different

modes of climate variability under natural and human drivers

can lead to altered precipitation patterns with further impacts

downstream (Hurrell andDeser 2010). For examples, the PDO

has been studied in the context of shifting salmon production

in the Pacific Northwest (Mantua et al. 1997), and a strongly

positive east Pacific–North Pacific (EPNP) index was associ-

ated with extreme 1993 flooding in the U.S. Midwest (NOAA

2019b; Bell and Janowiak 1995). Regardless of associations

with climate or landscape drivers, the movement of storm

events themselves drive downstream hydrological processes.

Rainstorm movement has been studied in terms of its influ-

ence on peak streamflows at an outlet in natural, urban, and

modeled systems (Singh 1997; Lee andHuang 2007; Seo et al.

2012; Volpi et al. 2013; Seo and Schmidt 2013; Kim and Seo

2013; Seo and Schmidt 2014; Gao and Fang 2018). It has been

found that storm timing, size, and duration can be an im-

portant factor in flow response, especially when considered

in the context of the orientation of the drainage network

(Seo et al. 2012). Particularly, it has been found that the

cumulative mean areal precipitation is more informative to

peak discharge than precipitation at a given point, and the

dependency increases with the spatial extent of the rainfall

(Gao and Fang 2018). In urban regions, the design of

drainage networks could be better informed based on not

only typical event sizes, but durations and directions of

moving rainstorms (Seo and Schmidt 2013). These findings

indicate the importance of understanding how climate pat-

terns influence weather, and how persistence and spatial

dependencies impact downstream processes.

Here we study the predictability of precipitation from an

information theory–based perspective, in which predict-

ability is a reduction in uncertainty about precipitation oc-

currence due to the knowledge of past precipitation in one

or more surrounding areas. Specifically, we use several in-

formation theory–based metrics to quantitatively address

questions about precipitation persistence and directionality

within the continental United States. Based on a daily gridded

precipitation dataset, we answer the following questions:

1) From what direction, or combination of directions, is pre-

cipitation best predicted at a given location?

2) How strong is this spatial component of predictability for

different regions?

3) How do aspects of directionality and level of precipitation

predictability vary with season, climate condition, and over

the historic record?

These questions are related to the predictability of precipita-

tion based on the knowledge of both spatial and temporal

variability, and are relevant to weather prediction and water

resources. We hypothesized that this information-based spa-

tial predictability varies seasonally and regionally across the

continental United States, and in certain areas is associated

with climate indices. For example, Goodwell and Kumar (2019)

found that predictability due to the knowledge of lagged, or past,

precipitation states has increased over much of the western

United States, and decreased over much of the east. This study

further addresses the directions linked to this predictability,

along withmultivariate measures and associated climate drivers.

The paper is organized as follows. In section 2, we intro-

duce our information theory–based methodology and ap-

plication to the Climate Prediction Center (CPC) Unified

gridded gauge-based precipitation dataset (Chen et al.

2008). We include an illustrative example of how informa-

tion measures, which quantify predictability as reductions

in uncertainty, vary under different categories of spatial vari-

ability. In section 3, we present results for nationally averaged

and regional dominant directions and strengths associated with

predictability as well as trend analyses of these measures and

correlations with several climate indices. In sections 4 and 5 we

provide a discussion and conclusions.

2. Methods

We consider Xt,c to be a binary variable describing daily

precipitation occurrence at a ‘‘central’’ location c, where

Xt,c 5 1 on day t if precipitation is observed above a specified

threshold, and Xt,c 5 0 otherwise. A given time series has at-

tributes p1 5 p(xt,c 5 1) and p0 5 1 2 p1, denoting the prob-

ability, or relative frequency, of wet or dry days, respectively.

Shannon entropy, H(Xt,c) 5 2Sp(xt,c) log2p(xt,c), where the

summation is over all possible states of xt,c, is a measure of

uncertainty of a random variable (Shannon 1948; Cover and

Thomas 2006) and is measured in units of bits. This formula-

tion of entropy can be interpreted as the average or expected

number of (yes or no) questions that need to be asked to

determine a value of Xt,c. Since it is a binary variable,

H(Xt,c) 5 2p1 log2(p1) 2 p0 log2(p0), and H(Xt,c) is always

less than or equal to 1 (Fig. 1a). Values close to 1 indicate

that precipitation is maximally uncertain, since it is nearly

equally likely to be ‘‘wet’’ or ‘‘dry’’ on a given day. In

contrast, a low value of H(Xt,c) indicates that the precipita-

tion state is nearly always dry (or wet), such that it is less

uncertain (Fig. 1a). This uncertainty of precipitation at a

given location, based on the probability distribution derived

from binary daily occurrence data, provides the amount of

information (in bits) needed for an accurate prediction. This

information, or reduction in uncertainty, could come from

knowledge about historical states of precipitation at that
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location, precipitation at other locations, or other climate-

related features such as wind, humidity, or clouds. We focus on

the information that can be obtained from knowledge of the

past precipitation state at the central location c and neigh-

boring locations. This focus on past precipitation rather than

multivariate drivers enables a relatively simple analysis of a

single gridded dataset. Moreover, we assume that past pre-

cipitation somewhat integrates these other drivers, as it directly

captures the duration and movement of events. Depending on

a storm’s size, shape, speed, and direction of movement, pre-

cipitation states in multiple directions can provide information

that reduces the uncertainty at a central location (Fig. 1b).

a. Dominant directionality of precipitation

The mutual information between the current precipitation

state at location c,Xt,c, and a lagged state at a neighboring grid

cell at location d, Xt21,d is

I(X
t21,d

;X
t,c
)5� p(x

t21,d
, x

t,c
) log

2

2
4 p(x

t21,d
, x

t,c
)

p(x
t21,d

)p(x
t,c
)

3
5

5H(X
t,c
)2H(X

t,c
jX

t21,d
), (1)

where the summation is over all possible states of Xt21,d and

Xt,c. In the context of daily precipitation, this measure is the

reduction in precipitation uncertainty that we obtain from

knowing yesterday’s state at a neighboring location d. In

Eq. (1), the termH(Xt,cjXt21,d) is conditional entropy, which is

the remaining uncertainty in Xt when the variable Xt21,d is

known (Fig. 1c). Hereafter, we refer to this mutual information

between one central ‘‘target’’ and one neighboring ‘‘source’’

variable as MI.

