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Abstract

The Maslov index is a powerful tool for computing spectra of selfadjoint, elliptic boundary value prob-
lems. This is done by counting intersections of a fixed Lagrangian subspace, which designates the boundary
conditions, with the set of Cauchy data for the differential operator. We apply this methodology to con-
strained eigenvalue problems, in which the operator is restricted to a (not necessarily invariant) subspace.
The Maslov index is defined and used to compute the Morse index of the constrained operator. We then
prove a constrained Morse index theorem, which says that the Morse index of the constrained problem
equals the number of constrained conjugate points, counted with multiplicity, and give an application to the
nonlinear Schrodinger equation.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Consider the nonlinear Schrédinger equation

d
—ia—‘f =AY+ F(Y DY (1)
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on a bounded domain © C R”. This admits a standing wave of the form v (x, 1) = e '/ ¢ (x)
precisely when ¢ solves the nonlinear elliptic equation

Ap+ (9N +wp =0. 2)

The existence of nontrivial solutions to such equations on bounded domains can be seen as far
back as the work of Pohozaev [29]. See for instance [5] for a recent generalization to compact
manifolds with boundary and a fairly complete history of the problem (though note that the
results therein specify power-law nonlinearities: f(s%) =s? for 1 < p < ﬁ).

Assuming the existence of a solution ¢ to (2), we can then study perturbative solutions to
(1) of the form u(x, 1) = e~®* (¢(x) + e“w(x)). Plugging this ansatz into (1) and dropping
higher-order terms in w yields the system of eigenvalue equations

Liu=—\v, L_v=2Au, 3)

where we have written w = u + iv and L are the operators

L.=-A—f@)-w “)
Li=—A— f(¢*) —2f ($*)$* — o. (5)

The eigenvalue problem (3) is not selfadjoint, even though L and L_ are. If L_ is invertible,
this system is equivalent to L u = —A%(L_)"'u. However, L _ typically has a one-dimensional
kernel generated by the bound state one is studying, since the standing wave equation (2) is just
L_¢ = 0. This lack of invertibility can be overcome by restricting the problem to the subspace
(ker L_)* c L*(£2), and so one needs to describe the spectrum of the corresponding constrained
L operator. (The precise functional analytic definition of the constrained operator is given in
Section 3 below.) It can be shown, for instance, that unstable eigenvalues (namely those with
positive real part) exist if the number of negative eigenvalues of L, constrained to (ker L_ )=+
differs from the number of negative eigenvalues of L_. See the early work of Jones [19] and
Grillakis [14,15] for an analysis of this phenomenon. For a modern treatment see [21], in par-
ticular Theorem 3.2. A thorough overview of the constrained eigenvalue problem and its role in
stability theory can be found in [22, §5.2] and also in [28, §4.2].

In certain cases, for instance if ¢ is the positive ground state of a constrained minimization
problem, the linear stability or instability can be ascertained from a constrained Morse index
calculation. In other settings, for instance those involving excited states, linear stability criteria
are harder to establish and generally are computed numerically. However, the nature of the such
calculations can often be related to the Krein signature, which can also be framed in terms of a
constrained eigenvalue problem; see [20,24].

Motivated by the above considerations, we are thus interested in describing the spectrum,
and in particular the number of negative eigenvalues, of a Schrodinger operator L = —A + V
on a bounded domain €, constrained to act on a closed subspace of L%(2). In this paper we
give a symplectic formulation of this problem, and use it to prove a constrained version of the
celebrated Morse—Smale index theorem. We begin by reviewing the symplectic formulation of
the unconstrained spectral problem, which first appeared in [10], and was elaborated on in [7,8].
Throughout we will assume the following.
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Hypothesis 1. Q@ C R” is a bounded domain with Lipschitz boundary, and V € L*(2).

By aslight abuse of notation we let u ‘ 90 € HY2(5Q) denote the Dirichlet trace of u € H(Q),
and let 8u/3v|m € H~Y/2(3Q) denote the weak Neumann trace, which is defined if u € H'(Q)
and Au € L?(); see [25]. We thus define the space of Cauchy data for L

a
o-e2)

where the equation Lu = Au is meant in a distributional sense. That is, D(u, v) = A (u, v) for all
vE HO1 (2), where (-, -) is the L? inner product and D is the bilinear form

:Lu=ku}, 6)
Q2

D(u,v):/[Vu~Vv+Vuv]. @)
Q

It is known that w(X) defines a smooth curve of Lagrangian subspaces in the symplectic Hilbert
space H 2060)e H-12(09Q). A proof of this fact using standard PDE methods can be found in
[8, Proposition 3.1]; a more abstract, functional analytic proof is given in [7, Proposition 4.10].

