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ABSTRACT: The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety

of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially

and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimi-

lation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite

Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting

(NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern

United States using an object-based analysis framework that decomposes gridded precipitation fields into storm

objects. As an alternative to conventional ‘‘grid-by-grid analysis,’’ the object-based approach provides a promising way to

diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input

data sources. The evolution of two tropical cyclones are generally captured by IMERGandNU-WRF, while the less organized

spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more ac-

curate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms

compared to smaller, weaker storms. IMERG’s accuracy depends on the inputmicrowave and infrared data sources; NU-WRF

does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into

satellite precipitation performance and that the satellite precipitation community should further explore the potential for

‘‘hybrid’’ data-driven and physics-driven estimates in order to make optimal usage of satellite observations.
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1. Introduction

Satellite-based remote sensing has provided unprecedented

opportunities to monitor the Earth system (Lettenmaier et al.

2015; Wood et al. 2011). Particular emphasis has been placed

on the estimation of precipitation using satellites (Skofronick-

Jackson et al. 2018), due to its key role in weather and climate

and in rainfall-driven hazards such as floods and landslides

(e.g., Kirschbaum et al. 2017; Wright 2018). The most recent

example is the Global Precipitation Measurement (GPM) joint

mission from theNationalAeronautics and SpaceAdministration

(NASA) and the JapanAerospace ExplorationAgency (JAXA).

Many applications require gridded precipitation estimates,

often in near–real time, and call for high resolution and accu-

rate estimation of extreme rainfall rates—both of which have

posed hurdles to uptake by potential end-users (Maggioni et al.

2016a). The resolution and accuracy depend in part on the

available observations from the various space-borne sensors

such as the GPM ‘‘constellation’’ (Skofronick-Jackson et al.

2017). These multisensor observations must therefore be con-

verted into precipitation rates and interpolated onto a consistent

spatial and temporal grid. The ‘‘workhorse’’ satellite instru-

ments for precipitation estimates are passivemicrowave (PMW)

radiometers, which observe along a satellite’s ‘‘swath,’’ the rel-

atively narrow band over Earth sampled by the onboard sensor

as a satellite moves along its orbit. Infrared (IR) observations

from geostationary satellites are also commonly used in the

creation of gridded precipitation estimates (Joyce et al. 2001).

In this study, we posit that there are two fundamental ap-

proaches to satellite precipitation retrieval and interpolation

onto spatially and temporally regular grids. The first we call the

‘‘data-driven’’ approach: precipitation estimates are derived

from PMW/IR radiances using some manner of a priori data-

base or data-driven algorithm. Prominent examples include the

Goddard profiling algorithm (GPROF; Kummerow et al. 2001,

2015), the Precipitation Estimation from Remotely Sensed

Information Using Artificial Neural Networks (PERSIANN)

family of products (Ashouri et al. 2015; Hsu et al. 1997), and

‘‘cloud morphing’’-based techniques such as the CPC morph-

ing technique (CMORPH; Joyce et al. 2004; Xie et al. 2017),

JAXA’s Global Satellite Mapping of Precipitation (GsMAP;

Kubota et al. 2007), and NASA’s Integrated Multisatellite

Retrievals for GPM (IMERG; Huffman et al. 2018). GPROF

applies a large a priori database of coincident PMW brightnessCorresponding author: Dr. Zhe Li, zli875@wisc.edu
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temperature (TB) and precipitation estimates, from which a

weighted combination of entries is selected to estimate the

precipitation rate for any given PMW observation. PERSIANN

relates precipitation estimates with gridded IR cloud-top TB

observations via an artificial neural network (ANN) model,

and its parameters are continuously adapted from sparsely

sampled PMW observations. Cloud morphing uses motion

vectors, usually derived from consecutive IR images, to spa-

tially and temporally interpolate between PMW swaths.

Recent data-driven datasets such as IMERG, which combines

GPROF, CMOPRH’s cloud morphing, and PERSIANN’s ANN

scheme, are more accurate and have higher resolution than their

predecessors (Hou et al. 2014; Skofronick-Jackson et al. 2017).

The second method for obtaining gridded precipitation es-

timates from satellite remote sensing is via a numerical weather

prediction (NWP)model. Precipitation estimates are produced

by the model’s dynamical equations and parameterizations,

which are constrained through the assimilation of satellite ra-

diances (Benjamin et al. 2019). Hence, we refer to this as the

‘‘physics-based’’ approach. A number of datasets, particularly

reanalyses such as the Modern-Era Retrospective Analysis for

Research and Applications, version 2 (MERRA-2; Gelaro

et al. 2017) fromNASA andERA5 (Hersbach et al. 2018) from

the European Centre for Medium-Range Weather Forecasts

assimilate PMW TBs to get gridded estimates of a wide range

of atmospheric fields, including precipitation. A growing body

of work has argued that NWP model simulations can, at least

under specific conditions, yield precipitation estimates of

comparable or better accuracy than data-driven satellite pre-

cipitation datasets (e.g., Lee et al. 2017; Nikolopoulos et al.

2015; X. Zhang et al. 2013, 2016; J. Zhang 2018; X. Zhang 2018;

Lundquist et al. 2019). It is becoming increasingly feasible to run

satellite-assimilating NWP model at ‘‘convection-permitting’’

resolutions (,4 km; Prein et al. 2015) for regional domains.

One such model is NASA-Unified Weather Research and

Forecasting (NU-WRF) with the Ensemble Data Assimilation

System (EDAS), which is designed specifically for regional

weather simulations and data assimilation at ‘‘satellite-resolved

scales’’ (Peters-Lidard et al. 2015; S. Q. Zhang et al. 2013).

