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ABSTRACT: This study presents the Precipitation Estimation from Remotely Sensed Information Using Artificial Neural
Networks-Dynamic Infrared Rain Rate (PDIR-Now) near-real-time precipitation dataset. This dataset provides hourly, quasi-
global, infrared-based precipitation estimates at 0.04° X 0.04° spatial resolution with a short latency (15-60 min). It is intended to
supersede the PERSIANN-Cloud Classification System (PERSIANN-CCS) dataset previously produced as the near-real-time
product of the PERSIANN family. We first provide a brief description of the algorithm’s fundamentals and the input data used for
deriving precipitation estimates. Second, we provide an extensive evaluation of the PDIR-Now dataset over annual, monthly,
daily, and subdaily scales. Last, the article presents information on the dissemination of the dataset through the Center for
Hydrometeorology and Remote Sensing (CHRS) web-based interfaces. The evaluation, conducted over the period 2017-18,
demonstrates the utility of PDIR-Now and its improvement over PERSIANN-CCS at all temporal scales. Specifically, PDIR-Now
improves the estimation of rain/no-rain days as demonstrated by a critical success index (CSI) of 0.53 compared to 0.47 of
PERSIANN-CCS. In addition, PDIR-Now improves the estimation of seasonal and diurnal cycles of precipitation as well as regional
precipitation patterns erroneously estimated by PERSIANN-CCS. Finally, an evaluation is carried out to examine the performance
of PDIR-Now in capturing two extreme events, Hurricane Harvey and a cluster of summer thunderstorms that occurred over the
Netherlands, where it is shown that PDIR-Now adequately represents spatial precipitation patterns as well as subdaily precipitation
rates with a correlation coefficient (CORR) of 0.64 for Hurricane Harvey and 0.76 for the Netherlands thunderstorms.
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1. Introduction high spatiotemporal resolution, are attractive alternatives to
rain gauges (Kitzmiller et al. 2013; Price et al. 2014). However,
the high installation and maintenance costs along with the
difficulties in accessibility over remote regions have limited the
establishment of a global radar network (Habib et al. 2012;
Westrick et al. 1999; Scofield and Kuligowski 2003). Satellite-
based precipitation estimation promises to provide a remedy

Providing consistent and accurate precipitation measure-
ments remains one of the most challenging tasks facing the
weather and climate community. Rain gauge, radar, and sat-
ellite are the primary instruments for measuring precipitation.
Rain gauge observations represent the most direct method for

precipitation measurement and provide the longest historical . . . .
records (Kidd and Levizzani 2011; Mahmoud et al. 2018); for the shortcomings of observing precipitation using radars

however, the variability of precipitation across all spatial and and in situ rainfall gauges (Sun et al. 2018; Xie et al. 2007).

temporal scales cannot be resolved by conventional rain Early studies that attempted to estimate rain rate from satellite
gauges. For instance, it has been shown that rainfall associ- Multichannel visible (VIS) and infrared (IR) imagery dates
ated with small-scale convective storms vary by up to 14% back to the late 1970s (Griffith et al. 1978; Hsu et al. 1997).
over a 100-m distance (Goodrich et al. 1995). Radar instru-  Today, four decades since the work of Griffith et al. (1978),

ments, which provide real-time precipitation measurements at ~ estimation of precipitation from satellites has significantly
advanced, and satellite-based estimates are frequently merged

with in situ precipitation measurements to provide high-quality

Denotes content that is immediately available upon publica- ~ datasets (e.g., Huffman et al. 2007; Beck et al. 2017) for a range
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of hydrologic and hydroclimatic applications. Nonetheless, the
ever-continuing search for an “optimum’ method to accurately
estimate precipitation from satellites, made evident by the dozens
of datasets currently available to the community, stands as a tes-
timony that the potential of satellites is yet to be fully realized.
The main difficulty in estimating precipitation from satellites
lies in the trade-off between sampling temporal frequency and
accuracy. On one hand, IR imagery data from sensors on board
geostationary-Earth-orbiting (GEO) satellites are obtained
almost every 5-30 min, but they only provide information on
cloud-top characteristics (e.g., temperature, size, and the phase
of cloud particles), an indirect proxy of surface precipitation
rate (Grecu et al. 2004). On the other hand, passive microwave
(PMW) sensors deployed on low-Earth-orbiting (LEO) satellites
provide rich information on the vertical profile of the atmosphere
and hydrometeors directly related to precipitation; however,
their sampling is more sparse and less frequent compared to
IR imagery (Behrangi et al. 2009; Marzano et al. 2004; Kidd
and Levizzani 2011). Thus, IR-based precipitation estimation
products have the advantage of providing higher spatiotem-
poral resolutions with a minimum latency that meet the re-
quirements for many near-real-time applications (Arkin and
Meisner 1987). More commonly, satellite-based algorithms
take advantage of information from both IR and PMW sources
(Behrangi et al. 2009; Joyce et al. 2004; Turk et al. 2000; Miller
et al. 2001; Sorooshian et al. 2000; Hsu et al. 1997; Levizzani
et al. 1996; Kummerow and Giglio 1995; Bellerby et al. 2000).
Arguably, the most sophisticated example of such algorithms is
the Climate Prediction Center morphing method (CMORPH)
(Joyce et al. 2004), which relies on snapshot and propagated
PMW as the primary source of precipitation, with IR estimates
used over cold surface or when PMW is excessively propagated.
Alternatively, several methods use IR data as the main input to
derive an empirical relationship between cloud-top temperature
and surface precipitation rate, and they incorporate PMW only
for calibration purposes (Miller et al. 2001; Turk et al. 2003).
During the recent years, NOAA’s Advanced Baseline
Imager (ABI) on board the latest generation of the Geostationary
Operational Environment Satellite (GOES-R series) (Schmit et al.
2009, 2005; Gurka and Schmit 2004), the Advanced Himawari
Imager (AHI) (Letu et al. 2020), on board Himawari-8/-9 (H8/9),
and the Advanced Geostationary Radiation Imager (AGRI)
on board Fengyun-4A (FY-4A) (Yang et al. 2017) have been
launched into the geostationary (GEO) orbit. These sensors
provide high temporal information with 10-15-min coverage
and high spatial information with 0.5-2km for AHI and ABI
sensors and 0.5-4 km for AGRI measurements in 16 (14 for
AGRI) spectral bands. The new generations of GEO sensors
have opened new opportunities to improve the precipitation
estimates with both high spatial and high temporal resolutions.
With this promising progress in GEO sensor technologies along
with the advancements in machine learning (ML) techniques,
such as support vector machines, random forests, artificial neural
network (ANN), deep learning, the new generation of precipita-
tion retrieval algorithms must outperform the current operational
products (Meyer et al. 2016; Kuligowski et al. 2016; Sadeghi et al.
2019; Upadhyaya et al. 2020). In recent years, many studies have
been conducted to utilize the generation sensor information to
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improve the current precipitation retrieval algorithms. For
example, Kuligowski et al. (2016) proposed the Self-Calibrating
Multivariate Precipitation Retrieval (SCaMPR) algorithm as an
operational precipitation product over the CONUS based on
GOES-R series information. This dataset serves Spinning
Enhanced Visible and Infrared Imager (SEVIRI) on board
Meteosat-8 as inputs and passive microwave (PMW) precipitation
rate estimates from the Climate Prediction Center (CPC) com-
bined microwave (MWCOMB) dataset (Joyce et al. 2004) for
training. Although the developed retrieval algorithms using new
generation of sensors provide higher spatial and temporal reso-
lution over the contiguous United States (CONUS), their spatial
coverage limits their capability for global implementation.