While MI quantifies a lagged relationship between pre-

cipitation at two locations, we may further inquire about the

relevance of this relationship if we also know yesterday’s

precipitation state at the central location c. For example, if we

could have obtained the same or a larger reduction in un-

certainty based on knowing Xt21,c, the information provided

by Xt21,d may be somewhat ‘‘redundant’’ or unnecessary. We

address this with transfer entropy (TE), which is a version of

conditional mutual information defined here for our specific

case as follows:

TE(X
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This TE is a simplification of the initial formulation by

Schreiber (2000), which involves multiple time-lagged histories.

FIG. 1. Illustration of information theory–based methods for spatiotemporal predictability of precipitation. (a) Shannon entropyH(Xt) for

a binary variable is ameasure of uncertainty that varies from 0 to 1 bit as a function of p(Xt)[ p(Xt5 1). (b)We consider a precipitation time

series Xt,c at a central location, where the uncertainty of Xt,c is reduced given knowledge about lagged histories of neighboring areas, e.g.,

Xt21,d. (c) Venn diagram illustrating entropy, mutual information (MI), and transfer entropy (TE). Overlapping blue and green regions

indicate reductions in uncertainty,H(Xt,c), given a lagged state at a neighboring cell. (d) TEandMI are computed for each of eight directions,

and themaximumvalues and the vector resolved values are computed asMImax (orTEmax) andMIvect (orTEvect), respectively, as described in

the text. (e)–(g) Mutual information between the central target cell and two lagged histories in opposite directions, I2,d1d2 (here illustrated as

I2,EW) is partitioned intounique (Ud1,Ud2), redundant (R), and synergistic (S) components. (h)Mutual information between the central target

cell and four surrounding lagged histories, I4, is a higher-dimensional measure of precipitation predictability.
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Versions of TE used in other studies also detect TE for time

lags other than 1 (Ruddell and Kumar 2009; Goodwell and

Kumar 2015; Sendrowski and Passalacqua 2017). However, the

version defined in Eq. (2) captures information about precipi-

tation at a central location that is provided by a neighboring cell,

conditioned on also knowing the lagged state at the central

location. In other words, TE can be interpreted as the infor-

mation that a neighboring location provides beyond that al-

ready provided due to the knowledge of past precipitation at

the location of interest. For example, if rainfall tends to be

synchronous between two neighboring grid cells, rainfall at one

grid cell does not predict future rainfall at the next grid cell

beyond the predictability that exists due to local knowledge.

We compute MI and TE between precipitation at a central

grid cell and its eight nearest neighbors, such that there are

two measures of information transfer associated with each of

the eight directions [north, northeast, east, southeast, south,

southwest, west, and northwest (N, NE, E, SE, S, SW, W, and

NW, respectively)]. To obtain a dominant directionality of

information transfer at a given location, we compare two

methods (Fig. 1d):

1) MImax (TEmax) and uMImax (uTEmax) are the magnitude and

angular direction, respectively, associated with the maxi-

mum of the eight values from all neighboring directions.

2) MIvect (TEvect) and uMIvect (uTEvect) are the magnitude

and direction, respectively, based on vector resolution of

the eight neighboring values [see ‘‘Information Theory

Methods’’ and Eqs. (1)–(4) in the online supplemental

material]. Here, for example, two equal information flows

from opposite directions (e.g., east and west) cancel out,

while information components from similar directions (e.g.,

west and southwest) build up.

We employ both of these methods for MI and TE, resulting

in four estimates of ‘‘dominant direction’’ and ‘‘dominant

predictability’’ for each grid cell. Similarities or differences

between measures indicate particular features of directional

information flow that relate to storm directions, sizes, and

speeds. For example, consider a case where uTEmax and uTEvect
are very different at some location. This indicates that the

single dominant direction based on TEmax is mitigated by

similar information transfer from opposing directions, such

that the dominant influence based on TEvect is associated with a

different direction. Similarly, a large difference between MI-

based and TE-based dominant strengths and directions would

indicate that knowing the lagged history of the central target

location plays a significant role in predictability.

b. Joint predictability from two directions

Next we consider higher-dimensional information theory–

based measures to determine the total amount of uncertainty

that can be reduced when lagged states in multiple directions

are known together, rather than individually. This contrasts

with the previously described methods, which only assume the

knowledge of past precipitation in one neighboring direction

at a time. As a first step that limits analyses to 3D probability

functions, we consider the total mutual information between

the central current state Xt,c and two lagged histories from

neighboring locations, Xt21,d1 and Xt21,d2, where d1 and d2

indicate two of the eight possible neighboring directions

(Figs. 1e,f). We define this bidirectional mutual information as

follows:

I
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)

3
5.

(3)

For this analysis, we choose the pair (d1, d2) to be opposing

cardinal directions, i.e., (d15N, d25 S) or (d15 E, d25W).

This results in two measures for a given central location c of

I2,NS and I2,EW. These indicate a level of precipitation pre-

dictability given knowledge of two lagged states in opposite

directions. In an information decomposition (Williams and

Beer 2010), I2,d1d2 can be partitioned into unique, synergistic,

and redundant components as follows:

I
2,d1d2

5U
d1
1U

d2
1 S1R . (4)

Here,Ud1 andUd2 are information that is shared between each

neighboring state and the central state individually, R is

‘‘overlapping,’’ or redundant, information that the knowledge

of both states provide, and S is ‘‘joint’’ or synergistic infor-

mation that only arises when both neighboring states are

known together (Fig. 1g). Existing information theory

measures can be explained as combinations of these four

components. For example, TE is composed of one unique

component and one synergistic component of information.

In a precipitation predictability context, TE is the infor-

mation that a lagged source provides to a current target

individually and/or synergistically when both the lagged

source and the lagged target are known together (Fig. 1c).