We argue that advances of modern high-resolution gridded

satellite precipitation data demand alternative evaluation tech-

niques to those commonly employed in the past: while high

resolution offers potential benefits, it also poses challenges. For

example, higher resolution leads to a greater likelihood of

compounding errors in precipitation intensity and spatial loca-

tion, which conventional grid-by-grid metrics fail to distinguish

(Gilleland et al. 2009). These metrics include summary statistics

at grid scale for detection skills (e.g., contingency tables) and for

detected-rain errors (e.g., bias, root-mean-square error, mean

absolute error, etc.), but they tend to result in so-called ‘‘double

penalty’’ since they ‘‘punish’’ the estimate twice: once for miss-

ing observed rainfall at the correct location and again for

falsely placing it elsewhere (Rossa et al. 2008).

This study presents an intercomparison of high-resolution

gridded precipitation estimates from IMERG and NU-WRF

for four extreme rainfall events in the southeastern United

States. Their relative performances in reproducing key aspects

of extreme precipitation, particularly storm intensity, location

and geometry are assessed. We perform an ‘‘object-based’’

evaluation, which provides a stronger basis in characterizing

the spatial features related errors than more commonly used

‘‘grid-by-grid’’ metrics. Object-based evaluation methods are

gaining popularity in the NWP forecasting community (e.g.,

Dorninger et al. 2018; Gilleland et al. 2010), but have received

less attention in satellite precipitation evaluation (AghaKouchak

et al. 2011; Demaria et al. 2011; Li et al. 2016). We also attempt

to link the accuracy of IMERG and NU-WRF estimates to the

actual satellite-borne sensors used at any particular time and

location, again using object-based methods.

Section 2 describes the study region, datasets and selected

storm events. Methodology follows in section 3. Section 4

presents the results; associated discussion follows in section 5.

We close with a summary and conclusions in section 6.

2. Study region and data

a. Study area and case study storms

The study region is centeredaround thedomainof the Integrated

Precipitation and Hydrology Experiment (Barros et al. 2014), and

spans the physiographic gradients from the Atlantic coast to the

Blue Ridge Mountains in the southeastern United States (Fig. 1).

This region is characterized by complex terrain along with a va-

riety of extreme weather systems capable of producing floods and

landslides (Barros et al. 2014; Mahoney et al. 2016; Moore et al.

2015; Schumacher and Johnson 2006), including tropical cyclones

(TCs) and mesoscale convective systems (MCSs). Four heavy

rainfall events during the period 2016–18 were selected for anal-

ysis: event 1 (6–9October 2016) and event 4 (13–18 September 2018)

were Hurricanes Matthew and Florence, respectively, while event

2 (22–25 April 2017) and event 3 (21–25 May 2017) were MCSs.

These constitute four of the heaviest rainfall-producing storm sys-

tems for the region in the period since the launch of GPM in 2014.

Key characteristics of the four storms can be found in Table 1.

b. IMERG gridded precipitation estimates

IMERG provides precipitation estimates every 30min on a

0.18 grid with quasi-global coverage (608S–608N), and consists

of three types of products: Early, Late (hereafter IMERG-L),

and Final. We focus on IMERG-L, which includes some ad-

ditional satellite observations not used in Early. IMERG-Final

uses a rain gauge bias correction and is thus less relevant for

our focus on the properties of near-real-time satellite-only

precipitation estimates. We use IMERG version 05B (Huffman

et al. 2018), which can be accessed at https://disc.gsfc.nasa.gov/.

IMERG containsmultiple data fields in addition to the ‘‘best

guess’’ precipitation estimates. These include a PMW source

field which states which (if any) PMWsensor was used to create

the estimates; PMW- and IR-only precipitation estimates,

and an IR weight (IRW) which determines the extent to

which IR information was used in a best guess estimate

(Huffman et al. 2018). Five PMW instruments contributed to

IMERG-L over this region at one or more times during the

four case study storm events: the GPM Microwave Imager

(GMI), the Advanced Microwave Scanning Radiometer 2

(AMSR2), the Special Sensor Microwave Imager/Sounder
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(SSMIS), the Microwave Humidity Sounder (MHS), and the

Advanced Technology Microwave Sounder (ATMS). More

details on the role of PMW and IR auxiliary variables in

IMERG algorithms can be found in Tan et al. (2016).

c. NU-WRF gridded precipitation estimates

NU-WRF combines the dynamical core of the Advanced

Research WRF (ARW; Skamarock et al. 2008) with a collection

schemes such as the Goddard Cumulus Ensemble (GCE; Tao

et al. 2014) for cloud radiation–microphysics parameterization,

the Land Information System (LIS; Peters-Lidard et al. 2007) for

the land surface spinup fields, and EDAS (Zupanski et al. 2011)

for data assimilation. NU-WRF EDAS assimilates precipitation-

sensitive radiances using an all-sky radiative transfer simulator

(Matsui et al. 2014) and a maximum likelihood ensemble filter

(MLEF) to produce a 32-member ensemble used to update the

state-dependent background error covariance (Zupanski et al.

2011). Recent studies have shown that NU-WRFperformswell in

simulating precipitation intensity and duration (Lee et al. 2017),

while this EDAS module improves the estimates of both precip-

itation intensity and spatial pattern (S.Q. Zhang et al. 2013, 2017).

In this study, NU-WRF used 55 vertical levels (up to 50 hPa)

and a 3-km inner horizontal grid (Fig. 1), nested within a 9-km

horizontal grid (not shown). The Thompson microphysics

scheme (Thompson et al. 2008) was used to provide micro-

physical simulation of clouds that are connected to satellite

observation operators in radiance data assimilation, and Noah

land surface model was used in atmospheric and land coupled

simulation as well as within LIS spinup process. Boundary

forcing came from theGlobal Forecast System (Whitaker et al.

2008). Hourly accumulated rainfall fields (currently NU-WRF

EDAS does not facilitate output temporal resolutions finer

than hourly) are generated at 3-km spatial resolution over the

inner simulation domain.

Control variables in the data assimilation module EDAS

include wind, temperature, surface pressure, water vapor,

and five hydrometeors (the mixing ratios of cloud water,

rain, ice, snow, and graupel). In summary, the observations

for EDAS analysis cycles include in situ conventional data

(radiosonde, pilot, wind profiler, and GPS integrated pre-

cipitable water data), clear-sky satellite radiances from the

Advanced Microwave Sounding Unit A (AMSU-A), along

FIG. 1. The location, topography, and geographic boundaries of the study area.

