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ABSTRACT: Global gridded precipitation products have proven essential for many applications ranging from hydrological
modeling and climate model validation to natural hazard risk assessment. They provide a global picture of how precipitation varies
across time and space, specifically in regions where ground-based observations are scarce. While the application of global precipitation
products has become widespread, there is limited knowledge on how well these products represent the magnitude and frequency of
extreme precipitation—the key features in triggering flood hazards. Here, five global precipitation datasets (MSWEP, CFSR, CPC,
PERSIANN-CDR, and WFDEI) are compared to each other and to surface observations. The spatial variability of relatively high
precipitation events (tail heaviness) and the resulting discrepancy among datasets in the predicted precipitation return levels were
evaluated for the time period 1979-2017. The analysis shows that 1) these products do not provide a consistent representation of the
behavior of extremes as quantified by the tail heaviness, 2) there is strong spatial variability in the tail index, 3) the spatial patterns of
the tail heaviness generally match the Koppen—Geiger climate classification, and 4) the predicted return levels for 100 and 1000 years
differ significantly among the gridded products. More generally, our findings reveal shortcomings of global precipitation products in

representing extremes and highlight that there is no single global product that performs best for all regions and climates.
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1. Introduction

Global precipitation datasets, derived by combining data
from various sources ranging from ground-based observations
to radar and satellite data, are increasingly used by the Earth
science community in applications such as land surface mod-
eling, forcing and calibrating ecological and hydrological
models, validation of climate models, trend analysis, water
resources management, and extreme event characterization
(MacKellar et al. 2007; New et al. 2000). Several gridded
products [e.g., Climate Prediction Center (CPC) unified pre-
cipitation estimates, Global Precipitation Climatology Center
(GPCC) precipitation dataset, NCEP-NCAR reanalysis data]
have become available at various spatial and temporal resolu-
tions based on different data sources (e.g., ground observations,
satellites, radar, reanalysis) and data merging techniques. While
such datasets are useful to investigate the spatial and temporal
behavior in global precipitation (Fischer and Knutti 2014; Ghosh
2012; Trenberth et al. 2003), it is also important to quantify the
differences in precipitation among the datasets and understand
their reliability in estimates of extreme precipitation (Fischer
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and Knutti 2015; Ingram 2016; Min et al. 2011). Previous studies
have shown that there are substantial differences between the
precipitation estimates from different global precipitation da-
tasets at a range of time scales from daily (Wong et al. 2017) to
yearly (Sun et al. 2018), limiting understanding of the statistical
behavior of regional and global precipitation. Therefore, the
answer to the question of how reliable these datasets are in
representing precipitation extremes remains still vague.
Precipitation is the main driver of terrestrial hydrology and
therefore the most important input to hydrological models.
Several sources of precipitation data exist, for example, ground
measurements by precipitation gauges, remotely sensed data
by radars and satellites, and reanalysis data that assimilate a
myriad of observations into numerical weather prediction
models. Ground measurements using precipitation gauges are
the main source of information for point precipitation. However,
observational records have limitations of sparse station network
and/or gaps in records (Bell et al. 2015; Kidd et al. 2017). Satellite
data, using infrared and microwave instruments, cover most
parts of the globe overcoming the limitation of sparse network.
Despite the limitations of the short record length, satellite data
are widely used in hydrological studies, given the advantages in
capturing extremes and poor gauged regions (Faridzad et al.
2018; Gado et al. 2017, Ombadi et al. 2018). Any systematic
disturbances in the signal are usually corrected by using the
ground observations. Reanalyses merge the ground observa-
tions and data from models that simulate physical and dynamic
processes of climate system. Reanalysis data are highly depen-
dent on the selected climate model (Trenberth et al. 2011),
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leading to uncertainties in the precipitation estimates (Gehne
et al. 2016).

Merged gridded precipitation products [e.g., Climate Hazards
Center Infrared Precipitation with Station Data (CHIRPS) and
Multi-Source Weighted Ensemble Precipitation (MSWEP)] have
been developed in part to address these issues and been used to
study the behavior of precipitation as well as to investigate
changes in climatic means and extremes (Alexander et al. 2006;
Beck et al. 2019; Rajah et al. 2014). Developing gridded products
involve multiple layers of assimilation with various decisions (for
example, choice of original data and of interpolation techniques,
treating missing values) leading to differences in the final gridded
products. A range of regional to global studies have compared
gridded products and demonstrated inconsistencies (Akinsanola
et al. 2017; Beck et al. 2019; Burton et al. 2018; Contractor et al.
2015; Dinku et al. 2008; Donat et al. 2014; Hu et al. 2018;
Javanmard et al. 2010; Kidd et al. 2012; Sun et al. 2014; Wang and
Zeng 2015; Yin et al. 2015; Zhang et al. 2013). Typically, differ-
ences in mean, total, and various statistics of precipitation are
calculated at different time scales for comparing the datasets.
Large differences in magnitude, with a deviation of 300 mm yr~*
in the annual precipitation among the datasets, have been noted
at global scales (Sun et al. 2018). Large spatial variations have also
been observed at daily and monthly temporal scales. Inconsistencies
exist even between products derived purely based on gauge ob-
servations, owing to deficiencies in the data sources, wind under-
catch of solid precipitation, recording of trace events, and different
interpolation algorithms used to generate these products (Ahmed
et al. 2019; Gehne et al. 2016; Newman et al. 2019; Pomeroy and
Goodison 1997). Satellite-based datasets, adjusted typically by
precipitation gauge observations (e.g., GPCC dataset) to increase
their reliability (Adler et al. 2003), show also significant differences
(Burton et al. 2018). While these studies expose the variation in
average precipitation among global datasets, differences in extreme
precipitation have not been adequately outlined.