In contrast, MI is composed of the same unique compo-

nent, but contains a redundant component instead of a

synergistic one. In other words, MI is the information that a

source provides to a target individually, and/or in overlap

when the lagged central state is also known. Since infor-

mation theory does not provide a method to compute R, U,

and S directly, we use a measure proposed in Goodwell

and Kumar (2017), which estimates R as a function of

the mutual information between the two sources. The

terms Ud1, Ud2, and S are then solved from existing infor-

mation theoretic equations. In this formulation, indepen-

dent sources [where I(Xt21,d1; Xt21,d2) 5 0] are minimally

redundant, while strongly related sources are maximally

redundant (‘‘Information Theory Methods’’ in the supple-

mental material).

To illustrate this information partitioning into unique,

redundant, and synergistic components, here we present

four synthetic cases in which precipitation at a central cell

Xt,c is a simple function of lagged precipitation from either

the west, east, or both (Fig. 2). For all cases, precipitation

in the westernmost grid cell is a first-order Markov Chain,

with a transition probability (probability of a switch from

wet to dry or dry to wet) of 0.1 (‘‘Example Case’’ in
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the supplemental material). This introduces persistence in

synthetic precipitation, in that dry and wet periods tend to

clump together, but overall the relative frequencies of wet and

dry days are equal (p05 p15 0.5), such that entropyH(Xt,c)5
1 bit. In all these cases, the uncertainty of the central precipi-

tation state is completely reduced given the knowledge of

lagged precipitation in the eastern and western directions.

In caseA, precipitationmoves fromwest to east at a 1-day lag.

In other words, if it rains onMonday toward the west, it rains on

Tuesday and Wednesday in the central and eastern grid cells,

respectively. For this case, we find that most information about

Xt,c is uniquely provided by the knowledge ofXt21,W, and some

information is provided redundantly by both Xt21,W and Xt21,E

due to the persistence in precipitation (Fig. 2a).

In case B, precipitation moves from the west to the central

cell, but precipitation at the grid cell to the east is disconnected.

Here, all information provided aboutXt,c comes uniquely from

the knowledge of Xt21,W, since Xt21,E is not informative. This

could illustrate a region where a topographical divide dictates

storm movement, such that a given grid cell is only influenced

by precipitation in one direction (Fig. 2b).

In case C, precipitation at the central grid cell obeys an exclu-

sive ‘‘or’’ (XOR) rule, where precipitation occurs only if the

neighboring grid cells were in different states the day before. In

this case, precipitation to the east and west are independent of

each other, and provide information to the central cell only syn-

ergistically. For example, if we knew it rained yesterday toward

the west, this does not reduce our uncertainty aboutXt,c unless we

also know yesterday’s precipitation state toward the east (Fig. 2c).

In case D, precipitation in the east and west are correlated,

and precipitation at the central cell follows an ‘‘and’’ rule

where precipitation only occurs if yesterday’s state was wet in

both directions. This would represent a case where precipita-

tion is somewhat synchronized across the region. Here, we see

that all four types of information contribute to the predict-

ability of precipitation, but redundant information dominates

since the source regions are correlated (Fig. 2d).

These examples illustrate how different patterns in precipi-

tation movement relate to information measures, but also

shows how I2,d1d2 and subsequent partitioning reveals a com-

ponent of predictability that is missing from MI and TE. For

example, in case C, TE and MI would detect that precipitation

is completely unpredictable, since the knowledge of a single

neighboring lagged state does not reduce any uncertainty in the

target cell. Case D provides an example in which two neigh-

boring states are nearly equally informative to Xt,c, such that

they would cancel out in a vector resolution and different

dominant directions would be detected for uMIvect and uMImax.

We refer to the online supplemental material (‘‘Example

Case’’ and Tables S1 and S2) for more details on this example.

In general, information partitioning measures of synergy,

uniqueness, and redundancy capture the reduction in precipi-

tation uncertainty that is obtained by ‘‘looking both ways’’

simultaneously.

c. Multivariate predictability

The previously discussed measures consider precipitation

predictability as a function of either one or two neighboring

lagged sources. As such, they all fail to detect any additional

predictability that could be obtained from knowing more than

two sources simultaneously. For this, we introduce a multi-

variate lagged mutual information measure, I4, which is the

total amount of information that several surrounding locations

provide about the current precipitation state. Specifically, I4 is

the information shared between the current state at a central

grid cell and the strongest four individual neighboring lagged

sources, defined as follows (Fig. 1h):

I
4
5 I(X

t21,d1
,X

t21,d2
,X

t21,d3
,X

t21,d4
;X

t,c
), (5)

where d1–d4 represent the four neighboring directions that

individually provide the maximum amount of information

about precipitation at the center grid cell, c, based on TE [Eq.

(2)]. For example, d1 corresponds to uTEmax, and the other

three directions (d2, d3, d4) are the neighboring cells with the

next highest TE values. Theoretically, we could also compute

I8, which would be the total information transfer from all eight

neighboring directions. While this would be a more compre-

hensive measure of precipitation predictability based on the

knowledge of all neighboring states, the dimensionality of the

associated probability distribution becomes high relative to

the size of the data. For example, for a single seasonwith 90 days,

MI involves a 2D binary pdf with 22 5 4 bins. Similarly, TE and

I2 measures involve 3D binary pdfs with 23 5 8 bins, and I4
involves a 5D binary pdf with 25 5 32 bins. A higher-order

measure such as I8 would have a pdf of size 285 256 bins, which

would require many years of daily data to obtain a robust result.

For any given measure, statistical significance is esti-

mated using the shuffled surrogates method (Ruddell and

Kumar 2009), in which source variables (i.e., lagged histo-

ries) are shuffled randomly in time to destroy temporal

correlations. This is done 100 times, to obtain a set of

FIG. 2. Four synthetic cases of precipitation patterns with dif-

ferent implications for predictability, as measured by synergistic S,

unique U, and redundant R information types. As described in the

text, (a),(b) cases A and B illustrate a moving storm from west to

east, while (c),(d) cases C and D are cases in which precipitation at

a central cell is a function of lagged precipitation in two directions.