TABLE 1. Characteristics for the four storms evaluated in this study. Descriptions are archived and briefed from the panels of Storm

Summaries and Mesoscale Precipitation Discussions at https://www.wpc.ncep.noaa.gov/.

Event 1 Event 2 Event 3 Event 4

Year 2016 2017 2017 2018

Start time 2100 UTC 6 Oct 2100 UTC 22 Apr 0300 UTC 21 May 2100 UTC 13 Sep

End time 0300 UTC 9 Oct 0300 UTC 25 Apr 0300 UTC 25 May 1800 UTC 18 Sep

Duration (h) 54 54 96 117

Storm type TC MCS MCS TC

Description Hurricane Matthew Convective heavy rainfall Convective heavy rainfall Hurricane Florence
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with precipitation-sensitive radiances from GMI, SSMIS,

and AMSR2. Currently, data assimilation cycles of EDAS

consists of an ensemble model simulation and an analysis at

each 3-h interval. Conventional and satellite observations ob-

tained around the analysis time pass the quality control and an

online bias correction (Chambon et al. 2014) and enter into the

optimization solver. For the assimilation of NU-WRF in this

study, satellite swath observations such as PMW data within

630min of the analysis time is considered for assimilation.

d. Stage IV multisensor gridded precipitation

Stage IV multisensor precipitation is used in this study to

evaluate the precipitation estimates from IMERG-L and

NU-WRF. The Stage IV national mosaic merges weather radar

and rain gauge measurements at 4 km hourly over the contigu-

ous United States (Lin 2011), and has been widely used to val-

idate satellite precipitation products and NWP simulation

results (e.g., Beck et al. 2019; Lee et al. 2017; Nelson et al. 2016).

3. Methodology

a. Space–time resampling

IMERG-L, NU-WRF, and Stage IV vary in their spatial

coverage, grid size, and temporal resolution. Thirty-minute

IMERG-L precipitation estimates were temporally aggregated

to obtain hourly totals.HourlyNU-WRFandStage IVfieldswere

first interpolated onto a regular 0.018 grid using nearest neighbor

interpolation (Amidror 2002). The resulting finescale fields were

then aggregated onto the 0.18 IMERG grid by block averaging.

b. Object-based characterization of rainstorms

We applied the object-based identification and character-

ization approach from the ‘‘SpatialVx’’ R package (Gilleland

2019) to precipitation fields from IMERG-L, NU-WRF, and

Stage IV. This consisted of four steps:

Step 1: Smoothing. A two-dimensional smoothing kernel

(Gilleland 2013) was applied to the accumulated hourly

precipitation field (Fig. 2a) to obtain a contiguous rainy

area. We used a circular disk kernel with a convolving

radius of five grid lengths (i.e., 0.58 or roughly 50 km),

which is slightly larger than the recommended mini-

mum value of four grid lengths in Davis et al. (2006).

Step 2: Thresholding.Onceprecipitation fieldswere smoothed,

pixels that exceeded a given threshold were identified,

thus defining object boundaries. A threshold of 5mmh21

was applied in this study. Binary ‘‘masks’’ of distinct

precipitation objects were then created (Fig. 2b). Only

objects covering at least 50 grid cells (;1% of the study

region, i.e., 5000 km2) were included in further analyses.

Step 3: Characterization. By convolving themasks with their

original precipitation fields (Figs. 2a,b), the precipitation

distribution within each object was obtained and two

groups of object properties were calculated: geometric

properties—area, centroid, orientation, major and minor

axis lengths, and aspect ratio, and rainfall intensity

metrics—the 25th and 90th percentile (denoted hereaf-

ter as P25 and P90) of the precipitation distribution

within each object (Fig. 2c). More details on these object

properties can be found in Davis et al. (2006).

Step 4: Matching. Precipitation objects were ‘‘matched’’ (we

attempted to determine whether an object captured in the

satellite precipitation estimates and Stage IV) in order to

evaluate the object detection and estimation skills of

IMERG-L and NU-WRF (Fig. 2d). Following after

Davis et al. (2006), a match was counted if the separation

distance (i.e., the Euclidean distance) between two ob-

jects’ centroids was shorter than the sum of their sizes

(size is the square root of the area of precipitation object).

Sensitivity of this object-based characterization to convolv-

ing radius, rainfall thresholds and matching rules are further

discussed in section 5.

c. Evaluation metrics

We first applied two conventional methods to evaluate the

relative performance of IMERG-L and NU-WRF: storm total

accumulations and scatterplots of pixel-scale hourly precipi-

tation estimates. For the latter, we quantified the performance

in terms of three widely used evaluation metrics, including

the relative bias (RB), root-mean-square error (RMSE), and

Pearson linear correlation coefficient (CORR), which have

been commonly defined and adopted in a large number of lit-

eratures (e.g., Tang et al. 2016; Tan et al. 2018).

The relative performance of IMERG-L and NU-WRF

was further explored with an object-based view by com-

paring the properties of their identified precipitation ob-

jects. The capabilities of IMERG-L and NU-WRF to

reproduce Stage IV objects’ location, shape, and intensity

(P25 and P90) were first compared without matching.

Next, the detection skills of IMERG-L and NU-WRF

were quantified in terms of object-oriented metrics using

matched objects. These metrics include the object-based

probability of detection (PODobj), false alarm ratio (FARobj),

and critical success index (CSIobj), which are calculated as

follows (Davis et al. 2006):

POD
obj

5
N

matched

N
matched

1N
misses

, (1)

FAR
obj

5
N

false_alarms

N
matched

1N
false_alarms

, (2)

CSI
obj

5
N

matched

N
matched

1N
misses

1N
false_alarms

, (3)

where Nmatched denotes the number of pairs of matched Stage

IV and IMERG-L/NU-WRF objects, Nmisses is the number of

missed objects (i.e., Stage IV identified objects that are not

captured by IMERG-L/NU-WRF), and Nfalse_alarms is the

number of false alarms (i.e., IMERG-L/NU-WRF objects that

are not observed by Stage IV).

