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ABSTRACT: The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety
of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially
and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimi-
lation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite
Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting
(NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern
United States using an object-based analysis framework that decomposes gridded precipitation fields into storm
objects. As an alternative to conventional “‘grid-by-grid analysis,” the object-based approach provides a promising way to
diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input
data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WREF, while the less organized
spatial patterns of two mesoscale convective systems pose challenges for both. NU-WREF rain rates are generally more ac-
curate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms
compared to smaller, weaker storms. IMERG’s accuracy depends on the input microwave and infrared data sources; NU-WRF
does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into
satellite precipitation performance and that the satellite precipitation community should further explore the potential for
“hybrid” data-driven and physics-driven estimates in order to make optimal usage of satellite observations.
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1. Introduction spatial and temporal grid. The “workhorse” satellite instru-
ments for precipitation estimates are passive microwave (PMW)
radiometers, which observe along a satellite’s “swath,” the rel-
atively narrow band over Earth sampled by the onboard sensor
as a satellite moves along its orbit. Infrared (IR) observations
from geostationary satellites are also commonly used in the
creation of gridded precipitation estimates (Joyce et al. 2001).
In this study, we posit that there are two fundamental ap-
proaches to satellite precipitation retrieval and interpolation
onto spatially and temporally regular grids. The first we call the
“data-driven” approach: precipitation estimates are derived
from PMW/IR radiances using some manner of a priori data-
base or data-driven algorithm. Prominent examples include the
Goddard profiling algorithm (GPROF; Kummerow et al. 2001,
2015), the Precipitation Estimation from Remotely Sensed
Information Using Artificial Neural Networks (PERSIANN)
family of products (Ashouri et al. 2015; Hsu et al. 1997), and
“cloud morphing”’-based techniques such as the CPC morph-
ing technique (CMORPH; Joyce et al. 2004; Xie et al. 2017),
JAXA'’s Global Satellite Mapping of Precipitation (GsMAP;
Kubota et al. 2007), and NASA’s Integrated Multisatellite
Retrievals for GPM (IMERG; Huffman et al. 2018). GPROF
Corresponding author: Dr. Zhe Li, z1i875@wisc.edu applies a large a priori database of coincident PMW brightness

Satellite-based remote sensing has provided unprecedented
opportunities to monitor the Earth system (Lettenmaier et al.
2015; Wood et al. 2011). Particular emphasis has been placed
on the estimation of precipitation using satellites (Skofronick-
Jackson et al. 2018), due to its key role in weather and climate
and in rainfall-driven hazards such as floods and landslides
(e.g., Kirschbaum et al. 2017; Wright 2018). The most recent
example is the Global Precipitation Measurement (GPM) joint
mission from the National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency (JAXA).

Many applications require gridded precipitation estimates,
often in near—real time, and call for high resolution and accu-
rate estimation of extreme rainfall rates—both of which have
posed hurdles to uptake by potential end-users (Maggioni et al.
2016a). The resolution and accuracy depend in part on the
available observations from the various space-borne sensors
such as the GPM “constellation” (Skofronick-Jackson et al.
2017). These multisensor observations must therefore be con-
verted into precipitation rates and interpolated onto a consistent
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temperature (TB) and precipitation estimates, from which a
weighted combination of entries is selected to estimate the
precipitation rate for any given PMW observation. PERSIANN
relates precipitation estimates with gridded IR cloud-top TB
observations via an artificial neural network (ANN) model,
and its parameters are continuously adapted from sparsely
sampled PMW observations. Cloud morphing uses motion
vectors, usually derived from consecutive IR images, to spa-
tially and temporally interpolate between PMW swaths.
Recent data-driven datasets such as IMERG, which combines
GPROF, CMOPRH’s cloud morphing, and PERSIANN’s ANN
scheme, are more accurate and have higher resolution than their
predecessors (Hou et al. 2014; Skofronick-Jackson et al. 2017).

The second method for obtaining gridded precipitation es-
timates from satellite remote sensing is via a numerical weather
prediction (NWP) model. Precipitation estimates are produced
by the model’s dynamical equations and parameterizations,
which are constrained through the assimilation of satellite ra-
diances (Benjamin et al. 2019). Hence, we refer to this as the
“physics-based” approach. A number of datasets, particularly
reanalyses such as the Modern-Era Retrospective Analysis for
Research and Applications, version 2 (MERRA-2; Gelaro
etal. 2017) from NASA and ERAS (Hersbach et al. 2018) from
the European Centre for Medium-Range Weather Forecasts
assimilate PMW TBs to get gridded estimates of a wide range
of atmospheric fields, including precipitation. A growing body
of work has argued that NWP model simulations can, at least
under specific conditions, yield precipitation estimates of
comparable or better accuracy than data-driven satellite pre-
cipitation datasets (e.g., Lee et al. 2017; Nikolopoulos et al.
2015; X. Zhang et al. 2013, 2016; J. Zhang 2018; X. Zhang 2018;
Lundquist et al. 2019). It is becoming increasingly feasible to run
satellite-assimilating NWP model at ‘“‘convection-permitting”
resolutions (<4km; Prein et al. 2015) for regional domains.
One such model is NASA-Unified Weather Research and
Forecasting (NU-WRF) with the Ensemble Data Assimilation
System (EDAS), which is designed specifically for regional
weather simulations and data assimilation at “‘satellite-resolved
scales” (Peters-Lidard et al. 2015; S. Q. Zhang et al. 2013).