Boundary conditions are imposed by specifying the domain of the bilinear form D. The re-
lationship between the form domain X and the induced boundary conditions is described in [8,
Appendix A], following [12].

Hypothesis 2. The form domain X is a closed subspace of H 1() that contains HO1 ().

We then let 8 be a Lagrangian subspace of H'/2(32)@® H~'/2(Q) that encodes the boundary
conditions; this depends on the choice of X. For instance,

po={0.9):0 e 1700 ®)

if X = H} (Q), and

,BN:{(x,O):erl/z(BQ)} 9)

if X = H'(Q). Note that ()) intersects Sp nontrivially whenever there is a solution to Lu = Au
satisfying Dirichlet boundary conditions. Similarly, the subspace fn encodes Neumann boundary
conditions.

Let £ denote the selfadjoint operator corresponding to the bilinear form D in (7), with form
domain X satisfying Hypothesis 2. It was shown in [8] that the subspaces (1) and B comprise
a Fredholm pair for each value of A, so the Maslov index (a topological invariant assigned to a
continuous path of Lagrangian subspaces) of u with respect to g is well defined, and there exists
a number Ao, < 0 such that

Mas (“}[AM,O];'B> = —n(L), (10)
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where n(L) denotes the number of strictly negative eigenvalues (i.e. the Morse index) of L. See
[8] for a more complete discussion of boundary conditions as well as the history of the problem.

We now turn to the constrained problem. We first require an assumption on the constrained
space L%(Q) C L?(Q) where the problem will be formulated.

Hypothesis 3. Lg(Q) ={¢1,... ,q‘)m}l for some functions ¢y, ..., ¢, € HYQ).

In particular, this implies LZ(Q) is closed and has finite codimension. This is the typical
setting in which constrained index theorems are studied. While our construction of the Maslov
index requires the full strength of Hypothesis 3, many of the intermediate results on constrained
boundary value problems do not. We clarify this by rewriting the hypothesis as follows, where
y: H'(Q) — H'/2(3Q) denotes the Dirichlet trace map.

Hypothesis 4. L%(Q) C L3(Q) is a closed subspace such that

() v (H' (@ NLAQ) = H'?09);
(i) X NL2(Q) is dense in L2(R);
(iii) LE(Q)J— is continuously embedded in H'().

Note that (i) implies H' () N L2(2) is dense in L2(2), since X C H'(2). In Section 3.4 we
show that Hypotheses 3 and 4 are equivalent. Parts (i) and (ii) of the hypothesis prevent LE(Q)
from being too small. In particular, the trace condition (i) guarantees that the space of Cauchy
data is rich enough to fully describe the constrained spectral problem, and the density condition
(i1) ensures that the constrained operator (described below) is well defined. These conditions
are trivially satisfied when L2(Q) = L*(Q), since y (H'(Q)) = H!/2(3Q); see, for instance,
[25, Theorem 3.37]. The embedding condition (iii) means that L2()+ C H'(£), and there is a
constant C > 0 so that

o1l a1(@) = Clldl 2 (11)

for all ¢ € L%(Q)L. This condition implies that a weak solution u to the constrained eigenvalue
problem satisfies Lu € L3(Q) (by Lemma 2), hence u € HI%)C(Q) by elliptic regularity (see, for
instance, [25, Theorem 4.16]).

Now consider the bilinear form (7) restricted to X N L%(Q). It follows from Hypothesis 4(ii)
that this restriction of D is densely defined, semibounded and closed, and hence defines a un-
bounded, selfadjoint operator L., with dense domain D(L;) C L%(Q); see, for instance, [30,
Theorem VIII.15]. We call this the constrained operator. The goal of this paper is to understand
its spectrum, o (L.); we refer to this as the constrained eigenvalue problem. In Proposition 1
we show that the constrained operator is in fact given by L. = PE’ D(Le)’ where P is the
L?-orthogonal projection onto LE(Q).