The relative performance of IMERG-L and NU-WRF in

characterizing matched precipitation objects’ location, shape,

and intensity can be evaluated according to a number of

additional metrics such as the separation distance, intersection

ratio (the ratio of intersected area divided by the area of smaller
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matched object), and P25 and P90 estimation relative bias of

matched objects:

RB
P25

5
P25

est
2P25

obs

P25
obs

, (4)

RB
P90

5
P90

est
2P90

obs

P90
obs

. (5)

P25obs (P90obs) is Stage IV observed object’s intensity, while

P25est (P90est) represents the intensity of matched precipita-

tion object from IMERG-L or NU-WRF.

d. Categorization for conditional analysis

Precipitation objects were also grouped into various cate-

gories in terms of their properties to compare the conditional

performance of IMERG-L andNU-WRF. Two characteristics,

area and P90, were considered to classify the objects and to

explore the detection skills of IMERG-L and NU-WRF as a

function of object size and intensity.

We also examined PMW and IR inputs to IMERG-L and

NU-WRF, which can impact both data- and model-based es-

timates’ performance (Tan et al. 2016; S. Q. Zhang et al. 2013).

As mentioned above, there are embedded PMW source and

IRW data fields in each 30-min IMERG file. These were

overlapped on previously identified hourly IMERG-L objects

to obtain half-hour object-based PMW and IRWmasks. Based

on every two consecutive half-hour PMWmasks, identifiers for

each 0.18 pixel of the mask were determined: no PMW (further

classified as described below), one PMW (with sensor-specific

identifier AMSR2, SSMIS, MHS, GMI, ATMS), and two

consecutive PMWs (with identifier TCPMW). Object-based

hourly PMW identifiers were then obtained by finding the

majority identifiers across all the pixels of a mask. Objects

without PMW input were categorized into two groups with

further consideration of object-mean IRW: those derived

purely from cloud morphing (‘‘Morph only’’; with an object-

mean IRW of 0%), and those using a hybrid of morphing and

IR-based estimates (‘‘Morph1 IR’’; with an object-mean IRW

larger than 0%), which can be further subdivided by IRW level;

object-mean IRW was calculated by averaging the IRW of all

pixels from the two consecutive half-hour IRW masks.

NU-WRF EDAS assimilates PMW data from multiple

sensors but does not record the sensor identifier of each

observation at a particular footprint after the online quality

FIG. 2. Illustration of the object-based identification and characterization approach: (a) original precipitation

field observed by Stage IV at 0700–0800 UTC 21May 2017; (b) identified objects after smoothing and thresholding;

(c) object-based characterization of storm properties; and (d) matching of precipitation objects from IMERG-L

and NU-WRF with those from Stage IV.
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control process. We used the following procedures to make an

educated guess of the PMWmeasurements that may have been

assimilated, and then base subsequent analysis on the as-

sumption that such data passed quality checks. First, Level-1C

intercalibrated orbital TB data from GMI, SSMIS (carried

aboard F16, F17, and F18), and AMSR2, which passed over

the study region during the four storms were collected (from

https://disc.gsfc.nasa.gov/), including their overpass time

stamps. Since NU-WRF EDAS only accepts PMW sensor-

specific TB swaths within 630 min of the start time of 3-h

simulation initialized by the assimilation at that time, we did

not consider orbital TB data not in that time window and

assign PMW identifiers (NO PMW, GMI, F16, F17, F18,

AMSR2; MS is for multiple sensors) to each assimilation

loop of NU-WRF. Since the assimilated PMW data con-

strain initial model state variables (e.g., hydrometeors) and

thus simulated surface rainfall implicitly over the modeling

domain (Zupanski et al. 2011), we assumed that swath-based

data assimilation impacts all the hourly objects, and thus the

same PMW identifier is assigned to any NU-WRF hourly

object within each 3-h loop regardless of the object’s loca-

tion and shape.

4. Results

a. Conventional analysis of gridded precipitation fields

Visual comparison of storm total maps is a typical way of

comparing precipitation estimates. For TC events (events 1

and 4), visual inspection of storm total rainfall accumulation

suggests that NU-WRF outperforms IMERG-L in terms of

precipitation magnitude and spatial distribution, especially for

the heaviest parts within storm total rainfall fields, though it

still underestimates the maximum accumulated precipitation

amount (Fig. 3). IMERG-L tends to seriously underestimate

the rainfall in the two TCs and fails to retrieve the heavy rain

cores of storm total fields. The MCS storms (events 2 and 3)

show a different picture: NU-WRF generally overestimates

rainfall totals and shows a number of localized peaks, while

IMERG-L captures the general spatial pattern and provides

better estimates of rainfall magnitude overall.

This visual inspection highlights that the relative perfor-

mances of IMERG-L and NU-WRF appears to depend on

rainfall regime, albeit based on a small sample of four storms.

Their relative skills mainly manifest in the highly varied rep-

resentations of spatial rainfall structures, especially localized

extreme rainfall accumulations.

Scatterplots and associated summary statistics such as bias,

error (RMSE, mean absolute error, etc.), and correlations are

common methods for comparing precipitation datasets. These

methods might be limited, however, due to their lack of regard

to spatial information (Gilleland et al. 2009). As shown in

Fig. 4, scatterplots and evaluation metrics of pixel-scale hourly

precipitation estimates from IMERG-L andNU-WRF provide

some insights into their error characteristics, but also draw

attention to their shortcomings. IMERG-L shows higher cor-

relation and lower random error, while NU-WRF is less biased,

with the exception of event 3. The results of Fig. 4 seem not

consistent, however, with Fig. 3: both NU-WRF and IMERG-

L typically underestimate grid-scale precipitation according to

the relative bias values, contrasting with the aforementioned

NU-WRF’s overestimation and IMERG-L’s general agree-

ment of storm total precipitation for the MCSs. This may be

due to the fact that Fig. 4 only includes cases in which both

Stage IV and IMERG or NU-WRF estimates are greater than

0.1mmh21. Scatterplots can illustrate hit bias (Tian et al.

