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ABSTRACT: This study presents the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural

Networks–Dynamic Infrared Rain Rate (PDIR-Now) near-real-time precipitation dataset. This dataset provides hourly, quasi-

global, infrared-based precipitation estimates at 0.048 3 0.048 spatial resolution with a short latency (15–60min). It is intended to

supersede the PERSIANN–Cloud Classification System (PERSIANN-CCS) dataset previously produced as the near-real-time

product of the PERSIANN family.Wefirst provide a brief description of the algorithm’s fundamentals and the input data used for

deriving precipitation estimates. Second, we provide an extensive evaluation of the PDIR-Now dataset over annual, monthly,

daily, and subdaily scales. Last, the article presents information on the dissemination of the dataset through the Center for

Hydrometeorology and Remote Sensing (CHRS) web-based interfaces. The evaluation, conducted over the period 2017–18,

demonstrates the utility of PDIR-Now and its improvement over PERSIANN-CCS at all temporal scales. Specifically, PDIR-Now

improves the estimation of rain/no-rain days as demonstrated by a critical success index (CSI) of 0.53 compared to 0.47 of

PERSIANN-CCS. In addition, PDIR-Now improves the estimation of seasonal and diurnal cycles of precipitation aswell as regional

precipitation patterns erroneously estimated by PERSIANN-CCS. Finally, an evaluation is carried out to examine the performance

of PDIR-Now in capturing two extreme events, Hurricane Harvey and a cluster of summer thunderstorms that occurred over the

Netherlands, where it is shown that PDIR-Now adequately represents spatial precipitation patterns as well as subdaily precipitation

rates with a correlation coefficient (CORR) of 0.64 for Hurricane Harvey and 0.76 for the Netherlands thunderstorms.
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1. Introduction

Providing consistent and accurate precipitation measure-

ments remains one of the most challenging tasks facing the

weather and climate community. Rain gauge, radar, and sat-

ellite are the primary instruments for measuring precipitation.

Rain gauge observations represent the most direct method for

precipitation measurement and provide the longest historical

records (Kidd and Levizzani 2011; Mahmoud et al. 2018);

however, the variability of precipitation across all spatial and

temporal scales cannot be resolved by conventional rain

gauges. For instance, it has been shown that rainfall associ-

ated with small-scale convective storms vary by up to 14%

over a 100-m distance (Goodrich et al. 1995). Radar instru-

ments, which provide real-time precipitation measurements at

high spatiotemporal resolution, are attractive alternatives to

rain gauges (Kitzmiller et al. 2013; Price et al. 2014). However,

the high installation and maintenance costs along with the

difficulties in accessibility over remote regions have limited the

establishment of a global radar network (Habib et al. 2012;

Westrick et al. 1999; Scofield and Kuligowski 2003). Satellite-

based precipitation estimation promises to provide a remedy

for the shortcomings of observing precipitation using radars

and in situ rainfall gauges (Sun et al. 2018; Xie et al. 2007).

Early studies that attempted to estimate rain rate from satellite

multichannel visible (VIS) and infrared (IR) imagery dates

back to the late 1970s (Griffith et al. 1978; Hsu et al. 1997).

Today, four decades since the work of Griffith et al. (1978),

estimation of precipitation from satellites has significantly

advanced, and satellite-based estimates are frequently merged

with in situ precipitationmeasurements to provide high-quality

datasets (e.g., Huffman et al. 2007; Beck et al. 2017) for a rangeDenotes content that is immediately available upon publica-
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of hydrologic and hydroclimatic applications. Nonetheless, the

ever-continuing search for an ‘‘optimum’’ method to accurately

estimate precipitation from satellites, made evident by the dozens

of datasets currently available to the community, stands as a tes-

timony that the potential of satellites is yet to be fully realized.

Themain difficulty in estimating precipitation from satellites

lies in the trade-off between sampling temporal frequency and

accuracy. On one hand, IR imagery data from sensors on board

geostationary-Earth-orbiting (GEO) satellites are obtained

almost every 5–30min, but they only provide information on

cloud-top characteristics (e.g., temperature, size, and the phase

of cloud particles), an indirect proxy of surface precipitation

rate (Grecu et al. 2004). On the other hand, passive microwave

(PMW) sensors deployed on low-Earth-orbiting (LEO) satellites

provide rich information on the vertical profile of the atmosphere

and hydrometeors directly related to precipitation; however,

their sampling is more sparse and less frequent compared to

IR imagery (Behrangi et al. 2009; Marzano et al. 2004; Kidd

and Levizzani 2011). Thus, IR-based precipitation estimation

products have the advantage of providing higher spatiotem-

poral resolutions with a minimum latency that meet the re-

quirements for many near-real-time applications (Arkin and

Meisner 1987). More commonly, satellite-based algorithms

take advantage of information from both IR and PMW sources

(Behrangi et al. 2009; Joyce et al. 2004; Turk et al. 2000; Miller

et al. 2001; Sorooshian et al. 2000; Hsu et al. 1997; Levizzani

et al. 1996; Kummerow and Giglio 1995; Bellerby et al. 2000).

Arguably, themost sophisticated example of such algorithms is

the Climate Prediction Center morphing method (CMORPH)

(Joyce et al. 2004), which relies on snapshot and propagated

PMW as the primary source of precipitation, with IR estimates

used over cold surface or when PMW is excessively propagated.

Alternatively, several methods use IR data as the main input to

derive an empirical relationship between cloud-top temperature

and surface precipitation rate, and they incorporate PMW only

for calibration purposes (Miller et al. 2001; Turk et al. 2003).