In the past, many climate indices [e.g., Expert Team for Climate
Change Detection Monitoring and Indices (ETCCDMI)] have
been developed for understanding the statistical behavior of ex-
tremes across globe (Donat et al. 2013a,b; Papalexiou and
Koutsoyiannis 2016; Zhang et al. 2011). Such indices, in general,
have been used to investigate wide climate variations and in-
cluded indicators such as R99p (annual total precipitation from
days greater than 99th percentile), R20 (number of days with
precipitation greater than 20 mm), CWD (maximum number of
consecutive days when precipitation is greater than 1 mm), among
other indices (Chen and Knutson 2008; Gehne et al. 2016). While
these indices do provide a general perspective about the patterns
of extremes and have been used mainly to assess changes in
precipitation, a comprehensive characterization of the tail be-
havior of extremes at the global scale using gridded products has
not been performed. While previous studies expose the differ-
ences in the aforementioned climate indices among global data-
sets (Contractor et al. 2015; Gehne et al. 2016), no study has yet
scrutinized these datasets for practical applications where in the
interest is a 7-yr return level or the probability of exceeding a
threshold for a given return period T (or frequency 1/T) or
the precipitation corresponding to a given return period.
Understating the behavior of extremes in terms of tail
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heaviness, and exposing potential differences among the vari-
ous products, is crucial for many practical applications in-
cluding hydrological design and water resources management.

The study aims to evaluate how precisely different datasets
represent the tail index and rare events at global scale. The
objectives are to 1) quantify the tail index or the heaviness of
the tails across different climate/geographical regions, 2) in-
vestigate the spatial pattern of extremes, and 3) compare the
reliability of different datasets in describing extremes. The be-
havior of precipitation extremes in these data products is fully
described by modeling the tails. This is done by fitting the power
type and the stretched exponential tails, and estimating the
probability of rare events such as 100- and 1000-yr return periods,
which are in general used in the design of hydraulic infrastructure.

2. Methods and data
a. Datasets

Extreme precipitation is compared from five global datasets: 1)
Climate Prediction Center (CPC) Unified Gauge-Based Analysis
of Global Daily Precipitation, 2) Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks—
Climate Data Record (PERSIANN-CDR, hereafter short-
ened to PERSN-CDR) v01r01, 3) Multi-Source Weighted-
Ensemble Precipitation (MSWEP) v2.0, 4) Climate Forecast
System Reanalysis (CFSR) v2, and 5) Water and Global
Change (WATCH) Forcing Data—-ERA-Interim (WFDEI)
version 14 August 2018. The PERSN-CDR, MSWEP, and
WFDEI datasets combine information from observations,
satellites, and reanalysis. The CPC uses only observations and
the CFSR is purely a reanalysis product. PERSN-CDR is
derived from the satellite data (Gridsat-B1), adjusted using
the precipitation data from Global Precipitation Climatology
Project (Ashouri et al. 2015; Nguyen et al. 2018; Sorooshian
et al. 2014). MSWEP v2.0 assimilates the ERA-Interim and
JRA-55 reanalyses products as well as gauge [WorldClim,
Global Historical Climatology Network Daily (GHCN-Daily),
GPCC, CPC, and others] and satellite data (CMORPH,
GridSat, GSMaP, and TMPA 3B42RT) (Beck et al. 2017,
2019). WFDETI is derived using the methodology of WATCH
forcing data [based on the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-40 reanalysis with
sequential elevation correction of meteorological variables
and monthly bias correction from gridded observations] mak-
ing use of the ERA-Interim reanalysis data (Weedon et al.
2014). The CPC combines precipitation from several in situ
observation sources (from national and international
agencies) and uses an optimal interpolation objective analysis
technique (Chen et al. 2008). CFSR by the National Centers for
Environmental Prediction (NCEP) is a coupled atmospheric—
ocean-land surface-sea ice reanalysis product (Saha et al.
2014). Details such as the spatiotemporal resolution and time
period of these datasets are given in Table 1.

More products are available, e.g., those using ground obser-
vations (e.g., GPCC), other reanalysis products (e.g., ERAS,
MERRA), and a range of different satellite and radar products.
Yet the spatial resolution and temporal coverage of these
datasets differ in most cases. Therefore, five datasets were
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TABLE 1. Details of the global precipitation datasets used in the work.

Temporal  Spatial

Dataset name Short name  resolution resolution

Temporal
coverage

Record
length
(7 Data source

Spatial

coverage References

National Centers for CFSR
Environmental
Prediction
(NCEP) Climate
Forecast System
Reanalysis
(CFSR)

Multi-Source
Weighted-
Ensemble
Precipitation

CPC Unified Gauge- CPC
Based Analysis of
Global Daily
Precipitation

Precipitation
Estimation from
Remotely Sensed
Information using
Artificial Neural
Networks
(PERSIANN)
Climate Data
Record (CDR)

WATCH Forcing
Data ERA-
Interim (WFDEI)
corrected using
Global
Precipitation
Climatology
Centre (GPCC)

Subdaily 0.5°

MSWEP Daily 0.5°

Daily 0.5°

PERSN-CDR  Subdaily 0.25°

WFDEI Daily 0.5°

1979-2017 39

1979-2016 38

19792017 39

1983-2017 35

1979-2016 38

Reanalysis Global  Saha et al. (2014)

Beck et al.
(2017, 2019)

Observations,  Global
satellite,

reanalysis

Land

Observations Xie et al. (2007),

Chen et al. (2008)

60°S—-60°N  Ashouri et al.
(2015),
Sorooshian et
al. (2014)

Observations,
satellite

Land Weedon

et al. (2014)

Observations,
reanalysis

chosen that 1) cover approximately the same time period and
have the same spatial resolution, 2) have more than 30 years of
recent data (1979-2017), and 3) have same temporal resolution,
i.e., at daily scale. These products are widely used in the scientific
literature (Contractor et al. 2020; Satgé et al. 2020; Xu et al. 2020).