2009), but not detection error, which may play a critical role in

heavy rainfall estimation for specific weather systems such as

the MCSs shown in Fig. 3.

b. Characterization and comparison of precipitation objects

Mapsof hourly precipitation object properties from IMERG-L,

NU-WRF, and Stage IV for TC and MCS events (Figs. 5 and

6, respectively) highlight features not easily discerned from

Figs. 3 and 4. Objects show larger size andmuch simpler spatial

patterns for the TCs than for the MCSs, and both IMERG-L

and NU-WRF are relatively accurate in terms of capturing the

spatial evolution of the TCs. IMERG-L fails to retrieve the

heavy rain cores of storm total fields in both TC events (Fig. 3):

for Hurricane Matthew (event 1; Figs. 5a,c), IMERG-L iden-

tifies precipitation objects with approximately correct size and

location but underestimates P90 along this hurricane’s path; for

Hurricane Florence (event 4; Figs. 5b,d), it yields too few

precipitation objects and underestimates rainfall intensity

through the entire event. NU-WRF, on the other hand,

provides better estimates in terms of the number and in-

tensity of precipitation objects during both TC events,

though with a noticeable eastward displacement error in the

case of Hurricane Matthew (Fig. 5a).

In contrast with TCs, the spatial pattern ofMCS events tends

to be more complicated (Fig. 6). Detection errors appear to

dominate the performance of both IMERG-L and NU-WRF

inMCS storms: IMERG-Lmisses several precipitation objects in

events 2 and 3, including large objects near the coast (Figs. 6c,d),

while NU-WRF generates several spurious high-intensity pre-

cipitation objects in the western (southwestern) portion of the

study area during event 2 (event 3) and fails to detect many

precipitation objects in the mountainous areas (Figs. 6a,b).

Boxplots of object geometric properties from IMERG-L

and NU-WRF (left column in Fig. 7) show that major and

minor axis lengths are relatively unbiased during events 1 and

3. Errors in object geometry plays greater roles in events 2

and 4: IMERG-L and NU-WRF both underestimate the pre-

cipitation object size in event 2; in event 4, NU-WRF overes-

timates the object sizes whereas IMERG-L underestimates.

Since the relative length of a boxplot’s whiskers indicates the

skewness of a sample, Fig. 7 (left column) also suggests that

IMERG-L and NU-WRF generally capture the overall skew-

ness of precipitation objects’ size distribution. In event 1

(negatively skewed), the size distribution is concentrated on

large precipitation objects, which are more likely to be ac-

curately estimated with both approaches; when the size dis-

tribution is shifted toward smaller objects in the positively

skewed scenarios (events 2, 3, and 4), IMERG-L and NU-WRF

tend to have larger uncertainty and discrepancy in resolving the

shape of rainstorms.
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FIG. 3. Storm total accumulations from NU-WRF, IMERG-L, and Stage IV during the four storm events; Rmax represents the maximum

accumulated precipitation amount.
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Boxplots for P25 and P90 shed additional light on the rela-

tive skill of IMERG-L and NU-WRF with respect to rainfall

intensity within the objects (center and right columns in Fig. 7).

IMERG-L tended to accurately capture P25 and P90 rain rates

for MCS events (events 2 and 3). NU-WRF, on the other

hand, overestimated P90 and underestimated P25 in the MCS

events. In the TC events (events 1 and 4), NU-WRF performs

as well or better than IMERG-L. Both IMERG-L and

NU-WRF slightly overestimate P25 and underestimate P90 in

Hurricane Florence.

Figure 8 compares the object-based detection skills of

IMERG-L and NU-WRF during the four events after match-

ing, in terms of object-based POD, FAR and CSI (defined in

section 3c). NU-WRF presents POD and CSI roughly com-

parable with IMERG-L, but a larger FAR for all events. FAR

is much higher for both IMERG-L and NU-WRF under the

MCS scenarios (events 2 and 3), confirming that both datasets

struggle with properly depicting localized convection.

Figure 9 summarizes the properties of matched precipitation

objects from IMERG-L and NU-WRF such as the separation

distance, intersection ratio, and P25 and P90 estimation rela-

tive bias. Separation distance for NU-WRF matched objects

tends to range from 0.68 to 1.08 (6–10 grid lengths), while it is

mostly below 0.48 (4 grid lengths) for IMERG-L (Figs. 9a–d).

Meanwhile, the general distribution of separation distance

for NU-WRF is more dispersed than IMERG-L inmost cases.

IMERG-L objects typically have a larger intersection ratio

(median of 0.5–0.8) than NU-WRF (median less than 0.5

except for event 1), especially for MCS rainstorm events

(Figs. 9e–h). The histograms of intercentroid separation dis-

tance together with intersection ratio confirm that IMERG-L

outperforms NU-WRF in locating storms and capturing their

spatial coverage. Relative estimation bias of P25 and P90 for

matched objects from NU-WRF are generally low for TC

events, while IMERG-L presents a relatively better perfor-

mance in estimating MCS storms (Figs. 9i–p). Generally,

NU-WRF underestimates low rainfall intensity (P25) in MCS

storms, while IMERG-L underestimates high-intensity rain

rates (P90) in TC events.

