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ABSTRACT: The spatial and temporal ordering of precipitation occurrence impacts ecosystems, streamflow, and water
availability. For example, both large-scale climate patterns and local landscapes drive weather events, and the typical speeds
and directions of these events moving across a basin dictate the timing of flows at its outlet. We address the predictability of
precipitation occurrence at a given location, based on the knowledge of past precipitation at surrounding locations. We
identity “‘dominant directions of precipitation influence” across the continental United States based on a gridded daily
dataset. Specifically, we apply information theory—based measures that characterize dominant directions and strengths of
spatial and temporal precipitation dependencies. On a national average, this dominant direction agrees with the prevalent
direction of weather movement from west to east across the country, but regional differences reflect topographic divides,
precipitation gradients, and different climatic drivers of precipitation. Trends in these information relationships and their
correlations with climate indices over the past 70 years also show seasonal and spatial divides. This study expands upon a
framework of information-based predictability to answer questions about spatial connectivity in addition to temporal
persistence. The methods presented here are generally useful to understand many aspects of weather and climate variability.
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1. Introduction storms move across a landscape. Climate conditions, topogra-
phy, and regional land—atmosphere feedbacks drive these as-
pects of temporal persistence and spatial synchronicity of
precipitation, which in turn influence soil moisture, flows, and
vegetation. For example, the direction, speed, and size of a

storm event moving across a basin can impact downstream

The focus of this paper is on the following question:

When looking for rainfall
which way is best:
Should I look north, south, east or west?

Or should I, say,
look multiple ways
to make a much better guess?

In prose, we will explore the predictability of precipitation at
one location, given information about past precipitation at one
or more surrounding locations. At your current location, the
knowledge of ““Did it rain here yesterday?”’ is likely somewhat
predictive of today’s precipitation state due to the temporal
persistence of precipitation (Chin 1977; Gabriel and Neumann
1961; Hay et al. 1991; Roque-Malo and Kumar 2017; Goodwell
and Kumar 2019). However, the knowledge of past states at
neighboring or even distant locations could improve upon this
predictability. The temporal persistence of precipitation at a
single location relates to typical durations of wet or dry pe-
riods, and adding a spatial aspect of persistence relates to how
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flows and ecohydrologic processes. Goodwell and Kumar
(2019) explored temporal precipitation persistence and pre-
dictability, addressing the extent to which the knowledge of
past precipitation informs future states, and the associated time
delays. This study extends this work to address the predict-
ability of precipitation given not only past states at the location
of interest, but at neighboring locations as well.

It is important to understand both spatial and temporal
features of precipitation persistence from the perspectives of
climate change, weather variability, and the water cycle. For
example, Kunkel et al. (2012) distinguishes regions of the
continental United States in terms of dominant meteorological
causes of precipitation. Changes in these causes would likely
lead to shifts in storm lengths and movement. In a study of
South American rainfall, Boers et al. (2014) finds connections
between the synchronization of extreme precipitation and
large-scale climate patterns, which constitute linkages be-
tween climate and storm movement. Additionally, precipita-
tion patterns vary based on landscape properties, such as
eco-regions that show different trends in precipitation dura-
tions and frequencies (Roque-Malo and Kumar 2017).

Influences of global climate on regional precipitation have
been studied in the context of climate indices, or patterns of
pressure gradients and sea surface temperatures, that are
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linked to weather patterns in the United States. For example,
different phases of the North Pacific index (NP) are associated
with anticyclonic and cyclonic circulation in the U.S. West and
Southeast, respectively (NOAA 2019c¢). In the Great Plains in
the central United States, precipitation fluctuations are subject
to both tropical and northern Pacific sea surface temperatures
at different time scales (Ting and Wang 1997). The Pacific
decadal oscillation (PDO) has been found to influence winter
air temperatures and precipitation in North America (NOAA
2019d; Mantua et al. 1997), and multiple Pacific climate indices
have been linked to long-term U.S. droughts during the warm
season (Barlow et al. 2001). Meanwhile, the Atlantic multi-
decadal oscillation (AMO) is associated with summer climate
and Atlantic hurricane patterns (NOAA 2019a), and indices
related to ENSO are linked to severe weather patterns
throughout the United States (Gershunov and Barnett 1998).

In general, changes in phases or amplitudes of different
modes of climate variability under natural and human drivers
can lead to altered precipitation patterns with further impacts
downstream (Hurrell and Deser 2010). For examples, the PDO
has been studied in the context of shifting salmon production
in the Pacific Northwest (Mantua et al. 1997), and a strongly
positive east Pacific-North Pacific (EPNP) index was associ-
ated with extreme 1993 flooding in the U.S. Midwest (NOAA
2019b; Bell and Janowiak 1995). Regardless of associations
with climate or landscape drivers, the movement of storm
events themselves drive downstream hydrological processes.
Rainstorm movement has been studied in terms of its influ-
ence on peak streamflows at an outlet in natural, urban, and
modeled systems (Singh 1997; Lee and Huang 2007; Seo et al.
2012; Volpi et al. 2013; Seo and Schmidt 2013; Kim and Seo
2013; Seo and Schmidt 2014; Gao and Fang 2018). It has been
found that storm timing, size, and duration can be an im-
portant factor in flow response, especially when considered
in the context of the orientation of the drainage network
(Seo et al. 2012). Particularly, it has been found that the
cumulative mean areal precipitation is more informative to
peak discharge than precipitation at a given point, and the
dependency increases with the spatial extent of the rainfall
(Gao and Fang 2018). In urban regions, the design of
drainage networks could be better informed based on not
only typical event sizes, but durations and directions of
moving rainstorms (Seo and Schmidt 2013). These findings
indicate the importance of understanding how climate pat-
terns influence weather, and how persistence and spatial
dependencies impact downstream processes.

Here we study the predictability of precipitation from an
information theory-based perspective, in which predict-
ability is a reduction in uncertainty about precipitation oc-
currence due to the knowledge of past precipitation in one
or more surrounding areas. Specifically, we use several in-
formation theory-based metrics to quantitatively address
questions about precipitation persistence and directionality
within the continental United States. Based on a daily gridded
precipitation dataset, we answer the following questions:

1) From what direction, or combination of directions, is pre-
cipitation best predicted at a given location?
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2) How strong is this spatial component of predictability for
different regions?

3) How do aspects of directionality and level of precipitation
predictability vary with season, climate condition, and over
the historic record?