During the recent years, NOAA’s Advanced Baseline

Imager (ABI) on board the latest generation of the Geostationary

Operational Environment Satellite (GOES-R series) (Schmit et al.

2009, 2005; Gurka and Schmit 2004), the Advanced Himawari

Imager (AHI) (Letu et al. 2020), on boardHimawari-8/-9 (H8/9),

and the Advanced Geostationary Radiation Imager (AGRI)

on board Fengyun-4A (FY-4A) (Yang et al. 2017) have been

launched into the geostationary (GEO) orbit. These sensors

provide high temporal information with 10–15-min coverage

and high spatial information with 0.5–2 km for AHI and ABI

sensors and 0.5–4 km for AGRI measurements in 16 (14 for

AGRI) spectral bands. The new generations of GEO sensors

have opened new opportunities to improve the precipitation

estimates with both high spatial and high temporal resolutions.

With this promising progress in GEO sensor technologies along

with the advancements in machine learning (ML) techniques,

such as support vector machines, random forests, artificial neural

network (ANN), deep learning, the new generation of precipita-

tion retrieval algorithms must outperform the current operational

products (Meyer et al. 2016; Kuligowski et al. 2016; Sadeghi et al.

2019; Upadhyaya et al. 2020). In recent years, many studies have

been conducted to utilize the generation sensor information to

improve the current precipitation retrieval algorithms. For

example, Kuligowski et al. (2016) proposed the Self-Calibrating

Multivariate Precipitation Retrieval (SCaMPR) algorithm as an

operational precipitation product over the CONUS based on

GOES-R series information. This dataset serves Spinning

Enhanced Visible and Infrared Imager (SEVIRI) on board

Meteosat-8 as inputs and passive microwave (PMW) precipitation

rate estimates from the Climate Prediction Center (CPC) com-

bined microwave (MWCOMB) dataset (Joyce et al. 2004) for

training. Although the developed retrieval algorithms using new

generation of sensors provide higher spatial and temporal reso-

lution over the contiguous United States (CONUS), their spatial

coverage limits their capability for global implementation.

The present study introduces a new global near-real-time dataset

based primarily on IR imagery referred to as the Precipitation

Estimation from Remotely Sensed Information Using Artificial

Neural Networks (PERSIANN) Dynamic Infrared Rain Rate

(PDIR-Now). PDIR-Now is intended to supersede PERSIANN–

Cloud Classification System (PERSIANN-CCS) (Hong et al.

2004), which has been the standard near-real-time precipitation

dataset produced by the Center for Hydrometeorology and

Remote Sensing (CHRS) at University of California, Irvine.

PDIR-Now is based on the PDIR algorithm (Nguyen et al.

2020), which, like other IR-based algorithms, depends on

empirically derived cloud-top temperature–precipitation rate

(Tb–R) relationships. PDIR, however, corrects for the errors

that frequently result from such an approach by calibrating the

empirical relationships regionally based on monthly precipita-

tion climatology (Nguyen et al. 2020). In addition, the PDIR

algorithm incorporates several techniques to further reduce es-

timation errors and uncertainties. Because PDIR-Now depends

primarily on IR data, itsmain advantage is providing near-global

precipitation estimates at a short latency (15–60min), hence the

acronym ‘‘Now.’’ In addition, PDIR-Now leverages from

IMERG PMW dataset for training, however, the PDIR algo-

rithm was trained using the MWCOMB dataset.

The remainder of this article is organized as follows.

Section 2 briefly introduces input data used for PDIR-Now

development as well as baseline datasets used for evaluation.

Section 3 provides an overview of the PDIR algorithm and its

components, and it highlights how PDIR-Now differs from its

predecessors. Section 4 provides a comprehensive evaluation of

PDIR-Now against distinct baseline precipitation datasets across a

variety of spatial and temporal scales. Section 5 sums up the eval-

uation results, draws conclusions and outlines future directions.

2. Data

a. Input data

1) IR DATA

This dataset is provided by the Climate Prediction Center at

the National Weather Service. It merges 11-mm brightness

temperature (Tb) data from all available geostationary satel-

lites (GMS-5,GOES-8,GOES-10,Meteosat-7, andMeteosat-5)

into a single half-hourly IR Tb field at the 4-km spatial reso-

lution (Janowiak et al. 2001). This dataset is the main input

used to produce PDIR-Now precipitation estimates.
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2) IMERG MERGED PMW PRECIPITATION

The high-quality PMW is one of several fields available in the

IntegratedMultisatellite Retrievals for GPM (IMERG) dataset. It

is based on intercalibrated PMW estimates and provides a global,

half-hourly estimate at the 0.18 3 0.18 spatial resolution (Huffman

et al. 2018). Precipitation estimates from this dataset, along with IR

data, are used to develop the (Tb–R) relationships in the calibration

period (2014–16). It should be emphasized that the micro-

wave data are only used for calibration, not a real-time input.

3) WORLDCLIM 2 PRECIPITATION

A monthly, high spatial resolution (1 km2) precipitation

dataset developed by Fick and Hijmans from spatially inter-

polated weather stations data (Fick and Hijmans 2017), this

dataset provides precipitation data for the period 1970–2000

over global land areas. It is used here as precipitation clima-

tology to adjust the Tb–R relationships over global land.

4) PERSIANN-CDR

PERSIANN–Climate Data Record (CDR) (Ashouri et al.