We argue that advances of modern high-resolution gridded
satellite precipitation data demand alternative evaluation tech-
niques to those commonly employed in the past: while high
resolution offers potential benefits, it also poses challenges. For
example, higher resolution leads to a greater likelihood of
compounding errors in precipitation intensity and spatial loca-
tion, which conventional grid-by-grid metrics fail to distinguish
(Gilleland et al. 2009). These metrics include summary statistics
at grid scale for detection skills (e.g., contingency tables) and for
detected-rain errors (e.g., bias, root-mean-square error, mean
absolute error, etc.), but they tend to result in so-called “double
penalty” since they “punish” the estimate twice: once for miss-
ing observed rainfall at the correct location and again for
falsely placing it elsewhere (Rossa et al. 2008).

This study presents an intercomparison of high-resolution
gridded precipitation estimates from IMERG and NU-WRF
for four extreme rainfall events in the southeastern United
States. Their relative performances in reproducing key aspects
of extreme precipitation, particularly storm intensity, location
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and geometry are assessed. We perform an “‘object-based”
evaluation, which provides a stronger basis in characterizing
the spatial features related errors than more commonly used
“grid-by-grid” metrics. Object-based evaluation methods are
gaining popularity in the NWP forecasting community (e.g.,
Dorninger et al. 2018; Gilleland et al. 2010), but have received
less attention in satellite precipitation evaluation (AghaKouchak
et al. 2011; Demaria et al. 2011; Li et al. 2016). We also attempt
to link the accuracy of IMERG and NU-WREF estimates to the
actual satellite-borne sensors used at any particular time and
location, again using object-based methods.

Section 2 describes the study region, datasets and selected
storm events. Methodology follows in section 3. Section 4
presents the results; associated discussion follows in section 5.
We close with a summary and conclusions in section 6.

2. Study region and data
a. Study area and case study storms

The study region is centered around the domain of the Integrated
Precipitation and Hydrology Experiment (Barros et al. 2014), and
spans the physiographic gradients from the Atlantic coast to the
Blue Ridge Mountains in the southeastern United States (Fig. 1).
This region is characterized by complex terrain along with a va-
riety of extreme weather systems capable of producing floods and
landslides (Barros et al. 2014; Mahoney et al. 2016; Moore et al.
2015; Schumacher and Johnson 2006), including tropical cyclones
(TCs) and mesoscale convective systems (MCSs). Four heavy
rainfall events during the period 2016-18 were selected for anal-
ysis: event 1 (6-9 October 2016) and event 4 (13-18 September 2018)
were Hurricanes Matthew and Florence, respectively, while event
2 (22-25 April 2017) and event 3 (21-25 May 2017) were MCSs.
These constitute four of the heaviest rainfall-producing storm sys-
tems for the region in the period since the launch of GPM in 2014.
Key characteristics of the four storms can be found in Table 1.

b. IMERG gridded precipitation estimates

IMERG provides precipitation estimates every 30 min on a
0.1° grid with quasi-global coverage (60°S-60°N), and consists
of three types of products: Early, Late (hereafter IMERG-L),
and Final. We focus on IMERG-L, which includes some ad-
ditional satellite observations not used in Early. IMERG-Final
uses a rain gauge bias correction and is thus less relevant for
our focus on the properties of near-real-time satellite-only
precipitation estimates. We use IMERG version 05B (Huffman
et al. 2018), which can be accessed at https:/disc.gsfc.nasa.gov/.

IMERG contains multiple data fields in addition to the “‘best
guess” precipitation estimates. These include a PMW source
field which states which (if any) PMW sensor was used to create
the estimates; PMW- and IR-only precipitation estimates,
and an IR weight (IRW) which determines the extent to
which IR information was used in a best guess estimate
(Huffman et al. 2018). Five PMW instruments contributed to
IMERG-L over this region at one or more times during the
four case study storm events: the GPM Microwave Imager
(GMI), the Advanced Microwave Scanning Radiometer 2
(AMSR2), the Special Sensor Microwave Imager/Sounder
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FI1G. 1. The location, topography, and geographic boundaries of the study area.

(SSMIS), the Microwave Humidity Sounder (MHS), and the
Advanced Technology Microwave Sounder (ATMS). More
details on the role of PMW and IR auxiliary variables in
IMERG algorithms can be found in Tan et al. (2016).

¢. NU-WREF gridded precipitation estimates

NU-WRF combines the dynamical core of the Advanced
Research WRF (ARW; Skamarock et al. 2008) with a collection
schemes such as the Goddard Cumulus Ensemble (GCE; Tao
et al. 2014) for cloud radiation—microphysics parameterization,
the Land Information System (LIS; Peters-Lidard et al. 2007) for
the land surface spinup fields, and EDAS (Zupanski et al. 2011)
for data assimilation. NU-WRF EDAS assimilates precipitation-
sensitive radiances using an all-sky radiative transfer simulator
(Matsui et al. 2014) and a maximum likelihood ensemble filter
(MLEF) to produce a 32-member ensemble used to update the
state-dependent background error covariance (Zupanski et al.
2011). Recent studies have shown that NU-WRF performs well in
simulating precipitation intensity and duration (Lee et al. 2017),
while this EDAS module improves the estimates of both precip-
itation intensity and spatial pattern (S. Q. Zhang et al. 2013, 2017).

In this study, NU-WREF used 55 vertical levels (up to 50 hPa)
and a 3-km inner horizontal grid (Fig. 1), nested within a 9-km
horizontal grid (not shown). The Thompson microphysics
scheme (Thompson et al. 2008) was used to provide micro-
physical simulation of clouds that are connected to satellite
observation operators in radiance data assimilation, and Noah
land surface model was used in atmospheric and land coupled
simulation as well as within LIS spinup process. Boundary
forcing came from the Global Forecast System (Whitaker et al.
2008). Hourly accumulated rainfall fields (currently NU-WRF
EDAS does not facilitate output temporal resolutions finer
than hourly) are generated at 3-km spatial resolution over the
inner simulation domain.