These questions are related to the predictability of precipita-
tion based on the knowledge of both spatial and temporal
variability, and are relevant to weather prediction and water
resources. We hypothesized that this information-based spa-
tial predictability varies seasonally and regionally across the
continental United States, and in certain areas is associated
with climate indices. For example, Goodwell and Kumar (2019)
found that predictability due to the knowledge of lagged, or past,
precipitation states has increased over much of the western
United States, and decreased over much of the east. This study
further addresses the directions linked to this predictability,
along with multivariate measures and associated climate drivers.

The paper is organized as follows. In section 2, we intro-
duce our information theory-based methodology and ap-
plication to the Climate Prediction Center (CPC) Unified
gridded gauge-based precipitation dataset (Chen et al.
2008). We include an illustrative example of how informa-
tion measures, which quantify predictability as reductions
in uncertainty, vary under different categories of spatial vari-
ability. In section 3, we present results for nationally averaged
and regional dominant directions and strengths associated with
predictability as well as trend analyses of these measures and
correlations with several climate indices. In sections 4 and 5 we
provide a discussion and conclusions.

2. Methods

We consider X, to be a binary variable describing daily
precipitation occurrence at a ‘‘central” location ¢, where
X,. = 1 on day ¢ if precipitation is observed above a specified
threshold, and X, . = 0 otherwise. A given time series has at-
tributes p; = p(x,. = 1) and p, = 1 — p4, denoting the prob-
ability, or relative frequency, of wet or dry days, respectively.
Shannon entropy, H(X,.) = —Zp(x,.)logp(x,.), where the
summation is over all possible states of x,., is a measure of
uncertainty of a random variable (Shannon 1948; Cover and
Thomas 2006) and is measured in units of bits. This formula-
tion of entropy can be interpreted as the average or expected
number of (yes or no) questions that need to be asked to
determine a value of X,. Since it is a binary variable,
H(X,c) = —piloga(p1) — pologa(po), and H(X,.) is always
less than or equal to 1 (Fig. 1a). Values close to 1 indicate
that precipitation is maximally uncertain, since it is nearly
equally likely to be “wet” or ‘“‘dry”’ on a given day. In
contrast, a low value of H(X, ) indicates that the precipita-
tion state is nearly always dry (or wet), such that it is less
uncertain (Fig. 1a). This uncertainty of precipitation at a
given location, based on the probability distribution derived
from binary daily occurrence data, provides the amount of
information (in bits) needed for an accurate prediction. This
information, or reduction in uncertainty, could come from
knowledge about historical states of precipitation at that
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FIG. 1. Illustration of information theory—based methods for spatiotemporal predictability of precipitation. (a) Shannon entropy H(X,) for
a binary variable is a measure of uncertainty that varies from 0 to 1 bit as a function of p(X;) = p(X; = 1). (b) We consider a precipitation time
series X, at a central location, where the uncertainty of X, is reduced given knowledge about lagged histories of neighboring areas, e.g.,
Xi—14- (c) Venn diagram illustrating entropy, mutual information (MI), and transfer entropy (TE). Overlapping blue and green regions
indicate reductions in uncertainty, H(X, ), given a lagged state at a neighboring cell. (d) TE and MI are computed for each of eight directions,
and the maximum values and the vector resolved values are computed as M1, . (or TE,.x) and M., (or TE (), respectively, as described in
the text. (e)-(g) Mutual information between the central target cell and two lagged histories in opposite directions, I, 414> (here illustrated as
L gw) is partitioned into unique (Uy;, Ug,), redundant (R), and synergistic (S) components. (h) Mutual information between the central target
cell and four surrounding lagged histories, 4, is a higher-dimensional measure of precipitation predictability.

location, precipitation at other locations, or other climate-
related features such as wind, humidity, or clouds. We focus on
the information that can be obtained from knowledge of the
past precipitation state at the central location ¢ and neigh-
boring locations. This focus on past precipitation rather than
multivariate drivers enables a relatively simple analysis of a
single gridded dataset. Moreover, we assume that past pre-
cipitation somewhat integrates these other drivers, as it directly
captures the duration and movement of events. Depending on
a storm’s size, shape, speed, and direction of movement, pre-
cipitation states in multiple directions can provide information
that reduces the uncertainty at a central location (Fig. 1b).

a. Dominant directionality of precipitation

The mutual information between the current precipitation
state at location ¢, X, ., and a lagged state at a neighboring grid
cell at location d, X,_1 4 is

p(xtfl,d’ xt,c)

1(X X )= x ., ,x )log, | ————
( —1d o) 2n( —1d ) 1og, p(xr—l,d)p(xr,c)

)

where the summation is over all possible states of X;_; 4 and
X, .. In the context of daily precipitation, this measure is the

= H(Xt,c) - H(Xt,clxtf],d)’
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reduction in precipitation uncertainty that we obtain from
knowing yesterday’s state at a neighboring location d. In
Eq. (1), the term H(X, | X,—1 4) is conditional entropy, which is
the remaining uncertainty in X, when the variable X, , is
known (Fig. 1c). Hereafter, we refer to this mutual information
between one central “target” and one neighboring “‘source”
variable as ML

While MI quantifies a lagged relationship between pre-
cipitation at two locations, we may further inquire about the
relevance of this relationship if we also know yesterday’s
precipitation state at the central location c. For example, if we
could have obtained the same or a larger reduction in un-
certainty based on knowing X, ., the information provided
by X,_; 4 may be somewhat ‘‘redundant’ or unnecessary. We
address this with transfer entropy (TE), which is a version of
conditional mutual information defined here for our specific
case as follows:

TE(X)‘ XI,C|XI*1,L')

—1a>
p(xt,c |xt—l,(1’ xt,c

e | @

= Zp(xt—l,d’ X, %p)10g,

This TE is a simplification of the initial formulation by
Schreiber (2000), which involves multiple time-lagged histories.
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Versions of TE used in other studies also detect TE for time
lags other than 1 (Ruddell and Kumar 2009; Goodwell and
Kumar 2015; Sendrowski and Passalacqua 2017). However, the
version defined in Eq. (2) captures information about precipi-
tation at a central location that is provided by a neighboring cell,
conditioned on also knowing the lagged state at the central
location. In other words, TE can be interpreted as the infor-
mation that a neighboring location provides beyond that al-
ready provided due to the knowledge of past precipitation at
the location of interest. For example, if rainfall tends to be
synchronous between two neighboring grid cells, rainfall at one
grid cell does not predict future rainfall at the next grid cell
beyond the predictability that exists due to local knowledge.