In addition, ground observations (hereafter called InSitu)
from GHCN-Daily data, an integrated database of precipitation
from land surface stations across the globe, were considered to
better understand the spatial variation in the tail index and
return levels at global scale, and to provide a benchmark for the
comparison of the products. Twenty-four thousand records were
found from 100 000 stations that have 1) more than 35 years of
data available, 2) percentage of missing values less than 20%,
and 3) percentage of values with quality flags (such as failed gap
check) less than 0.1%. Most of the selected stations are located
in the United States, Europe, Australia and parts of Asia,
southern South Africa, and central-eastern South America
(Fig. S1in the online supplemental material). The record lengths
vary from 35 to 210 years. To increase the number of stations
used, and derive more robust results, all available data and the
full time period were used. This was tested over the continental
United States and found that there was no impact on the tail
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index and its spatial variation between analyzing the full and the
1979-2017 period.

b. Calculating the tail index

The evaluation of tail heaviness is important for characterizing
the extreme and rare events that often have adverse implications on
the society. The tail of a distribution refers to the upper (or lower)
part of the cumulative distribution function (CDF), and is linked
with extremes, i.e., high (or low) values of the variable of interest.
The upper part of CDF or the right tail of the distribution describes
the behavior of extreme (rare) precipitation. The heaviness of tail
represents the frequency and magnitude of extreme events, and
quantifies the likelihood of extremes to occur. More frequent and
larger extremes with respect to the average precipitation occur
when a heavy tail is observed in a particular region. Therefore,
assessment of a tail’s heaviness is useful to understand the likeli-
hood of extremes and thus guide risk management strategies.

The tail function Fx(x) of random variable X is the com-
plimentary cumulative distribution function of X. Several
classifications of tail functions exist, yet here two major tail
types were selected based on their ability to represent pre-
cipitation extremes, that is, the Pareto II (PII) and the Weibull
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(W) tail (Papalexiou et al. 2013, 2018). The tail functions of the
PII and W distributions are given, respectively, by

Fuo=(1495) 8
F,(x) = exp [* (%) 7] , (2)

where B > 0 is the scale parameter and y > 0 is the shape (or
the tail index) parameter which governs the asymptotic be-
havior of the tail. For PII, the range of shape parameter is 0 =
v = 0.5; for y > 0.5 the distribution has infinite variance and
for y = 0 it converges to exponential tail. As the value of
7y increases, the tail becomes heavier. It is converse in the case of
W, i.e., as y decreases, the tail becomes heavier; the distribution is
subexponential with heavy tail than the exponential for y < 1, and
for y > 1, the distribution belongs to the hyperexponential class.
The tail sample, i.e., the data used to fit the tail function,
cannot be uniquely defined. Different approaches exist, such as
considering a fixed number of the most extreme events (e.g.,
equal to the numbers of years of data), considering all events
above a fixed threshold, and considering a percentage of the
largest values in the sample. Here, the largest 5% of the nonzero
values were used to define the tail sample. The parameters were
estimated by fitting the theoretical tails to the empirical ones by
minimizing the probability root-mean-square error (PRMSE),

n

PRMSE = » Y

ni=1

— 2
Do) 1} , G)

F(x,)

where n is the tail sample size; Fp(x;) is the exceedance proba-
bility of x; corresponding to the theoretical tail, i.e., PII or W; and
Fg(x;) is the empirical exceedance probability according to the
Weibull plotting position given by Fz(x;) =1—r(x;)/(N + 1),
where r(x;) is the rank of x; in an ascending ordered tail sample.

The PRMSE norm considers relative error between the
theoretical and empirical values of the tail sample, thus
weighing each point contributing to the sum (of the norm)
equally. The PRMSE norm is unbiased, has low variance, and
is efficient compared to the most commonly used norms such as
the mean square error (Papalexiou et al. 2013). However, un-
biased estimation of parameters crucial in considering tails
because small biases in the tail index (or the shape parameter)
can lead to substantial differences in return levels. To deter-
mine whether the proposed methodology of minimizing the
PRMSE was truly unbiased, Monte Carlo (MC) simulations are
performed—2000 random samples were generated from both
distributions with randomly varying scale and shape parameters
for a given sample size and the tails were fitted by minimizing the
PRMSE, i.e., for a given distribution, 2000 time series are gen-
erated randomly for a given true parameter and sample pa-
rameter estimates are obtained for all the 2000 time series using
PRMSE. Comparing the estimated and the true shape param-
eters showed that the shape parameter is indeed unbiased for
both the tails (Fig. S2) and for all true shape parameter values.

The time series at some of the grids for CPC, PERSN-CDR,
and WFDEI datasets have gaps. Only grid cells with 80%
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completeness of data were analyzed. This ensures that enough
nonzero values were available at all locations around the globe
including places where the precipitation is small (e.g., desert
regions). Grid cells having less than 600 nonzero precipitation
values were excluded to ensure that at least 30 values are in-
cluded in the 5% tail sample.

To quantify spatial differences among the datasets, the
Pearson cross-correlation coefficient p between tail index maps
was calculated at continental and global scales. This coefficient
describes the degree to which tail index values at two spatial
locations (grids) are similar to each other. Calculating the
spatial cross correlation is difficult because of the mismatched
grid coordinates among the different products, even though the
datasets have the same spatial resolution of 0.5° (except
PERSN-CDR). Regridding is often performed in order to align
grids, but this affects the calculation of extremes (Gervais et al.
2014). For example, regridding the MSWEP dataset, with
starting coordinates (—89.75, —179.75), to match the CFSR
grid [starting coordinates at (=90, —179.5)] results in a 20%
reduction on an average in extreme values. To avoid changing
the tail values, coarser-resolution maps (2° X 2°) were created.
The tail index is averaged at the coarser grid instead of re-
gridding the actual precipitation time series, thus avoiding al-
teration of extremes (Diaconescu et al. 2015). This is useful
because initial coordinate difference becomes insignificant,
and the mean value of the tail index in the coarser grid is more
robust. In addition to the correlation coefficient, the return
levels corresponding to various return periods were calculated
by inverting the tail functions [Eqgs. (1) and (2)], with F(x) =
1/T, where T is the return period. To understand the reliability
of datasets in describing extremes, the probability of rare
events (100 and 1000 years) is compared among the datasets at
continental and global scales.