Control variables in the data assimilation module EDAS
include wind, temperature, surface pressure, water vapor,
and five hydrometeors (the mixing ratios of cloud water,
rain, ice, snow, and graupel). In summary, the observations
for EDAS analysis cycles include in situ conventional data
(radiosonde, pilot, wind profiler, and GPS integrated pre-
cipitable water data), clear-sky satellite radiances from the
Advanced Microwave Sounding Unit A (AMSU-A), along

TABLE 1. Characteristics for the four storms evaluated in this study. Descriptions are archived and briefed from the panels of Storm
Summaries and Mesoscale Precipitation Discussions at https://www.wpc.ncep.noaa.gov/.

Event 1 Event 2 Event 3 Event 4
Year 2016 2017 2017 2018
Start time 2100 UTC 6 Oct 2100 UTC 22 Apr 0300 UTC 21 May 2100 UTC 13 Sep
End time 0300 UTC 9 Oct 0300 UTC 25 Apr 0300 UTC 25 May 1800 UTC 18 Sep
Duration (h) 54 54 96 117
Storm type TC MCS MCS TC
Description Hurricane Matthew Convective heavy rainfall Convective heavy rainfall Hurricane Florence
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with precipitation-sensitive radiances from GMI, SSMIS,
and AMSR2. Currently, data assimilation cycles of EDAS
consists of an ensemble model simulation and an analysis at
each 3-h interval. Conventional and satellite observations ob-
tained around the analysis time pass the quality control and an
online bias correction (Chambon et al. 2014) and enter into the
optimization solver. For the assimilation of NU-WREF in this
study, satellite swath observations such as PMW data within
+30min of the analysis time is considered for assimilation.

d. Stage 1V multisensor gridded precipitation

Stage IV multisensor precipitation is used in this study to
evaluate the precipitation estimates from IMERG-L and
NU-WREF. The Stage IV national mosaic merges weather radar
and rain gauge measurements at 4 km hourly over the contigu-
ous United States (Lin 2011), and has been widely used to val-
idate satellite precipitation products and NWP simulation
results (e.g., Beck et al. 2019; Lee et al. 2017; Nelson et al. 2016).

3. Methodology
a. Space—time resampling

IMERG-L, NU-WRF, and Stage IV vary in their spatial
coverage, grid size, and temporal resolution. Thirty-minute
IMERG-L precipitation estimates were temporally aggregated
to obtain hourly totals. Hourly NU-WRF and Stage IV fields were
first interpolated onto a regular 0.01° grid using nearest neighbor
interpolation (Amidror 2002). The resulting finescale fields were
then aggregated onto the 0.1° IMERG grid by block averaging.

b. Object-based characterization of rainstorms

We applied the object-based identification and character-
ization approach from the “SpatialVx” R package (Gilleland
2019) to precipitation fields from IMERG-L, NU-WREF, and
Stage IV. This consisted of four steps:

Step 1: Smoothing. A two-dimensional smoothing kernel
(Gilleland 2013) was applied to the accumulated hourly
precipitation field (Fig. 2a) to obtain a contiguous rainy
area. We used a circular disk kernel with a convolving
radius of five grid lengths (i.e., 0.5° or roughly 50 km),
which is slightly larger than the recommended mini-
mum value of four grid lengths in Davis et al. (2006).

Step 2: Thresholding. Once precipitation fields were smoothed,
pixels that exceeded a given threshold were identified,
thus defining object boundaries. A threshold of 5mmh ™!
was applied in this study. Binary “masks” of distinct
precipitation objects were then created (Fig. 2b). Only
objects covering at least 50 grid cells (~1% of the study
region, i.e., 5000 km?) were included in further analyses.

Step 3: Characterization. By convolving the masks with their
original precipitation fields (Figs. 2a,b), the precipitation
distribution within each object was obtained and two
groups of object properties were calculated: geometric
properties—area, centroid, orientation, major and minor
axis lengths, and aspect ratio, and rainfall intensity
metrics—the 25th and 90th percentile (denoted hereaf-
ter as P25 and P90) of the precipitation distribution
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within each object (Fig. 2¢). More details on these object
properties can be found in Davis et al. (2006).

Step 4: Matching. Precipitation objects were ‘“‘matched” (we
attempted to determine whether an object captured in the
satellite precipitation estimates and Stage IV) in order to
evaluate the object detection and estimation skills of
IMERG-L and NU-WRF (Fig. 2d). Following after
Davis et al. (2006), a match was counted if the separation
distance (i.e., the Euclidean distance) between two ob-
jects’ centroids was shorter than the sum of their sizes
(size is the square root of the area of precipitation object).

Sensitivity of this object-based characterization to convolv-
ing radius, rainfall thresholds and matching rules are further
discussed in section 5.

c. Evaluation metrics

We first applied two conventional methods to evaluate the
relative performance of IMERG-L and NU-WREF: storm total
accumulations and scatterplots of pixel-scale hourly precipi-
tation estimates. For the latter, we quantified the performance
in terms of three widely used evaluation metrics, including
the relative bias (RB), root-mean-square error (RMSE), and
Pearson linear correlation coefficient (CORR), which have
been commonly defined and adopted in a large number of lit-
eratures (e.g., Tang et al. 2016; Tan et al. 2018).