The present study introduces a new global near-real-time dataset
based primarily on IR imagery referred to as the Precipitation
Estimation from Remotely Sensed Information Using Aurtificial
Neural Networks (PERSIANN) Dynamic Infrared Rain Rate
(PDIR-Now). PDIR-Now is intended to supersede PERSIANN-
Cloud Classification System (PERSIANN-CCS) (Hong et al.
2004), which has been the standard near-real-time precipitation
dataset produced by the Center for Hydrometeorology and
Remote Sensing (CHRS) at University of California, Irvine.
PDIR-Now is based on the PDIR algorithm (Nguyen et al.
2020), which, like other IR-based algorithms, depends on
empirically derived cloud-top temperature—precipitation rate
(Tp—R) relationships. PDIR, however, corrects for the errors
that frequently result from such an approach by calibrating the
empirical relationships regionally based on monthly precipita-
tion climatology (Nguyen et al. 2020). In addition, the PDIR
algorithm incorporates several techniques to further reduce es-
timation errors and uncertainties. Because PDIR-Now depends
primarily on IR data, its main advantage is providing near-global
precipitation estimates at a short latency (15-60 min), hence the
acronym ‘“Now.” In addition, PDIR-Now leverages from
IMERG PMW dataset for training, however, the PDIR algo-
rithm was trained using the MWCOMB dataset.

The remainder of this article is organized as follows.
Section 2 briefly introduces input data used for PDIR-Now
development as well as baseline datasets used for evaluation.
Section 3 provides an overview of the PDIR algorithm and its
components, and it highlights how PDIR-Now differs from its
predecessors. Section 4 provides a comprehensive evaluation of
PDIR-Now against distinct baseline precipitation datasets across a
variety of spatial and temporal scales. Section 5 sums up the eval-
uation results, draws conclusions and outlines future directions.

2. Data
a. Input data
1) IR DATA

This dataset is provided by the Climate Prediction Center at
the National Weather Service. It merges 11-um brightness
temperature (7},) data from all available geostationary satel-
lites (GMS-5, GOES-8, GOES-10, Meteosat-7, and Meteosat-5)
into a single half-hourly IR 7, field at the 4-km spatial reso-
lution (Janowiak et al. 2001). This dataset is the main input
used to produce PDIR-Now precipitation estimates.
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2) IMERG MERGED PMW PRECIPITATION

The high-quality PMW is one of several fields available in the
Integrated Multisatellite Retrievals for GPM (IMERG) dataset. It
is based on intercalibrated PMW estimates and provides a global,
half-hourly estimate at the 0.1° X 0.1° spatial resolution (Huffman
et al. 2018). Precipitation estimates from this dataset, along with IR
data, are used to develop the (7,—R) relationships in the calibration
period (2014-16). It should be emphasized that the micro-
wave data are only used for calibration, not a real-time input.

3) WORLDCLIM 2 PRECIPITATION

A monthly, high spatial resolution (1km?) precipitation
dataset developed by Fick and Hijmans from spatially inter-
polated weather stations data (Fick and Hijmans 2017), this
dataset provides precipitation data for the period 1970-2000
over global land areas. It is used here as precipitation clima-
tology to adjust the T,—R relationships over global land.