Gridded products are further compared with the InSitu data.
Tail index at each station is calculated using both the distri-
butions. To develop spatial visualization of the tail index across
globe, spatial interpolation is required as the observations are
point values. InSitu tail index values were averaged within a
grid of 2° X 2° (used to calculate the cross correlation among
tail indices across the datasets) instead of averaging, a priori,
the time series and then estimating the tail index. This also
helps in comparing the InSitu and gridded products.

3. Results

Both tails were fitted at all grids for all datasets. All products
show subexponential tails, that is, heavier tails than that de-
scribed by the exponential distribution that has been typically
used in hydrological practice. In the case of the PII, there are
grid cells where the shape parameter is less than zero, which
implies a parent distribution with an upper bound. The per-
centage of cells with negative shape parameter for CPC,
PERSN-CDR, MSWEP, CFSR, and WFDEI are 5%, 14%,
0.3%, 0.6%, and 0.7 %, respectively. The distributions boun-
ded from above are physically inconsistent (Papalexiou and
Koutsoyiannis 2013), and a sample with negative shape pa-
rameter might be due to the sampling errors or variations.
MC simulations show that negative shape parameter values
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PERSN-CDR

CFSR

WFDEI

T —
0 0.05 010 015 020 030 035 1.00 0 035 050 065 075 090 125 2.00
FIG. 1. Spatial variation of tail index using the (left) Pareto II and (right) Weibull distribution.

can be observed when the true tail is positive (Fig. S3). The The spatial pattern of the probability zero py (dry days) was
number of negative values declines as the shape parameter  almost the same for all the datasets between 50°N and 50°S ex-
increases and approach zero for shape parameters larger than  cept in a few regions (Fig. S4). For example, in Southeast Asia
0.2. Therefore, for the PII tail, only positive shape parameter  (China, Myanmar, Cambodia, Vietnam), all the datasets have a
values were permitted. low to medium p, (0.25 < pg < 0.5) except for PERSN-CDR.
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FIG. 2. Boxplots of tail index for Pareto II and Weibull at global scale. Whiskers denote the 95% empirical
confidence interval. The boxplots were constructed using 61 556, 184 195, 61 556, 61 636, and 61 556 grids for CPC,

PERSN-CR, MSWEP, CFSR, and WFDETI, respectively.

In equatorial Africa, however, all the datasets have a low pg
(0.02 < py < 0.25) except those from the CPC, which have high
values over Africa. This difference in the results of the two re-
gions may be due to the sparse gauge network and interpolation
effects between distant gauges in equatorial Africa. For regions
north of 50°N the WFDEI has high p, while the rest of datasets
(except PERSN-CDR) have low py, except in Greenland.

a. Tail index across different climate/geographic regions

The spatial pattern of the tail index (Fig. 1) shows a close
association with the Koppen—Geiger climate classification
(Kottek et al. 2006). Light tails (ypy; < 0.05 and yw > 0.65)
were observed in humid equatorial climates, where the mini-
mum temperature is >18°C and monsoonal precipitation oc-
curs. Hot, arid climates with winter minima in precipitation
have heavy tails (ypy; > 0.3 and yw < 0.45). Warm, humid,
temperate climates with higher precipitation show light to
medium tails. The polar regions with temperature maxima <
10°C, characteristic of tundra, generally have medium tails.
While northern North America and Asia, where there is a
seasonal snow cover and a humid continental climate, have
medium to heavy tails, the subhumid continental climate

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:38 PM UTC

interior regions have heavy to medium heavy tails. In the arid
and semiarid regions of Australia and the southwestern United
States, heavy to medium tails are observed. Also, southwestern
Africa has an arid climate with dry summers and so exhibits
heavy to medium tails. In general, light tails are observed in the
coastal regions of North America, Australia, Europe, and
South America.

The causes of extremes that result in specific types of pre-
cipitation (e.g., convective or orographic) cannot be identified
from the tail index, and a high tail index value does not nec-
essarily mean high precipitation. For example, Brazilian and
African tropical forests typically receive high precipitation, but
volumes are consistently high and therefore a light tail occurs.
However, in the arid and semiarid parts of Africa and
Australia, there is a heavy tail as a result of extreme precipi-
tation events that are much larger than the average. Therefore,
an understanding of the tail behavior helps in risk management
for extreme precipitation events.

b. Differences in tail index among datasets

Though the spatial pattern of the probability zero py (dry
days) is almost the same for all the datasets (Fig. S4),
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TABLE 2. Summary statistics of tail index at global scale.