We compute MI and TE between precipitation at a central
grid cell and its eight nearest neighbors, such that there are
two measures of information transfer associated with each of
the eight directions [north, northeast, east, southeast, south,
southwest, west, and northwest (N, NE, E, SE, S, SW, W, and
NW, respectively)]. To obtain a dominant directionality of
information transfer at a given location, we compare two
methods (Fig. 1d):

1) MIax (TEmax) and Omimax (OTEmax) are the magnitude and
angular direction, respectively, associated with the maxi-
mum of the eight values from all neighboring directions.

2) MIvcct (TEvcct) and GMIvcct (OTEVCCt) are the magnitUde
and direction, respectively, based on vector resolution of
the eight neighboring values [see ‘“Information Theory
Methods” and Egs. (1)-(4) in the online supplemental
material]. Here, for example, two equal information flows
from opposite directions (e.g., east and west) cancel out,
while information components from similar directions (e.g.,
west and southwest) build up.

We employ both of these methods for MI and TE, resulting
in four estimates of ‘“dominant direction” and ‘“‘dominant
predictability” for each grid cell. Similarities or differences
between measures indicate particular features of directional
information flow that relate to storm directions, sizes, and
speeds. For example, consider a case where O1gmax and O1gyect
are very different at some location. This indicates that the
single dominant direction based on TE,,x is mitigated by
similar information transfer from opposing directions, such
that the dominant influence based on TE, . is associated with a
different direction. Similarly, a large difference between MI-
based and TE-based dominant strengths and directions would
indicate that knowing the lagged history of the central target
location plays a significant role in predictability.

b. Joint predictability from two directions

Next we consider higher-dimensional information theory—
based measures to determine the total amount of uncertainty
that can be reduced when lagged states in multiple directions
are known together, rather than individually. This contrasts
with the previously described methods, which only assume the
knowledge of past precipitation in one neighboring direction
at a time. As a first step that limits analyses to 3D probability
functions, we consider the total mutual information between
the central current state X,. and two lagged histories from
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neighboring locations, X,—1q4; and X,_; 4>, where d1 and d2
indicate two of the eight possible neighboring directions
(Figs. 1e,f). We define this bidirectional mutual information as
follows:

I

2d1d2 —

IX_, . X

—1,d10 X 1,20

X.0)

p(xt—1,d1’xz—1,d2’ xt,c)

p(xt—l,dl’xt—l,dz)p(xt‘c) '
3)

For this analysis, we choose the pair (d1, d2) to be opposing
cardinal directions, i.e., (d1 =N, d2 = S) or (d1 = E,d2 = W).
This results in two measures for a given central location ¢ of
Ins and L gw. These indicate a level of precipitation pre-
dictability given knowledge of two lagged states in opposite
directions. In an information decomposition (Williams and
Beer 2010), I 4142 can be partitioned into unique, synergistic,
and redundant components as follows:

= zp(xt—mpx:—1,d2’xx,c) log,

I

vaia = Uy T Up S+ R. “)

Here, Uy, and Uy, are information that is shared between each
neighboring state and the central state individually, R is
“overlapping,” or redundant, information that the knowledge
of both states provide, and § is “joint” or synergistic infor-
mation that only arises when both neighboring states are
known together (Fig. 1g). Existing information theory
measures can be explained as combinations of these four
components. For example, TE is composed of one unique
component and one synergistic component of information.
In a precipitation predictability context, TE is the infor-
mation that a lagged source provides to a current target
individually and/or synergistically when both the lagged
source and the lagged target are known together (Fig. 1c).
In contrast, MI is composed of the same unique compo-
nent, but contains a redundant component instead of a
synergistic one. In other words, MI is the information that a
source provides to a target individually, and/or in overlap
when the lagged central state is also known. Since infor-
mation theory does not provide a method to compute R, U,
and S directly, we use a measure proposed in Goodwell
and Kumar (2017), which estimates R as a function of
the mutual information between the two sources. The
terms Ugy, Ugo, and S are then solved from existing infor-
mation theoretic equations. In this formulation, indepen-
dent sources [where I(X,—1.41; X,—1.42) = 0] are minimally
redundant, while strongly related sources are maximally
redundant (‘“‘Information Theory Methods’’ in the supple-
mental material).

To illustrate this information partitioning into unique,
redundant, and synergistic components, here we present
four synthetic cases in which precipitation at a central cell
X, 1s a simple function of lagged precipitation from either
the west, east, or both (Fig. 2). For all cases, precipitation
in the westernmost grid cell is a first-order Markov Chain,
with a transition probability (probability of a switch from
wet to dry or dry to wet) of 0.1 (“Example Case” in
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FIG. 2. Four synthetic cases of precipitation patterns with dif-
ferent implications for predictability, as measured by synergistic S,
unique U, and redundant R information types. As described in the
text, (a),(b) cases A and B illustrate a moving storm from west to
east, while (c),(d) cases C and D are cases in which precipitation at
a central cell is a function of lagged precipitation in two directions.
Pie charts indicate the proportions of shared information, /5 4142,
attributed to S, U, and R components.

the supplemental material). This introduces persistence in
synthetic precipitation, in that dry and wet periods tend to
clump together, but overall the relative frequencies of wet and
dry days are equal (po = p; = 0.5), such that entropy H(X,.) =
1 bit. In all these cases, the uncertainty of the central precipi-
tation state is completely reduced given the knowledge of
lagged precipitation in the eastern and western directions.

In case A, precipitation moves from west to east at a 1-day lag.
In other words, if it rains on Monday toward the west, it rains on
Tuesday and Wednesday in the central and eastern grid cells,
respectively. For this case, we find that most information about
X; . is uniquely provided by the knowledge of X, w, and some
information is provided redundantly by both X,_; w and X,_; g
due to the persistence in precipitation (Fig. 2a).

In case B, precipitation moves from the west to the central
cell, but precipitation at the grid cell to the east is disconnected.
Here, all information provided about X, . comes uniquely from
the knowledge of X,_; w, since X,_; g is not informative. This
could illustrate a region where a topographical divide dictates
storm movement, such that a given grid cell is only influenced
by precipitation in one direction (Fig. 2b).

In case C, precipitation at the central grid cell obeys an exclu-
sive “or” (XOR) rule, where precipitation occurs only if the
neighboring grid cells were in different states the day before. In
this case, precipitation to the east and west are independent of
each other, and provide information to the central cell only syn-
ergistically. For example, if we knew it rained yesterday toward
the west, this does not reduce our uncertainty about X, . unless we
also know yesterday’s precipitation state toward the east (Fig. 2c).