We examined the dependence of object-based POD on the

size and P90 of Stage IV objects—in other words, the likelihood

of detection of a ‘‘real’’ precipitation object as a function of object

size and intensity. It was found that PODdepends strongly on the

size of precipitation object for both IMERG-L and NU-WRF

(Fig. 10a), indicating that large precipitation objects are more

likely to be captured by both approaches. A similar relationship

exists between POD and P90 in NU-WRF, but not in IMERG-L

(Fig. 10b): detection skill of NU-WRF increases with 90th per-

centile rainfall intensity. This is generally true in IMERG-Lwhen

rainfall intensity is lower than 18mmh21, but then it shows a

dramatic decline in detection ability due to IMERG’s serious

underestimates of extreme storms like Hurricane Florence.

c. Impact of PMW and IR data

As we connect their accuracy back to input data source

(IRW, or a specific PMW sensor), the object-oriented evalua-

tion reveals varied dependencies of IMERG-L and NU-WRF

on IR and PMW data source. In the case of IMERG-L, objects

with PMWgenerally present a higher hit ratio than those based

on morphing purely or morphing combined with IR estimates

(‘‘Morph only’’ and ‘‘Morph 1 IR,’’ respectively, in Fig. 11a).

Hourly objects derived with two consecutive half-hour PMW

inputs (‘‘TCPMW’’ in Fig. 11a) have the highest hit ratio of

81% but are relatively uncommon (7% of observations). MHS

and SSMIS also show strong performance though both are also

characterized by a notably high FAR ratio of 25% and 16% for

FIG. 4. Density scatterplots of gridded hourly precipitation estimates from (a)–(d) NU-WRF and (e)–(h) IMERG-L vs Stage IV during

the four events. Only the gridded data which are simultaneously estimated to be greater than 0.1mmh21 by Stage IV and NU-WRF

(IMERG-L) have been considered. RB and RMSE denote relative bias and root-mean-square error, respectively, while CORR denotes

Pearson correlation coefficient.
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MHS and SSMIS, respectively. This high FARmight be caused

by the coarse resolutions of MHS and SSMIS scanning foot-

prints (Tan et al. 2016). ASMR2 shows the lowest hit ratio of

50% among all PMW sources and a detection skill (with a false

ratio of 13% and miss ratio of 38%) similar to combined

morphing and IR.

NU-WRF’s detection skills show a more complicated rela-

tion to PMW (Fig. 11b). Note that what appears as SSMIS in

Fig. 11a appears as F16, F17, and F18 in Fig. 11b, since the

SSMIS sensor flies aboard those three satellites. Generally, NU-

WRF presents a higher FAR (also shown in Fig. 8) compared to

IMERG-L, especially as F16, F17, F18, and MS (note that MS

categorymight also have incorporated swaths from F16/F17/F18),

suggesting that assimilated PMW data have benefits in reduc-

ing false alarms. This means that NU-WRF objects that in-

corporate SSMIS tend to have larger FAR ratios thanGMI and

AMSR2. Unlike IMERG-L, NU-WRF estimates with GMI

and AMSR2 present the best detection skills, with a high hit

ratio (66% and 67%, respectively) and minor false alarms (9%

and 6%, respectively). With the exception of GMI and

AMSR2, the benefits of PMW assimilation in NU-WRF seem

limited since observations without PMW inputs exhibit a rel-

atively high hit ratio of 56% and a relatively small false alarm

ratio of 22%, better than F16, F17, and F18.

Similar to the detection statistics above, PMW and IRW

data sources have a greater impact on precipitation estimation

bias in IMERG-L than NU-WRF (Fig. 12). Underestimation

of P90 for IMERG-L objects is eliminated when PMWdata are

available (Fig. 12a). This does not extend to object area

(Fig. 12b), however, most PMW-impacted categories (except

GMI) present an obvious positive bias in characterizing object

size, while groups without PMW input tend to be less biased. It

is also noteworthy that SSMIS has a large bias in estimating

object size and rainfall rate. NU-WRF matched precipitation

objects exhibit no obvious dependence on PMW in charac-

terizing detected storms (Figs. 12c,d).

FIG. 5. Location of the centroids of hourly precipitation objects compared with Stage IV for (a),(b) NU-WRFand

(c),(d) IMERG-L during TC rainstorm events: (left) event 1 (i.e., Hurricane Matthew) and (right) event 4 (i.e.,

Hurricane Florence). Circle size and color shading denotes the area and precipitation intensity (represented by

P90) of hourly objects, respectively. The numbers of precipitation objects are shown in inset boxes.
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As a data-driven approach to estimate precipitation,

IMERG relies on input data sources as discussed above. Due

to the retrieval algorithms developed for IMERG and its

predecessors like TMPA, CMORPH, and PERSIANN, the

estimated precipitation spatial pattern can be traced back to

the signals contained in input PMW overpasses and IR images.

To better understand the relations between PMW–IR inputs

and IMERG rainfall patterns, Fig. 13 compares IMERG-L

with Stage IV over two consecutive hours in event 3, along with

several 30-min input data fields of IRW, IR-only estimated

precipitation, PMW sources, and PMW-only estimated pre-

cipitation. Compared to Stage IV, IMERG-L overestimates

the rainy area in the first hour but reasonably captures its

spatial pattern in the next hour. This ‘‘update’’ in estimated

spatial pattern was due to the introduction of a new PMW

observation into IMERG: the first hourly IMERG-L was

greatly impacted by the IR (Fig. 13e; IRW of 39%), as can be

seen by comparing Figs. 13c and 13f. In the subsequent hour,

there is an AMSR2 overpass (Fig. 13g), and PMW-only esti-

mates (Fig. 13h) dominate the retrieved spatial pattern in the

following hourly IMERG-L (Fig. 13d). This highlights that

IMERG estimated precipitation accuracy is highly sensor-

specific at fine temporal and spatial scales.

5. Discussion

The object-based evaluation in this study highlights that

NU-WRF is capable of capturing extreme rainfall rates, but

that these can be subject to substantial displacement errors

(i.e., the right rainfall in the wrong place). While the preva-

lence of displacement errors in NWP have been well docu-

mented (Ebert and McBride 2000; Gilleland et al. 2010;

Dorninger et al. 2018), its importance in the context of appli-

cations is likely growing as NWP pushes toward convection-

permitting resolutions (,4 km; Prein et al. 2015). The finescale

convection that can be simulated at high resolutions can in

principle ‘‘unlock’’ forecasting of small-scale localized natural

hazards such as flash floods and landslides. However, we found

displacement errors of precipitation objects in NU-WRF on

the order of 50–100 km, which could easily mean the difference

between a successful and a botched localized forecast. Our

analysis suggests that assimilation of satellite radiance data

FIG. 6. As in Fig. 5, but for MCS rainstorm events: (a),(c) event 2 and (b),(d) event 3.
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may not be sufficient to constrain these displacement errors for

local-scale forecasting.