4) PERSIANN-CDR

PERSIANN-Climate Data Record (CDR) (Ashouri et al.
2015) belongs to the PERSTANN family of precipitation da-
tasets (Nguyen et al. 2019). It provides daily precipitation for
the period (1983-delayed present) over land and oceans at
(60°S-60°N); precipitation estimates from PERSIANN-CDR
are bias-adjusted using GPCP V2.3 monthly 2.5° X 2.5°. Here,
PERSIANN-CDR is used to complement the land-based
WorldClim 2 dataset by providing precipitation climatology
over oceans which is used to adjust the 7,—R relationships.

b. Evaluation data
1) NCEP STAGE IV

The National Centers for Environmental Prediction (NCEP)
provides Stage IV precipitation data at hourly temporal resolution
and a spatial resolution of 4 km. This dataset is a multisensor
analysis that includes gauge and WSR-88D radar data among
others (Lin and Mitchell 2005). Stage IV is frequently used to
perform evaluations of precipitation data because of its high spa-
tiotemporal resolution, multidecadal extent, and proven accuracy
from manual quality control (Beck et al. 2019). In the present study,
Stage IV (hereafter referred to as ST4) is used as a baseline over the
contiguous United States (CONUS) against which the perfor-
mance of PDIR-Now and PERSIANN-CCS is benchmarked.

2) IMERG FINAL RUN

IMERG is a half-hourly 0.1° X 0.1° precipitation dataset that
uses both PMW and IR data. The “Final Run,” hereafter re-
ferred to as IMERGF, incorporates further information from
gauges to create a high-quality global precipitation data with
approximately 3.5 months delay (Huffman et al. 2018). It is used
as a baseline for the global evaluation of daily precipitation es-
timates from PERSIANN-CCS and PDIR-Now.

3) GPCP 1DD

The Global Precipitation Climatology Project (GPCP)
1DD (V1.3) product combines data from satellites and gauges
to provide a 1° X 1° daily precipitation dataset for the period 1996
present (Huffman et al. 2001). GCPC 1DD’s high spatiotemporal
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resolution and integration of gauge readings make it a valuable
dataset for short-duration evaluations of high-resolution precipi-
tation products. Daily precipitation estimates from this dataset
are accumulated to monthly scale, and they are used here as a
baseline for the global evaluation of monthly precipitation
estimates from PERSIANN-CCS and PDIR-Now.

1-h KNMI gauge-adjusted radar

The Royal Netherlands Meteorological Institute (KNMI) pro-
vides hourly 1-km radar precipitation data that are bias adjusted
using the KNMI rain gauge networks. This dataset is used to
evaluate the performance of PERSIANN-CCS and PDIR-Now in
estimating precipitation during an extreme rainfall event that hit the
Netherlands in June 2019 as it is the highest spatiotemporal reso-
lution gridded radar—gauge product available over the Netherlands.

4) GSMAP-NOW

The Japanese Aerospace Exploration Agency (JAXA) pro-
duces a series of satellite-derived precipitation products under the
Global Satellite Mapping of Precipitation (GSMaP). Among the
GSMaP products, GSMaP-Now is the most comparable to PDIR-
Now since it is a near-real-time product mainly based on IR data,
making it a valuable comparison dataset for PDIR-Now at sub-
daily time scales for extreme hydroclimate events. It is used to
evaluate a series of summer thunderstorms over the Netherlands.

3. PDIR algorithm

In 1997, the PERSIANN algorithm (Hsu et al. 1997; Sorooshian
et al. 2000) was developed to provide high-resolution quanti-
tative precipitation estimation (QPE). As its namesake states,
the original PERSIANN algorithm provides rainfall estimates
by using artificial neural networks (ANNSs). From the original
framework of the PERSIANN algorithm, a 36+ years archive
of global, daily rainfall product named PERSIANN-CDR was
produced using the Global Precipitation Climatology Project
(GPCP) V2.3 monthly rainfall dataset and CPC 4-km IR 7}, data
from the beginning of the satellite era (Ashouri et al. 2015).

Original PERSIANN'’s 2-day latency, a consequence of
the PMW readings used as input to PERSIANN, made it un-
usable for applications where near-real-time measurements
are needed, like flood modeling. To overcome this issue,
PERSIANN-CCS forewent the use of PMW data and utilized a
system of trained cloud-type models with characteristic 7p—R
relationships produced by self-organizing feature maps (SOFMs)
to estimate rainfall at short latency periods. In addition to the
short latency period, PERSIANN-CCS’s sole reliance on IR data
made the product available in hyperspatial resolution of 0.04°
and hourly temporal resolution. However, without PMW data,
the accuracy of PERSIANN-CCS is starkly impaired from
original PERSIANN’s performance, especially for extreme
precipitation and precipitation in topographically complex
regions, such as western CONUS.

To overcome some of the accuracy issues of PERSIANN-CCS
and improve estimates of extreme and orographic precipitation,
where short latency QPE is sorely needed for flood modeling
applications, Nguyen et al. (2020) developed the PDIR algorithm
based largely on the framework of PERSIANN-CCS. As such,
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FIG. 1. Mean annual precipitation (mm) during the evaluation period (2017-18) for (a) IMERGEF (final release),
(b) PERSIANN-CCS, and (c) PDIR-Now. (d) Zonal mean annual precipitation for the period (2017-18) for the
three datasets: IMERGF (black), PERSIANN-CCS (blue), and PDIR-Now (red).

PDIR is also a real-time, high-resolution precipitation product with
short delay time (15 min-1h) that uses a catalog of unique cloud
types, created by training SOFMs with PMW data, to estimate rain
rates based on the temperature, size, and texture features of the
cloud patches at temperatures below 273 K. The defining feature of
PDIR is the dynamical shifting of 7;,—R curves using rainfall cli-
matology data (spatiotemporal resolution of 0.04° and monthly)
to adjust the curve’s position. This approach is intended to adjust
biases (i.e., to produce more precipitation in regions with
wetter climatology and vice versa). As with PERSIANN-CCS,
PDIR solely relies on near-real-time IR data from GEO sat-
ellites as input, allowing for precipitation estimates in as short
as 15 min after their occurrences. For more information on the
methodology of the PDIR algorithm, see Nguyen et al. (2020).