Distribution Dataset Mean Median SD Min Max 0Os Qos
Pareto 11 CPC 0.191 0.197 0.128 0 0.937 0 0.369
PERSN-CDR 0.121 0.116 0.114 0 0.817 0 0.326

MSWEP 0.192 0.176 0.102 0 1.000 0.061 0.385

CFSR 0.236 0.224 0.118 0 1.000 0.073 0.427

WFDEI 0.200 0.192 0.090 0 0.795 0.069 0.353

Weibull CPC 0.693 0.646 0.237 0.232 2.000 0.475 1.046
PERSN-CDR 0.793 0.768 0.191 0.254 1.665 0.515 1.174

MSWEP 0.673 0.675 0.120 0.190 1.228 0.467 0.866

CFSR 0.617 0.609 0.133 0.179 2.000 0.422 0.840

WFDEI 0.663 0.657 0.119 0.265 1.589 0.482 0.863

considerable differences are noted in the spatial patterns of tail
index among the datasets (Fig. 1). Summary statistics of tail
index also show large deviations among the datasets with mean
values varying from 0.12 to 0.24 and 0.62 to 0.8 for PII and W,
respectively (Fig. 2; Table 2). The heaviest tails (global mean)
were observed in the CFSR product and the thinnest tails in the
PERSN-CDR. There is a 0.115 difference in the mean value of
the PII tail index between these two datasets emphasizing the
large differences. For example, assuming a scale parameter
value equal to the global mean results in estimating 80 mm
more precipitation for the 100-yr return level for the CFSR
product, which is almost double the PERSN-CDR estimate.
The CPC dataset derived from ground observations shows a
higher standard deviation in the estimated tail index values
than the rest of the data products.

The spatial patterns of CPC, PERSN-CDR, and MSWEP
closely match each other (Fig. 1), whereas the pattern in the tail
index for the CFSR and WFDEI datasets could not be

North America
CPC PERSN-CDR MSWEP CFSR Watch
CPC
PERSN-CDR
MSWEP
CFSR
WFDEI 0.33
Asia
CPC PERSN-CDR MSWEP CFSR WFDEI
CPC
PERSN-CDR
MSWEP
CFSR
WFDEI 0.28
Africa
CPC PERSN-CDR MSWEP CFSR WEFDEI
CPC 0.09 0.08
PERSN-CDR 0.16 0.16
MSWEP
CFSR 0.23
WFDEI 0.15 0.16 0.24
Global
CPC PERSN-CDR MSWEP CFSR WFDEI
CPC 0.04
PERSN-CDR -0.07 0.16
MSWEP
CFSR 0.14
WFDEI 0.34 0.19

discerned. The possible reason for consistency in the spatial
pattern among the three datasets (CPC, PERSN-CDR, and
MSWEDP) is that they use ground observations. A light tail
(7vpn < 0.05 and yw > 0.65) was observed in the tropical forest
biomes of South America, equatorial Africa, and Southeast
Asia in the CPC, PERSN-CDR, and MSWEP datasets. Typically,
a light tail was found near the equator compared to the polar
regions, except Greenland, where light tails were observed. In
the Alaska and northern Russia, heavy to medium-heavy tails
were observed in all datasets, except CFSR. Heavy tails (ypy >
0.3 and yw < 0.45) were found in the CPC, PERSN-CDR, and
MSWEP datasets from the deserts of Africa, and in all datasets
from central and western parts of Australia (rangelands).
Tropical and east coast Australia have heavy tails in CFSR
and WFDEI datasets and light to medium-heavy tails in
CPC, PERSN-CDR, and MSWEP datasets. In the eastern
United States and in the Appalachian Mountains, light tails
were found (ypy; < 0.15 and 0.65 < yw < 1.0) in all the

Europe
CPC PERSN-CDR MSWEP CFSR Watch
CPC 0.18 0.20
PERSN-CDR -0.09
MSWEP
CFSR 0.23
WFDEI 0.29 -0.08
South America
CPC PERSN-CDR MSWEP CFSR WFDEI
CPC -0.33 0.11
PERSN-CDR -0.16 0.20
MSWEP -0.13
CFSR -0.29 -0.13 -0.14 0.03
WFDEI 0.14 0.15 0.26 0.13
Australia
CPC PERSN-CDR MSWEP CFSR WEFDEI
CPC -001 = 023
PERSN-CDR -0.10 0.13
MSWEP
CFSR
WEFDEI

Pareto II

Weibull

FIG. 3. Pearson cross correlations of tail index among the gridded precipitation products at global and continental
scale. Higher values imply a stronger agreement in the spatial patterns of the tail index between two products.
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F1G. 4. Comparison of observed (blue) and calculated depths of precipitation (return levels) using Pareto II
(orange) and Weibull (green) for T-yr return period (7' = 39 years for CPC and CFSR; 38 years for MSWEP and
WFDETI; 35 years for PERSN-CDR) at global and continental scale. Observed return levels are the maximum of
observed precipitation. Whiskers denote the 95% empirical confidence interval.
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FIG. 5. Spatial patterns of (right) observed and calculated precipitation depths (return levels) using (center) Pareto IT and (left) Weibull
for T-yr return period (7' = 39 years for CPC and CFSR; 38 years for MSWEP and WFDEI; 35 years for PERSN-CDR) at global and
continental scale. Observed return levels are the maximum of observed precipitation.

datasets except CFSR. Yet in the western United States,
medium tails (0.2 < ypr; < 0.3 and 0.35< yw < 0.5) were
found only in CPC and the other datasets showed light tails.
Medium tails were found in the central northern United
States and in the Rocky Mountains in MSWEP, CFSR, and
WFDEI. Eastern Canada is consistently characterized by
light tails in all datasets, while medium tails were found in
western and northern Canada. In Asia, the tail index
changes from region to region. In India, including the high-
mountain Hindu Kush-Himalaya, the CPC, MSWEP, and
WPFDEI products indicate medium tails, but the CFSR in-
dicates heavy tails. PERSN-CDR differs with light tails in
the north and medium tails in the south of India. All datasets
show heavy tails (ypy > 0.35 and yw < 0.5) in the Tibetan
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Plateau, except in CFSR. In the United Kingdom and Europe,
light tails (ypy < 0.15 and 0.7 < yw < 2.0) were observed in all
the datasets. European high mountain regions show medium
tails in the CPC, WFDEI, and CFSR datasets and light tails in
PERSN-CDR and MSWEP.