The relative performance of IMERG-L and NU-WRF
was further explored with an object-based view by com-
paring the properties of their identified precipitation ob-
jects. The capabilities of IMERG-L and NU-WRF to
reproduce Stage IV objects’ location, shape, and intensity
(P25 and P90) were first compared without matching.
Next, the detection skills of IMERG-L and NU-WRF
were quantified in terms of object-oriented metrics using
matched objects. These metrics include the object-based
probability of detection (PODy;), false alarm ratio (FAR ),
and critical success index (CSly;), which are calculated as
follows (Davis et al. 2006):

N
POD .. = matched (1)
b b
o Nmatched + Nmisses
N
false_alarms
FAR = - 2)
b b
o Nmatched + Nfalseialarms
N
CSI.. = matched (3)
h b
o Nmatched + Nmisses + Nfalse,alarms

where Npacnea denotes the number of pairs of matched Stage
IV and IMERG-L/NU-WRF objects, Np;sses 1S the number of
missed objects (i.e., Stage IV identified objects that are not
captured by IMERG-L/NU-WRF), and Nise ajarms 1S the
number of false alarms (i.e., IMERG-L/NU-WRF objects that
are not observed by Stage IV).

The relative performance of IMERG-L and NU-WRF in
characterizing matched precipitation objects’ location, shape,
and intensity can be evaluated according to a number of
additional metrics such as the separation distance, intersection
ratio (the ratio of intersected area divided by the area of smaller
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FIG. 2. Illustration of the object-based identification and characterization approach: (a) original precipitation
field observed by Stage IV at 0700-0800 UTC 21 May 2017; (b) identified objects after smoothing and thresholding;
(c) object-based characterization of storm properties; and (d) matching of precipitation objects from IMERG-L

and NU-WREF with those from Stage IV.

matched object), and P25 and P90 estimation relative bias of
matched objects:

— stesl — P250bs
RBPZS - P250bs ’ (4)
P90 — P90
RB,y, = e;;90 . o, 5)

P25,bs (P90,ps) is Stage IV observed object’s intensity, while
P25.5: (P90.) represents the intensity of matched precipita-
tion object from IMERG-L or NU-WREF.

d. Categorization for conditional analysis

Precipitation objects were also grouped into various cate-
gories in terms of their properties to compare the conditional
performance of IMERG-L and NU-WRF. Two characteristics,
area and P90, were considered to classify the objects and to
explore the detection skills of IMERG-L and NU-WREF as a
function of object size and intensity.

We also examined PMW and IR inputs to IMERG-L and
NU-WREF, which can impact both data- and model-based es-
timates’ performance (Tan et al. 2016; S. Q. Zhang et al. 2013).
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As mentioned above, there are embedded PMW source and
IRW data fields in each 30-min IMERG file. These were
overlapped on previously identified hourly IMERG-L objects
to obtain half-hour object-based PMW and IRW masks. Based
on every two consecutive half-hour PMW masks, identifiers for
each 0.1° pixel of the mask were determined: no PMW (further
classified as described below), one PMW (with sensor-specific
identifier AMSR2, SSMIS, MHS, GMI, ATMS), and two
consecutive PMWs (with identifier TCPMW). Object-based
hourly PMW identifiers were then obtained by finding the
majority identifiers across all the pixels of a mask. Objects
without PMW input were categorized into two groups with
further consideration of object-mean IRW: those derived
purely from cloud morphing (“Morph only”’; with an object-
mean IRW of 0%), and those using a hybrid of morphing and
IR-based estimates (‘“Morph + IR”’; with an object-mean IRW
larger than 0% ), which can be further subdivided by IRW level,
object-mean IRW was calculated by averaging the IRW of all
pixels from the two consecutive half-hour IRW masks.
NU-WRF EDAS assimilates PMW data from multiple
sensors but does not record the sensor identifier of each
observation at a particular footprint after the online quality
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control process. We used the following procedures to make an
educated guess of the PMW measurements that may have been
assimilated, and then base subsequent analysis on the as-
sumption that such data passed quality checks. First, Level-1C
intercalibrated orbital TB data from GMI, SSMIS (carried
aboard F16, F17, and F18), and AMSR2, which passed over
the study region during the four storms were collected (from
https://disc.gsfc.nasa.gov/), including their overpass time
stamps. Since NU-WRF EDAS only accepts PMW sensor-
specific TB swaths within =30 min of the start time of 3-h
simulation initialized by the assimilation at that time, we did
not consider orbital TB data not in that time window and
assign PMW identifiers (NO PMW, GMI, F16, F17, F18,
AMSR2; MS is for multiple sensors) to each assimilation
loop of NU-WREF. Since the assimilated PMW data con-
strain initial model state variables (e.g., hydrometeors) and
thus simulated surface rainfall implicitly over the modeling
domain (Zupanski et al. 2011), we assumed that swath-based
data assimilation impacts all the hourly objects, and thus the
same PMW identifier is assigned to any NU-WRF hourly
object within each 3-h loop regardless of the object’s loca-
tion and shape.

4. Results
a. Conventional analysis of gridded precipitation fields

Visual comparison of storm total maps is a typical way of
comparing precipitation estimates. For TC events (events 1
and 4), visual inspection of storm total rainfall accumulation
suggests that NU-WRF outperforms IMERG-L in terms of
precipitation magnitude and spatial distribution, especially for
the heaviest parts within storm total rainfall fields, though it
still underestimates the maximum accumulated precipitation
amount (Fig. 3). IMERG-L tends to seriously underestimate
the rainfall in the two TCs and fails to retrieve the heavy rain
cores of storm total fields. The MCS storms (events 2 and 3)
show a different picture: NU-WRF generally overestimates
rainfall totals and shows a number of localized peaks, while
IMERG-L captures the general spatial pattern and provides
better estimates of rainfall magnitude overall.

This visual inspection highlights that the relative perfor-
mances of IMERG-L and NU-WRF appears to depend on
rainfall regime, albeit based on a small sample of four storms.
Their relative skills mainly manifest in the highly varied rep-
resentations of spatial rainfall structures, especially localized
extreme rainfall accumulations.