It should be noted that the PDIR-Now dataset presented
in this article is based on the operational implementation of
the PDIR algorithm which differs slightly from that originally
described in Nguyen et al. (2020). Specifically, the current
implementation employs a temperature threshold of 263 K for
cloud top temperature as opposed to 273K in Nguyen et al.
(2020). This is because a higher temperature threshold im-
proves the detection of warm rain events while simultaneously
increasing the false alarm rate. In the earlier work of Nguyen
et al. (2020), which examined the performance of the PDIR
algorithm only over western United States, it was found that
a threshold of 273K achieves favorable results whereas a
threshold of 263 K was found in the present study to be optimal
for global implementation. Also, the precipitation dataset used
to derive T,—R curves in the present study is IMERG Merged
PMW precipitation (see section 2) whereas the Combined
Microwave precipitation dataset (MWCOMB), produced by
the CPC, was used in Nguyen et al. (2020). Moreover, the
current implementation of the PDIR algorithm consists of an
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additional bias adjustment step in which PDIR-Now rainfall
estimates are corrected using probability cumulative density
function (cdf) matching with IMERG Merged PMW precipita-
tion. Last, PDIR-Now dataset is produced at a spatial resolu-
tion of 0.04° with a quasi-global coverage (60°S—60°N).

4. Evaluation

This section evaluates the performance of PDIR-Now in
capturing precipitation amounts and variability across several
temporal scales. The evaluation commences at the coarsest
temporal scale, annual, and then it is narrowed down to monthly,
daily, and then subdaily scales. All analysis is conducted either
during the entire evaluation period, 2017-18, or a part of it.
Throughout the analysis, PDIR-Now will be compared with
PERSIANN-CCS to highlight how much improvement has been
attained using PDIR-Now. The baseline datasets against which
PDIR-Now and PERSIANN-CCS are benchmarked varies ac-
cording to geographical region and temporal scale of analysis.

a. Annual

Figures la—c show the mean annual precipitation aver-
aged during the evaluation period (2017-18) for IMERGF,
PERSIANN-CCS, and PDIR-Now, respectively. Here, IMERGF
is used as a baseline since it combines data from multiple sources
including IR, PMW, and gauges. Clearly, PERSIANN-CCS
overestimates precipitation in the tropical regions of Africa,
South America, and Asia. In addition, it underestimates bands
of high precipitation in the northwestern Atlantic Ocean,
northern Pacific Ocean along the coast of western Canada, and
over the Southern Hemisphere oceans. This last observation is
clearly shown in Fig. 1d, which shows the average zonal an-
nual precipitation. In particular, PERSIANN-CCS (blue line)
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FIG. 2. Monthly precipitation time series for the year 2017. Black, blue, and red lines represent GPCP, PERSIANN-CCS, and
PDIR-Now, respectively. (a) The 5° X 5° region over Central Africa (location 1) bounded by the latitudes 1°~6°N and longitudes 16°-21°E.
(b) The 5° X 5° region over South America (location 2) bounded by the latitudes 13°-8°S and longitudes 70°-65°W.

deviates significantly from IMERGF over the latitudes
(—60°, —20°) indicating considerable underestimation. On the
other hand, PDIR-Now improves estimation significantly in
terms of zonal precipitation as shown in Fig. 1d (red and black
lines). In addition, it clearly captures bands of high precipita-
tion previously underestimated by PERSIANN-CCS while
reducing overestimation in tropical regions. Despite the
improved performance of PDIR-Now, there are still ap-
parent discrepancies between PDIR-Now and IMERGF. In
particular, PDIR-Now overestimates bands of rainfall in west-
ern Pacific Ocean and scattered spots in central equatorial
Africa. Overall, mean annual global precipitation from PDIR-
Now is 1150 mm, and it is more consistent with IMERGF esti-
mate of 1124 mm compared to 960 mm from PERSIANN-CCS.

b. Monthly

Here we examine the performance of PDIR-Now in cap-
turing the seasonal cycle of precipitation, based on monthly
precipitation, with GPCP 1DD precipitation being used as a
baseline for evaluation. We carry out the analysis at two re-
gions with distinct rainfall seasonal cycles. The first region
(location 1) is a rectangular region bounded by the latitudes
(1°-6°N) and the longitudes (16°-21°E). This region lies at the
northwestern part of the Congo River basin with elevation in
the range of 0-700 m above sea level. Due to its location in the
tropics, rainfall is consistent throughout the year with slight
peak during the months of August, September, and October;
consequently, vegetation land cover mostly consists of ever-
green broadleaf forest. Figure 2a shows the spatially averaged
monthly precipitation for the year 2017. PDIR-Now (red line)
closely follows the monthly GPCP precipitation (black
line), capturing the slight peak in (August—October) period.
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PERSIANN-CCS (blue line), on the other hand, overestimates
rainfall amount throughout the year as well as showing an
erroneous two-rainy-seasons cycle that differs from GPCP.
Overall, the CORR and root-mean-square error (RMSE) of
PDIR-Now are 0.83 and 43 mm, respectively, compared to 0.66
and 145 mm for PERSIANN-CCS. The second region (loca-
tion 2) is in the humid Amazon rainforest bounded by the
latitudes (13°-8°S) and the longitudes (70°-65°W), and it ex-
tends across Brazil, Bolivia, and Peru. Unlike location 1, this
region exhibits a pronounced rainfall seasonal cycle with a very
dry season during the months of June, July, and August.
Figure 2b shows that both PERSIANN-CCS and PDIR-Now
adequately capture the seasonal cycle of rainfall with CORR of
0.88 and 0.85, respectively; however, PDIR-Now improves
estimation of rainfall amounts, most notably reducing the
overestimation of PERISANN-CCS during the months of
October, November, and December. RMSE is reduced from
98 mm (PERSIANN-CCS) to 59 mm (PDIR-Now).