Pie charts indicate the proportions of shared information, I2,d1d2,

attributed to S, U, and R components.
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shuffled information values, and the detected measure is

tested for significance at a 99% confidence level. Table 1

provides a summary list of measures with descriptions of

their different characteristics.

d. Precipitation dataset

We apply our information theory–based measures to the

CPC Unified gauge-based analysis of daily precipitation over

the contiguous United States (CONUS). This dataset is a

gridded, gauge-based product available at a 0.258 resolution
from 1948 to 2018 (Chen et al. 2008; Xie et al. 2007). We

convert the data into binary form, using a magnitude ranging

from 0.3 to 3mm as the threshold between wet (Xt,c 5 1) and

dry (Xt,c5 0) states. This threshold value is chosen at each grid

cell individually based on that which maximizes the value of

I(Pt,c;Pt21,c). This corresponds to the ‘‘maximally informative’’

quantization, in that it is the threshold associated with the

highest predictability based on the knowledge of yesterday’s

state. While this threshold varies across grid cells (‘‘Thresholds’’

and Fig. S1 in the supplemental material), we note that it has

previously been found from this dataset that information

measures vary little whether a 0.3mm, a 1mm, or a 10th per-

centile threshold is used at a given location (Goodwell and

Kumar 2019). In other words, small differences between

thresholds for wet and dry states do not have a large influence

on results. It has generally been found for gridded datasets that

interpolation increases the number of small events and de-

creases the number of large events (Ensor and Robeson 2008).

In this way, we expect our threshold values to omit some of

these spurious small events. We also expect that interpolation

from gauge data to the gridded dataset causes some redun-

dancies in sparsely monitored regions (Carvalho 2020), in that

precipitation may appear more synchronized over large land

areas without gauges. However, as later results show, redun-

dancies between grid cells do not appear to dominate regional

characteristics, and we assume that spatial dependencies largely

reflect the actual timing of daily precipitation occurrences and

synchronization. Finally, the data are segmented into seasonal

windows (DJF, MAM, JJA, SON) to capture differences be-

tween spatiotemporal measures of predictability.

e. Temporal trends and correlations with climate indices

Information measures (Table 1) are first computed season-

ally for the entire 1948–2018 period to capture general regional

behaviors. Trends are computed based on the same measures

computed on individual seasonal time windows. We detect

trends in each measure at a 95% confidence level using least

squares linear regression, and detected similar results for the

nonparametric Sen slope method (Sen 1968; Fernandes and

Leblanc 2005). A trend inMI, TE, I2, or I4 indicates a change in

the level of predictability given knowledge of past precipitation,

and a trend in u indicates a shift in dominant direction. Angular

trends were detected with circular correlation statistics (Berens

2009).As an illustration, a 18 yr21 positive trend is equivalent to a

708 shift clockwise over 70 years. For a grid cell where infor-

mation flow as measured by TEvect was predominately from the

west, this would indicate a shift clockwise toward the north.

Finally, a trend in S, U, or R would indicate a trend in informa-

tion type, which is related to both the synchronicity and direction

of precipitation across the region. In addition to trends over the

past 70 years, we detect correlations between information mea-

sures and seasonally averaged climate indices to reveal clima-

tological influences on precipitation persistence and direction.

We initially choose 10 indices (‘‘Climate Indices’’ in the sup-

plemental material), and focus on four that are particularly

correlated to information measures in certain regions during

either winter or summer. Monthly values for each climate index

are averaged to seasonal measures to match the time scale of the

information-based measures of precipitation predictability.

3. Results: Directional precipitation predictability

Any given information measure (listed in Table 1) can be

normalized by precipitation entropy, H(Xt,c) to obtain a frac-

tion of uncertainty reduced. For example, a case where MI 5
H(Xt,c) indicates that knowledge of a neighboring lagged state

TABLE 1. Summary of information theory–based measures.

Measure(s) Description Equation

MImax, TEmax Maximum mutual information or transfer entropy between current precipitation state at location c and

lagged precipitation in a neighboring direction (unit of bits)

(1), (2)

uMImax, uTEmax Dominant neighboring direction associated with MImax or TEmax (units of degrees)

MIvect, TEvect Weighted average of mutual information or transfer entropy between current precipitation state at location

c and lagged precipitation in neighboring directions (unit of bits)

(1), (2)

uMIvect, uTEvect Average direction associated with MIvect or TEvect, based on vector resolution of eight values of mutual

information (units of degrees)

I2,E,W, I2,N,S Information provided to current precipitation at location c from two opposite directions (units of bits) (3)

UN, US, UE, UW Unique information transfers from neighboring directions to current precipitation at location c, based on

information decompositions of I2,E,W and I2,N,S (fractions of I2, units of bits per bit)

(3)

SEW, SNS Synergistic information transfers from neighboring directions to current precipitation at location c, based on

information decompositions of I2,E,W and I2,N,S (fractions of I2, units of bits per bit)

(3)

REW, RNS Redundant information transfers from neighboring directions to current precipitation at location c, based

on information decompositions of I2,E,W and I2,N,S (fractions of I2, units of bits per bit)

(3)

I4 Multivariate mutual information provided to current precipitation at location c from strongest four of the

eight individual lagged information sources, determined from TE values (units of bits)

(5)
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fully reduces precipitation uncertainty. Since the proposed

measures represent different levels of analysis in that they

involve different numbers of lagged neighboring grid cells, we

first compare their relative magnitudes as percent reductions

in uncertainty. On average for all seasons and grid cells,

TEvect is the lowest, at a 0%–5% reduction in uncertainty of

precipitation at a central grid cell (Fig. 3). Meanwhile, MIvect
is slightly larger with uncertainty reductions up to about 10%.

This indicates that conditioning mutual information on the

lagged history at the central cell decreases the amount of un-

certainty reduced. As expected, the knowledge of the lagged

state at a neighboring cell provides some redundant informa-

tion with the knowledge of the lagged central state due to

synchronization of wet and dry days across regions. This fea-

ture could also relate to the interpolation of gauges to gridded

data, which could cause neighboring cells to be similar. If in-

stead the knowledge of the neighboring cell provided mostly

additional information beyond that already provided by the

history of the central cell itself, uniquely or synergistically, then

TE would be larger than MI. However, this only occurs for a

few cases with no particular spatial or seasonal patterns.

