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ABSTRACT: Global gridded precipitation products have proven essential for many applications ranging from hydrological

modeling and climatemodel validation to natural hazard risk assessment. They provide a global picture of howprecipitation varies

across timeand space, specifically in regionswhere ground-basedobservations are scarce.While the applicationof global precipitation

products has become widespread, there is limited knowledge on how well these products represent the magnitude and frequency of

extreme precipitation—the key features in triggering flood hazards. Here, five global precipitation datasets (MSWEP, CFSR, CPC,

PERSIANN-CDR, andWFDEI) are compared to each other and to surface observations. The spatial variability of relatively high

precipitation events (tail heaviness) and the resulting discrepancy among datasets in the predicted precipitation return levels were

evaluated for the time period 1979–2017. The analysis shows that 1) these products do not provide a consistent representation of the

behavior of extremes as quantified by the tail heaviness, 2) there is strong spatial variability in the tail index, 3) the spatial patterns of

the tail heaviness generallymatch theKöppen–Geiger climate classification, and 4) the predicted return levels for 100 and 1000 years

differ significantly among the gridded products. More generally, our findings reveal shortcomings of global precipitation products in

representing extremes and highlight that there is no single global product that performs best for all regions and climates.
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1. Introduction

Global precipitation datasets, derived by combining data

from various sources ranging from ground-based observations

to radar and satellite data, are increasingly used by the Earth

science community in applications such as land surface mod-

eling, forcing and calibrating ecological and hydrological

models, validation of climate models, trend analysis, water

resources management, and extreme event characterization

(MacKellar et al. 2007; New et al. 2000). Several gridded

products [e.g., Climate Prediction Center (CPC) unified pre-

cipitation estimates, Global Precipitation Climatology Center

(GPCC) precipitation dataset, NCEP–NCAR reanalysis data]

have become available at various spatial and temporal resolu-

tions based on different data sources (e.g., ground observations,

satellites, radar, reanalysis) and data merging techniques. While

such datasets are useful to investigate the spatial and temporal

behavior in global precipitation (Fischer andKnutti 2014;Ghosh

2012; Trenberth et al. 2003), it is also important to quantify the

differences in precipitation among the datasets and understand

their reliability in estimates of extreme precipitation (Fischer

and Knutti 2015; Ingram 2016; Min et al. 2011). Previous studies

have shown that there are substantial differences between the

precipitation estimates from different global precipitation da-

tasets at a range of time scales from daily (Wong et al. 2017) to

yearly (Sun et al. 2018), limiting understanding of the statistical

behavior of regional and global precipitation. Therefore, the

answer to the question of how reliable these datasets are in

representing precipitation extremes remains still vague.

Precipitation is the main driver of terrestrial hydrology and

therefore the most important input to hydrological models.

Several sources of precipitation data exist, for example, ground

measurements by precipitation gauges, remotely sensed data

by radars and satellites, and reanalysis data that assimilate a

myriad of observations into numerical weather prediction

models. Ground measurements using precipitation gauges are

themain source of information for point precipitation.However,

observational records have limitations of sparse station network

and/or gaps in records (Bell et al. 2015;Kidd et al. 2017). Satellite

data, using infrared and microwave instruments, cover most

parts of the globe overcoming the limitation of sparse network.

Despite the limitations of the short record length, satellite data

are widely used in hydrological studies, given the advantages in

capturing extremes and poor gauged regions (Faridzad et al.

2018; Gado et al. 2017; Ombadi et al. 2018). Any systematic

disturbances in the signal are usually corrected by using the

ground observations. Reanalyses merge the ground observa-

tions and data from models that simulate physical and dynamic

processes of climate system. Reanalysis data are highly depen-

dent on the selected climate model (Trenberth et al. 2011),
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leading to uncertainties in the precipitation estimates (Gehne

et al. 2016).

Merged gridded precipitation products [e.g., Climate Hazards

Center Infrared Precipitation with Station Data (CHIRPS) and

Multi-SourceWeighted Ensemble Precipitation (MSWEP)] have

been developed in part to address these issues and been used to

study the behavior of precipitation as well as to investigate

changes in climatic means and extremes (Alexander et al. 2006;

Beck et al. 2019; Rajah et al. 2014). Developing gridded products

involve multiple layers of assimilation with various decisions (for

example, choice of original data and of interpolation techniques,

treating missing values) leading to differences in the final gridded

products. A range of regional to global studies have compared

gridded products and demonstrated inconsistencies (Akinsanola

et al. 2017; Beck et al. 2019; Burton et al. 2018; Contractor et al.

2015; Dinku et al. 2008; Donat et al. 2014; Hu et al. 2018;

Javanmard et al. 2010; Kidd et al. 2012; Sun et al. 2014;Wang and

Zeng 2015; Yin et al. 2015; Zhang et al. 2013). Typically, differ-

ences in mean, total, and various statistics of precipitation are

calculated at different time scales for comparing the datasets.

Large differences in magnitude, with a deviation of 300mmyr21

in the annual precipitation among the datasets, have been noted

at global scales (Sun et al. 2018). Large spatial variations have also

beenobservedatdaily andmonthly temporal scales. Inconsistencies

exist even between products derived purely based on gauge ob-

servations, owing to deficiencies in the data sources, wind under-

catch of solid precipitation, recording of trace events, and different

interpolation algorithms used to generate these products (Ahmed

et al. 2019; Gehne et al. 2016; Newman et al. 2019; Pomeroy and

Goodison 1997). Satellite-based datasets, adjusted typically by

precipitation gauge observations (e.g., GPCC dataset) to increase

their reliability (Adler et al. 2003), show also significant differences

(Burton et al. 2018). While these studies expose the variation in

average precipitation among global datasets, differences in extreme

precipitation have not been adequately outlined.