c¢. Daily

Despite the usefulness of the analysis presented in the pre-
vious two subsections for establishing the general validity of
PDIR-Now, precipitation estimates at the daily and subdaily
scales are more important from the standpoint of operational
watershed hydrology and water resources management for ap-
plications such as flood forecasting. Furthermore, since PDIR-
Now is an IR-based precipitation dataset, it is intended to be
particularly advantageous in providing timely and adequate pre-
cipitation estimates when other datasets based on PMW and
multisensor fusion are not available. With these considerations in
mind, analysis of PDIR-Now at the daily and subdaily scales is
carried out in this subsection and the following one.
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F1G. 3. Difference in performance metrics for daily rainfall during the evaluation period (2017-18). All metrics are computed against the
baseline product IMERGF. The maps show the difference between the performance metrics of PDIR-Now and PERSIANN-CCS; red
color indicates that PDIR-Now has better performance with respect to PERSIANN-CCS. (a) Correlation, (b) relative bias, (c) relative
RMSE (i.e., RMSE normalized by annual precipitation), and (d) CSI.

Figure 3 shows the difference in rainfall estimation statistics,
namely CORR, bias, relative RMSE and CSI between PDIR-
Now and PERSIANN-CCS benchmarked against IMERGF.
In other words, Fig. 3 shows the improvement obtained by
PDIR-Now with respect to PERSIANN-CCS. Positive num-
bers (red colors in Fig. 3) indicate that PDIR-Now is more
skillful compared to PERSIANN-CCS for a given metric
meanwhile negative numbers (blue colors) indicate the opposite.
Figure 3a shows the difference in CORR of daily precipitation.
Apart from few regions in the Sahara Desert, Mediterranean Sea,
and other scattered spots over oceans, PDIR-Now shows a better
CORR compared to PERSIANN-CCS. While the average in-
crease in CORR over the entire global domain is only marginal
(0.52-0.57; see Table 1), significant regional improvement is
present specifically over eastern Asia. Precisely, CORR in daily
precipitation improves from 0.44 to 0.54 over the Asian continent
(see Table 1). Similar patterns are observed in terms of bias in
Fig. 3b with significant improvement over eastern Asia, central
Africa, and Australia. Specifically, the biases are reduced from
2.07 to 0.28, from 1.38 to 0.06, and from 0.35 to 0.05 over the
continents of Africa, Asia, and Australia, respectively. Figure 3c
shows the improvement obtained in RMSE computed as the rela-
tive RMSE which is the RMSE difference (RMSEpgrsiann-ccs —
RMSEppir-Now) Normalized by RMSEpgrsiann.ccs. It shows that
PDIR-Now is superior to PERSIANN-CCS over most of the global
land; specifically, RMSE in global land is reduced from 7 to 5.61 mm
in PDIR-Now compared to PERSIANN-CCS. Figure 3d shows the
difference in CSI which is a skill metric that summarizes the per-
formance of the two algorithms in terms of their detection of rainfall
events (rain/no rain). A threshold of 0.1 mm is used to distinguish
between rainy and non-rainy days. It clearly shows that PDIR-Now
is more skillful than PERSIANN-CCS in detecting rainfall events
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and reducing false alarms over most regions, particularly over
the Southern Hemisphere (60°-40°S) oceans.

We now turn our analysis at the daily scale into regional
scales of more unified precipitation regimes. Figure 4 shows the
probability density functions (pdfs) of daily precipitation for
each month spatially averaged over the northwestern United
States region. The spatial domain considered here covers
the entire states of Washington, Oregon, Idaho, Montana,
Wyoming, and northern parts of California, Utah, and Colorado.
We utilize ST4 dataset as a baseline for evaluation since it
combines information from radar, satellite, and dense gauge
network. Figure 4a shows the pdfs of daily precipitation during
the year 2017 for values in the range of 1-6 mm. PDIR-Now
pdfs are almost identical to those of ST4 for the rainy months of
November, December, January, and February. While pdfs of
PDIR-Now deviate from ST4 for some months, they provide
mostly estimates better than that of PERSIANN-CCS. Similar
conclusions, albeit less significant, can be drawn from Fig. 4b
for high values of daily rainfall in the range of 6-20 mm. It
should be noted that the improvement of PDIR-Now with
respect to PERSIANN-CCS is expected to be particularly
pronounced in this region due to its complex topography.
Specifically, the motivation behind the development of
PDIR-Now was to overcome the limitations of IR-based
algorithm (e.g., PERSIANN-CCS) in estimating precipitation
over complex terrain (Nguyen et al. 2020).

d. Subdaily

1) DIURNAL CYCLE

Here we examine the performance of PDIR-Now in cap-
turing the diurnal cycle of precipitation at a regional scale,
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TABLE 1. Summary statistics of comparison metrics for daily precipitation in the period (2017-18): correlation (CORR), root-mean-
square error (RMSE), multiplicative bias (BIAS), probability of detection (POD), false alarm ratio (FAR), and critical success index
(CSI). IMERGF is used as benchmark. Font style code: IMERGF (regular), PERSIANN-CCS (italic), PDIR-Now (bold). The asterisk (*)
indicates the threshold for rain/no-rain = 0.1 mm.