We define the space of Cauchy data for the constrained problem by

1) = u
= (12

for all v € Hy () N LE(Q)} .

cue HY(Q) N LA(RQ) and D(u, v) = A (u, v)
02
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In Lemma 1 we show that the weak Neumann trace du/ 8v| 90 € H~'2(3Q) is well defined
for any weak solution u to the constrained problem. This is not a consequence of [25], which
requires Lu € L2(Q). Instead, we construct the trace directly, and then in Lemma 2 use its exis-
tence to prove that Lu € LZ(Q).

Remark 1. The existence of du/ 3v|as2 € H~'/2(3Q) only requires Hypothesis 4(i). Condi-
tion (iii) is only used in the proof of Lemma 2, which is needed to obtain u € HI%)C(Q) for the
unique continuation argument in Section 3.3. It may be possible to eliminate (iii) with a suitable
unique continuation principle for the constrained equation, but do not pursue this in the present

paper.
We now state our first result, relating the constrained Morse and Maslov indices.

Theorem 1. If Hypotheses 1, 2 and 3 are satisfied, then 1. has a well-defined Maslov index with
respect to B, and there exists Ao < 0 such that

n(Le) =—Mas (e, _ opiB)-

In other words, the Maslov index determines the Morse index of the constrained operator L.

The classical approach to the constrained eigenvalue problem (see [22,28] and references
therein) is to relate n(£) and n(L.) through the index of a finite-dimensional “constraint matrix.”
The most general statement we are aware of is [28, Theorem 4.1], although the method of proof
appeared earlier in [9,27].

Theorem 2 ([28]). Suppose L%(Q) has finite codimension, with LZ(Q)J— = span{¢y, ..., o}
The constrained and unconstrained Morse indices are related by

n(L) —n(Ly) = lim n(M(n)),
u—>0~

where M () is the m x m matrix with entries M;j (i) = ((E — ,u)_lqﬁi, q)j).

Remark 2. In [28] it is shown that the eigenvalues of M (w) are continuous and strictly increasing
as long as u ¢ o (L£). Therefore, if £ is invertible, the matrix M (0) is defined and the above result
simplifies to

n(L) —n(L.) =n(M(0)) + dimker M (0).

A similar result appears in [21], with the added assumption that ker £ C Lg(Q). This implies
¢; € (ker£)* =ran L, so the equation Lu = ¢; has a unique solution u € L%(Q)J—, which we
denote by £~ '¢;, and hence the matrix M (0) = (L™ '¢;, ¢;) is well defined.

This result allows one to compute n(L;) from the unconstrained Morse index n(L) and the
constraint matrix M. Here we take a different approach, combining Theorem | with a homotopy
argument to compute the constrained Morse index directly, without having to first know the
unconstrained index.
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To do this we describe what happens when the domain €2 is deformed through a smooth
one-parameter family {€2,}. The result is a constrained analog of Smale’s Morse index theorem
[32], relating the Morse index of an operator to its conjugate points. Smale’s result, which only
applies to the Dirichlet problem, was originally proved by variational methods (see also [33]).
A proof using the Maslov index was given in [7] for star-shaped domains, and in [8] for the
general case.

We prove a general result to this effect in Section 4; for now we just state the simplest case,
when Dirichlet boundary conditions are imposed and there is only one constraint function, i.e.
L%(Q) = {¢}*. We say that ¢ is a constrained conjugate point for the Dirichlet problem if there
exists a nonzero function u € H2(§2,) N HO1 (€2;) such that

/u¢=0, Lu=a¢ on ;

Q

for some constant a. In other words, 0 is an eigenvalue for the constrained Dirichlet problem
on €2;. Let d(¢) denote its multiplicity, so that d(#) > 0 whenever ¢ is a conjugate time.

Theorem 3. Let {2, : 0 <t < 1} be a smooth, increasing family of domains in R", with Q| = Q.
Suppose L%(Q) = {¢}* for some ¢ € H' (Q) with er ¢*>>0forallt >0.If || — O0ast — 0,
then

n(Le) = Zd(r).

t<1

That is, the Morse index of the constrained operator equals the number of constrained conju-
gate points in (0, 1), counting multiplicity. The sum on the right-hand side is well defined because
d(t) is only nonzero for a finite set of times. The assumption that ¢ is not identically zero on any
2, ensures the constraint space does not change dimension as ¢ varies; this is a crucial ingredient
in establishing the continuity properties needed to have a well defined Maslov index.