In the past,many climate indices [e.g., ExpertTeam forClimate

Change Detection Monitoring and Indices (ETCCDMI)] have

been developed for understanding the statistical behavior of ex-

tremes across globe (Donat et al. 2013a,b; Papalexiou and

Koutsoyiannis 2016; Zhang et al. 2011). Such indices, in general,

have been used to investigate wide climate variations and in-

cluded indicators such as R99p (annual total precipitation from

days greater than 99th percentile), R20 (number of days with

precipitation greater than 20mm), CWD (maximum number of

consecutive days when precipitation is greater than 1mm), among

other indices (Chen and Knutson 2008; Gehne et al. 2016). While

these indices do provide a general perspective about the patterns

of extremes and have been used mainly to assess changes in

precipitation, a comprehensive characterization of the tail be-

havior of extremes at the global scale using gridded products has

not been performed. While previous studies expose the differ-

ences in the aforementioned climate indices among global data-

sets (Contractor et al. 2015; Gehne et al. 2016), no study has yet

scrutinized these datasets for practical applications where in the

interest is a T-yr return level or the probability of exceeding a

threshold for a given return period T (or frequency 1/T) or

the precipitation corresponding to a given return period.

Understating the behavior of extremes in terms of tail

heaviness, and exposing potential differences among the vari-

ous products, is crucial for many practical applications in-

cluding hydrological design and water resources management.

The study aims to evaluate how precisely different datasets

represent the tail index and rare events at global scale. The

objectives are to 1) quantify the tail index or the heaviness of

the tails across different climate/geographical regions, 2) in-

vestigate the spatial pattern of extremes, and 3) compare the

reliability of different datasets in describing extremes. The be-

havior of precipitation extremes in these data products is fully

described by modeling the tails. This is done by fitting the power

type and the stretched exponential tails, and estimating the

probability of rare events such as 100- and 1000-yr return periods,

which are in general used in the design of hydraulic infrastructure.

2. Methods and data

a. Datasets

Extreme precipitation is compared from five global datasets: 1)

Climate Prediction Center (CPC) Unified Gauge-Based Analysis

of Global Daily Precipitation, 2) Precipitation Estimation from

Remotely Sensed Information using Artificial Neural Networks–

Climate Data Record (PERSIANN-CDR, hereafter short-

ened to PERSN-CDR) v01r01, 3) Multi-Source Weighted-

Ensemble Precipitation (MSWEP) v2.0, 4) Climate Forecast

System Reanalysis (CFSR) v2, and 5) Water and Global

Change (WATCH) Forcing Data–ERA-Interim (WFDEI)

version 14 August 2018. The PERSN-CDR, MSWEP, and

WFDEI datasets combine information from observations,

satellites, and reanalysis. The CPC uses only observations and

the CFSR is purely a reanalysis product. PERSN-CDR is

derived from the satellite data (Gridsat-B1), adjusted using

the precipitation data from Global Precipitation Climatology

Project (Ashouri et al. 2015; Nguyen et al. 2018; Sorooshian

et al. 2014). MSWEP v2.0 assimilates the ERA-Interim and

JRA-55 reanalyses products as well as gauge [WorldClim,

Global Historical Climatology Network Daily (GHCN-Daily),

GPCC, CPC, and others] and satellite data (CMORPH,

GridSat, GSMaP, and TMPA 3B42RT) (Beck et al. 2017,

2019). WFDEI is derived using the methodology of WATCH

forcing data [based on the European Centre for Medium-

Range Weather Forecasts (ECMWF) ERA-40 reanalysis with

sequential elevation correction of meteorological variables

and monthly bias correction from gridded observations] mak-

ing use of the ERA-Interim reanalysis data (Weedon et al.

2014). The CPC combines precipitation from several in situ

observation sources (from national and international

agencies) and uses an optimal interpolation objective analysis

technique (Chen et al. 2008). CFSR by theNational Centers for

Environmental Prediction (NCEP) is a coupled atmospheric–

ocean–land surface–sea ice reanalysis product (Saha et al.

2014). Details such as the spatiotemporal resolution and time

period of these datasets are given in Table 1.

More products are available, e.g., those using ground obser-

vations (e.g., GPCC), other reanalysis products (e.g., ERA5,

MERRA), and a range of different satellite and radar products.

Yet the spatial resolution and temporal coverage of these

datasets differ in most cases. Therefore, five datasets were
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chosen that 1) cover approximately the same time period and

have the same spatial resolution, 2) have more than 30 years of

recent data (1979–2017), and 3) have same temporal resolution,

i.e., at daily scale. These products are widely used in the scientific

literature (Contractor et al. 2020; Satgé et al. 2020; Xu et al. 2020).

In addition, ground observations (hereafter called InSitu)

fromGHCN-Daily data, an integrated database of precipitation

from land surface stations across the globe, were considered to

better understand the spatial variation in the tail index and

return levels at global scale, and to provide a benchmark for the

comparison of the products. Twenty-four thousand records were

found from 100 000 stations that have 1) more than 35 years of

data available, 2) percentage of missing values less than 20%,

and 3) percentage of values with quality flags (such as failed gap

check) less than 0.1%. Most of the selected stations are located

in the United States, Europe, Australia and parts of Asia,

southern South Africa, and central-eastern South America

(Fig. S1 in the online supplementalmaterial). The record lengths

vary from 35 to 210 years. To increase the number of stations

used, and derive more robust results, all available data and the

full time period were used. This was tested over the continental

United States and found that there was no impact on the tail

index and its spatial variation between analyzing the full and the

1979–2017 period.

b. Calculating the tail index

The evaluation of tail heaviness is important for characterizing

the extremeand rare events that oftenhaveadverse implications on

the society. The tail of a distribution refers to the upper (or lower)

part of the cumulative distribution function (CDF), and is linked

with extremes, i.e., high (or low) values of the variable of interest.