2015) belongs to the PERSIANN family of precipitation da-

tasets (Nguyen et al. 2019). It provides daily precipitation for

the period (1983–delayed present) over land and oceans at

(608S–608N); precipitation estimates from PERSIANN-CDR

are bias-adjusted using GPCP V2.3 monthly 2.58 3 2.58. Here,

PERSIANN-CDR is used to complement the land-based

WorldClim 2 dataset by providing precipitation climatology

over oceans which is used to adjust the Tb–R relationships.

b. Evaluation data

1) NCEP STAGE IV

The National Centers for Environmental Prediction (NCEP)

provides Stage IVprecipitation data at hourly temporal resolution

and a spatial resolution of 4 km. This dataset is a multisensor

analysis that includes gauge and WSR-88D radar data among

others (Lin and Mitchell 2005). Stage IV is frequently used to

perform evaluations of precipitation data because of its high spa-

tiotemporal resolution, multidecadal extent, and proven accuracy

frommanual quality control (Becket al. 2019). In the present study,

Stage IV (hereafter referred to as ST4) is usedas a baseline over the

contiguous United States (CONUS) against which the perfor-

mance of PDIR-Now and PERSIANN-CCS is benchmarked.

2) IMERG FINAL RUN

IMERG is a half-hourly 0.18 3 0.18 precipitation dataset that

uses both PMW and IR data. The ‘‘Final Run,’’ hereafter re-

ferred to as IMERGF, incorporates further information from

gauges to create a high-quality global precipitation data with

approximately 3.5 months delay (Huffman et al. 2018). It is used

as a baseline for the global evaluation of daily precipitation es-

timates from PERSIANN-CCS and PDIR-Now.

3) GPCP 1DD

The Global Precipitation Climatology Project (GPCP)

1DD (V1.3) product combines data from satellites and gauges

to provide a 18 3 18 daily precipitation dataset for the period 1996–
present (Huffman et al. 2001). GCPC 1DD’s high spatiotemporal

resolution and integration of gauge readings make it a valuable

dataset for short-duration evaluations of high-resolution precipi-

tation products. Daily precipitation estimates from this dataset

are accumulated to monthly scale, and they are used here as a

baseline for the global evaluation of monthly precipitation

estimates from PERSIANN-CCS and PDIR-Now.

1-h KNMI gauge-adjusted radar

The Royal Netherlands Meteorological Institute (KNMI) pro-

vides hourly 1-km radar precipitation data that are bias adjusted

using the KNMI rain gauge networks. This dataset is used to

evaluate the performance of PERSIANN-CCS and PDIR-Now in

estimating precipitation during anextreme rainfall event that hit the

Netherlands in June 2019 as it is the highest spatiotemporal reso-

lution gridded radar–gauge product available over theNetherlands.

4) GSMAP-NOW

The Japanese Aerospace Exploration Agency (JAXA) pro-

duces a series of satellite-derived precipitation products under the

Global Satellite Mapping of Precipitation (GSMaP). Among the

GSMaPproducts, GSMaP-Now is themost comparable to PDIR-

Now since it is a near-real-time product mainly based on IR data,

making it a valuable comparison dataset for PDIR-Now at sub-

daily time scales for extreme hydroclimate events. It is used to

evaluate a series of summer thunderstorms over the Netherlands.

3. PDIR algorithm

In 1997, the PERSIANNalgorithm (Hsu et al. 1997; Sorooshian

et al. 2000) was developed to provide high-resolution quanti-

tative precipitation estimation (QPE). As its namesake states,

the original PERSIANN algorithm provides rainfall estimates

by using artificial neural networks (ANNs). From the original

framework of the PERSIANN algorithm, a 361 years archive

of global, daily rainfall product named PERSIANN-CDR was

produced using the Global Precipitation Climatology Project

(GPCP)V2.3monthly rainfall dataset andCPC 4-km IRTb data

from the beginning of the satellite era (Ashouri et al. 2015).

Original PERSIANN’s 2-day latency, a consequence of

the PMW readings used as input to PERSIANN, made it un-

usable for applications where near-real-time measurements

are needed, like flood modeling. To overcome this issue,

PERSIANN-CCS forewent the use of PMWdata and utilized a

system of trained cloud-type models with characteristic Tb–R

relationships produced by self-organizing feature maps (SOFMs)

to estimate rainfall at short latency periods. In addition to the

short latency period, PERSIANN-CCS’s sole reliance on IR data

made the product available in hyperspatial resolution of 0.048
and hourly temporal resolution. However, without PMW data,

the accuracy of PERSIANN-CCS is starkly impaired from

original PERSIANN’s performance, especially for extreme

precipitation and precipitation in topographically complex

regions, such as western CONUS.

To overcome some of the accuracy issues of PERSIANN-CCS

and improve estimates of extreme and orographic precipitation,

where short latency QPE is sorely needed for flood modeling

applications, Nguyen et al. (2020) developed the PDIR algorithm

based largely on the framework of PERSIANN-CCS. As such,
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PDIR is also a real-time, high-resolutionprecipitationproductwith

short delay time (15 min–1h) that uses a catalog of unique cloud

types, created by training SOFMswith PMWdata, to estimate rain

rates based on the temperature, size, and texture features of the

cloudpatches at temperatures below273K.Thedefining featureof

PDIR is the dynamical shifting of Tb–R curves using rainfall cli-

matology data (spatiotemporal resolution of 0.048 and monthly)

to adjust the curve’s position. This approach is intended to adjust

biases (i.e., to produce more precipitation in regions with

wetter climatology and vice versa). As with PERSIANN-CCS,

PDIR solely relies on near-real-time IR data from GEO sat-

ellites as input, allowing for precipitation estimates in as short

as 15min after their occurrences. For more information on the

methodology of the PDIR algorithm, see Nguyen et al. (2020).

It should be noted that the PDIR-Now dataset presented

in this article is based on the operational implementation of

the PDIR algorithm which differs slightly from that originally

described in Nguyen et al. (2020). Specifically, the current

implementation employs a temperature threshold of 263K for

cloud top temperature as opposed to 273K in Nguyen et al.