In case D, precipitation in the east and west are correlated,
and precipitation at the central cell follows an “and” rule
where precipitation only occurs if yesterday’s state was wet in
both directions. This would represent a case where precipita-
tion is somewhat synchronized across the region. Here, we see
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that all four types of information contribute to the predict-
ability of precipitation, but redundant information dominates
since the source regions are correlated (Fig. 2d).

These examples illustrate how different patterns in precipi-
tation movement relate to information measures, but also
shows how I, 414, and subsequent partitioning reveals a com-
ponent of predictability that is missing from MI and TE. For
example, in case C, TE and MI would detect that precipitation
is completely unpredictable, since the knowledge of a single
neighboring lagged state does not reduce any uncertainty in the
target cell. Case D provides an example in which two neigh-
boring states are nearly equally informative to X, such that
they would cancel out in a vector resolution and different
dominant directions would be detected for Oyqrvect and Onirmax-
We refer to the online supplemental material (“Example
Case” and Tables S1 and S2) for more details on this example.
In general, information partitioning measures of synergy,
uniqueness, and redundancy capture the reduction in precipi-
tation uncertainty that is obtained by ‘‘looking both ways”
simultaneously.

¢. Multivariate predictability

The previously discussed measures consider precipitation
predictability as a function of either one or two neighboring
lagged sources. As such, they all fail to detect any additional
predictability that could be obtained from knowing more than
two sources simultaneously. For this, we introduce a multi-
variate lagged mutual information measure, /;, which is the
total amount of information that several surrounding locations
provide about the current precipitation state. Specifically, I, is
the information shared between the current state at a central
grid cell and the strongest four individual neighboring lagged
sources, defined as follows (Fig. 1h):

L=I(X,_, X

t—1,d2° X,

t—1,d3

X X, )

where d1-d4 represent the four neighboring directions that
individually provide the maximum amount of information
about precipitation at the center grid cell, ¢, based on TE [Eq.
(2)]- For example, d1 corresponds to O1gmax, and the other
three directions (d2, d3, d4) are the neighboring cells with the
next highest TE values. Theoretically, we could also compute
Ig, which would be the total information transfer from all eight
neighboring directions. While this would be a more compre-
hensive measure of precipitation predictability based on the
knowledge of all neighboring states, the dimensionality of the
associated probability distribution becomes high relative to
the size of the data. For example, for a single season with 90 days,
MI involves a 2D binary pdf with 2> = 4 bins. Similarly, TE and
I, measures involve 3D binary pdfs with 2> = 8 bins, and I,
involves a 5D binary pdf with 2° = 32 bins. A higher-order
measure such as s would have a pdf of size 2% = 256 bins, which
would require many years of daily data to obtain a robust result.

For any given measure, statistical significance is esti-
mated using the shuffled surrogates method (Ruddell and
Kumar 2009), in which source variables (i.e., lagged histo-
ries) are shuffled randomly in time to destroy temporal
correlations. This is done 100 times, to obtain a set of

-1d1°
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TABLE 1. Summary of information theory-based measures.
Measure(s) Description Equation
Mlinax, TEmax Maximum mutual information or transfer entropy between current precipitation state at location ¢ and 1), (2)

lagged precipitation in a neighboring direction (unit of bits)

OMImax> OTEmax ~ Dominant neighboring direction associated with M1, or TE .« (units of degrees)

Mlyect, TEvect Weighted average of mutual information or transfer entropy between current precipitation state at location (1), (2)
¢ and lagged precipitation in neighboring directions (unit of bits)

OMivects OTEvect ~ Average direction associated with Ml or TE,., based on vector resolution of eight values of mutual
information (units of degrees)

Lew, hns Information provided to current precipitation at location ¢ from two opposite directions (units of bits) 3)

Un, Us, Ug, Uw Unique information transfers from neighboring directions to current precipitation at location ¢, based on 3)
information decompositions of I, g w and I, s (fractions of I, units of bits per bit)

SEw, SNs Synergistic information transfers from neighboring directions to current precipitation at location ¢, based on 3)
information decompositions of I, g w and I, s (fractions of I, units of bits per bit)

Rew, Rns Redundant information transfers from neighboring directions to current precipitation at location ¢, based 3)
on information decompositions of I, g w and I, x s (fractions of I, units of bits per bit)

1 Multivariate mutual information provided to current precipitation at location ¢ from strongest four of the 5)

eight individual lagged information sources, determined from TE values (units of bits)

shuffled information values, and the detected measure is
tested for significance at a 99% confidence level. Table 1
provides a summary list of measures with descriptions of
their different characteristics.

d. Precipitation dataset

We apply our information theory-based measures to the
CPC Unified gauge-based analysis of daily precipitation over
the contiguous United States (CONUS). This dataset is a
gridded, gauge-based product available at a 0.25° resolution
from 1948 to 2018 (Chen et al. 2008; Xie et al. 2007). We
convert the data into binary form, using a magnitude ranging
from 0.3 to 3mm as the threshold between wet (X;. = 1) and
dry (X, . = 0) states. This threshold value is chosen at each grid
cell individually based on that which maximizes the value of
I(P,.; P,—1 ). This corresponds to the “‘maximally informative”
quantization, in that it is the threshold associated with the
highest predictability based on the knowledge of yesterday’s
state. While this threshold varies across grid cells (‘““Thresholds”
and Fig. S1 in the supplemental material), we note that it has
previously been found from this dataset that information
measures vary little whether a 0.3 mm, a 1 mm, or a 10th per-
centile threshold is used at a given location (Goodwell and
Kumar 2019). In other words, small differences between
thresholds for wet and dry states do not have a large influence
on results. It has generally been found for gridded datasets that
interpolation increases the number of small events and de-
creases the number of large events (Ensor and Robeson 2008).
In this way, we expect our threshold values to omit some of
these spurious small events. We also expect that interpolation
from gauge data to the gridded dataset causes some redun-
dancies in sparsely monitored regions (Carvalho 2020), in that
precipitation may appear more synchronized over large land
areas without gauges. However, as later results show, redun-
dancies between grid cells do not appear to dominate regional
characteristics, and we assume that spatial dependencies largely
reflect the actual timing of daily precipitation occurrences and
synchronization. Finally, the data are segmented into seasonal
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windows (DJF, MAM, JJA, SON) to capture differences be-
tween spatiotemporal measures of predictability.