The upper part of CDF or the right tail of the distribution describes

the behavior of extreme (rare) precipitation. The heaviness of tail

represents the frequency and magnitude of extreme events, and

quantifies the likelihood of extremes to occur. More frequent and

larger extremes with respect to the average precipitation occur

when a heavy tail is observed in a particular region. Therefore,

assessment of a tail’s heaviness is useful to understand the likeli-

hood of extremes and thus guide risk management strategies.

The tail function FX(x) of random variable X is the com-

plimentary cumulative distribution function of X. Several

classifications of tail functions exist, yet here two major tail

types were selected based on their ability to represent pre-

cipitation extremes, that is, the Pareto II (PII) and the Weibull

TABLE 1. Details of the global precipitation datasets used in the work.

Dataset name Short name

Temporal

resolution

Spatial

resolution

Temporal

coverage

Record

length

(T) Data source

Spatial

coverage References

National Centers for

Environmental

Prediction

(NCEP) Climate

Forecast System

Reanalysis

(CFSR)

CFSR Subdaily 0.58 1979–2017 39 Reanalysis Global Saha et al. (2014)

Multi-Source

Weighted-

Ensemble

Precipitation

MSWEP Daily 0.58 1979–2016 38 Observations,

satellite,

reanalysis

Global Beck et al.

(2017, 2019)

CPCUnifiedGauge-

Based Analysis of

Global Daily

Precipitation

CPC Daily 0.58 1979–2017 39 Observations Land Xie et al. (2007),

Chen et al. (2008)

Precipitation

Estimation from

Remotely Sensed

Information using

Artificial Neural

Networks

(PERSIANN)

Climate Data

Record (CDR)

PERSN-CDR Subdaily 0.258 1983–2017 35 Observations,

satellite

608S–608N Ashouri et al.

(2015),

Sorooshian et

al. (2014)

WATCH Forcing

Data ERA-

Interim (WFDEI)

corrected using

Global

Precipitation

Climatology

Centre (GPCC)

WFDEI Daily 0.58 1979–2016 38 Observations,

reanalysis

Land Weedon

et al. (2014)
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(W) tail (Papalexiou et al. 2013, 2018). The tail functions of the

PII and W distributions are given, respectively, by

F
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where b . 0 is the scale parameter and g . 0 is the shape (or

the tail index) parameter which governs the asymptotic be-

havior of the tail. For PII, the range of shape parameter is 0 #

g # 0.5; for g . 0.5 the distribution has infinite variance and

for g 5 0 it converges to exponential tail. As the value of

g increases, the tail becomes heavier. It is converse in the case of

W, i.e., as g decreases, the tail becomes heavier; the distribution is

subexponential with heavy tail than the exponential for g , 1, and

for g . 1, the distribution belongs to the hyperexponential class.

The tail sample, i.e., the data used to fit the tail function,

cannot be uniquely defined. Different approaches exist, such as

considering a fixed number of the most extreme events (e.g.,

equal to the numbers of years of data), considering all events

above a fixed threshold, and considering a percentage of the

largest values in the sample. Here, the largest 5%of the nonzero

values were used to define the tail sample. The parameters were

estimated by fitting the theoretical tails to the empirical ones by

minimizing the probability root-mean-square error (PRMSE),
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where n is the tail sample size; FD(xi) is the exceedance proba-

bility of xi corresponding to the theoretical tail, i.e., PII or W; and

FE(xi) is the empirical exceedance probability according to the

Weibull plotting position given by FE(xi)5 12 r(xi)/(N1 1),

where r(xi) is the rank of xi in an ascending ordered tail sample.

The PRMSE norm considers relative error between the

theoretical and empirical values of the tail sample, thus

weighing each point contributing to the sum (of the norm)

equally. The PRMSE norm is unbiased, has low variance, and

is efficient compared to themost commonly used norms such as

the mean square error (Papalexiou et al. 2013). However, un-

biased estimation of parameters crucial in considering tails

because small biases in the tail index (or the shape parameter)

can lead to substantial differences in return levels. To deter-

mine whether the proposed methodology of minimizing the

PRMSE was truly unbiased, Monte Carlo (MC) simulations are

performed—2000 random samples were generated from both

distributions with randomly varying scale and shape parameters

for a given sample size and the tails were fitted byminimizing the

PRMSE, i.e., for a given distribution, 2000 time series are gen-

erated randomly for a given true parameter and sample pa-

rameter estimates are obtained for all the 2000 time series using

PRMSE. Comparing the estimated and the true shape param-

eters showed that the shape parameter is indeed unbiased for

both the tails (Fig. S2) and for all true shape parameter values.

The time series at some of the grids for CPC, PERSN-CDR,

and WFDEI datasets have gaps. Only grid cells with 80%

completeness of data were analyzed. This ensures that enough

nonzero values were available at all locations around the globe

including places where the precipitation is small (e.g., desert

regions). Grid cells having less than 600 nonzero precipitation

values were excluded to ensure that at least 30 values are in-

cluded in the 5% tail sample.