(2020). This is because a higher temperature threshold im-

proves the detection of warm rain events while simultaneously

increasing the false alarm rate. In the earlier work of Nguyen

et al. (2020), which examined the performance of the PDIR

algorithm only over western United States, it was found that

a threshold of 273K achieves favorable results whereas a

threshold of 263K was found in the present study to be optimal

for global implementation. Also, the precipitation dataset used

to derive Tb–R curves in the present study is IMERG Merged

PMW precipitation (see section 2) whereas the Combined

Microwave precipitation dataset (MWCOMB), produced by

the CPC, was used in Nguyen et al. (2020). Moreover, the

current implementation of the PDIR algorithm consists of an

additional bias adjustment step in which PDIR-Now rainfall

estimates are corrected using probability cumulative density

function (cdf) matching with IMERG Merged PMW precipita-

tion. Last, PDIR-Now dataset is produced at a spatial resolu-

tion of 0.048 with a quasi-global coverage (608S–608N).

4. Evaluation

This section evaluates the performance of PDIR-Now in

capturing precipitation amounts and variability across several

temporal scales. The evaluation commences at the coarsest

temporal scale, annual, and then it is narrowed down tomonthly,

daily, and then subdaily scales. All analysis is conducted either

during the entire evaluation period, 2017–18, or a part of it.

Throughout the analysis, PDIR-Now will be compared with

PERSIANN-CCS to highlight howmuch improvement has been

attained using PDIR-Now. The baseline datasets against which

PDIR-Now and PERSIANN-CCS are benchmarked varies ac-

cording to geographical region and temporal scale of analysis.

a. Annual

Figures 1a–c show the mean annual precipitation aver-

aged during the evaluation period (2017–18) for IMERGF,

PERSIANN-CCS, andPDIR-Now, respectively.Here, IMERGF

is used as a baseline since it combines data from multiple sources

including IR, PMW, and gauges. Clearly, PERSIANN-CCS

overestimates precipitation in the tropical regions of Africa,

South America, and Asia. In addition, it underestimates bands

of high precipitation in the northwestern Atlantic Ocean,

northern Pacific Ocean along the coast of western Canada, and

over the SouthernHemisphere oceans. This last observation is

clearly shown in Fig. 1d, which shows the average zonal an-

nual precipitation. In particular, PERSIANN-CCS (blue line)

FIG. 1. Mean annual precipitation (mm) during the evaluation period (2017–18) for (a) IMERGF (final release),

(b) PERSIANN-CCS, and (c) PDIR-Now. (d) Zonal mean annual precipitation for the period (2017–18) for the

three datasets: IMERGF (black), PERSIANN-CCS (blue), and PDIR-Now (red).
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deviates significantly from IMERGF over the latitudes

(2608, 2208) indicating considerable underestimation. On the

other hand, PDIR-Now improves estimation significantly in

terms of zonal precipitation as shown in Fig. 1d (red and black

lines). In addition, it clearly captures bands of high precipita-

tion previously underestimated by PERSIANN-CCS while

reducing overestimation in tropical regions. Despite the

improved performance of PDIR-Now, there are still ap-

parent discrepancies between PDIR-Now and IMERGF. In

particular, PDIR-Now overestimates bands of rainfall in west-

ern Pacific Ocean and scattered spots in central equatorial

Africa. Overall, mean annual global precipitation from PDIR-

Now is 1150mm, and it is more consistent with IMERGF esti-

mate of 1124mm compared to 960mm from PERSIANN-CCS.

b. Monthly

Here we examine the performance of PDIR-Now in cap-

turing the seasonal cycle of precipitation, based on monthly

precipitation, with GPCP 1DD precipitation being used as a

baseline for evaluation. We carry out the analysis at two re-

gions with distinct rainfall seasonal cycles. The first region

(location 1) is a rectangular region bounded by the latitudes

(18–68N) and the longitudes (168–218E). This region lies at the

northwestern part of the Congo River basin with elevation in

the range of 0–700m above sea level. Due to its location in the

tropics, rainfall is consistent throughout the year with slight

peak during the months of August, September, and October;

consequently, vegetation land cover mostly consists of ever-

green broadleaf forest. Figure 2a shows the spatially averaged

monthly precipitation for the year 2017. PDIR-Now (red line)

closely follows the monthly GPCP precipitation (black

line), capturing the slight peak in (August–October) period.

PERSIANN-CCS (blue line), on the other hand, overestimates

rainfall amount throughout the year as well as showing an

erroneous two-rainy-seasons cycle that differs from GPCP.

Overall, the CORR and root-mean-square error (RMSE) of

PDIR-Now are 0.83 and 43mm, respectively, compared to 0.66

and 145mm for PERSIANN-CCS. The second region (loca-

tion 2) is in the humid Amazon rainforest bounded by the

latitudes (138–88S) and the longitudes (708–658W), and it ex-

tends across Brazil, Bolivia, and Peru. Unlike location 1, this

region exhibits a pronounced rainfall seasonal cycle with a very

dry season during the months of June, July, and August.