e. Temporal trends and correlations with climate indices

Information measures (Table 1) are first computed season-
ally for the entire 1948-2018 period to capture general regional
behaviors. Trends are computed based on the same measures
computed on individual seasonal time windows. We detect
trends in each measure at a 95% confidence level using least
squares linear regression, and detected similar results for the
nonparametric Sen slope method (Sen 1968; Fernandes and
Leblanc 2005). A trend in MI, TE, L, or I, indicates a change in
the level of predictability given knowledge of past precipitation,
and a trend in 6 indicates a shift in dominant direction. Angular
trends were detected with circular correlation statistics (Berens
2009). As an illustration, a 1° yr~ ! positive trend is equivalent to a
70° shift clockwise over 70 years. For a grid cell where infor-
mation flow as measured by TE,. was predominately from the
west, this would indicate a shift clockwise toward the north.
Finally, a trend in S, U, or R would indicate a trend in informa-
tion type, which is related to both the synchronicity and direction
of precipitation across the region. In addition to trends over the
past 70 years, we detect correlations between information mea-
sures and seasonally averaged climate indices to reveal clima-
tological influences on precipitation persistence and direction.
We initially choose 10 indices (‘‘Climate Indices” in the sup-
plemental material), and focus on four that are particularly
correlated to information measures in certain regions during
either winter or summer. Monthly values for each climate index
are averaged to seasonal measures to match the time scale of the
information-based measures of precipitation predictability.

3. Results: Directional precipitation predictability

Any given information measure (listed in Table 1) can be
normalized by precipitation entropy, H(X,.) to obtain a frac-
tion of uncertainty reduced. For example, a case where MI =
H(X,,) indicates that knowledge of a neighboring lagged state
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fully reduces precipitation uncertainty. Since the proposed
measures represent different levels of analysis in that they
involve different numbers of lagged neighboring grid cells, we
first compare their relative magnitudes as percent reductions
in uncertainty. On average for all seasons and grid cells,
TE,.c is the lowest, at a 0%—-5% reduction in uncertainty of
precipitation at a central grid cell (Fig. 3). Meanwhile, MI e
is slightly larger with uncertainty reductions up to about 10%.
This indicates that conditioning mutual information on the
lagged history at the central cell decreases the amount of un-
certainty reduced. As expected, the knowledge of the lagged
state at a neighboring cell provides some redundant informa-
tion with the knowledge of the lagged central state due to
synchronization of wet and dry days across regions. This fea-
ture could also relate to the interpolation of gauges to gridded
data, which could cause neighboring cells to be similar. If in-
stead the knowledge of the neighboring cell provided mostly
additional information beyond that already provided by the
history of the central cell itself, uniquely or synergistically, then
TE would be larger than MI. However, this only occurs for a
few cases with no particular spatial or seasonal patterns.

Meanwhile, the higher-order measure of I, gw, the joint
mutual information provided by the knowledge of lagged
neighbors to the east and west, is much higher and more var-
iable than MI or TE, on average reducing about 11% of pre-
cipitation uncertainty (Fig. 3). This is expected because I q142
does not condition on the lagged central state, but quantifies
the total uncertainty reduced given two neighbors. I, ns shows
very similar behavior (not shown). Finally, 14, as the highest-
dimensional information measure, reduces an average of 12%
of uncertainty, and over 20% for some grid cells. This means
that the knowledge of past precipitation states at several sur-
rounding locations provides significantly more predictability
than only knowing one neighboring state. However, we see
that I, is only slightly larger than /,, indicating that knowledge
of additional neighboring states provides ‘‘diminishing returns”
in information gain.

Next we discuss these measures in terms of directionality
and seasonal differences across the United States. We first note
that directional distributions of MI,,,x and MI,.., measures
differ because Opmax can only take on one of the eight
neighboring directions, so that its distribution is discrete,
while Oyvect can take any angular direction, since it is the
angle associated with the vector resolution of all eight
neighboring MI values (“Information Theory Methods” in
the supplemental material). On a national average, infor-
mation flows as measured by lagged MI tend to originate from
the west (Figs. 4a—d), which reflects the dominant wind pat-
terns across the United States due to the jet stream. In some
cases, we see that information from opposite directions ap-
pears to cancel out in the Oypyec; calculation. This occurs for
example in the summer, where Oyimay i predominantly from
the west, but the dominant Oypyec; is from the southwest
(Fig. 4c¢). This occurs because MI is relatively large in multi-
ple directions, such that east and west cancel out. These re-
sults indicate that on a national average, the knowledge of
yesterday’s precipitation state toward the west or southwest
best predicts the current state.
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ysis of precipitation predictability. Measures are normalized by
precipitation entropy H(X,.), such that they indicate fractions of
reduced uncertainty.

Transfer entropies, TE, tend to be smaller in magnitude as
discussed previously, and tend more toward the south relative
to the west. This difference between Ml,.; and TE,.y is
prevalent in all seasons except summer (Figs. 4c,g) when the
directions are very similar. We also observe weaker TE and MI
in summer relative to other seasons, indicating lower predict-
ability of precipitation in general given past states. Differences
between Ml and TE,;,x are even more apparent (black lines
in Fig. 4). Mainly, we see much higher frequencies of TE;,x in
the noncardinal directions compared to Ml,x, particularly
from NW and SW. This is likely due to the conditioning of the
mutual information on lagged precipitation at the central grid
cell, X,_1 ., for TE. Since the centers of the grid cellsin N, S, E,
and W directions are closer to the center grid cell, the infor-
mation that they provide appears to be more redundant with
the information provided by the history of the center cell itself.
This could also relate to interpolation in the gridded dataset, in
that neighboring cells are similar. A factor accounting for the
distances between neighboring grid cell centers would be ex-
pected to even out this redundancy. In general, the tendency
for dominant TE to come from the south rather than the west
indicates that when lagged precipitation at the central location
is known, it is more useful to additionally know the lagged state
toward the south than the west. In contrast, a simpler analysis
of MI between a lagged neighbor and a central location
detects a stronger dependency from the west. This indicates
that while storms generally move from west to east, they are
somewhat angled northward or southward, such that looking in
those directions enhances predictability. In other words, a
storm may be largely moving westward so that correlations are
high between east to west neighbors, but the shape and angle of
the storm are such that north to south neighbors provide more
“extra’” information. This illustrates the different conclusions
that could be drawn from analyses with different dimensions
and conditioning.

While the nationally averaged distributions of MI and
TE strengths and directions show broad seasonal trends, the
same distribution of measures for regional HUC2 watersheds
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FIG. 4. Seasonal polar histograms of (a)-(d) MI and(e)-(h) TE on a national average, for 13 626 grid cells. The black lines indicate the

directions Oy imax and O1Emax that take on one of the eight surrounding directions, while the filled areas indicate frequencies for dominant

directions and strengths of MIcc and TE,.. Colors correspond to the strengths (bits) of information contents. For example, in the winter

[DJF, shown in (e)], the most common dominant direction of TE is from the southwest and northwest. However, when information from
all directions is resolved into a single vector, the dominant direction is from the south.