To quantify spatial differences among the datasets, the

Pearson cross-correlation coefficient r between tail indexmaps

was calculated at continental and global scales. This coefficient

describes the degree to which tail index values at two spatial

locations (grids) are similar to each other. Calculating the

spatial cross correlation is difficult because of the mismatched

grid coordinates among the different products, even though the

datasets have the same spatial resolution of 0.58 (except

PERSN-CDR). Regridding is often performed in order to align

grids, but this affects the calculation of extremes (Gervais et al.

2014). For example, regridding the MSWEP dataset, with

starting coordinates (289.75, 2179.75), to match the CFSR

grid [starting coordinates at (290, 2179.5)] results in a 20%

reduction on an average in extreme values. To avoid changing

the tail values, coarser-resolution maps (28 3 28) were created.
The tail index is averaged at the coarser grid instead of re-

gridding the actual precipitation time series, thus avoiding al-

teration of extremes (Diaconescu et al. 2015). This is useful

because initial coordinate difference becomes insignificant,

and the mean value of the tail index in the coarser grid is more

robust. In addition to the correlation coefficient, the return

levels corresponding to various return periods were calculated

by inverting the tail functions [Eqs. (1) and (2)], with F(x) 5
1/T, where T is the return period. To understand the reliability

of datasets in describing extremes, the probability of rare

events (100 and 1000 years) is compared among the datasets at

continental and global scales.

Gridded products are further compared with the InSitu data.

Tail index at each station is calculated using both the distri-

butions. To develop spatial visualization of the tail index across

globe, spatial interpolation is required as the observations are

point values. InSitu tail index values were averaged within a

grid of 28 3 28 (used to calculate the cross correlation among

tail indices across the datasets) instead of averaging, a priori,

the time series and then estimating the tail index. This also

helps in comparing the InSitu and gridded products.

3. Results

Both tails were fitted at all grids for all datasets. All products

show subexponential tails, that is, heavier tails than that de-

scribed by the exponential distribution that has been typically

used in hydrological practice. In the case of the PII, there are

grid cells where the shape parameter is less than zero, which

implies a parent distribution with an upper bound. The per-

centage of cells with negative shape parameter for CPC,

PERSN-CDR, MSWEP, CFSR, and WFDEI are 5%, 14%,

0.3%, 0.6%, and 0.7%, respectively. The distributions boun-

ded from above are physically inconsistent (Papalexiou and

Koutsoyiannis 2013), and a sample with negative shape pa-

rameter might be due to the sampling errors or variations.

MC simulations show that negative shape parameter values
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can be observed when the true tail is positive (Fig. S3). The

number of negative values declines as the shape parameter

increases and approach zero for shape parameters larger than

0.2. Therefore, for the PII tail, only positive shape parameter

values were permitted.

The spatial pattern of the probability zero p0 (dry days) was

almost the same for all the datasets between 508N and 508S ex-

cept in a few regions (Fig. S4). For example, in Southeast Asia

(China, Myanmar, Cambodia, Vietnam), all the datasets have a

low to medium p0 (0.25 , p0 , 0.5) except for PERSN-CDR.

FIG. 1. Spatial variation of tail index using the (left) Pareto II and (right) Weibull distribution.
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In equatorial Africa, however, all the datasets have a low p0
(0.02, p0 , 0.25) except those from the CPC, which have high

values over Africa. This difference in the results of the two re-

gions may be due to the sparse gauge network and interpolation

effects between distant gauges in equatorial Africa. For regions

north of 508N the WFDEI has high p0 while the rest of datasets

(except PERSN-CDR) have low p0, except in Greenland.

a. Tail index across different climate/geographic regions

The spatial pattern of the tail index (Fig. 1) shows a close

association with the Köppen–Geiger climate classification

(Kottek et al. 2006). Light tails (gPII , 0.05 and gW . 0.65)

were observed in humid equatorial climates, where the mini-

mum temperature is .188C and monsoonal precipitation oc-

curs. Hot, arid climates with winter minima in precipitation

have heavy tails (gPII . 0.3 and gW , 0.45). Warm, humid,

temperate climates with higher precipitation show light to

medium tails. The polar regions with temperature maxima ,
108C, characteristic of tundra, generally have medium tails.

While northern North America and Asia, where there is a

seasonal snow cover and a humid continental climate, have

medium to heavy tails, the subhumid continental climate

interior regions have heavy to medium heavy tails. In the arid

and semiarid regions of Australia and the southwestern United

States, heavy to medium tails are observed. Also, southwestern

Africa has an arid climate with dry summers and so exhibits

heavy to medium tails. In general, light tails are observed in the

coastal regions of North America, Australia, Europe, and

South America.

The causes of extremes that result in specific types of pre-

cipitation (e.g., convective or orographic) cannot be identified

from the tail index, and a high tail index value does not nec-

essarily mean high precipitation. For example, Brazilian and

African tropical forests typically receive high precipitation, but

volumes are consistently high and therefore a light tail occurs.

However, in the arid and semiarid parts of Africa and

Australia, there is a heavy tail as a result of extreme precipi-

tation events that are much larger than the average. Therefore,

an understanding of the tail behavior helps in riskmanagement

for extreme precipitation events.

b. Differences in tail index among datasets

Though the spatial pattern of the probability zero p0 (dry

days) is almost the same for all the datasets (Fig. S4),

FIG. 2. Boxplots of tail index for Pareto II and Weibull at global scale. Whiskers denote the 95% empirical

confidence interval. The boxplots were constructed using 61 556, 184 195, 61 556, 61 636, and 61 556 grids for CPC,

PERSN-CR, MSWEP, CFSR, and WFDEI, respectively.
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considerable differences are noted in the spatial patterns of tail

index among the datasets (Fig. 1). Summary statistics of tail

index also show large deviations among the datasets with mean

values varying from 0.12 to 0.24 and 0.62 to 0.8 for PII and W,

respectively (Fig. 2; Table 2). The heaviest tails (global mean)

were observed in the CFSR product and the thinnest tails in the

PERSN-CDR. There is a 0.115 difference in the mean value of

the PII tail index between these two datasets emphasizing the

large differences. For example, assuming a scale parameter

value equal to the global mean results in estimating 80mm

more precipitation for the 100-yr return level for the CFSR

product, which is almost double the PERSN-CDR estimate.