Scatterplots and associated summary statistics such as bias,
error (RMSE, mean absolute error, etc.), and correlations are
common methods for comparing precipitation datasets. These
methods might be limited, however, due to their lack of regard
to spatial information (Gilleland et al. 2009). As shown in
Fig. 4, scatterplots and evaluation metrics of pixel-scale hourly
precipitation estimates from IMERG-L and NU-WREF provide
some insights into their error characteristics, but also draw
attention to their shortcomings. IMERG-L shows higher cor-
relation and lower random error, while NU-WRF is less biased,
with the exception of event 3. The results of Fig. 4 seem not
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consistent, however, with Fig. 3: both NU-WRF and IMERG-
L typically underestimate grid-scale precipitation according to
the relative bias values, contrasting with the aforementioned
NU-WRF’s overestimation and IMERG-L’s general agree-
ment of storm total precipitation for the MCSs. This may be
due to the fact that Fig. 4 only includes cases in which both
Stage IV and IMERG or NU-WRF estimates are greater than
0.1mmh~'. Scatterplots can illustrate hit bias (Tian et al.
2009), but not detection error, which may play a critical role in
heavy rainfall estimation for specific weather systems such as
the MCSs shown in Fig. 3.

b. Characterization and comparison of precipitation objects

Maps of hourly precipitation object properties from IMERG-L,
NU-WRF, and Stage IV for TC and MCS events (Figs. 5 and
6, respectively) highlight features not easily discerned from
Figs. 3 and 4. Objects show larger size and much simpler spatial
patterns for the TCs than for the MCSs, and both IMERG-L
and NU-WREF are relatively accurate in terms of capturing the
spatial evolution of the TCs. IMERG-L fails to retrieve the
heavy rain cores of storm total fields in both TC events (Fig. 3):
for Hurricane Matthew (event 1; Figs. 5a,c), IMERG-L iden-
tifies precipitation objects with approximately correct size and
location but underestimates P90 along this hurricane’s path; for
Hurricane Florence (event 4; Figs. 5b,d), it yields too few
precipitation objects and underestimates rainfall intensity
through the entire event. NU-WRF, on the other hand,
provides better estimates in terms of the number and in-
tensity of precipitation objects during both TC events,
though with a noticeable eastward displacement error in the
case of Hurricane Matthew (Fig. 5a).

In contrast with TCs, the spatial pattern of MCS events tends
to be more complicated (Fig. 6). Detection errors appear to
dominate the performance of both IMERG-L and NU-WRF
in MCS storms: IMERG-L misses several precipitation objects in
events 2 and 3, including large objects near the coast (Figs. 6¢,d),
while NU-WREF generates several spurious high-intensity pre-
cipitation objects in the western (southwestern) portion of the
study area during event 2 (event 3) and fails to detect many
precipitation objects in the mountainous areas (Figs. 6a,b).

Boxplots of object geometric properties from IMERG-L
and NU-WRF (left column in Fig. 7) show that major and
minor axis lengths are relatively unbiased during events 1 and
3. Errors in object geometry plays greater roles in events 2
and 4: IMERG-L and NU-WRF both underestimate the pre-
cipitation object size in event 2; in event 4, NU-WRF overes-
timates the object sizes whereas IMERG-L underestimates.
Since the relative length of a boxplot’s whiskers indicates the
skewness of a sample, Fig. 7 (left column) also suggests that
IMERG-L and NU-WREF generally capture the overall skew-
ness of precipitation objects’ size distribution. In event 1
(negatively skewed), the size distribution is concentrated on
large precipitation objects, which are more likely to be ac-
curately estimated with both approaches; when the size dis-
tribution is shifted toward smaller objects in the positively
skewed scenarios (events 2, 3, and 4), IMERG-L and NU-WRF
tend to have larger uncertainty and discrepancy in resolving the
shape of rainstorms.


https://disc.gsfc.nasa.gov/
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FIG. 3. Storm total accumulations from NU-WRF, IMERG-L, and Stage IV during the four storm events; R, represents the maximum
accumulated precipitation amount.
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Boxplots for P25 and P90 shed additional light on the rela-
tive skill of IMERG-L and NU-WREF with respect to rainfall
intensity within the objects (center and right columns in Fig. 7).
IMERG-L tended to accurately capture P25 and P90 rain rates
for MCS events (events 2 and 3). NU-WREF, on the other
hand, overestimated P90 and underestimated P25 in the MCS
events. In the TC events (events 1 and 4), NU-WRF performs
as well or better than IMERG-L. Both IMERG-L and
NU-WREF slightly overestimate P25 and underestimate P90 in
Hurricane Florence.

Figure 8 compares the object-based detection skills of
IMERG-L and NU-WREF during the four events after match-
ing, in terms of object-based POD, FAR and CSI (defined in
section 3c). NU-WRF presents POD and CSI roughly com-
parable with IMERG-L, but a larger FAR for all events. FAR
is much higher for both IMERG-L and NU-WRF under the
MCS scenarios (events 2 and 3), confirming that both datasets
struggle with properly depicting localized convection.

Figure 9 summarizes the properties of matched precipitation
objects from IMERG-L and NU-WREF such as the separation
distance, intersection ratio, and P25 and P90 estimation rela-
tive bias. Separation distance for NU-WRF matched objects
tends to range from 0.6° to 1.0° (6-10 grid lengths), while it is
mostly below 0.4° (4 grid lengths) for IMERG-L (Figs. 9a—d).
Meanwhile, the general distribution of separation distance
for NU-WRF is more dispersed than IMERG-L in most cases.
IMERG-L objects typically have a larger intersection ratio
(median of 0.5-0.8) than NU-WRF (median less than 0.5
except for event 1), especially for MCS rainstorm events
(Figs. 9e-h). The histograms of intercentroid separation dis-
tance together with intersection ratio confirm that IMERG-L
outperforms NU-WRF in locating storms and capturing their
spatial coverage. Relative estimation bias of P25 and P90 for
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matched objects from NU-WRF are generally low for TC
events, while IMERG-L presents a relatively better perfor-
mance in estimating MCS storms (Figs. 9i-p). Generally,
NU-WREF underestimates low rainfall intensity (P25) in MCS
storms, while IMERG-L underestimates high-intensity rain
rates (P90) in TC events.