The spatial cross correlation calculated using the Pearson
cross-correlation coefficient p between tail index maps, shows
the interaction among the mapped tail index patterns. Striking
variations in the correlations of the tail index are evident
among the five datasets at global and continental scales
(Fig. 3). The CPC, PERSN-CDR, and MSWEP datasets are
highly correlated with each other, while the CFSR and WFDEI
are the least correlated with the others at global scale. At the
continental scale, CPC and MSWEP are highly correlated,
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FIG. 6. Predicted 100- and 1000-yr return levels using both Pareto-II (orange) and Weibull (green) distributions at
global and continental scale. The left side and right side of the plot shows 100-yr and 1000-yr return period, re-
spectively. Whiskers denote the 95% empirical confidence interval.
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precipitation return levels for 7-yr return period at global and continental scale (T

CFSR; 38 years for MSWEP and WATCH; 35 years for PERSN-CDR).
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TABLE 3. Summary statistics of tail index for InSitu observations
(InSitu) at global scale.

Pareto 11 Weibull
Mean 0.147 0.734
SD 0.075 0.118
Minimum 0.000 0.241
Maximum 1.000 1.896
0Os 0.029 0.553
Median 0.142 0.730
Qos 0.278 0.934

in Asia, Europe, and South America (p > 0.7). PERSN-CDR is
moderately correlated with CPC in Asia, Europe, and North
America (p > 0.5). However, the PERSN-CDR has a good
correlation with MSWEP (p > 0.78) in Africa. The CFSR re-
analysis dataset has very low to negative correlations with all of
the other products in many regions. The reason for the low to
negative correlation in Africa may be related to the observa-
tion network. While low correlations are observed in Africa for
both tails among CFSR and other products, high correlations
(p > 0.6 approximately) are observed in North America among
all the datasets, including CFSR. This could be due to the ex-
istence of a higher-quality and denser observation network in
North America, compared to the sparser African networks.

c. Discrepancies among datasets in describing extremes

Hydrological design and risk management use precipitation
depths corresponding to specific return periods. To investigate
how the spatial variation of the tail index relates to return
levels of specific return periods, the observed maxima corre-
sponding to T years (record length) was compared with the
predicted using the fitted tails (Fig. 4). The boxplots with blue
colors show the observed return levels (maxima of observed
precipitation record); orange and green colors show the 7-yr
return levels calculated using the fitted PII and W tails, re-
spectively. Note that record length varies from 35 to 39 years
among the different datasets (Table 1). There is a close
agreement between the observed maxima and the calculated
T-yr return levels. The PII tail slightly overestimates while the
W tail underestimates all datasets (Fig. 4). Histograms clearly
show the difference between or the ratio of the observed and
calculated maxima (see Fig. S5). Figure 4 also reveals differ-
ences in the observed and calculated maxima among datasets.

The spatial patterns of the calculated return levels using the
PII and W distributions match well with observations, but there
is a considerable variation across the datasets. Figure 5 shows
the observed and the calculated return levels using the PII
distribution and the W distribution. The spatial patterns of
CPC and MSWEP closely match except in Greenland. The
reanalysis-based CFSR dataset has higher values of maxima in
the tropics and the satellite-based PERSN-CDR dataset has
consistently lower values across the globe compared to the
other products. While the spatial patterns of all datasets match
well in North America, CFSR has slightly higher values com-
pared to the rest in the southeastern United States.

For hydrological infrastructure designs, return levels for 100-
and 1000-yr return periods are typically used. The difference in
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the predicted 100- and 1000-yr return levels between the datasets
is very high (Fig. 6), specifically in Africa, South America, and
Australia. The difference between the 100- and 1000-yr tails is
high for CFSR (~41 and 165 mm, respectively) at the global
scale, and low for PERSN-CDR both at global and continental
scales (~8.7 and 29 mm, respectively, at global scale). The av-
erage differences for the 1000-yr return period are 396 and
340 mm respectively for South America and Africa. In some of
the South American grids these differences are as high as 3000
and 9000 mm at 100- and 1000-yr return periods, respectively.
However, in North America and Europe, differences were rel-
atively small, on average 8 and 24 mm, respectively for the 100-
and 1000-yr return periods. Though these differences highlight
the critical importance in choosing the right tail, they also em-
phasize that uncertainty is reduced when using dense networks
of high quality observations.

There is a 35 mm difference in the mean value of the ob-
served maxima among the global datasets (Fig. 7). CFSR has
consistent higher values and PERSN-CDR has lower values
among the products at global and continental scales, except in
North America and Europe. CFSR compares closely with the
other datasets in North America, Asia, and Europe with dif-
ferences in the mean values of less than 20 mm. The differences
become larger in Africa and South America (90 mm) and
Australia (70 mm). Even the 100- and 1000-yr return levels of
the CFSR have high values compared to the other datasets at
both the global and continental scales, with comparable values
in North America (Fig. S6). The mean 100-yr return levels of
PERSN-CDR are approximately twice the CFSR levels, and
become 4 times larger for the 1000-yr levels at the global scale.
The differences are large at continental scales as well, specifi-
cally in Africa and South America. The 1000-yr return level
in CFSR is almost 8 and 6 times higher than PERSN-CDR
in Africa and South America, respectively. Similarly, large dif-
ferences in the standard deviations of observed maxima, 7-, 100-
, and 1000-yr return levels. Again, PERSN-CDR has consis-
tently lower values compared to all the datasets at both global
and continental scales, and CFSR has higher values except in
Europe. The differences are high in South America and low in
Europe and North America compared to other continents.

d. Comparison with in situ observations (InSitu)

The InSitu data show an average value of 0.146 for the PII
tail and 0.734 for the W tail (Table 3). These values are close to
the tail index of the PERSN-CDR for both tails. The InSitu tail
index spatial patterns match those of CPC, MSWEP, and
PERSN-CDR very well (Fig. 8). Light tails (0.05 < ypy < 0.1)
occur in the eastern and western United States and medium
tails (0.15 < yprr < 0.3) occur in the central United States,
which is comparable with MSWEP and PERSN-CDR patterns.
InSitu data show light tails along the eastern Brazilian coast
similar to the CPC, PERSN-CDR, and MSWEP products. The
observed light tails in India and in the eastern coast of
Australia are only consistent with PERSN-CDR. The heavy to
medium tails in the dry rangelands of Australia are consistent
with the InSitu in all the datasets.