The CPC dataset derived from ground observations shows a

higher standard deviation in the estimated tail index values

than the rest of the data products.

The spatial patterns of CPC, PERSN-CDR, and MSWEP

closelymatch each other (Fig. 1), whereas the pattern in the tail

index for the CFSR and WFDEI datasets could not be

discerned. The possible reason for consistency in the spatial

pattern among the three datasets (CPC, PERSN-CDR, and

MSWEP) is that they use ground observations. A light tail

(gPII , 0.05 and gW . 0.65) was observed in the tropical forest

biomes of South America, equatorial Africa, and Southeast

Asia in the CPC, PERSN-CDR, andMSWEPdatasets. Typically,

a light tail was found near the equator compared to the polar

regions, except Greenland, where light tails were observed. In

the Alaska and northern Russia, heavy to medium-heavy tails

were observed in all datasets, except CFSR. Heavy tails (gPII.
0.3 and gW , 0.45) were found in the CPC, PERSN-CDR, and

MSWEP datasets from the deserts of Africa, and in all datasets

from central and western parts of Australia (rangelands).

Tropical and east coast Australia have heavy tails in CFSR

and WFDEI datasets and light to medium-heavy tails in

CPC, PERSN-CDR, and MSWEP datasets. In the eastern

United States and in the Appalachian Mountains, light tails

were found (gPII , 0.15 and 0.65 , gW , 1.0) in all the

TABLE 2. Summary statistics of tail index at global scale.

Distribution Dataset Mean Median SD Min Max Q5 Q95

Pareto II CPC 0.191 0.197 0.128 0 0.937 0 0.369

PERSN-CDR 0.121 0.116 0.114 0 0.817 0 0.326

MSWEP 0.192 0.176 0.102 0 1.000 0.061 0.385

CFSR 0.236 0.224 0.118 0 1.000 0.073 0.427

WFDEI 0.200 0.192 0.090 0 0.795 0.069 0.353

Weibull CPC 0.693 0.646 0.237 0.232 2.000 0.475 1.046

PERSN-CDR 0.793 0.768 0.191 0.254 1.665 0.515 1.174

MSWEP 0.673 0.675 0.120 0.190 1.228 0.467 0.866

CFSR 0.617 0.609 0.133 0.179 2.000 0.422 0.840

WFDEI 0.663 0.657 0.119 0.265 1.589 0.482 0.863

FIG. 3. Pearson cross correlations of tail index among the gridded precipitation products at global and continental

scale. Higher values imply a stronger agreement in the spatial patterns of the tail index between two products.
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FIG. 4. Comparison of observed (blue) and calculated depths of precipitation (return levels) using Pareto II

(orange) and Weibull (green) for T-yr return period (T5 39 years for CPC and CFSR; 38 years for MSWEP and

WFDEI; 35 years for PERSN-CDR) at global and continental scale. Observed return levels are the maximum of

observed precipitation. Whiskers denote the 95% empirical confidence interval.
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datasets except CFSR. Yet in the western United States,

medium tails (0.2 , gPII , 0.3 and 0.35, gW , 0.5) were

found only in CPC and the other datasets showed light tails.

Medium tails were found in the central northern United

States and in the Rocky Mountains in MSWEP, CFSR, and

WFDEI. Eastern Canada is consistently characterized by

light tails in all datasets, while medium tails were found in

western and northern Canada. In Asia, the tail index

changes from region to region. In India, including the high-

mountain Hindu Kush–Himalaya, the CPC, MSWEP, and

WFDEI products indicate medium tails, but the CFSR in-

dicates heavy tails. PERSN-CDR differs with light tails in

the north and medium tails in the south of India. All datasets

show heavy tails (gPII . 0.35 and gW , 0.5) in the Tibetan

Plateau, except in CFSR. In the United Kingdom and Europe,

light tails (gPII , 0.15 and 0.7, gW , 2.0) were observed in all

the datasets. European high mountain regions show medium

tails in the CPC, WFDEI, and CFSR datasets and light tails in

PERSN-CDR and MSWEP.

The spatial cross correlation calculated using the Pearson

cross-correlation coefficient r between tail index maps, shows

the interaction among the mapped tail index patterns. Striking

variations in the correlations of the tail index are evident

among the five datasets at global and continental scales

(Fig. 3). The CPC, PERSN-CDR, and MSWEP datasets are

highly correlated with each other, while the CFSR andWFDEI

are the least correlated with the others at global scale. At the

continental scale, CPC and MSWEP are highly correlated,

FIG. 5. Spatial patterns of (right) observed and calculated precipitation depths (return levels) using (center) Pareto II and (left)Weibull

for T-yr return period (T 5 39 years for CPC and CFSR; 38 years for MSWEP and WFDEI; 35 years for PERSN-CDR) at global and

continental scale. Observed return levels are the maximum of observed precipitation.
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FIG. 6. Predicted 100- and 1000-yr return levels using both Pareto-II (orange) andWeibull (green) distributions at

global and continental scale. The left side and right side of the plot shows 100-yr and 1000-yr return period, re-

spectively. Whiskers denote the 95% empirical confidence interval.
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FIG. 7. Mean and standard deviation of the observed and calculated (using the PII and W distributions)

precipitation return levels for T-yr return period at global and continental scale (T5 39 years for CPC and