Meanwhile, the higher-order measure of I2,EW, the joint

mutual information provided by the knowledge of lagged

neighbors to the east and west, is much higher and more var-

iable than MI or TE, on average reducing about 11% of pre-

cipitation uncertainty (Fig. 3). This is expected because I2,d1d2
does not condition on the lagged central state, but quantifies

the total uncertainty reduced given two neighbors. I2,NS shows

very similar behavior (not shown). Finally, I4, as the highest-

dimensional information measure, reduces an average of 12%

of uncertainty, and over 20% for some grid cells. This means

that the knowledge of past precipitation states at several sur-

rounding locations provides significantly more predictability

than only knowing one neighboring state. However, we see

that I4 is only slightly larger than I2, indicating that knowledge

of additional neighboring states provides ‘‘diminishing returns’’

in information gain.

Next we discuss these measures in terms of directionality

and seasonal differences across theUnited States.We first note

that directional distributions of MImax and MIvect measures

differ because uMImax can only take on one of the eight

neighboring directions, so that its distribution is discrete,

while uMIvect can take any angular direction, since it is the

angle associated with the vector resolution of all eight

neighboring MI values (‘‘Information Theory Methods’’ in

the supplemental material). On a national average, infor-

mation flows as measured by laggedMI tend to originate from

the west (Figs. 4a–d), which reflects the dominant wind pat-

terns across the United States due to the jet stream. In some

cases, we see that information from opposite directions ap-

pears to cancel out in the uMIvect calculation. This occurs for

example in the summer, where uMImax is predominantly from

the west, but the dominant uMIvect is from the southwest

(Fig. 4c). This occurs because MI is relatively large in multi-

ple directions, such that east and west cancel out. These re-

sults indicate that on a national average, the knowledge of

yesterday’s precipitation state toward the west or southwest

best predicts the current state.

Transfer entropies, TE, tend to be smaller in magnitude as

discussed previously, and tend more toward the south relative

to the west. This difference between MIvect and TEvect is

prevalent in all seasons except summer (Figs. 4c,g) when the

directions are very similar.We also observe weaker TE andMI

in summer relative to other seasons, indicating lower predict-

ability of precipitation in general given past states. Differences

betweenMImax and TEmax are even more apparent (black lines

in Fig. 4). Mainly, we see much higher frequencies of TEmax in

the noncardinal directions compared to MImax, particularly

from NW and SW. This is likely due to the conditioning of the

mutual information on lagged precipitation at the central grid

cell,Xt21,c, for TE. Since the centers of the grid cells in N, S, E,

and W directions are closer to the center grid cell, the infor-

mation that they provide appears to be more redundant with

the information provided by the history of the center cell itself.

This could also relate to interpolation in the gridded dataset, in

that neighboring cells are similar. A factor accounting for the

distances between neighboring grid cell centers would be ex-

pected to even out this redundancy. In general, the tendency

for dominant TE to come from the south rather than the west

indicates that when lagged precipitation at the central location

is known, it is more useful to additionally know the lagged state

toward the south than the west. In contrast, a simpler analysis

of MI between a lagged neighbor and a central location

detects a stronger dependency from the west. This indicates

that while storms generally move from west to east, they are

somewhat angled northward or southward, such that looking in

those directions enhances predictability. In other words, a

storm may be largely moving westward so that correlations are

high between east to west neighbors, but the shape and angle of

the storm are such that north to south neighbors provide more

‘‘extra’’ information. This illustrates the different conclusions

that could be drawn from analyses with different dimensions

and conditioning.

While the nationally averaged distributions of MI and

TE strengths and directions show broad seasonal trends, the

same distribution of measures for regional HUC2 watersheds

FIG. 3. Distribution of measures MIvect, TEvect, I2,EW, and I4 for

all grid cells and seasons, which represent different levels of anal-

ysis of precipitation predictability. Measures are normalized by

precipitation entropy H(Xt,c), such that they indicate fractions of

reduced uncertainty.
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(Seaber et al. 1987) shows features of different regions of

CONUS (Fig. 5). Differences in these directions should relate

to topographic divides and landscape properties, and different

seasonal drivers of precipitation. We group these basins into

five regions with common features as described below.

d Northeast (Mid-Atlantic, New England, Ohio, Great Lakes,

Upper Mississippi): In summer (red in Fig. 5), TE is

dominantly from the southwest and MI from the west,

following national averages. The majority of extreme

precipitation events occur in summer in this region, and

most of these are attributable to frontal systems (Kunkel

et al. 2012). In winter (blue in Fig. 5), uTEvect has a broader

distribution, or more variability in dominant direction.

This could indicate winter influence of both continental

and ocean dynamics, relative to summer influences mainly

from the west.

d Southeast: (SouthAtlantic–Gulf, LowerMississippi, Tennessee,

Arkansas–White–Red, Texas–Gulf): In winter, TE is detected

from the south, angled toward theGulf Coast. Distributions

are slightly more narrow in winter relative to summer, in-

dicating more of a dominant directionality in winter storms.

During winter in Texas, wet periods are often associated

with southeasterlies that bring moist air from the Gulf

of Mexico (Lyons 1990). In summer, TE is dominantly

from north or west, with very broad distributions in some

regions, reflecting the large variety of precipitation causes

in this season (Kunkel et al. 2012).
d Southwest (California, Lower Colorado, Rio Grande): Here,

TE is dominantly from south or southwest in winter. This

reflects precipitation events due to atmospheric rivers that

convey moisture from the Pacific Ocean during this season

(Gershunov et al. 2017). In the summer when conditions are

relatively drier in most areas, the distributions are broader

and mainly from the north.
d Northwest (Pacific Northwest, Upper Colorado, Great

Basin): TE is mainly from south in winter, similar to the

Southwest basins, but is derived from the east in summer.

This is opposite of the summertime uTEvect in the eastern

part of the country, indicating the prevalence of weather

that originates from the mountainous regions in the coun-

try. In these basins and to some extent in the Southwest,

the patterns in TE reflect the reversal from westerly winds

in the winter to more easterly winds in the summer

(Dominguez et al. 2008).
d North-central (Missouri, Souris–Red–Rainy): Here, distri-

butions are relatively uniform between summer and winter,

indicating the least influence from ocean patterns. Very few

of the most extreme storms occur in the winter in this region

relative to other seasons (Kunkel et al. 2012), but this anal-

ysis shows that the origins of precipitation are likely similar

throughout the year.