Daily precipitation

Domain (mm) CORR BIAS RMSE (mm) POD* FAR* CSI*
Global 308 263 315 052 057 008 002 78 780 054 0.63 021 024 047 053
Land 236 316 247 053 058 108 012 700 561 072 072 024 022 058 0.60
Ocean 336 244 341 051 056 —028 —0.02 813 862 047 059 020 024 042 050
Asia 211 286 215 044 054 138 006 692 518 072 0.69 028 024 056 0.57
North America 227 252 234 056 060 039 004 601 538 072 075 018 021 061 0.62
Europe 225 191 255 050 054 —009 013 561 608 070 081 0I5 022 062 0.66
Africa 189 347 205 057 059 207 028 711 486 072 0.67 031 024 055 057
South America 438 568 454 064 064 061 011 956 813 077 078 015 014 068 0.69
Oceania 571 384 689 052 057 —034 036 1148 1318 065 082 008 015 061 0.70
Australia 125 159 130 058 062 035 005 576 444 061 066 020 020 053 056

North Atlantic 339 1.71 325 051 056 —0.44 —0.04 823 876 051 0.65 018 024 046 0.54
North Pacific 338 240 338 047 055 —020 0.02 8.84 9.06 055 0.68 021 026 048 055
Mid-Atlantic 217 181 217 055 057 —0.07 —013 5.53 604 035 036 032 030 037 032
Mid-Pacific 396 393 4.00 0.66 0.67 —0.08 —0.06 8.73 954 045 049 0.7 018 042 045
Mid-Indian 3.64 358 400 070 070 —0.08 0.06 928 1059 047 052 016 019 043 047
South Atlantic  3.06 1.54 3.07 039 046 —-045 —0.00 7.64 779 049 069 024 031 042 053
South Indian 279 130 293 037 046 —0.55 0.05 6.95 723 046 0.69 020 026 042 055
South Pacific 356 1.89 358 040 047 —047 —0.01 872 881 047 0.67 019 025 042 055

specifically over the U.S. state of Kansas. Although the climate  salient signature in the diurnal cycle of precipitation as they
in Kansas varies considerably ranging from humid continental —mostly occur around noon time. Figure 5 shows the diurnal
in the north to humid subtropical in the south, patterns of cycle during each season of the year for PDIR-Now (red),
diurnal cycle are consistent throughout most of the state. ~PERSIANN-CCS (blue), and the baseline dataset ST4 (black).
Specifically, the state experiences severe thunderstorms during ~ Of concern are the summer (JJA) and spring (MAM) seasons
the rainy seasons of summer and spring. Such storms cause a  during which the region receives most of its annual precipitation.

(@)
03| Jan | 03 Feb. 0.3} Mar |
0.2 | 02| [ 02]
0.1 0.1 0.1
15 25 35 45 55 15 25 35 45 55 15 25 35 45 55 65 95 145 195 65 95 145 195 65 95 145 195
03 Apr | 03| May | 0.3 Jun 0.06 Apr | g.os) May | go0s Jun
0.2] 0.2 0.2 0.04 0.04 0.04
z o
g 0.1] | 041] | 0.1] l S o002 0.02 0.02
: . z _
L 1525 35 45 55 15 25 35 45 55 15 25 35 45 55 2 65 95 145 195 65 95 145 195 65 95 145 195
2 ! 2
=03 Jul 03 Aug 03 Sep =
E U
« 0.2 02| {02 £
0.1} 0.1 0.1 |

15 25 35 45 55 15 25 35 45 55 1.5 25 35 45 55 145 195 65 95 145 195

0.3! Nov | 0.3 " Dec Nov | 0.06 Dec |
02| | 02! | 0.04
0.1} 0.1 i 0.02 |
1‘5 25 3-5 45 55‘ {5 25 35 45 55; .15 25 35 45 55 9.5 145 19‘5 65 95 145 19l5
mm/day mm/day

—5ST4 —PDIR —CCS

FIG. 4. Histograms of daily precipitation over the northwestern United States for the year 2017. Black, blue, and red lines represent
ST4, PERSIANN-CCS, and PDIR-Now, respectively: (a) 1-6 and (b) 6-25 mm.
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FIG. 5. Diurnal cycle of spatially averaged precipitation over Kansas for the period (2017-18). Black, blue, and red lines
represent ST4, PERSIANN-CCS, and PDIR-Now, respectively. (a) DJF, (b) MAM, (c) JJA, and (d) SON.

Figures 5b and 5c show the pronounced diurnal cycle during
these seasons. While both PERSIANN-CCS and PDIR-Now
capture the diurnal cycle, which reaches its peak at noon time,
PERSIANN-CCS overestimates the amount of rainfall in both
seasons. PDIR-Now, however, estimates the amount of precip-
itation adequately during the spring season, and to a lesser extent
in the summer season. During the winter months (DJF), Fig. 5a
shows that PERSIANN-CCS substantially overestimates rainfall
rates; on the contrary, PDIR-Now rainfall amount is quite con-
sistent with ST4. However, it appears that the diurnal cycle in
DJF as well as in SON are not well captured by PDIR-Now. This
might be due to the low rain rates during both seasons, approx-
imately 0.05 and 0.1 mm h ™! during DJF and SON respectively,
as it is well recognized that satellite-based precipitation algo-
rithms are generally less adept at estimating low rain rates. It is
also worthwhile to mention that during both DJF and SON, the
diurnal cycle is less pronounced; therefore, the estimates of ST4
are more susceptible to measurement noise.