The spatial patterns of the observed maximum precipitation
(Fig. 9a) and the calculated T-yr return levels (Figs. 9b,c) are
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FIG. 8. Spatial patterns of (left) Pareto II and (right) Weibull tail index for in situ observations (InSitu).

similar. Figure 9 and show that InSitu spatial patterns closely
match the CPC and MSWEP patterns, except at a few locations
(e.g., southern India). Spatial patterns are generally similar
in the continental United States for all datasets; however,
InSitu data show high return levels (>160 mm) in the eastern
United States that match the CFSR, and lower return levels
(<60mm) in the western United States that match the
MSWEP. The high return levels (of order 120-180 mm) ob-
served in the InSitu on the eastern Brazilian coast are not
observed in any of the gridded datasets. Similarly, the higher
return levels in the southern tip of Africa do not match those
indicated by the products; the exception is the eastern coast
of South Africa in CPC and MSWEP. To some extent, the
high return levels (>180 mm) in the Indian subcontinent are
consistent with the CPC, MSWEP, and CFSR. However,
the return levels in CFSR are much higher (around 20%)

compared to the InSitu, specifically in southern India. The low
return levels noted in the Europe match all the datasets.
Similar differences are found between the InSitu and the
gridded products in both the 100- and 1000-yr return levels (see
Fig. 10 and Fig. S7 for the 100- and 1000-yr return level maps,
respectively).

Interestingly, the differences and ratios between the InSitu
and the gridded products return levels are not same for the
return periods considered (Fig. 11 and Table 4). Figure 11
shows the histograms of differences and ratios, and Table 4.
gives the average values at global scale. Albeit high cross
correlations and return levels in CFSR, on average, the dif-
ferences between the return levels of InSitu and CFSR are low
compared to other datasets for observations and 7-yr return
period. The differences and ratios are high for 100- and 1000-yr
return periods in the CFSR. Low values for the 100- and

—— L T —
0 20 40 60 80 100 120 140 160 180 200 >200

FIG. 9. Spatial pattern of T-yr return levels (mm) of (a) empirical (InSitu) and calculated return levels using
(b) Pareto II and (c) Weibull distributions.
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FI1G. 10. Spatial pattern of predicted 100-yr return levels (in mm) using the PII tail for the InSitu observations
(InSitu) and the gridded products. The return levels are averaged to a common resolution of 2° X 2°.

1000-yr return periods are noted in the CPC and WFDEI,
but PERSN-CDR has high values at all the return periods.
In the continental United States these differences and ratios
are small for all datasets.

4. Discussion

Quantifying the tail heaviness was challenging because of
the high variability of precipitation extremes. Gridded prod-
ucts are expected to be helpful in understanding the spatial
variation of precipitation extremes globally, yet significant
differences, both in the spatial pattern and in the absolute
values of the tail index, were found among the different
products. Notably, the return levels are in general under-
estimated by the satellite-based PERSN-CDR (Shah and
Mishra 2014) and overestimated by the reanalysis-based
CFSR, when compared with CPC dataset. Spatial patterns
of InSitu tail index match with those of MSWEP and PERSN-
CDR, which is expected as PERSN-CDR is adjusted using
GHCN-Daily data, and MSWEP also uses GHCN-Daily
in addition to other observational products (e.g., GPCC).
However, this comparison is limited to North America,
Europe, Australia, and some parts of Asia, where InSitu
data exist.
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In the tropics, where precipitation is mainly convective, the
satellite-based PERSN-CDR, the observations-based CPC,
and the optimally merged MSWEP show light tails. The re-
analysis datasets, CFSR and WFDEI, differ substantially in
their spatial patterns from the other products. One reason for
this difference may be that the simulated precipitation ex-
tremes are affected by the parameterizations of deep convec-
tion in the tropics (Kharin et al. 2005). In mid- and high
latitudes, while the other products show medium to heavy tails,
the satellite-based PERSN-CDR indicates light tails, limiting
its credibility (Gehne et al. 2016). At high latitudes, CPC dif-
fers from the other products, which could be due to substantial
measurement errors (sometimes up to 100% ) in gauge data as a
result of wind undercatch especially for solid precipitation,
lack of recording of trace events, and/or the sparse solid pre-
cipitation gauging network (Gervais et al. 2014; Goodison et al.
1998; Pomeroy and Goodison 1997; Yang et al. 2001). In con-
trast reanalysis products analyzing atmospheric and surface
fields at high latitudes have been able to produce credible
precipitation fields (Barrett et al. 2020; Krogh et al. 2015;
Krogh and Pomeroy 2018; Lindsay et al. 2014; Serreze
et al. 2005).

The MSWEP seems to perform reasonably well at all
latitudes with spatial patterns of tail index and return
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FI1G. 11. Histograms of (left) differences and (right) ratios between the in situ observations (InSitu) and the gridded
products for different return periods. The return levels are averaged to a common resolution of 2° X 2°.

levels closely matching with observations and also highly observations, the number of gauges available worldwide has
correlated with CPC and InSitu at both global and conti- been declining (Sun et al. 2018), reducing the ability to ob-

nental scales. Good correlations among all the datasets, tainreliable gridded products based on ground observations
(Herrera et al. 2019). Reduction in uncertainty in estimation

of precipitation extremes from gridded products that de-
pend on observations therefore relies on the preservation

including the reanalyses, were observed in the continental
United States owing to a dense, high quality gauge network.
Though this reiterates the necessity of appropriate gauge
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TABLE 4. Average differences and ratios between the return levels of InSitu observations (InSitu) and gridded products at global scale.