FIG. 4. Seasonal polar histograms of (a)–(d) MI and(e)–(h) TE on a national average, for 13 626 grid cells. The black lines indicate the

directions uMImax and uTEmax that take on one of the eight surrounding directions, while the filled areas indicate frequencies for dominant

directions and strengths ofMIvect and TEvect. Colors correspond to the strengths (bits) of information contents. For example, in the winter

[DJF, shown in (e)], the most common dominant direction of TE is from the southwest and northwest. However, when information from

all directions is resolved into a single vector, the dominant direction is from the south.
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a. Uniqueness and redundancy dominant over synergy

Next, we consider I2,EW, the information provided to a

central grid cell due to the knowledge of 1-day lagged states in

both east and west directions. When this measure is further

partitioned into unique, redundant, and synergistic information

types (‘‘Information Theory Methods’’ in the supplemental

material), the main result is a balance between redundancy R

and uniquenessU (Figs. 6a–d), while synergistic information S is

much lower (Figs. 6e,f). The term I2,NS, the joint information

from north and south directions, was similar to this (not shown).

While highR indicates synchronization between precipitation in

east and west directions, high U indicates that the information

contributing to predictability tends to come from one direction

or the other, but not both.

Redundancy is the strongest information component for

most regions in both summer and winter, indicating a large

degree of synchronization in precipitation from the eastern and

western directions. This matches with the finding of high MI

but lower TE in the west-to-east direction, associated with the

dominant direction of storm movement in the country. This

may be expected given the temporal resolution considered

here, as it is likely to be simultaneously wet or dry over regions

that cover multiple grid cells within a given day. A precipita-

tion dataset at a higher time resolution, or over a very large

spatial grid, may exhibit less redundancy, in that subdaily

rainfall would better resolve the movement of storms and a

larger grid size would make it less likely that neighboring cells

are synchronized. Uniqueness, as the combination of UE and

UW, is the next strongest information component, and in some

grid cells UE 1 UW makes up more than half of the total value

of I2,EW. For example, we detect high uniqueness in Florida

and Southern California in the summer (Fig. 6c), associated

with prevalent weather influences from theAtlantic and Pacific

Oceans, respectively. Unique information is also high in the

Rocky Mountains region in the winter, indicating an oro-

graphic effect where precipitation moves in one direction and

then dissipates (Fig. 6d). These regions of high uniqueness

correspond to regions of low redundancy for the same season

(Figs. 6a,b). Over the country, we note that R is generally

higher in the winter relative to the summer. This indicates a

larger degree of spatial uniformity of precipitation during the

winter, in that precipitation is more synchronized across grid

cells. This finding matches with a larger spatial scale of

frontal systems in the winter (Kunkel et al. 2012) relative to

the summer.

Synergistic information S is always less than 10% of I2,EW,

indicating that the joint knowledge of lagged precipitation

states in east and west directions does not provide a large

amount of ‘‘extra’’ information about the current central pre-

cipitation state, Xt,c, beyond their individual and overlapping

contributions. However, we do see spatial patterns in S, which

is particularly high in California and the Southwest in the

summer (Fig. 6e), and in the Sierra Nevada and Cascades

ranges in the winter (Fig. 6f). In these regions and seasons, it is

relevant to ‘‘look both ways’’ simultaneously when making a

prediction about the current precipitation state. To illustrate

this, S 5 0.05 would indicate that considering lagged states in

both east and west directions provides an extra 5% of pre-

dictability relative to only knowing the lagged state in either

direction individually. These regions of relatively high syner-

gistic information could mark topographic or climatic bound-

aries where weather may arrive from either of the two

opposing directions independently. Particularly, high rates of

precipitation recycling have been detected in these moun-

tainous regions, which is associated with the North American

monsoon during the summer (Dominguez et al. 2008). Here,

high S could reflect joint drivers of precipitation, which occurs

due to both incoming moisture and recycled moisture from the

regional landscape.

b. Temporal trends vary from east to west

Next we consider trends in information measures over

the 70-yr study period. We particularly focus on multivari-

ate information from the four most individually informative

FIG. 5. Spatial variability of directions uTEvect (solid colors) and uMIvect (transparent colors in background) during the

summer (JJA, red) and winter (DJF, blue). Each polar histogram represents the dominant direction of 1-day lagged

precipitation dependencies for a HUC2 watershed. Circle sizes are approximately scaled to the relative basin sizes.
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neighbors, I4. For most seasons, more trends were detected for

I4 than for other information measures such as TE or MI, but

spatial and seasonal patterns were similar. S, U, and R infor-

mation types showed very few statistically significant trends.

While the average magnitudes of increasing and decreasing I4
trends appear small, about 0.0014 bits per year (Table 2), over

the 70-yr study period this amounts to percent changes that

range from 26% to 27.7% increases and from 21.9% to 25.4%

decreases. In other words, the predictability of precipitation

given the knowledge of four lagged neighbors has increased or

decreased by about 25% for some grid cells. There are also

differences in the numbers of grid cells exhibiting statistically

significant trends in each season. For winter, spring, and fall, a

similar fraction of grid cells show a trend. In summer, 0.26, or

about 3500 out of 13 626 grid cells, show a decreasing trend

while only 0.05, or 680 grid cells, have increasing trends

(Table 2).

Next, we link these national average trends to regional be-

haviors across seasons. Overall, I4 tends to be decreasing in the

eastern United States, and increasing in the Northwest (Fig. 7).

This corresponds to the finding of increased precipitation

predictability in general in the Northwest (Goodwell and

Kumar 2019), in that the knowledge of lagged precipita-

tion states at a given location provides increasing amounts

of information regarding the current state. Here, we find

that this trend of increasing predictability also exists when a

spatial component of precipitation occurrence is considered.

Meanwhile, east of the Continental Divide, I4 is decreasing in

strength. This indicates that in this region, precipitation is

becoming less predictable given knowledge of lagged neigh-

boring states. In the winter, decreasing I4 is particularly

clustered along the Texas–Gulf Coast (Fig. 7a). When paired

with the dominant uTEvect from the southeast in this region

during the winter (Fig. 5), this indicates a weakening influ-

ence, or lower persistence, of precipitation states over the

Gulf of Mexico. In summer, very few increasing trends were

detected, and the region of decreasing I4 covers most of the

east coast.