Figure 2b shows that both PERSIANN-CCS and PDIR-Now

adequately capture the seasonal cycle of rainfall with CORRof

0.88 and 0.85, respectively; however, PDIR-Now improves

estimation of rainfall amounts, most notably reducing the

overestimation of PERISANN-CCS during the months of

October, November, and December. RMSE is reduced from

98mm (PERSIANN-CCS) to 59mm (PDIR-Now).

c. Daily

Despite the usefulness of the analysis presented in the pre-

vious two subsections for establishing the general validity of

PDIR-Now, precipitation estimates at the daily and subdaily

scales are more important from the standpoint of operational

watershed hydrology and water resources management for ap-

plications such as flood forecasting. Furthermore, since PDIR-

Now is an IR-based precipitation dataset, it is intended to be

particularly advantageous in providing timely and adequate pre-

cipitation estimates when other datasets based on PMW and

multisensor fusion are not available. With these considerations in

mind, analysis of PDIR-Now at the daily and subdaily scales is

carried out in this subsection and the following one.

FIG. 2. Monthly precipitation time series for the year 2017. Black, blue, and red lines represent GPCP, PERSIANN-CCS, and

PDIR-Now, respectively. (a) The 58 3 58 region over Central Africa (location 1) bounded by the latitudes 18–68Nand longitudes 168–218E.
(b) The 58 3 58 region over South America (location 2) bounded by the latitudes 138–88S and longitudes 708–658W.
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Figure 3 shows the difference in rainfall estimation statistics,

namely CORR, bias, relative RMSE and CSI between PDIR-

Now and PERSIANN-CCS benchmarked against IMERGF.

In other words, Fig. 3 shows the improvement obtained by

PDIR-Now with respect to PERSIANN-CCS. Positive num-

bers (red colors in Fig. 3) indicate that PDIR-Now is more

skillful compared to PERSIANN-CCS for a given metric

meanwhile negative numbers (blue colors) indicate the opposite.

Figure 3a shows the difference in CORR of daily precipitation.

Apart from few regions in the Sahara Desert, Mediterranean Sea,

and other scattered spots over oceans, PDIR-Now shows a better

CORR compared to PERSIANN-CCS. While the average in-

crease in CORR over the entire global domain is only marginal

(0.52–0.57; see Table 1), significant regional improvement is

present specifically over eastern Asia. Precisely, CORR in daily

precipitation improves from 0.44 to 0.54 over the Asian continent

(see Table 1). Similar patterns are observed in terms of bias in

Fig. 3b with significant improvement over eastern Asia, central

Africa, and Australia. Specifically, the biases are reduced from

2.07 to 0.28, from 1.38 to 0.06, and from 0.35 to 0.05 over the

continents of Africa, Asia, and Australia, respectively. Figure 3c

shows the improvement obtained in RMSE computed as the rela-

tive RMSEwhich is the RMSE difference (RMSEPERSIANN-CCS2
RMSEPDIR-Now) normalized by RMSEPERSIANN-CCS. It shows that

PDIR-Now is superior toPERSIANN-CCSovermost of the global

land; specifically,RMSE inglobal land is reduced from7 to5.61mm

inPDIR-Now compared toPERSIANN-CCS. Figure 3d shows the

difference in CSI which is a skill metric that summarizes the per-

formanceof the twoalgorithms in termsof their detectionof rainfall

events (rain/no rain). A threshold of 0.1mm is used to distinguish

between rainy and non-rainy days. It clearly shows that PDIR-Now

is more skillful than PERSIANN-CCS in detecting rainfall events

and reducing false alarms over most regions, particularly over

the Southern Hemisphere (608–408S) oceans.
We now turn our analysis at the daily scale into regional

scales of more unified precipitation regimes. Figure 4 shows the

probability density functions (pdfs) of daily precipitation for

each month spatially averaged over the northwestern United

States region. The spatial domain considered here covers

the entire states of Washington, Oregon, Idaho, Montana,

Wyoming, and northern parts of California, Utah, and Colorado.

We utilize ST4 dataset as a baseline for evaluation since it

combines information from radar, satellite, and dense gauge

network. Figure 4a shows the pdfs of daily precipitation during

the year 2017 for values in the range of 1–6mm. PDIR-Now

pdfs are almost identical to those of ST4 for the rainymonths of

November, December, January, and February. While pdfs of

PDIR-Now deviate from ST4 for some months, they provide

mostly estimates better than that of PERSIANN-CCS. Similar

conclusions, albeit less significant, can be drawn from Fig. 4b

for high values of daily rainfall in the range of 6–20mm. It

should be noted that the improvement of PDIR-Now with

respect to PERSIANN-CCS is expected to be particularly

pronounced in this region due to its complex topography.

Specifically, the motivation behind the development of

PDIR-Now was to overcome the limitations of IR-based

algorithm (e.g., PERSIANN-CCS) in estimating precipitation

over complex terrain (Nguyen et al. 2020).

d. Subdaily

1) DIURNAL CYCLE

Here we examine the performance of PDIR-Now in cap-

turing the diurnal cycle of precipitation at a regional scale,

FIG. 3. Difference in performancemetrics for daily rainfall during the evaluation period (2017–18).All metrics are computed against the

baseline product IMERGF. The maps show the difference between the performance metrics of PDIR-Now and PERSIANN-CCS; red

color indicates that PDIR-Now has better performance with respect to PERSIANN-CCS. (a) Correlation, (b) relative bias, (c) relative

RMSE (i.e., RMSE normalized by annual precipitation), and (d) CSI.
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specifically over the U.S. state of Kansas. Although the climate

in Kansas varies considerably ranging from humid continental

in the north to humid subtropical in the south, patterns of

diurnal cycle are consistent throughout most of the state.

Specifically, the state experiences severe thunderstorms during

the rainy seasons of summer and spring. Such storms cause a

salient signature in the diurnal cycle of precipitation as they

mostly occur around noon time. Figure 5 shows the diurnal

cycle during each season of the year for PDIR-Now (red),

PERSIANN-CCS (blue), and the baseline dataset ST4 (black).

Of concern are the summer (JJA) and spring (MAM) seasons

during which the region receivesmost of its annual precipitation.