Pareto II Weibull
Dataset Observations T-yr 100-yr 1000-yr T-yr 100-yr 1000-yr
Differences (mm)
CPC 53.53 38.93 1.79 —17.25 35.88 10.66 11.29
PERSN-CDR 76.94 64.36 93.59 175.76 55.33 77.95 113.93
MSWEP 49.33 36.39 43.71 77.66 31.96 39.60 56.88
CFSR 31.67 6.72 104.87 187.62 11.09 91.37 130.43
WFDEI 57.96 44.60 —0.47 —10.89 40.06 5.12 4.45
Ratios

CPC 1.67 1.46 1.14 1.11 1.47 1.22 1.19
PERSN-CDR 215 1.98 3.62 391 1.89 3.58 3.58
MSWEP 1.62 1.46 1.84 1.99 1.43 1.87 1.90
CFSR 1.39 1.19 4.28 4.78 1.20 4.30 4.47
WFDEI 1.81 1.64 1.20 122 1.60 1.25 1.23

and restoration of high quality precipitation observing
networks.

5. Summary and conclusions

Daily extreme precipitation was assessed in gridded pre-
cipitation products by quantifying the heaviness of the tail
through the tail index. Five popular global datasets, CPC,
PERSN-CDR, MSWEP, CFSR, and WFDEI, having more
than 35 years of recent data were used to examine: 1) the
spatial variability of the tail index across different climate and
geographical regions, 2) the patterns of observed and predicted
extremes around the globe, and 3) the differences in predicted
return levels among the gridded products. These datasets were
compared with point surface observations (InSitu) that were
gridded so as to examine the differences in tail index and ex-
treme precipitation return levels.

The spatial patterns of the tail index largely match climate
classifications by Koppen—Geiger. Considerable differences
were found among all the datasets. The differences between
the gauge-based datasets and the reanalysis products are par-
ticularly large. Very large differences in 100- and 1000-yr re-
turn levels were found among the gridded products. The
degree of discrepancy varied from region to region, with low
differences in North America and Europe, and huge differ-
ences in Africa and South America. Notably, the returns levels
are in general underestimated by the satellite-based PERSN-
CDR (Shah and Mishra 2014) and overestimated by the
reanalysis-based CFSR, when compared with CPC and InSitu.

Two theoretical tails, asymptotically equivalent with the
tails of many well-known distributions employed in practice,
were used to represent two major families of distributions: the
power (Pareto II) and exponential form (Weibull). A large
difference between the predicted return levels resulting from
the two tails is noted. Differences of about 10, 22, and 80 mm
were found between the prediction of the two tails in the global
mean return levels for the observed period (approximately 38
years), 100- and 1000-yr return periods, respectively. Again,
these differences vary among the datasets, high for the CFSR
and low for the PERSN-CDR, and at continental scale, high
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for South America and Africa, and low for North America and
Europe. In some grids, the return levels predicted by the PII
tail were almost 2 and 3 times higher than those by the W tail
for 100 and 1000 years, respectively. Such variations emphasize
the importance of choosing the correct tail.

From the analysis, it should be noted that for small return
periods (e.g., up to 100 years) the data play crucial role in es-
timating the tail. Any inconsistencies in the data (like gaps,
error in measurement or reporting instrument, drizzle effects
or very low events etc.) lead to unreliable estimates of tail in-
dex and differences in the return levels. For large return pe-
riods, like 1000 years, the distribution choice might also
influence return levels in addition to the data. This is in view
of the fact that both tails fit well to the observed sample
(~38 years here) and thus their asymptotic difference is not
revealed for small return periods, and as we extrapolate to
large return periods the heavier tail of the power type (PII)
could result in much larger return levels compared to the
stretched exponential (W). Typically it is recommended to
perform an uncertainty analysis to obtain a confidence in-
terval for such high return levels (Shamir et al. 2013). It
should be noted that the 1000-yr return levels are not of-
fered for operational use (since their estimates are based on
small samples); yet, these estimates highlight how strongly
the return levels can be affected by the choice of the
probability model.

Though the InSitu data are considered based on quality flags
provided by GHCN-Daily, the gridded products are consid-
ered to be quality controlled by the data providers. The com-
parison between the products and the InSitu data is simplified
by averaging the tail index of stations within a coarser grid.
However, it should be noted that the InSitu is point data and
gridded products represent areal precipitation. As these two
are different processes, comparison is not straightforward re-
quiring spatial interpolation techniques, where each technique
has its own advantages and disadvantages, to obtain gridded
data from point data. At a coarse scale, the extremes are
considered to be smoothened as a precipitation value at a
particular grid is the average of whole grid, and therefore av-
eraging the tail index in a coarse grid is considered to be valid
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for comparison. Another issue with InSitu data is the timing of
daily accumulations, which is neglected in the current study.

Gridded precipitation products are extensively used in re-
search and practice. However, these results show that such
products do not provide a consistent representation of the
extreme precipitation. Data products that rely on observations
are better where observation network is denser and more re-
liable. Those that are largely model driven has utility in poorly
gauged regions. Climate is also associated with data product
performance in describing extremes. Thus, the question that
naturally arises is “which product is the best for studying ex-
tremes?” The results presented here suggest that MSWEP
performs better, yet there is no single global product that works
best for all regions and climates. As such, it is still advisable to
include multiple products in a study in order to gain some in-
sights into the uncertainties in extremes.
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