FIG. 6. Proportions of (a),(b) redundant, (c),(d) unique, and (e),(f) synergistic information between east and west

directions for summer (JJA) andwinter (DJF) across theUnited States. Values of SEW,UE1UW, andREW sum to 1

for a given location and season, such that each value represents a fraction of total information I2,EW from Eq. (4).

Unique information combines individual information components from the east and west. Outline borders show

level 3 eco-regions (McMahon et al. 2001), several of which are labeled, and shading in the western United States

highlights mountainous regions (darker shading indicates higher elevation).

TABLE 2. Positive (1) and negative (2) trends in I4. Fractions

are computed as the number of grid cells showing a trend, divided

by the total number of grid cells (13 626). The percent (%) indi-

cates the percent increase or decrease in I4 over the 70-yr window

associated with a given trend in bits per year.

I4 trends DJF MAM JJA SON

Fraction 1 0.14 0.15 0.05 0.13

Avg 1 trend (bits) 0.0014 0.0014 0.0013 0.0015

Avg 1 trend (%) 27.7 27.6 26.0 26.0

Fraction 2 0.14 0.17 0.26 0.15

Avg 2 trend (bits) 20.0013 20.0013 20.0014 20.0014

Avg 2 trend (%) 225.4 222.9 222.5 221.9
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In terms of the direction associated with TEvect, uTEvect, we

see that more grid cells show a positive, or clockwise trend,

relative to a negative trend (Fig. 7e). This pattern is similar for

all seasons (not shown). To some extent, clockwise trends in

u are most clustered the eastern United States where measures

of spatial predictability (I4, MI, and TE) are decreasing. In the

western United States where spatial predictability is increas-

ing, there are more grid cells that show counterclockwise

(negative) trends in direction. From this and the prior analysis

for dominant directions, we can broadly interpret that in the

western United States, information about precipitation is

generally strongest from the east in the summer (Fig. 5), and

has increased in strength of predictability and shifted from the

east toward the north over the 70-yr study period. In contrast,

in the eastern United States the dominant direction of sum-

mertime predictability is from the west, and the strength of this

predictability has decreased and shifted clockwise toward the

north over the study period.

c. Correlations between information measures and

climate indices

Aside from linear trends over the past 70 years, correla-

tions between seasonally averaged climate indices and our in-

formation theory–based measures reveal potentially more

complex aspects of spatial and temporal precipitation pre-

dictability. Climate teleconnections can influence storm tracks

and precipitation magnitudes, and can also feedback with the

land surface to cause further events or droughts (Trenberth

and Guillemot 1995). Here we look at correlations between

multivariate information, I4, and several climate indices. In

general for the set of 10 climate indices tested for correlations

(‘‘Climate Indices’’ in the supplemental material), we find

fewer statistically significant correlations relative to linear

trends, but several climate indices do exhibit patterns of cor-

relations for certain seasons.

The PDO tends to be positively correlated with I4, particu-

larly in the western United States in winter (Fig. 8a). There are

pockets of positive PDO correlations in other regions in the

summer, such as in Missouri, northern Michigan, and the

Pacific Northwest. Meanwhile, the AMO is mainly negatively

correlated with I4, and more correlations are spread over the

country. These negative correlations are particularly clustered

in the eastern United States during the summer. The PDO

and the AMO have been linked to climate variability in the

Americas on decadal to multidecadal time scales (Carvalho

2020). Particularly, a negative correlation has been detected

between maximum streamflows and the PDO in winter in the

western United States, and some negative correlations be-

tween streamflows and theAMOhave been detected during all

seasons in the eastern United States (Dickinson et al. 2019).

While we focus on nonextreme precipitation events that do not

necessarily lead to flood events, these relationships between

climate indices and flows are driven by the spatial movement of

precipitation events such as those studied here. The wide-

spread correlations between I4 and the AMO detected here

also reflect previous findings that the Atlantic Warm Pool

(AWP) impacts precipitation in much of the central and east-

ern United States (Liu et al. 2015).

We also observe regional correlations that differ between

seasons, for example positive correlations between I4 and the

EPNP in the Southeast in summer, and between I4 and the

NAO in winter (Fig. 8c). Specifically, the EPNP is positively

correlated with I4 in a band from North Carolina to Alabama,

while the NAO is positively correlated with the same metric

slightly farther south, in northern Florida. These correlations

dominate during opposite parts of the year, indicating different

drivers of precipitation movement during different seasons.

The NAO has been associated with high precipitation in

the Southeast (Stenseth et al. 2003), and streamflow variability

has been tied to Atlantic Ocean sea surface temperatures

(Sadeghi et al. 2019). In parts of this region, durations of dry

periods have also been found to be increasing (Brown et al.

2020; Sadeghi et al. 2019). Particularly in northern Florida,

the NAO is positively correlated with maximum streamflows

FIG. 7. Trends in information measure I4 over 1950–2018 study period for (a) winter (DJF), (b) spring (MAM), (c) fall (SON), and

(d) summer (JJA) time windows, and (e) uTEvect for summer. White regions indicate no statistically significant trend. An increase in I4
indicates an increase in predictability given lagged neighboring histories, while a positive angular trend in uTEvect indicates a trend in the

clockwise direction, e.g., from west toward northwest or from east toward southeast.
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(Dickinson et al. 2019). The positive correlation between in-

formation measures and the NAO in this study indicates that

the index is also associated with predictability based on the

knowledge of neighboring regions. This also matches with the

known maximum influence of the NAO on climate variability

in the winter (Hurrell and Deser 2010).

Finally, we note that opposite correlations are detected be-

tween I4 and the NAO and AMO, both of which are related to

Atlantic Ocean temperatures. This reflects a potential differ-

ence in time scales of influences. For example Liu et al. (2015)

found that warming Atlantic temperatures have opposite ef-

fects on U.S. precipitation on interannual and multidecadal

time scales. Specifically, warming Atlantic temperatures on

multidecadal time scales results in less precipitation, which in

this study correlates to lower predictability, or a negative

correlation between I4 and the AMO. Atlantic warming on

interannual time scales is linked to more precipitation, and

here correlates to higher predictability, or a positive correla-

tion between I4 and the NAO. Meanwhile, there are fewer

known linkages to precipitation and Pacific indices such as the

EPNP, although a high EPNP has previously been associated

with severe flooding in the Midwest (Bell and Janowiak 1995).