(Seaber et al. 1987) shows features of different regions of regions, reflecting the large variety of precipitation causes
CONUS (Fig. 5). Differences in these directions should relate in this season (Kunkel et al. 2012).

to topographic divides and landscape properties, and different Southwest (California, Lower Colorado, Rio Grande): Here,
seasonal drivers of precipitation. We group these basins into TE is dominantly from south or southwest in winter. This
five regions with common features as described below. reflects precipitation events due to atmospheric rivers that
convey moisture from the Pacific Ocean during this season
(Gershunov et al. 2017). In the summer when conditions are
relatively drier in most areas, the distributions are broader
and mainly from the north.

Northwest (Pacific Northwest, Upper Colorado, Great
Basin): TE is mainly from south in winter, similar to the
Southwest basins, but is derived from the east in summer.
This is opposite of the summertime O1gyec in the eastern
part of the country, indicating the prevalence of weather
that originates from the mountainous regions in the coun-
try. In these basins and to some extent in the Southwest,

from the west. the patterns in TE reflect the reversal from westerly winds
Southeast: (South Atlantic-Gulf, Lower Mississippi, Tennessee, in the winter to more easterly winds in the summer

Arkansas—White-Red, Texas—Gulf): In winter, TE is detected (Dominguez et al. 2008).
from the south, angled toward the Gulf Coast. Distributions

¢ Northeast (Mid-Atlantic, New England, Ohio, Great Lakes,
Upper Mississippi): In summer (red in Fig. 5), TE is
dominantly from the southwest and MI from the west,
following national averages. The majority of extreme
precipitation events occur in summer in this region, and
most of these are attributable to frontal systems (Kunkel
et al. 2012). In winter (blue in Fig. 5), O1gyec has a broader
distribution, or more variability in dominant direction.
This could indicate winter influence of both continental
and ocean dynamics, relative to summer influences mainly

North-central (Missouri, Souris—Red-Rainy): Here, distri-

are slightly more narrow in winter relative to summer, in- butions are relatively uniform between summer and winter,
dicating more of a dominant directionality in winter storms. indicating the least influence from ocean patterns. Very few
During winter in Texas, wet periods are often associated of the most extreme storms occur in the winter in this region
with southeasterlies that bring moist air from the Gulf relative to other seasons (Kunkel et al. 2012), but this anal-
of Mexico (Lyons 1990). In summer, TE is dominantly ysis shows that the origins of precipitation are likely similar
from north or west, with very broad distributions in some throughout the year.
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summer (JJA, red) and winter (DJF, blue). Each polar histogram represents the dominant direction of 1-day lagged
precipitation dependencies for a HUC2 watershed. Circle sizes are approximately scaled to the relative basin sizes.

a. Uniqueness and redundancy dominant over synergy

Next, we consider I, gw, the information provided to a
central grid cell due to the knowledge of 1-day lagged states in
both east and west directions. When this measure is further
partitioned into unique, redundant, and synergistic information
types (“Information Theory Methods” in the supplemental
material), the main result is a balance between redundancy R
and uniqueness U (Figs. 6a—d), while synergistic information S is
much lower (Figs. 6e,f). The term I, s, the joint information
from north and south directions, was similar to this (not shown).
While high R indicates synchronization between precipitation in
east and west directions, high U indicates that the information
contributing to predictability tends to come from one direction
or the other, but not both.

Redundancy is the strongest information component for
most regions in both summer and winter, indicating a large
degree of synchronization in precipitation from the eastern and
western directions. This matches with the finding of high MI
but lower TE in the west-to-east direction, associated with the
dominant direction of storm movement in the country. This
may be expected given the temporal resolution considered
here, as it is likely to be simultaneously wet or dry over regions
that cover multiple grid cells within a given day. A precipita-
tion dataset at a higher time resolution, or over a very large
spatial grid, may exhibit less redundancy, in that subdaily
rainfall would better resolve the movement of storms and a
larger grid size would make it less likely that neighboring cells
are synchronized. Uniqueness, as the combination of Ug and
Uw, is the next strongest information component, and in some
grid cells Ug + Uw makes up more than half of the total value
of I gw. For example, we detect high uniqueness in Florida
and Southern California in the summer (Fig. 6¢), associated
with prevalent weather influences from the Atlantic and Pacific
Oceans, respectively. Unique information is also high in the
Rocky Mountains region in the winter, indicating an oro-
graphic effect where precipitation moves in one direction and
then dissipates (Fig. 6d). These regions of high uniqueness
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correspond to regions of low redundancy for the same season
(Figs. 6a,b). Over the country, we note that R is generally
higher in the winter relative to the summer. This indicates a
larger degree of spatial uniformity of precipitation during the
winter, in that precipitation is more synchronized across grid
cells. This finding matches with a larger spatial scale of
frontal systems in the winter (Kunkel et al. 2012) relative to
the summer.

Synergistic information § is always less than 10% of I, gw,
indicating that the joint knowledge of lagged precipitation
states in east and west directions does not provide a large
amount of “‘extra’ information about the current central pre-
cipitation state, X, ., beyond their individual and overlapping
contributions. However, we do see spatial patterns in S, which
is particularly high in California and the Southwest in the
summer (Fig. 6e), and in the Sierra Nevada and Cascades
ranges in the winter (Fig. 6f). In these regions and seasons, it is
relevant to “‘look both ways” simultaneously when making a
prediction about the current precipitation state. To illustrate
this, S = 0.05 would indicate that considering lagged states in
both east and west directions provides an extra 5% of pre-
dictability relative to only knowing the lagged state in either
direction individually. These regions of relatively high syner-
gistic information could mark topographic or climatic bound-
aries where weather may arrive from either of the two
opposing directions independently. Particularly, high rates of
precipitation recycling have been detected in these moun-
tainous regions, which is associated with the North American
monsoon during the summer (Dominguez et al. 2008). Here,
high S could reflect joint drivers of precipitation, which occurs
due to both incoming moisture and recycled moisture from the
regional landscape.

b. Temporal trends vary from east to west

Next we consider trends in information measures over
the 70-yr study period. We particularly focus on multivari-
ate information from the four most individually informative
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neighbors, I,. For most seasons, more trends were detected for
1, than for other information measures such as TE or MI, but
spatial and seasonal patterns were similar. S, U, and R infor-
mation types showed very few statistically significant trends.
While the average magnitudes of increasing and decreasing /4
trends appear small, about 0.0014 bits per year (Table 2), over
the 70-yr study period this amounts to percent changes that
range from 26% to 27.7% increases and from 21.9% to 25.4%
decreases. In other words, the predictability of precipitation
given the knowledge of four lagged neighbors has increased or
decreased by about 25% for some grid cells. There are also
differences in the numbers of grid cells exhibiting statistically
significant trends in each season. For winter, spring, and fall, a
similar fraction of grid cells show a trend. In summer, 0.26, or
about 3500 out of 13626 grid cells, show a decreasing trend
while only 0.05, or 680 grid cells, have increasing trends
(Table 2).