TABLE 1. Summary statistics of comparison metrics for daily precipitation in the period (2017–18): correlation (CORR), root-mean-

square error (RMSE), multiplicative bias (BIAS), probability of detection (POD), false alarm ratio (FAR), and critical success index

(CSI). IMERGF is used as benchmark. Font style code: IMERGF (regular), PERSIANN-CCS (italic), PDIR-Now (bold). The asterisk (*)

indicates the threshold for rain/no-rain 5 0.1mm.

Domain

Daily precipitation

(mm) CORR BIAS RMSE (mm) POD* FAR* CSI*

Global 3.08 2.63 3.15 0.52 0.57 0.08 0.02 7.82 7.80 0.54 0.63 0.21 0.24 0.47 0.53
Land 2.36 3.16 2.47 0.53 0.58 1.08 0.12 7.00 5.61 0.72 0.72 0.24 0.22 0.58 0.60

Ocean 3.36 2.44 3.41 0.51 0.56 20.28 20.02 8.13 8.62 0.47 0.59 0.20 0.24 0.42 0.50

Asia 2.11 2.86 2.15 0.44 0.54 1.38 0.06 6.92 5.18 0.72 0.69 0.28 0.24 0.56 0.57

North America 2.27 2.52 2.34 0.56 0.60 0.39 0.04 6.01 5.38 0.72 0.75 0.18 0.21 0.61 0.62
Europe 2.25 1.91 2.55 0.50 0.54 20.09 0.13 5.61 6.08 0.70 0.81 0.15 0.22 0.62 0.66

Africa 1.89 3.47 2.05 0.57 0.59 2.07 0.28 7.11 4.86 0.72 0.67 0.31 0.24 0.55 0.57

South America 4.38 5.68 4.54 0.64 0.64 0.61 0.11 9.56 8.13 0.77 0.78 0.15 0.14 0.68 0.69

Oceania 5.71 3.84 6.89 0.52 0.57 20.34 0.36 11.48 13.18 0.65 0.82 0.08 0.15 0.61 0.70
Australia 1.25 1.59 1.30 0.58 0.62 0.35 0.05 5.76 4.44 0.61 0.66 0.20 0.20 0.53 0.56

North Atlantic 3.39 1.71 3.25 0.51 0.56 20.44 20.04 8.23 8.76 0.51 0.65 0.18 0.24 0.46 0.54

North Pacific 3.38 2.40 3.38 0.47 0.55 20.20 0.02 8.84 9.06 0.55 0.68 0.21 0.26 0.48 0.55
Mid-Atlantic 2.17 1.81 2.17 0.55 0.57 20.07 20.13 5.53 6.04 0.35 0.36 0.32 0.30 0.31 0.32

Mid-Pacific 3.96 3.93 4.00 0.66 0.67 20.08 20.06 8.73 9.54 0.45 0.49 0.17 0.18 0.42 0.45

Mid-Indian 3.64 3.58 4.00 0.70 0.70 20.08 0.06 9.28 10.59 0.47 0.52 0.16 0.19 0.43 0.47

South Atlantic 3.06 1.54 3.07 0.39 0.46 20.45 20.00 7.64 7.79 0.49 0.69 0.24 0.31 0.42 0.53
South Indian 2.79 1.30 2.93 0.37 0.46 20.55 0.05 6.95 7.23 0.46 0.69 0.20 0.26 0.42 0.55

South Pacific 3.56 1.89 3.58 0.40 0.47 20.47 20.01 8.72 8.81 0.47 0.67 0.19 0.25 0.42 0.55

FIG. 4. Histograms of daily precipitation over the northwestern United States for the year 2017. Black, blue, and red lines represent

ST4, PERSIANN-CCS, and PDIR-Now, respectively: (a) 1–6 and (b) 6–25mm.
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Figures 5b and 5c show the pronounced diurnal cycle during

these seasons. While both PERSIANN-CCS and PDIR-Now

capture the diurnal cycle, which reaches its peak at noon time,

PERSIANN-CCS overestimates the amount of rainfall in both

seasons. PDIR-Now, however, estimates the amount of precip-

itation adequately during the spring season, and to a lesser extent

in the summer season. During the winter months (DJF), Fig. 5a

shows that PERSIANN-CCS substantially overestimates rainfall

rates; on the contrary, PDIR-Now rainfall amount is quite con-

sistent with ST4. However, it appears that the diurnal cycle in

DJF as well as in SON are not well captured by PDIR-Now. This

might be due to the low rain rates during both seasons, approx-

imately 0.05 and 0.1mmh21 during DJF and SON respectively,

as it is well recognized that satellite-based precipitation algo-

rithms are generally less adept at estimating low rain rates. It is

also worthwhile to mention that during both DJF and SON, the

diurnal cycle is less pronounced; therefore, the estimates of ST4

are more susceptible to measurement noise.

2) EXTREME EVENTS

The performance of satellite-based precipitation datasets in

capturing extreme rainfall events is of particular importance to

be examined due to the important role that satellite observa-

tions can play in preparedness, risk management, and, in turn,

mitigating the devastating impacts of such events. Here, we

examine the performance of PDIR-Now in capturing precipita-

tion during Hurricane Harvey, which resulted in unprecedented

rainfall accumulations of over 1.5m that caused extensive

flooding damage over theHoustonmetropolitan region, and an

extreme rainfall event of thunderstorms that hit most of the

Netherlands in June 2019, that resulted in damages, flooding,

and injuries.