2) EXTREME EVENTS

The performance of satellite-based precipitation datasets in
capturing extreme rainfall events is of particular importance to
be examined due to the important role that satellite observa-
tions can play in preparedness, risk management, and, in turn,
mitigating the devastating impacts of such events. Here, we
examine the performance of PDIR-Now in capturing precipita-
tion during Hurricane Harvey, which resulted in unprecedented
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rainfall accumulations of over 1.5m that caused extensive
flooding damage over the Houston metropolitan region, and an
extreme rainfall event of thunderstorms that hit most of the
Netherlands in June 2019, that resulted in damages, flooding,
and injuries.

(i) Hurricane Harvey

To evaluate PDIR-Now’s performance during Hurricane
Harvey, we evaluate it against ST4 and compare its performance
to PERSIANN-CCS over the states of Texas, Oklahoma,
Kansas, Louisiana, Arkansas, and Alabama during the period
of 24-30 August 2017. Figures 6a—c illustrate PDIR-Now’s im-
proved performance compared to PERSIANN-CCS at 6-h ac-
cumulations. Concretely, PDIR-Now’s CORR of 0.64, RMSE of
7.99mm, and BIAS of —0.32 are all clear improvements over
PERSIANN-CCS’s CORR, RMSE, and BIAS values of 0.34,
9.89 mm, and —0.53, respectively. A quick look at the scatter-
plots between PDIR-Now and PERSIANN-CCS (Figs. 6d.e)
show that while both products experience underestimation and
overestimation, PDIR-Now better captures extreme precipita-
tion, made evident by the band of points that straddle then dip
slightly below the red line of perfect correlation. Indeed,
PERSIANN-CCS’s scatterplot hugs the x and y axes to its
extrema with few points of extreme precipitation recorded
near the line of perfect correlation, indicating systematic and
extreme overestimation and underestimation with PERSIANN-
CCS. PDIR-Now, on the other hand, suffers more from
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FIG. 6. Accumulated precipitation of Hurricane Harvey over Texas and the surrounding area for the period 24-30 Aug 2017 as
estimated by (a) ST4, (b) PERSIANN-CCS, and (c) PDIR-Now. Scatterplots of 6-hourly precipitation from (d) PERSIANN-CCS vs

ST4 and (e) PDIR-Now vs ST4 during the period 24-30 Aug 2017.

underestimation than overestimation, a testament to the
unprecedented nature of precipitation during Hurricane
Harvey, which has stumped other satellite QPE method-
ologies (Omranian et al. 2018)When we consider the spa-
tial distribution of precipitation over the study period
(Figs. 6a—c), there are few and subtle differences between
PDIR-Now, PERIANN-CCS, and ST4. Most notably,
PDIR-Now’s accumulation totals in northwest Louisiana/east
Texas and in central Texas (Austin and San Antonio
regions) better match those from ST4 than PERSIANN-CCS,
though totals over the latter region are still underestimated
by 50+ mm.

(ii) 2019 summer thunderstorms over the Netherlands

We use a high-quality dataset based on gauge-adjusted radar
precipitation estimates provided by KNMI [see section 2b(4)]
as a baseline for validation. Figure 7 shows the accumulated
precipitation that resulted from the event during the period
(3-6 June 2019) as estimated by gauge-adjusted radar,
GSMaP-Now, PERSIANN-CCS, and PDIR-Now. Although
PERSIANN-CCS captures the spatial variability of rainfall, it
severely underestimates the amount of rainfall. GSMaP-Now,
on the other hand, misses the pattern entirely, recording a blob
of high precipitation from the center of the Netherlands to the
southeast that does not appear in the evaluation radar—-gauge
dataset, while missing the bands of high precipitation over the
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northwest region of the country. PDIR-Now, however, pro-
vides better estimates of rainfall amounts, especially over the
western half of the Netherlands, though it appears to overes-
timate accumulated rainfall at the northeastern regions. These
observations also manifest at the 3-hourly scale, shown by the
scatterplots of 3-hourly rainfall during the entire event period
for PDIR-Now, PERSIANN-CCS, and GSMaP-Now. Clearly,
PERSIANN-CCS underestimates precipitation rates as evi-
dent by the cluster of points below the one-to-one line (red
line). On the other hand, GSMaP-Now significantly overesti-
mates rainfall, showcased by a positive bias, relatively large
RMSE, and large patch of points above the red line of perfect
correlation. Overall, CORR of 3-hourly rainfall are 0.76, 0.64,
and 0.49 for PDIR-Now, PERSIANN-CCS, and GSMaP-Now,
respectively.

5. Data dissemination and web-based interface

PDIR-Now dataset is available through two web-based
interfaces operated by the Center for Hydrometeorology
and Remote Sensing (CHRS) at the University of California,
Irvine: the CHRS iRain interface (https://irain.eng.uci.edu/),
a website that provides a user-friendly interface to visualize
global precipitation dataset for the last 72h, and the CHRS
Data Portal (https://chrsdata.eng.uci.edu/), which is intended
as an accessible interface for the download of PDIR-Now
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dataset as well as other PERSIANN family datasets. The latter
is described in detail in Nguyen et al. (2019). Here, we provide
a brief description of the two interfaces.