Next, we link these national average trends to regional be-
haviors across seasons. Overall, /, tends to be decreasing in the
eastern United States, and increasing in the Northwest (Fig. 7).
This corresponds to the finding of increased precipitation
predictability in general in the Northwest (Goodwell and
Kumar 2019), in that the knowledge of lagged precipita-
tion states at a given location provides increasing amounts
of information regarding the current state. Here, we find
that this trend of increasing predictability also exists when a
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spatial component of precipitation occurrence is considered.
Meanwhile, east of the Continental Divide, 1, is decreasing in
strength. This indicates that in this region, precipitation is
becoming less predictable given knowledge of lagged neigh-
boring states. In the winter, decreasing I, is particularly
clustered along the Texas—Gulf Coast (Fig. 7a). When paired
with the dominant O1gyee from the southeast in this region
during the winter (Fig. 5), this indicates a weakening influ-
ence, or lower persistence, of precipitation states over the
Gulf of Mexico. In summer, very few increasing trends were
detected, and the region of decreasing I, covers most of the
east coast.

TABLE 2. Positive (+) and negative (—) trends in /. Fractions
are computed as the number of grid cells showing a trend, divided
by the total number of grid cells (13 626). The percent (%) indi-
cates the percent increase or decrease in /, over the 70-yr window
associated with a given trend in bits per year.

1, trends DIJF MAM JJA SON
Fraction + 0.14 0.15 0.05 0.13
Avg + trend (bits) 0.0014 0.0014 0.0013 0.0015
Avg + trend (%) 27.7 27.6 26.0 26.0
Fraction — 0.14 0.17 0.26 0.15
Avg — trend (bits) —0.0013  —0.0013 —0.0014 —0.0014
Avg — trend (%) —25.4 -22.9 -22.5 -21.9
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In terms of the direction associated with TE .., OTEvect, WE
see that more grid cells show a positive, or clockwise trend,
relative to a negative trend (Fig. 7¢). This pattern is similar for
all seasons (not shown). To some extent, clockwise trends in
0 are most clustered the eastern United States where measures
of spatial predictability (14, M1, and TE) are decreasing. In the
western United States where spatial predictability is increas-
ing, there are more grid cells that show counterclockwise
(negative) trends in direction. From this and the prior analysis
for dominant directions, we can broadly interpret that in the
western United States, information about precipitation is
generally strongest from the east in the summer (Fig. 5), and
has increased in strength of predictability and shifted from the
east toward the north over the 70-yr study period. In contrast,
in the eastern United States the dominant direction of sum-
mertime predictability is from the west, and the strength of this
predictability has decreased and shifted clockwise toward the
north over the study period.

c. Correlations between information measures and
climate indices

Aside from linear trends over the past 70 years, correla-
tions between seasonally averaged climate indices and our in-
formation theory-based measures reveal potentially more
complex aspects of spatial and temporal precipitation pre-
dictability. Climate teleconnections can influence storm tracks
and precipitation magnitudes, and can also feedback with the
land surface to cause further events or droughts (Trenberth
and Guillemot 1995). Here we look at correlations between
multivariate information, I, and several climate indices. In
general for the set of 10 climate indices tested for correlations
(“Climate Indices” in the supplemental material), we find
fewer statistically significant correlations relative to linear
trends, but several climate indices do exhibit patterns of cor-
relations for certain seasons.

The PDO tends to be positively correlated with /,, particu-
larly in the western United States in winter (Fig. 8a). There are
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pockets of positive PDO correlations in other regions in the
summer, such as in Missouri, northern Michigan, and the
Pacific Northwest. Meanwhile, the AMO is mainly negatively
correlated with 1, and more correlations are spread over the
country. These negative correlations are particularly clustered
in the eastern United States during the summer. The PDO
and the AMO have been linked to climate variability in the
Americas on decadal to multidecadal time scales (Carvalho
2020). Particularly, a negative correlation has been detected
between maximum streamflows and the PDO in winter in the
western United States, and some negative correlations be-
tween streamflows and the AMO have been detected during all
seasons in the eastern United States (Dickinson et al. 2019).
While we focus on nonextreme precipitation events that do not
necessarily lead to flood events, these relationships between
climate indices and flows are driven by the spatial movement of
precipitation events such as those studied here. The wide-
spread correlations between I, and the AMO detected here
also reflect previous findings that the Atlantic Warm Pool
(AWP) impacts precipitation in much of the central and east-
ern United States (Liu et al. 2015).

We also observe regional correlations that differ between
seasons, for example positive correlations between I, and the
EPNP in the Southeast in summer, and between I, and the
NAO in winter (Fig. 8c). Specifically, the EPNP is positively
correlated with /4 in a band from North Carolina to Alabama,
while the NAO is positively correlated with the same metric
slightly farther south, in northern Florida. These correlations
dominate during opposite parts of the year, indicating different
drivers of precipitation movement during different seasons.
The NAO has been associated with high precipitation in
the Southeast (Stenseth et al. 2003), and streamflow variability
has been tied to Atlantic Ocean sea surface temperatures
(Sadeghi et al. 2019). In parts of this region, durations of dry
periods have also been found to be increasing (Brown et al.
2020; Sadeghi et al. 2019). Particularly in northern Florida,
the NAO is positively correlated with maximum streamflows
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FI1G. 8. Correlations between information measures and climate
indices. Correlations between I, and the PDO and AMO for
(a) winter (DJF) and (b) summer (JJA). Red colors indicate
positive correlations between I, and PDO, while green colors
indicate negative correlations between I, and AMO. There
were very few statistically significant negative correlations for
PDO, or positive ones with the AMO. (c) Correlations between
1, and the EPNP and I, and the NAO for different seasons in the
U.S. Southeast.

(Dickinson et al. 2019). The positive correlation between in-
formation measures and the NAO in this study indicates that
the index is also associated with predictability based on the
knowledge of neighboring regions. This also matches with the
known maximum influence of the NAO on climate variability
in the winter (Hurrell and Deser 2010).