As demonstrated in this study, data-driven approaches hold

potential to capture the spatial features (e.g., the location and

shape; Fig. 9) of rainstorms. An alternative to direct assimila-

tion into NWP model, therefore, could be to directly leverage

the skills of data-driven satellite precipitation estimation al-

gorithms such as IMERG to ‘‘locate’’ storms. These locations

could then be combined with rain rate estimates from

convection-permitting NWP. Even relatively simple methods

to implement NWP-based correction of satellite precipitation

estimates can result in significant improvement of heavy rain-

fall estimation (X. Zhang et al. 2013; Nikolopoulos et al. 2015).

The object-based evaluation method used in this study can

potentially help ‘‘bridge’’ satellite precipitation estimates and

input PMW and IR sources. As the data-driven approach,

IMERG’s performance is found to rely more on the input

PMW and IR information (Figs. 11 and 12) than NU-WRF

estimates. As demonstrated in Fig. 13, retrieved spatial pat-

terns in IMERG can be traced back to the availability of PMW

swaths and the weight of incorporated IR. This could move

beyond the pixel scale investigation as in Tan et al. (2016), and

further to facilitate a complete understanding of uncertainty

sources of IMERG by considering extra constraints from

the swathes and footprints (e.g., ‘‘effective resolutions’’;

Guilloteau et al. 2017) of PMW sensors. We plan to explore

this idea and employ this object-based evaluation frame-

work regionally using the recently available long-term

IMERG records.

Historically, the satellite precipitation community has

placed substantial emphasis on how to distinguish pixel-scale

systematic and random error (e.g., Maggioni et al. 2016b; Tian

et al. 2013; Wright et al. 2017). Our results suggest that the

reality is more complex and that object-based evaluation can

FIG. 7. Boxplots of (left) the lengths of major and minor axes (denoted as Rmajor and Rminor), (center) P25, and (right) P90 for Stage IV,

IMERG-L, and NU-WRF identified precipitation objects during the four events.
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provide additional insights, which can help to disentangle er-

rors in location and precipitation intensity. Comparing Fig. 4 to

Figs. 5 and 6, for example, suggests that random errors in NU-

WRF, particularly for the MCS events, are driven by dis-

placement errors, reflecting the ‘‘double penalty’’ described in

section 1.

This object identification and matching approach depends

on the selected convolving radius, rainfall thresholds and

matching rules, as mentioned in section 3b. The choice of a

convolving-disk radius mainly impacts on the number of ob-

jects, which varies inversely with the convolving radius. In this

study, the radius of five grid lengths (i.e., 0.58) was chosen by

visual inspection since it appeared to include most localized

rainstorm elements. Rainfall thresholds will influence the

number, size and shape of identified precipitation objects, and

thus will determine the scale at which heavy rainfall can be

FIG. 9. The comparison of histograms for (a) separation distance (8), (b) intersection ratio, (c) P25 estimation relative bias, and (d) P90

estimation relative bias, of matched precipitation objects identified by IMERG-L andNU-WRF in the four events. Top triangles show the

median value of the distribution.

FIG. 8. Object-based detection skills: (a) POD, (b) FAR, and (c) CSI for IMERG-L and NU-WRF in the four events.
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characterized. Therefore, thresholds should be tuned accord-

ing to the dominant extreme weather systems (Dixon and

Wiener 1993), precipitation climatology (Chang et al. 2016),

and particular application purposes (Li et al. 2014; Morin et al.

2006). In addition to the 5mmh21 threshold applied in this

study, we briefly examined object-based metrics stemming

from other thresholds (e.g., 1, 2, 3, and 4mmh21). The results

(not shown) suggest that our major findings still hold and that

the relative skills of IMERG-L andNU-WRF in characterizing

storms remain unchanged. However, due to the multiscale

nature of extreme rainfall, a multi-threshold object-based

analysis framework should be considered in the future to ad-

equately explore performance under different heavy rainfall

mechanisms. We selected the least restrictive matching rule as

discussed in Davis et al. (2006), in recognition of the potential

for large displacement errors in NU-WRF.

It should be also worth noting that the Stage IV data used as

ground reference in this study contains their own errors. This is

particularly true in mountainous regions such as our Southern

Appalachians study area (Fig. 1) which pose specific chal-

lenges for radar measurement (Erlingis et al. 2018). Nelson

et al. (2016) showed that Stage IV tends to overestimate light

to moderate rainfall while slightly underestimated heavy

rainfall around the study area in the summer and fall. This

conditional bias probably suggests that Stage IV-based P90

(right column in Fig. 7) may be underestimated slightly, but

its impact on the number and shape of identified objects is

likely limited due to the relatively high threshold used. Prat

and Nelson (2015) showed that Stage IV’s detection skill

decreases for some rainfall extremes due to the low-level

orographic enhancement that cannot be detected by opera-

tional radars (Barros and Arulraj 2020). This implies that

Stage IV may have missed some localized storms in the

mountainous area (i.e., the north in Fig. 5), though it is likely

that the larger storm elements, both in terms of spatial extent

and magnitude, were detected.

FIG. 11. Statistics of the hit (matched), missed, and false alarm objects conditioned on data sources for IMERG-L

and NU-WRF. The number on the top of each bar indicates the total number of objects for each data source

category and its percentage.

FIG. 10. The detection skill of NU-WRF and IMERG-L varies as a function of (a) the size and (b) P90 of

precipitation objects that identified by Stage IV. A 20-neighbor moving average filter was performed to smooth

the curves.