a. CHRS data portal

The global PDIR-Now dataset is hosted for public distri-
bution at CHRS’s in-house data distribution web system, the
CHRS Data Portal (chrsdata.eng.uci.edu; Nguyen et al. 2019).
Currently, the span of the PDIR-Now dataset is from 1 January
2014 to the present, with a latency of 15-60 min after the time of
occurrence. The CHRS Data Portal emphasizes ease of use by
allowing users to query, process, compare, and analyze pre-
cipitation data onsite. In addition, it focuses on intuitive dis-
tribution by employing a simple data request system that
allows users to aggregate and/or clip data over space and
time prior to download. Data can be downloaded in binary,
TIFF, NetCDF, and ArcGrid formats. Last, CHRS Data
Portal’s subscription tool allows users to receive rainfall in-
formation as soon as data are added to the archive.

b. CHRS iRain

The PDIR-Now dataset has replaced PERSIANN-CCS
on the CHRS iRain web system (irain.eng.uci.edu) (Fig. 8).
The iRain system is a web interface that allows users to visu-
alize real-time global satellite precipitation observations from
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PDIR-Now and track extreme precipitation events globally
using the Connected-Object (CONNECT) algorithm (Sellars
et al. 2013) The iRain interface consists of map layers which
contain different political and hydrological borders that can be
overlaid on the rainfall pattern and rain layers from different
rain accumulation measurement tools such as radar, rain
gauges, and crowd sourcing. Further information on iRain’s
tools and layers are provided in the subsections below.

1) MAP LAYERS

The iRain map layers tool (Fig. 8a) allows users to overlay
polylines of political and hydrological divisions. For political
divisions, users can query between overlaying country and po-
litical division (states, provinces, oblasts, etc.), while hydrologic
divisions users can query include continental basins, major river
basins, tributary basins, and watersheds.

2) RAIN LAYERS

The iRain rain layer tab (Fig. 8b) consists of four precipi-
tation accumulation data products, including PDIR-Now, ra-
dar from Stage II, iRain’s own crowdsourcing data, and rain
gauges provided by MesoWest at the University of Utah. The
combination of the data products found in iRain allows for a
visualization and direct comparison of precipitation data from
multiple sources at spatial scales from point to global. The rain
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total tab located under rain layers effects the rain layer tool,
as it allows users to switch between the last 3 and 72 h of rain
accumulation. Moreover, the 3-hourly rain animation tab
displays an animation of 72-h rain accumulation.

3) SPATIAL QUERY

The spatial query tool (Fig. 8c) allows for users to select from
nine different spatial extents. Users can query by the political
and hydrological divisions from the map layers, create a user-
customized rectangle or polygon, or query by point. The spatial
query tool generates a graph of rainfall in that spatial extent
over the last 3 days. Depending on the rain layers that are
active, this plot can directly compare up to three data
sources. Data and statistics autocalculated by this tool are
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downloadable as an Excel spreadsheet for easy, deeper anal-
ysis. Selecting the full report option creates an autogenerated
PDF of rainfall graphs, distributions, climatology, and geo-
graphic information such as distribution of aridity, land cover,
and elevation. As with the autogenerated plots, this auto-
generated PDF is downloadable directly off the web system.

4) EXTREME EVENTS

The iRain system allows users to track extreme precipitation
events globally using the extreme events tab (Fig. 8d). The
extreme event tool uses the CONNECT algorithm to produce
four-dimensional (latitude and longitude spatial dimensions,
temporal, and intensity) rainfall “objects” that allow for the
tracking of large-scale precipitation event life cycles. With each
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update of PDIR-Now data, CONNECT is automatically run
on the system, and from it, the 50 largest-scale (based on in-
tensity) precipitation events are stored for querying purposes.
‘When the user interacts with the extreme events tool, the total
accumulations of these 50 objects are displayed with a pointer
that designates it with a number that corresponds to its rank in
volume. Rainfall objects come with layers including centroids,
which displays the total number of objects or storms; rain to-
tals; tracking, which displays the polyline generated by each
time-lapse spatial centroid; and the calculated statistics,
which gives information on the storm such as storm intensity,
accumulation, coverage area, total rain volume, duration,
and status. Each storm is trackable through its time steps
through either an accumulation or time-lapse animation. This
animation’s speed is customizable, and it also allows frame-
by-frame navigation.

6. Concluding remarks

This article presented a new dataset, PDIR-Now, produced
by the Center for Hydrometeorology and Remote Sensing
(CHRS), which is intended to supersede PERSIANN-CCS.
The dataset is evaluated across distinct temporal and spatial
scales. It is shown that PDIR-Now is superior to PERSIANN-CCS
in precipitation estimates at aggregate scales (i.e., continental
and annual) as well as detection of seasonal and diurnal cycles
of precipitation at regional scales. Furthermore, analysis of
two extreme events, Hurricane Harvey and a cluster of
summer thunderstorms over the Netherlands in August 2017
and June 2019, respectively, reveals that PDIR-Now signif-
icantly improves estimation of extreme events compared
to PERSIANN-CCS, indicating better utility for applications
where near-real-time readings of hydroclimate extremes are
required.

The main advantage of PDIR-Now, compared to other
near-real-time precipitation datasets, is its reliance on the
high-frequency sampled IR imagery; consequently, the la-
tency of PDIR-Now from the time of rainfall occurrence is
very short (15-60 min). Additionally, PDIR-Now accounts
for the errors and uncertainties that result from the use of IR
imagery by adopting a variety of techniques most notable is the
dynamic shifting of (7,—R) curves using rainfall climatology.
The short latency of PDIR-Now renders the dataset well suited
for near-real-time hydrologic applications such as flood fore-
casting and developing flood inundation maps. Furthermore,
the encouraging evaluation results in the present study indicate
the potential of using the PDIR algorithm to reconstruct his-
torical precipitation estimates at high spatiotemporal resolution.
Preliminary investigations of such an avenue are underway, and
their results will likely be reported in the foreseeable future.
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