(i) Hurricane Harvey

To evaluate PDIR-Now’s performance during Hurricane

Harvey, we evaluate it against ST4 and compare its performance

to PERSIANN-CCS over the states of Texas, Oklahoma,

Kansas, Louisiana, Arkansas, and Alabama during the period

of 24–30 August 2017. Figures 6a–c illustrate PDIR-Now’s im-

proved performance compared to PERSIANN-CCS at 6-h ac-

cumulations. Concretely, PDIR-Now’s CORRof 0.64,RMSEof

7.99mm, and BIAS of 20.32 are all clear improvements over

PERSIANN-CCS’s CORR, RMSE, and BIAS values of 0.34,

9.89mm, and 20.53, respectively. A quick look at the scatter-

plots between PDIR-Now and PERSIANN-CCS (Figs. 6d,e)

show that while both products experience underestimation and

overestimation, PDIR-Now better captures extreme precipita-

tion, made evident by the band of points that straddle then dip

slightly below the red line of perfect correlation. Indeed,

PERSIANN-CCS’s scatterplot hugs the x and y axes to its

extrema with few points of extreme precipitation recorded

near the line of perfect correlation, indicating systematic and

extreme overestimation and underestimationwith PERSIANN-

CCS. PDIR-Now, on the other hand, suffers more from

FIG. 5. Diurnal cycle of spatially averaged precipitation over Kansas for the period (2017–18). Black, blue, and red lines

represent ST4, PERSIANN-CCS, and PDIR-Now, respectively. (a) DJF, (b) MAM, (c) JJA, and (d) SON.
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underestimation than overestimation, a testament to the

unprecedented nature of precipitation during Hurricane

Harvey, which has stumped other satellite QPE method-

ologies (Omranian et al. 2018)When we consider the spa-

tial distribution of precipitation over the study period

(Figs. 6a–c), there are few and subtle differences between

PDIR-Now, PERIANN-CCS, and ST4. Most notably,

PDIR-Now’s accumulation totals in northwest Louisiana/east

Texas and in central Texas (Austin and San Antonio

regions) better match those from ST4 than PERSIANN-CCS,

though totals over the latter region are still underestimated

by 501 mm.

(ii) 2019 summer thunderstorms over the Netherlands

Weuse a high-quality dataset based on gauge-adjusted radar

precipitation estimates provided by KNMI [see section 2b(4)]

as a baseline for validation. Figure 7 shows the accumulated

precipitation that resulted from the event during the period

(3–6 June 2019) as estimated by gauge-adjusted radar,

GSMaP-Now, PERSIANN-CCS, and PDIR-Now. Although

PERSIANN-CCS captures the spatial variability of rainfall, it

severely underestimates the amount of rainfall. GSMaP-Now,

on the other hand, misses the pattern entirely, recording a blob

of high precipitation from the center of the Netherlands to the

southeast that does not appear in the evaluation radar–gauge

dataset, while missing the bands of high precipitation over the

northwest region of the country. PDIR-Now, however, pro-

vides better estimates of rainfall amounts, especially over the

western half of the Netherlands, though it appears to overes-

timate accumulated rainfall at the northeastern regions. These

observations also manifest at the 3-hourly scale, shown by the

scatterplots of 3-hourly rainfall during the entire event period

for PDIR-Now, PERSIANN-CCS, and GSMaP-Now. Clearly,

PERSIANN-CCS underestimates precipitation rates as evi-

dent by the cluster of points below the one-to-one line (red

line). On the other hand, GSMaP-Now significantly overesti-

mates rainfall, showcased by a positive bias, relatively large

RMSE, and large patch of points above the red line of perfect

correlation. Overall, CORR of 3-hourly rainfall are 0.76, 0.64,

and 0.49 for PDIR-Now, PERSIANN-CCS, andGSMaP-Now,

respectively.

5. Data dissemination and web-based interface

PDIR-Now dataset is available through two web-based

interfaces operated by the Center for Hydrometeorology

and Remote Sensing (CHRS) at the University of California,

Irvine: the CHRS iRain interface (https://irain.eng.uci.edu/),

a website that provides a user-friendly interface to visualize

global precipitation dataset for the last 72 h, and the CHRS

Data Portal (https://chrsdata.eng.uci.edu/), which is intended

as an accessible interface for the download of PDIR-Now

FIG. 6. Accumulated precipitation of Hurricane Harvey over Texas and the surrounding area for the period 24–30 Aug 2017 as

estimated by (a) ST4, (b) PERSIANN-CCS, and (c) PDIR-Now. Scatterplots of 6-hourly precipitation from (d) PERSIANN-CCS vs

ST4 and (e) PDIR-Now vs ST4 during the period 24–30 Aug 2017.
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dataset as well as other PERSIANN family datasets. The latter

is described in detail in Nguyen et al. (2019). Here, we provide

a brief description of the two interfaces.

a. CHRS data portal

The global PDIR-Now dataset is hosted for public distri-

bution at CHRS’s in-house data distribution web system, the

CHRS Data Portal (chrsdata.eng.uci.edu; Nguyen et al. 2019).

Currently, the span of the PDIR-Now dataset is from 1 January

2014 to the present, with a latency of 15–60min after the time of

occurrence. The CHRS Data Portal emphasizes ease of use by

allowing users to query, process, compare, and analyze pre-

cipitation data onsite. In addition, it focuses on intuitive dis-

tribution by employing a simple data request system that

allows users to aggregate and/or clip data over space and

time prior to download. Data can be downloaded in binary,

TIFF, NetCDF, and ArcGrid formats. Last, CHRS Data

Portal’s subscription tool allows users to receive rainfall in-

formation as soon as data are added to the archive.

b. CHRS iRain

The PDIR-Now dataset has replaced PERSIANN-CCS

on the CHRS iRain web system (irain.eng.uci.edu) (Fig. 8).