DECEMBER 2020 L I E T AL . 2771

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:43 PM UTC



6. Summary and conclusions

In this study, we compare gridded precipitation estimates in

four extreme storms from the ‘‘late’’ version of IMERG mul-

tisatellite merged dataset and from NU-WRF, a numerical

weather prediction (NWP) model that assimilates satellite ra-

diances. We argue that the two approaches represent two

fundamental ways of producing gridded precipitation esti-

mates from multisatellite observations. We refer to IMERG

as data-driven, as it is built upon a variety of retrieval algo-

rithms that relate multiple satellite-observed radiances to

precipitation rates, and refer to the output from NU-WRF as

physically based, since it assimilates the radiances into the

model’s microphysics scheme and dynamical equations to

simulate precipitation.

Both satellite multisensor datasets such as IMERG and

NWP are being pushed to increasingly high spatial and tem-

poral resolutions. These are certainly welcome advances, in

part since they unlock new potential applications such as

localized monitoring and forecasting of flash floods and

landslides. Nevertheless, this presents challenges for the

‘‘conventional’’ satellite precipitation analysis, since even

small errors in the locations or sizes of convective cells can

mask otherwise good performance of a particular precipitation

dataset. In this regard, we argue that it is necessary to shift the

satellite precipitation evaluation paradigm toward object-

based approaches, especially since future precipitation esti-

mates are expected to continue to increase in spatial and

temporal resolution.

As an example, in this study we move beyond the conven-

tional grid-by-grid manner that has been mainly adopted in

existing works to evaluate satellite precipitation datasets, to

compare the relative performance of IMERG and NU-WRF

using an object-based analysis framework. This framework

enables the decomposition of gridded precipitation fields into

separated storm objects, and provides a way to diagnose spatial

feature-related errors (such as displacement errors), trace

them across space and time, and connect their accuracy to in-

put data sources and storm types. Major findings are summa-

rized as follows:

1) Both IMERG and NU-WRF can generally capture the

spatial patterns of storm total rainfall in the four rainstorms.

Notwithstanding the small sample size of only four events,

performance depends on storm type: NU-WRF tends to

typically overestimate precipitation during MCSs, while

IMERG seriously underestimates peak precipitation rates

during TCs.

FIG. 12. Boxplots of the relative estimation bias of (a),(c) P90 and (b),(d) area in matched precipitation objects

for IMERG-L andNU-WRF, categorized by different PMWsources and IRW.NumberN indicates the sample size

of matched objects in each category.
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2) By decomposing gridded precipitation fields into separate

storm objects, we find that the coherent spatial pattern of

TC events is generally retrieved by NU-WRF in terms of

the number and intensity of objects albeit with a noticeable

displacement error, while IMERG is characterized by un-

derestimation of TC rainfall intensity. The less coherent

and highly localized precipitation structure of the MCS

events poses challenges to both IMERG and NU-WRF in

accurately capturing the location and intensity of storms,

with displacement errors and false alarm precipitation ob-

jects being particularly prevalent in NU-WRF results.

3) There is no general bias for IMERG and NU-WRF in es-

timating precipitation object shape and area. NU-WRF

tends to underestimate the 25th percentile but overestimate

the 90th percentile intensity of storm objects; and in con-

trast, IMERG can generally capture 25th percentile inten-

sity but underestimates 90th percentile intensity, especially

in TC events, suggesting IMERG tends to flatten the dis-

tribution of rain rates within the storm objects.

4) NU-WRF shows a similar detection skill as IMERG in terms

of object-based POD and CSI. However, NU-WRF gener-

ates many false alarm precipitation objects during the MCS

events.Once the estimated objects arematchedwithStage IV

observations, IMERG demonstrates better skill in locating

the storms (with shorter separation distances) and in cap-

turing their spatial extents (with larger intersection ratios),

while NU-WRF offers better estimates of high intensity (in

terms of 90th percentile intensity) within rainy areas.

5) Precipitation object detection skill of IMERG and NU-

WRF depends on storm size, and decreases substantially for

objects smaller than 200 pixels (approximately 20 000 km2).

Detection skill of both estimates improves with increasing

rainfall intensity, but IMERG shows a dramatic decline as

rainfall becomes larger than 18mmh21, suggesting the

potential limitations of IMERG in capturing the high-

intensity rain rates in the storms.

6) As a data-driven method, IMERG’s performance shows a

stronger dependence on PMW data sources regarding both

detection skill and estimation bias. IMERG precipitation

objects based purely on PMW data have the highest hit

ratio (i.e., are most likely to be detected), while objects

without any PMW data show the lowest hit ratio, along

with obvious underestimation of 90th percentile intensity

of matched objects. SSMIS-impacted IMERG objects pres-

ent large biases in size and rainfall rate. NU-WRF matched

precipitation objects show no obvious dependence on PMW

data sources in characterizing detected storms.

Finally, it should be noted that the physics-based versus

data-driven distinction used in this study is becoming increas-

ingly blurred—the GPROF retrieval algorithm in IMERG, for

example, applies a physical model to establish elements of its

priori ‘‘lookup database’’ for different radiometer observa-

tions (Kummerow et al. 2015) while the most recent version of

IMERG (version 06B; not used in this study) uses atmospheric

variables from relatively coarse-resolution numerical models

to upgrade its cloud morphing scheme (Huffman et al. 2019).

Nevertheless, the complementary performance of data-driven

IMERG and physics-driven NU-WRF revealed by our object-

based analysis, along with other studies using different

FIG. 13. Comparison of hourly precipitation estimates from (a),(b) Stage IV and (c),(d) IMERG-L for 0600–0800 UTC 21 May 2017,

with (e) the fields of IRW and (f) IR-only precipitation estimates in the first hour, and (g) PMW sources and (h) PMW-only precipitation

estimates in the second hour.
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methods (e.g., Nikolopoulos et al. 2015; X. Zhang et al. 2013,

2016; J. Zhang 2018; X. Zhang 2018), suggest that even closer

union of the two approaches holds promise for the future of

satellite precipitation estimation.
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