CFSR; 38 years for MSWEP and WATCH; 35 years for PERSN-CDR).
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inAsia, Europe, and SouthAmerica (r. 0.7). PERSN-CDR is

moderately correlated with CPC in Asia, Europe, and North

America (r . 0.5). However, the PERSN-CDR has a good

correlation with MSWEP (r . 0.78) in Africa. The CFSR re-

analysis dataset has very low to negative correlations with all of

the other products in many regions. The reason for the low to

negative correlation in Africa may be related to the observa-

tion network.While low correlations are observed inAfrica for

both tails among CFSR and other products, high correlations

(r. 0.6 approximately) are observed in NorthAmerica among

all the datasets, including CFSR. This could be due to the ex-

istence of a higher-quality and denser observation network in

North America, compared to the sparser African networks.

c. Discrepancies among datasets in describing extremes

Hydrological design and risk management use precipitation

depths corresponding to specific return periods. To investigate

how the spatial variation of the tail index relates to return

levels of specific return periods, the observed maxima corre-

sponding to T years (record length) was compared with the

predicted using the fitted tails (Fig. 4). The boxplots with blue

colors show the observed return levels (maxima of observed

precipitation record); orange and green colors show the T-yr

return levels calculated using the fitted PII and W tails, re-

spectively. Note that record length varies from 35 to 39 years

among the different datasets (Table 1). There is a close

agreement between the observed maxima and the calculated

T-yr return levels. The PII tail slightly overestimates while the

W tail underestimates all datasets (Fig. 4). Histograms clearly

show the difference between or the ratio of the observed and

calculated maxima (see Fig. S5). Figure 4 also reveals differ-

ences in the observed and calculated maxima among datasets.

The spatial patterns of the calculated return levels using the

PII andWdistributionsmatchwell with observations, but there

is a considerable variation across the datasets. Figure 5 shows

the observed and the calculated return levels using the PII

distribution and the W distribution. The spatial patterns of

CPC and MSWEP closely match except in Greenland. The

reanalysis-based CFSR dataset has higher values of maxima in

the tropics and the satellite-based PERSN-CDR dataset has

consistently lower values across the globe compared to the

other products. While the spatial patterns of all datasets match

well in North America, CFSR has slightly higher values com-

pared to the rest in the southeastern United States.

For hydrological infrastructure designs, return levels for 100-

and 1000-yr return periods are typically used. The difference in

the predicted 100- and 1000-yr return levels between the datasets

is very high (Fig. 6), specifically in Africa, South America, and

Australia. The difference between the 100- and 1000-yr tails is

high for CFSR (;41 and 165mm, respectively) at the global

scale, and low for PERSN-CDR both at global and continental

scales (;8.7 and 29mm, respectively, at global scale). The av-

erage differences for the 1000-yr return period are 396 and

340mm respectively for South America and Africa. In some of

the South American grids these differences are as high as 3000

and 9000mm at 100- and 1000-yr return periods, respectively.

However, in North America and Europe, differences were rel-

atively small, on average 8 and 24mm, respectively for the 100-

and 1000-yr return periods. Though these differences highlight

the critical importance in choosing the right tail, they also em-

phasize that uncertainty is reduced when using dense networks

of high quality observations.

There is a 35mm difference in the mean value of the ob-

served maxima among the global datasets (Fig. 7). CFSR has

consistent higher values and PERSN-CDR has lower values

among the products at global and continental scales, except in

North America and Europe. CFSR compares closely with the

other datasets in North America, Asia, and Europe with dif-

ferences in themean values of less than 20mm. The differences

become larger in Africa and South America (90mm) and

Australia (70mm). Even the 100- and 1000-yr return levels of

the CFSR have high values compared to the other datasets at

both the global and continental scales, with comparable values

in North America (Fig. S6). The mean 100-yr return levels of

PERSN-CDR are approximately twice the CFSR levels, and

become 4 times larger for the 1000-yr levels at the global scale.

The differences are large at continental scales as well, specifi-

cally in Africa and South America. The 1000-yr return level

in CFSR is almost 8 and 6 times higher than PERSN-CDR

in Africa and South America, respectively. Similarly, large dif-

ferences in the standard deviations of observedmaxima,T-, 100-

, and 1000-yr return levels. Again, PERSN-CDR has consis-

tently lower values compared to all the datasets at both global

and continental scales, and CFSR has higher values except in

Europe. The differences are high in South America and low in

Europe and North America compared to other continents.

d. Comparison with in situ observations (InSitu)

The InSitu data show an average value of 0.146 for the PII

tail and 0.734 for theW tail (Table 3). These values are close to

the tail index of the PERSN-CDR for both tails. The InSitu tail

index spatial patterns match those of CPC, MSWEP, and

PERSN-CDR very well (Fig. 8). Light tails (0.05, gPII , 0.1)

occur in the eastern and western United States and medium

tails (0.15 , gPII , 0.3) occur in the central United States,

which is comparable withMSWEP and PERSN-CDRpatterns.

InSitu data show light tails along the eastern Brazilian coast

similar to the CPC, PERSN-CDR, andMSWEP products. The

observed light tails in India and in the eastern coast of

Australia are only consistent with PERSN-CDR. The heavy to

medium tails in the dry rangelands of Australia are consistent

with the InSitu in all the datasets.