We examined the dependence of object-based POD on the
size and P90 of Stage IV objects—in other words, the likelihood
of detection of a “real” precipitation object as a function of object
size and intensity. It was found that POD depends strongly on the
size of precipitation object for both IMERG-L and NU-WRF
(Fig. 10a), indicating that large precipitation objects are more
likely to be captured by both approaches. A similar relationship
exists between POD and P90 in NU-WREF, but not in IMERG-L
(Fig. 10b): detection skill of NU-WRF increases with 90th per-
centile rainfall intensity. This is generally true in IMERG-L when
rainfall intensity is lower than 18 mmh™", but then it shows a
dramatic decline in detection ability due to IMERG’s serious
underestimates of extreme storms like Hurricane Florence.

c. Impact of PMW and IR data

As we connect their accuracy back to input data source
(IRW, or a specific PMW sensor), the object-oriented evalua-
tion reveals varied dependencies of IMERG-L and NU-WRF
on IR and PMW data source. In the case of IMERG-L, objects
with PMW generally present a higher hit ratio than those based
on morphing purely or morphing combined with IR estimates
(“Morph only” and “Morph + IR,” respectively, in Fig. 11a).
Hourly objects derived with two consecutive half-hour PMW
inputs (“TCPMW” in Fig. 11a) have the highest hit ratio of
81% but are relatively uncommon (7% of observations). MHS
and SSMIS also show strong performance though both are also
characterized by a notably high FAR ratio of 25% and 16% for
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FI1G. 5. Location of the centroids of hourly precipitation objects compared with Stage I'V for (a),(b) NU-WRF and
(c),(d) IMERG-L during TC rainstorm events: (left) event 1 (i.e., Hurricane Matthew) and (right) event 4 (i.e.,
Hurricane Florence). Circle size and color shading denotes the area and precipitation intensity (represented by
P90) of hourly objects, respectively. The numbers of precipitation objects are shown in inset boxes.

MHS and SSMIS, respectively. This high FAR might be caused
by the coarse resolutions of MHS and SSMIS scanning foot-
prints (Tan et al. 2016). ASMR2 shows the lowest hit ratio of
50% among all PMW sources and a detection skill (with a false
ratio of 13% and miss ratio of 38%) similar to combined
morphing and IR.

NU-WRF’s detection skills show a more complicated rela-
tion to PMW (Fig. 11b). Note that what appears as SSMIS in
Fig. 11a appears as FI16, FI7, and FI8 in Fig. 11b, since the
SSMIS sensor flies aboard those three satellites. Generally, NU-
WREF presents a higher FAR (also shown in Fig. 8) compared to
IMERG-L, especially as FI6, FI7, FI8, and MS (note that MS
category might also have incorporated swaths from F16/F17/FI8),
suggesting that assimilated PMW data have benefits in reduc-
ing false alarms. This means that NU-WRF objects that in-
corporate SSMIS tend to have larger FAR ratios than GMI and
AMSR?2. Unlike IMERG-L, NU-WRF estimates with GMI
and AMSR?2 present the best detection skills, with a high hit
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ratio (66% and 67 %, respectively) and minor false alarms (9%
and 6%, respectively). With the exception of GMI and
AMSR?2, the benefits of PMW assimilation in NU-WRF seem
limited since observations without PMW inputs exhibit a rel-
atively high hit ratio of 56% and a relatively small false alarm
ratio of 22%, better than FI6, F17, and FI8.

Similar to the detection statistics above, PMW and IRW
data sources have a greater impact on precipitation estimation
bias in IMERG-L than NU-WREF (Fig. 12). Underestimation
of P90 for IMERG-L objects is eliminated when PMW data are
available (Fig. 12a). This does not extend to object area
(Fig. 12b), however, most PMW-impacted categories (except
GMI) present an obvious positive bias in characterizing object
size, while groups without PMW input tend to be less biased. It
is also noteworthy that SSMIS has a large bias in estimating
object size and rainfall rate. NU-WRF matched precipitation
objects exhibit no obvious dependence on PMW in charac-
terizing detected storms (Figs. 12c,d).
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FIG. 6. As in Fig. 5, but for MCS rainstorm events: (a),(c) event 2 and (b),(d) event 3.

As a data-driven approach to estimate precipitation,
IMERG relies on input data sources as discussed above. Due
to the retrieval algorithms developed for IMERG and its
predecessors like TMPA, CMORPH, and PERSIANN, the
estimated precipitation spatial pattern can be traced back to
the signals contained in input PMW overpasses and IR images.
To better understand the relations between PMW-IR inputs
and IMERG rainfall patterns, Fig. 13 compares IMERG-L
with Stage IV over two consecutive hours in event 3, along with
several 30-min input data fields of IRW, IR-only estimated
precipitation, PMW sources, and PMW-only estimated pre-
cipitation. Compared to Stage IV, IMERG-L overestimates
the rainy area in the first hour but reasonably captures its
spatial pattern in the next hour. This “update” in estimated
spatial pattern was due to the introduction of a new PMW
observation into IMERG: the first hourly IMERG-L was
greatly impacted by the IR (Fig. 13e; IRW of 39%), as can be
seen by comparing Figs. 13c and 13f. In the subsequent hour,
there is an AMSR?2 overpass (Fig. 13g), and PMW-only esti-
mates (Fig. 13h) dominate the retrieved spatial pattern in the
following hourly IMERG-L (Fig. 13d). This highlights that
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IMERG estimated precipitation accuracy is highly sensor-
specific at fine temporal and spatial scales.