This is an example of a climate teleconnection, or large-scale

atmospheric dynamic (Leathers et al. 1991), that can influence

weather patterns in distant locations.

4. Discussion

The spatial and temporal persistence of precipitation oc-

currence characterized here could have implications for hy-

drologic behaviors, such as the timing of flows due to a moving

storm event, or extreme events that lead to flooding or

droughts. Here we discuss several findings in the context of

potential downstream implications, predictability, and climate

connectivity.

Dominant directions of precipitation predictability vary from

east to west in the United States, and uncertainty reduced from

knowing lagged precipitation at neighboring locations is par-

tially redundant with the knowledge of the local state. This also

relates to the partitioning of information measures, which

shows that unique and redundant information types dominate

over synergistic information. While some of this redundancy

likely results from the nature of the spatially interpolated

gridded dataset, it still reflects the persistence of precipitation

in both time and space. The characteristic directions of domi-

nant information influences vary by region, and the influence of

oceanic currents that cause weather events is apparent in the

coastal regions. For example, precipitation predictability in

California is typically derived from the knowledge of the lag-

ged precipitation state toward the west, indicating the preva-

lence of events coming from the Pacific Ocean. On a national

average, patterns in spatial predictability follow the prevailing

wind pattern in the United States from west to east.

Precipitation predictability has increased in the western

United States and decreased in the eastern United States, with

corresponding shifts in the dominant direction of influence.

Trends in spatial information transfers match with the previous

finding of increased or decreased persistence in similar areas of

the country (Goodwell and Kumar 2019). For example, in the

Pacific Northwest, Goodwell and Kumar (2019) found that

precipitation at a given location has become more predictable

given the knowledge of its own time-lagged history. In con-

trast, in the eastern part of the country, precipitation has

become less predictable, given both knowledge of lagged

states at a single location and lagged neighboring states.

This indicates that not only is precipitation occurring more

FIG. 8. Correlations between information measures and climate

indices. Correlations between I4 and the PDO and AMO for

(a) winter (DJF) and (b) summer (JJA). Red colors indicate

positive correlations between I4 and PDO, while green colors

indicate negative correlations between I4 and AMO. There

were very few statistically significant negative correlations for

PDO, or positive ones with the AMO. (c) Correlations between

I4 and the EPNP and I4 and the NAO for different seasons in the

U.S. Southeast.
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sporadically, but that storms are not coherent enough spa-

tially that precipitation would become more predictable

given knowledge of neighboring states.

Several climate indices are correlated to our measure of

multivariate precipitation predictability for different regions

and seasons. Climate indices represent large-scale processes

of the Earth system, and have been found to link to global

temperatures and patterns of carbon fluxes (Zhu et al. 2017).

Climate indices have also been found to influence cycles of

extreme events. For example, ENSO modulates the annual

tornado cycle (Allen et al. 2018), climate cycles relate to ex-

treme precipitation over Texas (Bhatia et al. 2019), and the

NAO has been found to be a dominant driver of events in the

North Atlantic region (Stenseth et al. 2003). Some ecological

studies have found that large-scale climate indices are better

predictors of populations and ecosystem health than local in-

dices because they combine multiple stressors rather than a

single metric (Hallet et al. 2004). However, there are various

challenges in relating local precipitation patterns to climate

indices. First, climate indices simplify very large scale behav-

iors that may or may not be relevant at local scales (Stenseth

et al. 2003). On top of this, nonstationarity and nonlinear re-

lationshipsmay result in a climate index only explaining a small

part of local climate variability, in the form of relatively weak

correlations (Stenseth et al. 2003). This nonstationarity may

also exist within a climate index itself. For example, a shift in

the PDO has been detected since the late 1980s which may

change any interpretation of its relationship to regional climate

variability (Litzow et al. 2020). Finally, it has been found that

some climate indices are more strongly correlated to local

environmental features on a lagged time scale, where a climate

index may predict fluxes one or two seasons in advance (Zhu

et al. 2017). These challenges are apparent in this study in

that most climate indices were not found to correlate with

information-based precipitation measures. A lagged correla-

tion analysis or a more targeted focus on particular climate

features may reveal more dependencies, or it could be that

climate indices correlate better in general with other precipi-

tation properties, such as durations or magnitudes, rather than

persistence and spatial directions of predictability. However,

several regional clusters of correlations and seasonal patterns

indicate that there are relevant connections between storm

movement and precipitation predictability and large-scale cli-

mate features. Some of these, such as the correlation between

the EPNP and I4 measure in the Southeast, potentially indicate

very long range connections. Others, such as the widespread

correlation of I4 with the AMO, indicate common drivers of

precipitation variability over large regions of the United States

(Kim et al. 2020).

5. Conclusions

Although we focus only on predictability based on the

knowledge of past precipitation occurrences, the results pre-

sented here could further link to changes in the water balance

and ecosystem properties for various locations. For example,

the regional clustering of flood events (Dickinson et al. 2019)

and storm tracks and intensities (Hurrell and Deser 2010) both

relate to spatial and temporal patterns in precipitation, and

have been found to relate to climate indices. To further un-

derstand implications of shifts in precipitation predictabil-

ity, a more focused analysis of individual regions could

involve basin characteristics such as the stream network

structure, soil types, evapotranspiration, and human man-

agement. In determining how spatial persistence is related

to flow rates in a given stream, aspects such as evapotrans-

piration, water uses, and groundwater may be confounding

factors. For example, it has been found that up to 40% of

evaporation dynamics can be explained by climate indices

(Martens et al. 2018). In this way, large-scale climate forcing

and local conditions may exert different controls on differ-

ent aspects of the water balance. From a climate perspec-

tive, there may be more correlations between precipitation

and climate indices detected if climate indices were lagged

in time, or if precipitation magnitudes were considered

more explicitly.

The presence of trends over time and correlations of in-

formation measures with climate indices indicates that the

movement of precipitation in space, regardless of event size,

has changed in certain regions. In general, this type of study can

be useful to both understand patterns in precipitation across

large regions, or more regional linkages between precipitation,

streamflow, and watershed characteristics. In a broader con-

text, information-based methods such as those applied here

can be used to study persistence, predictability, and causal in-

teractions for a variety of Earth system processes.
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