Finally, we note that opposite correlations are detected be-
tween I, and the NAO and AMO, both of which are related to
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Atlantic Ocean temperatures. This reflects a potential differ-
ence in time scales of influences. For example Liu et al. (2015)
found that warming Atlantic temperatures have opposite ef-
fects on U.S. precipitation on interannual and multidecadal
time scales. Specifically, warming Atlantic temperatures on
multidecadal time scales results in less precipitation, which in
this study correlates to lower predictability, or a negative
correlation between I, and the AMO. Atlantic warming on
interannual time scales is linked to more precipitation, and
here correlates to higher predictability, or a positive correla-
tion between I, and the NAO. Meanwhile, there are fewer
known linkages to precipitation and Pacific indices such as the
EPNP, although a high EPNP has previously been associated
with severe flooding in the Midwest (Bell and Janowiak 1995).
This is an example of a climate teleconnection, or large-scale
atmospheric dynamic (Leathers et al. 1991), that can influence
weather patterns in distant locations.

4. Discussion

The spatial and temporal persistence of precipitation oc-
currence characterized here could have implications for hy-
drologic behaviors, such as the timing of flows due to a moving
storm event, or extreme events that lead to flooding or
droughts. Here we discuss several findings in the context of
potential downstream implications, predictability, and climate
connectivity.

Dominant directions of precipitation predictability vary from
east to west in the United States, and uncertainty reduced from
knowing lagged precipitation at neighboring locations is par-
tially redundant with the knowledge of the local state. This also
relates to the partitioning of information measures, which
shows that unique and redundant information types dominate
over synergistic information. While some of this redundancy
likely results from the nature of the spatially interpolated
gridded dataset, it still reflects the persistence of precipitation
in both time and space. The characteristic directions of domi-
nant information influences vary by region, and the influence of
oceanic currents that cause weather events is apparent in the
coastal regions. For example, precipitation predictability in
California is typically derived from the knowledge of the lag-
ged precipitation state toward the west, indicating the preva-
lence of events coming from the Pacific Ocean. On a national
average, patterns in spatial predictability follow the prevailing
wind pattern in the United States from west to east.

Precipitation predictability has increased in the western
United States and decreased in the eastern United States, with
corresponding shifts in the dominant direction of influence.
Trends in spatial information transfers match with the previous
finding of increased or decreased persistence in similar areas of
the country (Goodwell and Kumar 2019). For example, in the
Pacific Northwest, Goodwell and Kumar (2019) found that
precipitation at a given location has become more predictable
given the knowledge of its own time-lagged history. In con-
trast, in the eastern part of the country, precipitation has
become less predictable, given both knowledge of lagged
states at a single location and lagged neighboring states.
This indicates that not only is precipitation occurring more
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sporadically, but that storms are not coherent enough spa-
tially that precipitation would become more predictable
given knowledge of neighboring states.

Several climate indices are correlated to our measure of
multivariate precipitation predictability for different regions
and seasons. Climate indices represent large-scale processes
of the Earth system, and have been found to link to global
temperatures and patterns of carbon fluxes (Zhu et al. 2017).
Climate indices have also been found to influence cycles of
extreme events. For example, ENSO modulates the annual
tornado cycle (Allen et al. 2018), climate cycles relate to ex-
treme precipitation over Texas (Bhatia et al. 2019), and the
NAO has been found to be a dominant driver of events in the
North Atlantic region (Stenseth et al. 2003). Some ecological
studies have found that large-scale climate indices are better
predictors of populations and ecosystem health than local in-
dices because they combine multiple stressors rather than a
single metric (Hallet et al. 2004). However, there are various
challenges in relating local precipitation patterns to climate
indices. First, climate indices simplify very large scale behav-
iors that may or may not be relevant at local scales (Stenseth
et al. 2003). On top of this, nonstationarity and nonlinear re-
lationships may result in a climate index only explaining a small
part of local climate variability, in the form of relatively weak
correlations (Stenseth et al. 2003). This nonstationarity may
also exist within a climate index itself. For example, a shift in
the PDO has been detected since the late 1980s which may
change any interpretation of its relationship to regional climate
variability (Litzow et al. 2020). Finally, it has been found that
some climate indices are more strongly correlated to local
environmental features on a lagged time scale, where a climate
index may predict fluxes one or two seasons in advance (Zhu
et al. 2017). These challenges are apparent in this study in
that most climate indices were not found to correlate with
information-based precipitation measures. A lagged correla-
tion analysis or a more targeted focus on particular climate
features may reveal more dependencies, or it could be that
climate indices correlate better in general with other precipi-
tation properties, such as durations or magnitudes, rather than
persistence and spatial directions of predictability. However,
several regional clusters of correlations and seasonal patterns
indicate that there are relevant connections between storm
movement and precipitation predictability and large-scale cli-
mate features. Some of these, such as the correlation between
the EPNP and I, measure in the Southeast, potentially indicate
very long range connections. Others, such as the widespread
correlation of I, with the AMO, indicate common drivers of
precipitation variability over large regions of the United States
(Kim et al. 2020).

5. Conclusions

Although we focus only on predictability based on the
knowledge of past precipitation occurrences, the results pre-
sented here could further link to changes in the water balance
and ecosystem properties for various locations. For example,
the regional clustering of flood events (Dickinson et al. 2019)
and storm tracks and intensities (Hurrell and Deser 2010) both
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relate to spatial and temporal patterns in precipitation, and
have been found to relate to climate indices. To further un-
derstand implications of shifts in precipitation predictabil-
ity, a more focused analysis of individual regions could
involve basin characteristics such as the stream network
structure, soil types, evapotranspiration, and human man-
agement. In determining how spatial persistence is related
to flow rates in a given stream, aspects such as evapotrans-
piration, water uses, and groundwater may be confounding
factors. For example, it has been found that up to 40% of
evaporation dynamics can be explained by climate indices
(Martens et al. 2018). In this way, large-scale climate forcing
and local conditions may exert different controls on differ-
ent aspects of the water balance. From a climate perspec-
tive, there may be more correlations between precipitation
and climate indices detected if climate indices were lagged
in time, or if precipitation magnitudes were considered
more explicitly.

The presence of trends over time and correlations of in-
formation measures with climate indices indicates that the
movement of precipitation in space, regardless of event size,
has changed in certain regions. In general, this type of study can
be useful to both understand patterns in precipitation across
large regions, or more regional linkages between precipitation,
streamflow, and watershed characteristics. In a broader con-
text, information-based methods such as those applied here
can be used to study persistence, predictability, and causal in-
teractions for a variety of Earth system processes.
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