5. Discussion

The object-based evaluation in this study highlights that
NU-WREF is capable of capturing extreme rainfall rates, but
that these can be subject to substantial displacement errors
(i.e., the right rainfall in the wrong place). While the preva-
lence of displacement errors in NWP have been well docu-
mented (Ebert and McBride 2000; Gilleland et al. 2010;
Dorninger et al. 2018), its importance in the context of appli-
cations is likely growing as NWP pushes toward convection-
permitting resolutions (<4 km; Prein et al. 2015). The finescale
convection that can be simulated at high resolutions can in
principle “unlock” forecasting of small-scale localized natural
hazards such as flash floods and landslides. However, we found
displacement errors of precipitation objects in NU-WRF on
the order of 50-100 km, which could easily mean the difference
between a successful and a botched localized forecast. Our
analysis suggests that assimilation of satellite radiance data
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IMERG-L, and NU-WREF identified precipitation objects during the four events.

may not be sufficient to constrain these displacement errors for
local-scale forecasting.

As demonstrated in this study, data-driven approaches hold
potential to capture the spatial features (e.g., the location and
shape; Fig. 9) of rainstorms. An alternative to direct assimila-
tion into NWP model, therefore, could be to directly leverage
the skills of data-driven satellite precipitation estimation al-
gorithms such as IMERG to “locate” storms. These locations
could then be combined with rain rate estimates from
convection-permitting NWP. Even relatively simple methods
to implement NWP-based correction of satellite precipitation
estimates can result in significant improvement of heavy rain-
fall estimation (X. Zhang et al. 2013; Nikolopoulos et al. 2015).

The object-based evaluation method used in this study can
potentially help ““bridge’ satellite precipitation estimates and
input PMW and IR sources. As the data-driven approach,
IMERG?’s performance is found to rely more on the input
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PMW and IR information (Figs. 11 and 12) than NU-WRF
estimates. As demonstrated in Fig. 13, retrieved spatial pat-
terns in IMERG can be traced back to the availability of PMW
swaths and the weight of incorporated IR. This could move
beyond the pixel scale investigation as in Tan et al. (2016), and
further to facilitate a complete understanding of uncertainty
sources of IMERG by considering extra constraints from
the swathes and footprints (e.g., ‘“‘effective resolutions”;
Guilloteau et al. 2017) of PMW sensors. We plan to explore
this idea and employ this object-based evaluation frame-
work regionally using the recently available long-term
IMERG records.

Historically, the satellite precipitation community has
placed substantial emphasis on how to distinguish pixel-scale
systematic and random error (e.g., Maggioni et al. 2016b; Tian
et al. 2013; Wright et al. 2017). Our results suggest that the
reality is more complex and that object-based evaluation can
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FIG. 8. Object-based detection skills: (a) POD, (b) FAR, and (c¢) CSI for IMERG-L and NU-WRF in the four events.

provide additional insights, which can help to disentangle er-
rors in location and precipitation intensity. Comparing Fig. 4 to
Figs. 5 and 6, for example, suggests that random errors in NU-
WREF, particularly for the MCS events, are driven by dis-
placement errors, reflecting the “‘double penalty” described in
section 1.

matching rules, as mentioned in section 3b. The choice of a
convolving-disk radius mainly impacts on the number of ob-
jects, which varies inversely with the convolving radius. In this
study, the radius of five grid lengths (i.e., 0.5°) was chosen by
visual inspection since it appeared to include most localized
rainstorm elements. Rainfall thresholds will influence the

number, size and shape of identified precipitation objects, and
thus will determine the scale at which heavy rainfall can be

This object identification and matching approach depends
on the selected convolving radius, rainfall thresholds and
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characterized. Therefore, thresholds should be tuned accord-
ing to the dominant extreme weather systems (Dixon and
Wiener 1993), precipitation climatology (Chang et al. 2016),
and particular application purposes (Li et al. 2014; Morin et al.
2006). In addition to the 5Smmh™! threshold applied in this
study, we briefly examined object-based metrics stemming
from other thresholds (e.g., 1,2, 3, and 4 mmh ™). The results
(not shown) suggest that our major findings still hold and that
the relative skills of IMERG-L and NU-WRF in characterizing
storms remain unchanged. However, due to the multiscale
nature of extreme rainfall, a multi-threshold object-based
analysis framework should be considered in the future to ad-
equately explore performance under different heavy rainfall
mechanisms. We selected the least restrictive matching rule as
discussed in Davis et al. (2006), in recognition of the potential
for large displacement errors in NU-WRF.

It should be also worth noting that the Stage I'V data used as
ground reference in this study contains their own errors. This is

(2) IMERG-L vs Stage IV

16 31 72 7 7 26 6 195
(4.4%) (8.7%) (20.0%) (1.9%) (1.9%) (7.2%) (1.7%) (54.2%)

particularly true in mountainous regions such as our Southern
Appalachians study area (Fig. 1) which pose specific chal-
lenges for radar measurement (Erlingis et al. 2018). Nelson
et al. (2016) showed that Stage IV tends to overestimate light
to moderate rainfall while slightly underestimated heavy
rainfall around the study area in the summer and fall. This
conditional bias probably suggests that Stage IV-based P90
(right column in Fig. 7) may be underestimated slightly, but
its impact on the number and shape of identified objects is
likely limited due to the relatively high threshold used. Prat
and Nelson (2015) showed that Stage IV’s detection skill
decreases for some rainfall extremes due to the low-level
orographic enhancement that cannot be detected by opera-
tional radars (Barros and Arulraj 2020). This implies that
Stage IV may have missed some localized storms in the
mountainous area (i.e., the north in Fig. 5), though it is likely
that the larger storm elements, both in terms of spatial extent
and magnitude, were detected.