The spatial patterns of the observed maximum precipitation

(Fig. 9a) and the calculated T-yr return levels (Figs. 9b,c) are

TABLE 3. Summary statistics of tail index for InSitu observations

(InSitu) at global scale.

Pareto II Weibull

Mean 0.147 0.734

SD 0.075 0.118

Minimum 0.000 0.241

Maximum 1.000 1.896

Q5 0.029 0.553

Median 0.142 0.730

Q95 0.278 0.934
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similar. Figure 9 and show that InSitu spatial patterns closely

match the CPC andMSWEPpatterns, except at a few locations

(e.g., southern India). Spatial patterns are generally similar

in the continental United States for all datasets; however,

InSitu data show high return levels (.160mm) in the eastern

United States that match the CFSR, and lower return levels

(,60 mm) in the western United States that match the

MSWEP. The high return levels (of order 120–180mm) ob-

served in the InSitu on the eastern Brazilian coast are not

observed in any of the gridded datasets. Similarly, the higher

return levels in the southern tip of Africa do not match those

indicated by the products; the exception is the eastern coast

of South Africa in CPC and MSWEP. To some extent, the

high return levels (.180mm) in the Indian subcontinent are

consistent with the CPC, MSWEP, and CFSR. However,

the return levels in CFSR are much higher (around 20%)

compared to the InSitu, specifically in southern India. The low

return levels noted in the Europe match all the datasets.

Similar differences are found between the InSitu and the

gridded products in both the 100- and 1000-yr return levels (see

Fig. 10 and Fig. S7 for the 100- and 1000-yr return level maps,

respectively).

Interestingly, the differences and ratios between the InSitu

and the gridded products return levels are not same for the

return periods considered (Fig. 11 and Table 4). Figure 11

shows the histograms of differences and ratios, and Table 4.

gives the average values at global scale. Albeit high cross

correlations and return levels in CFSR, on average, the dif-

ferences between the return levels of InSitu and CFSR are low

compared to other datasets for observations and T-yr return

period. The differences and ratios are high for 100- and 1000-yr

return periods in the CFSR. Low values for the 100- and

FIG. 8. Spatial patterns of (left) Pareto II and (right) Weibull tail index for in situ observations (InSitu).

FIG. 9. Spatial pattern of T-yr return levels (mm) of (a) empirical (InSitu) and calculated return levels using

(b) Pareto II and (c) Weibull distributions.
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1000-yr return periods are noted in the CPC and WFDEI,

but PERSN-CDR has high values at all the return periods.

In the continental United States these differences and ratios

are small for all datasets.

4. Discussion

Quantifying the tail heaviness was challenging because of

the high variability of precipitation extremes. Gridded prod-

ucts are expected to be helpful in understanding the spatial

variation of precipitation extremes globally, yet significant

differences, both in the spatial pattern and in the absolute

values of the tail index, were found among the different

products. Notably, the return levels are in general under-

estimated by the satellite-based PERSN-CDR (Shah and

Mishra 2014) and overestimated by the reanalysis-based

CFSR, when compared with CPC dataset. Spatial patterns

of InSitu tail index match with those of MSWEP and PERSN-

CDR, which is expected as PERSN-CDR is adjusted using

GHCN-Daily data, and MSWEP also uses GHCN-Daily

in addition to other observational products (e.g., GPCC).

However, this comparison is limited to North America,

Europe, Australia, and some parts of Asia, where InSitu

data exist.

In the tropics, where precipitation is mainly convective, the

satellite-based PERSN-CDR, the observations-based CPC,

and the optimally merged MSWEP show light tails. The re-

analysis datasets, CFSR and WFDEI, differ substantially in

their spatial patterns from the other products. One reason for

this difference may be that the simulated precipitation ex-

tremes are affected by the parameterizations of deep convec-

tion in the tropics (Kharin et al. 2005). In mid- and high

latitudes, while the other products showmedium to heavy tails,

the satellite-based PERSN-CDR indicates light tails, limiting

its credibility (Gehne et al. 2016). At high latitudes, CPC dif-

fers from the other products, which could be due to substantial

measurement errors (sometimes up to 100%) in gauge data as a

result of wind undercatch especially for solid precipitation,

lack of recording of trace events, and/or the sparse solid pre-

cipitation gauging network (Gervais et al. 2014; Goodison et al.

1998; Pomeroy and Goodison 1997; Yang et al. 2001). In con-

trast reanalysis products analyzing atmospheric and surface

fields at high latitudes have been able to produce credible

precipitation fields (Barrett et al. 2020; Krogh et al. 2015;

Krogh and Pomeroy 2018; Lindsay et al. 2014; Serreze

et al. 2005).

The MSWEP seems to perform reasonably well at all

latitudes with spatial patterns of tail index and return

FIG. 10. Spatial pattern of predicted 100-yr return levels (in mm) using the PII tail for the InSitu observations

(InSitu) and the gridded products. The return levels are averaged to a common resolution of 28 3 28.
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levels closely matching with observations and also highly

correlated with CPC and InSitu at both global and conti-

nental scales. Good correlations among all the datasets,

including the reanalyses, were observed in the continental

United States owing to a dense, high quality gauge network.

Though this reiterates the necessity of appropriate gauge

observations, the number of gauges available worldwide has

been declining (Sun et al. 2018), reducing the ability to ob-

tain reliable gridded products based on ground observations

(Herrera et al. 2019). Reduction in uncertainty in estimation

of precipitation extremes from gridded products that de-

pend on observations therefore relies on the preservation

FIG. 11. Histograms of (left) differences and (right) ratios between the in situ observations (InSitu) and the gridded

products for different return periods. The return levels are averaged to a common resolution of 28 3 28.
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and restoration of high quality precipitation observing

networks.