The iRain system is a web interface that allows users to visu-

alize real-time global satellite precipitation observations from

PDIR-Now and track extreme precipitation events globally

using the Connected-Object (CONNECT) algorithm (Sellars

et al. 2013) The iRain interface consists of map layers which

contain different political and hydrological borders that can be

overlaid on the rainfall pattern and rain layers from different

rain accumulation measurement tools such as radar, rain

gauges, and crowd sourcing. Further information on iRain’s

tools and layers are provided in the subsections below.

1) MAP LAYERS

The iRain map layers tool (Fig. 8a) allows users to overlay

polylines of political and hydrological divisions. For political

divisions, users can query between overlaying country and po-

litical division (states, provinces, oblasts, etc.), while hydrologic

divisions users can query include continental basins, major river

basins, tributary basins, and watersheds.

2) RAIN LAYERS

The iRain rain layer tab (Fig. 8b) consists of four precipi-

tation accumulation data products, including PDIR-Now, ra-

dar from Stage II, iRain’s own crowdsourcing data, and rain

gauges provided by MesoWest at the University of Utah. The

combination of the data products found in iRain allows for a

visualization and direct comparison of precipitation data from

multiple sources at spatial scales from point to global. The rain

FIG. 7. Accumulated precipitation over the Netherlands for the period 3–6 Jun 2019 as estimated by KNMI gauge-adjusted radar,

PERSIANN-CCS, PDIR-Now, andGSMaP-Now. Scatterplots of 3-hourly precipitation from PERSIANN-CCS vs KNMI, PDIR-Now vs

KNMI, and GSMaP-Now vs KNMI during the period 3–6 Jun 2019.
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total tab located under rain layers effects the rain layer tool,

as it allows users to switch between the last 3 and 72 h of rain

accumulation. Moreover, the 3-hourly rain animation tab

displays an animation of 72-h rain accumulation.

3) SPATIAL QUERY

The spatial query tool (Fig. 8c) allows for users to select from

nine different spatial extents. Users can query by the political

and hydrological divisions from the map layers, create a user-

customized rectangle or polygon, or query by point. The spatial

query tool generates a graph of rainfall in that spatial extent

over the last 3 days. Depending on the rain layers that are

active, this plot can directly compare up to three data

sources. Data and statistics autocalculated by this tool are

downloadable as an Excel spreadsheet for easy, deeper anal-

ysis. Selecting the full report option creates an autogenerated

PDF of rainfall graphs, distributions, climatology, and geo-

graphic information such as distribution of aridity, land cover,

and elevation. As with the autogenerated plots, this auto-

generated PDF is downloadable directly off the web system.

4) EXTREME EVENTS

The iRain system allows users to track extreme precipitation

events globally using the extreme events tab (Fig. 8d). The

extreme event tool uses the CONNECT algorithm to produce

four-dimensional (latitude and longitude spatial dimensions,

temporal, and intensity) rainfall ‘‘objects’’ that allow for the

tracking of large-scale precipitation event life cycles. With each

FIG. 8. CHRS iRain (http://irain.eng.uci.edu) and its various tools: (a) map layers, (b) rain layers, (c) rain query,

and (d) extreme events.
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update of PDIR-Now data, CONNECT is automatically run

on the system, and from it, the 50 largest-scale (based on in-

tensity) precipitation events are stored for querying purposes.

When the user interacts with the extreme events tool, the total

accumulations of these 50 objects are displayed with a pointer

that designates it with a number that corresponds to its rank in

volume. Rainfall objects come with layers including centroids,

which displays the total number of objects or storms; rain to-

tals; tracking, which displays the polyline generated by each

time-lapse spatial centroid; and the calculated statistics,

which gives information on the storm such as storm intensity,

accumulation, coverage area, total rain volume, duration,

and status. Each storm is trackable through its time steps

through either an accumulation or time-lapse animation. This

animation’s speed is customizable, and it also allows frame-

by-frame navigation.

6. Concluding remarks

This article presented a new dataset, PDIR-Now, produced

by the Center for Hydrometeorology and Remote Sensing

(CHRS), which is intended to supersede PERSIANN-CCS.

The dataset is evaluated across distinct temporal and spatial

scales. It is shown that PDIR-Now is superior to PERSIANN-CCS

in precipitation estimates at aggregate scales (i.e., continental

and annual) as well as detection of seasonal and diurnal cycles

of precipitation at regional scales. Furthermore, analysis of

two extreme events, Hurricane Harvey and a cluster of

summer thunderstorms over the Netherlands in August 2017

and June 2019, respectively, reveals that PDIR-Now signif-

icantly improves estimation of extreme events compared

to PERSIANN-CCS, indicating better utility for applications

where near-real-time readings of hydroclimate extremes are

required.

The main advantage of PDIR-Now, compared to other

near-real-time precipitation datasets, is its reliance on the

high-frequency sampled IR imagery; consequently, the la-

tency of PDIR-Now from the time of rainfall occurrence is

very short (15–60 min). Additionally, PDIR-Now accounts

for the errors and uncertainties that result from the use of IR

imagery by adopting a variety of techniques most notable is the

dynamic shifting of (Tb–R) curves using rainfall climatology.

The short latency of PDIR-Now renders the dataset well suited

for near-real-time hydrologic applications such as flood fore-

casting and developing flood inundation maps. Furthermore,

the encouraging evaluation results in the present study indicate

the potential of using the PDIR algorithm to reconstruct his-

torical precipitation estimates at high spatiotemporal resolution.

Preliminary investigations of such an avenue are underway, and

their results will likely be reported in the foreseeable future.
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