(b) NU-WREF vs Stage IV
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6. Summary and conclusions

In this study, we compare gridded precipitation estimates in
four extreme storms from the “late’ version of IMERG mul-
tisatellite merged dataset and from NU-WRF, a numerical
weather prediction (NWP) model that assimilates satellite ra-
diances. We argue that the two approaches represent two
fundamental ways of producing gridded precipitation esti-
mates from multisatellite observations. We refer to IMERG
as data-driven, as it is built upon a variety of retrieval algo-
rithms that relate multiple satellite-observed radiances to
precipitation rates, and refer to the output from NU-WREF as
physically based, since it assimilates the radiances into the
model’s microphysics scheme and dynamical equations to
simulate precipitation.

Both satellite multisensor datasets such as IMERG and
NWP are being pushed to increasingly high spatial and tem-
poral resolutions. These are certainly welcome advances, in
part since they unlock new potential applications such as
localized monitoring and forecasting of flash floods and
landslides. Nevertheless, this presents challenges for the
“conventional” satellite precipitation analysis, since even
small errors in the locations or sizes of convective cells can
mask otherwise good performance of a particular precipitation
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dataset. In this regard, we argue that it is necessary to shift the
satellite precipitation evaluation paradigm toward object-
based approaches, especially since future precipitation esti-
mates are expected to continue to increase in spatial and
temporal resolution.

As an example, in this study we move beyond the conven-
tional grid-by-grid manner that has been mainly adopted in
existing works to evaluate satellite precipitation datasets, to
compare the relative performance of IMERG and NU-WRF
using an object-based analysis framework. This framework
enables the decomposition of gridded precipitation fields into
separated storm objects, and provides a way to diagnose spatial
feature-related errors (such as displacement errors), trace
them across space and time, and connect their accuracy to in-
put data sources and storm types. Major findings are summa-
rized as follows:

1) Both IMERG and NU-WREF can generally capture the
spatial patterns of storm total rainfall in the four rainstorms.
Notwithstanding the small sample size of only four events,
performance depends on storm type: NU-WRF tends to
typically overestimate precipitation during MCSs, while
IMERG seriously underestimates peak precipitation rates
during TCs.
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estimates in the second hour.

2) By decomposing gridded precipitation fields into separate
storm objects, we find that the coherent spatial pattern of
TC events is generally retrieved by NU-WREF in terms of
the number and intensity of objects albeit with a noticeable
displacement error, while IMERG is characterized by un-
derestimation of TC rainfall intensity. The less coherent
and highly localized precipitation structure of the MCS
events poses challenges to both IMERG and NU-WREF in
accurately capturing the location and intensity of storms,
with displacement errors and false alarm precipitation ob-
jects being particularly prevalent in NU-WRF results.

3) There is no general bias for IMERG and NU-WRF in es-
timating precipitation object shape and area. NU-WRF
tends to underestimate the 25th percentile but overestimate
the 90th percentile intensity of storm objects; and in con-
trast, IMERG can generally capture 25th percentile inten-
sity but underestimates 90th percentile intensity, especially
in TC events, suggesting IMERG tends to flatten the dis-
tribution of rain rates within the storm objects.

4) NU-WREF shows a similar detection skill as IMERG in terms
of object-based POD and CSI. However, NU-WRF gener-
ates many false alarm precipitation objects during the MCS
events. Once the estimated objects are matched with Stage [V
observations, IMERG demonstrates better skill in locating
the storms (with shorter separation distances) and in cap-
turing their spatial extents (with larger intersection ratios),
while NU-WREF offers better estimates of high intensity (in
terms of 90th percentile intensity) within rainy areas.

5) Precipitation object detection skill of IMERG and NU-
WREF depends on storm size, and decreases substantially for
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objects smaller than 200 pixels (approximately 20 000 km?).
Detection skill of both estimates improves with increasing
rainfall intensity, but IMERG shows a dramatic decline as
rainfall becomes larger than 18 mmh™!, suggesting the
potential limitations of IMERG in capturing the high-
intensity rain rates in the storms.

6) As a data-driven method, IMERG’s performance shows a
stronger dependence on PMW data sources regarding both
detection skill and estimation bias. IMERG precipitation
objects based purely on PMW data have the highest hit
ratio (i.e., are most likely to be detected), while objects
without any PMW data show the lowest hit ratio, along
with obvious underestimation of 90th percentile intensity
of matched objects. SSMIS-impacted IMERG objects pres-
ent large biases in size and rainfall rate. NU-WRF matched
precipitation objects show no obvious dependence on PMW
data sources in characterizing detected storms.

Finally, it should be noted that the physics-based versus
data-driven distinction used in this study is becoming increas-
ingly blurred—the GPROF retrieval algorithm in IMERG, for
example, applies a physical model to establish elements of its
priori “lookup database” for different radiometer observa-
tions (Kummerow et al. 2015) while the most recent version of
IMERG (version 06B; not used in this study) uses atmospheric
variables from relatively coarse-resolution numerical models
to upgrade its cloud morphing scheme (Huffman et al. 2019).
Nevertheless, the complementary performance of data-driven
IMERG and physics-driven NU-WREF revealed by our object-
based analysis, along with other studies using different
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methods (e.g., Nikolopoulos et al. 2015; X. Zhang et al. 2013,
2016; J. Zhang 2018; X. Zhang 2018), suggest that even closer
union of the two approaches holds promise for the future of
satellite precipitation estimation.
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