5. Summary and conclusions

Daily extreme precipitation was assessed in gridded pre-

cipitation products by quantifying the heaviness of the tail

through the tail index. Five popular global datasets, CPC,

PERSN-CDR, MSWEP, CFSR, and WFDEI, having more

than 35 years of recent data were used to examine: 1) the

spatial variability of the tail index across different climate and

geographical regions, 2) the patterns of observed and predicted

extremes around the globe, and 3) the differences in predicted

return levels among the gridded products. These datasets were

compared with point surface observations (InSitu) that were

gridded so as to examine the differences in tail index and ex-

treme precipitation return levels.

The spatial patterns of the tail index largely match climate

classifications by Köppen–Geiger. Considerable differences

were found among all the datasets. The differences between

the gauge-based datasets and the reanalysis products are par-

ticularly large. Very large differences in 100- and 1000-yr re-

turn levels were found among the gridded products. The

degree of discrepancy varied from region to region, with low

differences in North America and Europe, and huge differ-

ences in Africa and South America. Notably, the returns levels

are in general underestimated by the satellite-based PERSN-

CDR (Shah and Mishra 2014) and overestimated by the

reanalysis-based CFSR, when compared with CPC and InSitu.

Two theoretical tails, asymptotically equivalent with the

tails of many well-known distributions employed in practice,

were used to represent two major families of distributions: the

power (Pareto II) and exponential form (Weibull). A large

difference between the predicted return levels resulting from

the two tails is noted. Differences of about 10, 22, and 80mm

were found between the prediction of the two tails in the global

mean return levels for the observed period (approximately 38

years), 100- and 1000-yr return periods, respectively. Again,

these differences vary among the datasets, high for the CFSR

and low for the PERSN-CDR, and at continental scale, high

for South America and Africa, and low for North America and

Europe. In some grids, the return levels predicted by the PII

tail were almost 2 and 3 times higher than those by the W tail

for 100 and 1000 years, respectively. Such variations emphasize

the importance of choosing the correct tail.

From the analysis, it should be noted that for small return

periods (e.g., up to 100 years) the data play crucial role in es-

timating the tail. Any inconsistencies in the data (like gaps,

error in measurement or reporting instrument, drizzle effects

or very low events etc.) lead to unreliable estimates of tail in-

dex and differences in the return levels. For large return pe-

riods, like 1000 years, the distribution choice might also

influence return levels in addition to the data. This is in view

of the fact that both tails fit well to the observed sample

(;38 years here) and thus their asymptotic difference is not

revealed for small return periods, and as we extrapolate to

large return periods the heavier tail of the power type (PII)

could result in much larger return levels compared to the

stretched exponential (W). Typically it is recommended to

perform an uncertainty analysis to obtain a confidence in-

terval for such high return levels (Shamir et al. 2013). It

should be noted that the 1000-yr return levels are not of-

fered for operational use (since their estimates are based on

small samples); yet, these estimates highlight how strongly

the return levels can be affected by the choice of the

probability model.

Though the InSitu data are considered based on quality flags

provided by GHCN-Daily, the gridded products are consid-

ered to be quality controlled by the data providers. The com-

parison between the products and the InSitu data is simplified

by averaging the tail index of stations within a coarser grid.

However, it should be noted that the InSitu is point data and

gridded products represent areal precipitation. As these two

are different processes, comparison is not straightforward re-

quiring spatial interpolation techniques, where each technique

has its own advantages and disadvantages, to obtain gridded

data from point data. At a coarse scale, the extremes are

considered to be smoothened as a precipitation value at a

particular grid is the average of whole grid, and therefore av-

eraging the tail index in a coarse grid is considered to be valid

TABLE 4. Average differences and ratios between the return levels of InSitu observations (InSitu) and gridded products at global scale.

Pareto II Weibull

Dataset Observations T-yr 100-yr 1000-yr T-yr 100-yr 1000-yr

Differences (mm)

CPC 53.53 38.93 1.79 217.25 35.88 10.66 11.29

PERSN-CDR 76.94 64.36 93.59 175.76 55.33 77.95 113.93

MSWEP 49.33 36.39 43.71 77.66 31.96 39.60 56.88

CFSR 31.67 6.72 104.87 187.62 11.09 91.37 130.43

WFDEI 57.96 44.60 20.47 210.89 40.06 5.12 4.45

Ratios

CPC 1.67 1.46 1.14 1.11 1.47 1.22 1.19

PERSN-CDR 2.15 1.98 3.62 3.91 1.89 3.58 3.58

MSWEP 1.62 1.46 1.84 1.99 1.43 1.87 1.90

CFSR 1.39 1.19 4.28 4.78 1.20 4.30 4.47

WFDEI 1.81 1.64 1.20 1.22 1.60 1.25 1.23
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for comparison. Another issue with InSitu data is the timing of

daily accumulations, which is neglected in the current study.

Gridded precipitation products are extensively used in re-

search and practice. However, these results show that such

products do not provide a consistent representation of the

extreme precipitation. Data products that rely on observations

are better where observation network is denser and more re-

liable. Those that are largely model driven has utility in poorly

gauged regions. Climate is also associated with data product

performance in describing extremes. Thus, the question that

naturally arises is ‘‘which product is the best for studying ex-

tremes?’’ The results presented here suggest that MSWEP

performs better, yet there is no single global product that works

best for all regions and climates. As such, it is still advisable to

include multiple products in a study in order to gain some in-

sights into the uncertainties in extremes.
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