We conclude in Section 5 by giving a formal application of Theorem 3 to the ground state
solution ¢ of the one-dimensional NLS. We find that there is a constrained conjugate point (hence
a negative eigenvalue of L ) if and only if the quantity

is positive. This is the well-known Vakhitov—Kolokolov condition [34]; see also [16].
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2. A finite-dimensional example

We now give a simple illustration of Theorem 3, by computing the constrained Morse index
of L=—A —C on (—1, 1), where C is a positive constant. We do this in three different ways:
first by direct computation, and then using Theorems 2 and 3.

Let £ denote the differential operator on (—1, 1) with Dirichlet boundary conditions, and L,
the constrained operator on the space of zero mean functions

1
L2(—1,1) = ueLz(—l,l):/u(x)dxzo
-1

The constrained eigenvalue equation L.u = Au is equivalent to the conditions

1
uyy + Cu + lu = constant, /u(x)dx:O, u(—1)=u(l)=0.
-1

From the differential equation and the zero mean condition we obtain the general solution
u(x) = A(cosyx — y71 siny) 4+ Bsinyx

where y = +/C + A. Imposing the Dirichlet boundary conditions at x = 1, we have

1

A(cosy —y ™~ 'siny)x Bsiny =0,

which implies either cosy =y ~!siny or siny = 0. Finally, observing that A < 0 iff y < +/C,

we find that the number of negative eigenvalues is
n(ﬁc)=#{ye(0,ﬁ):siny=00r tany:y}. (12)

We next compute the Morse index using Theorem 3, counting the number of conjugate points
t € (0, 1) for the family of domains 2; = (—t¢, t). The constrained equation on £2; is

t
uxx + Cu = constant, /u(x) dx =0.

—t
Setting y = +/C, we can write the general solution as

u(x) = A(cosyx — yfl siny) + Bsinyx.
Therefore, ¢t € (0, 1) is a conjugate point precisely when

A (cos yt — (yt)_1 sin yt) + Bsinyt =0.
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It follows that either cos yt = (y1)~!sinyz or sinyt = 0. Recalling that y = +/C, we obtain
#conjugate points = # {t e0,1): sinv/Ct =0 or tanv/Ct = \/Et} , (13)

which agrees with the Morse index n(L.) computed in (12).
A similar computation shows that the unconstrained Morse index is

n(E):#{ye(O,JE):siny:Oor cosy=0].

Comparing solutions of cosy =0 and tany = y, we see that the constrained and unconstrained
indices are related by

n(L)+1 if tan/C <+/C
n(L) = {n(Le) if tanv/C > /C (14)
n(L) if cos+/C =0

Finally, we verify that this is consistent with the prediction of Theorem 2 by computing the
constraint matrix M () for small negative values of w. Since L%(—l, Dt is spanned by the
constant function 1, M () is simply the number ((£ — w)~'1,1). To compute (£ — 1)~'1 we
must solve the boundary value problem

Upy +(CH+pwu+1=0, wu(—=1)=u(l)=0.

Setting y = /C + u, we find

1 [cosyx
ux) =— -1
y cosy

and so

t
any _1).
14

This is a strictly increasing function of y (and hence of w), so we obtain

<0 if tan/C <+/C
lin(}_ M(u)=4{>0 iftan/C>+/C
w= +o00 if cos\/Ezo

1
<(£—u)‘11, 1>=/u(x)dx= 32 (
1 y

and hence

if tan/C < +/C

Iim n(M =
,L—>0*n( () 0 otherwise

as expected from comparing the result in (14) with Theorem 2.
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3. The constrained Maslov index

In this section we define the Maslov index for constrained eigenvalue problems in multiple
dimensions. After reviewing the Fredholm—Lagrangian Grassmannian and the Maslov index, as
well as some necessary details of constrained operators and boundary value problems, we define
the constrained Maslov index, and prove that it equals (minus) the constrained Morse index, thus
proving Theorem 1. As is common for such problems, most of the work goes into establishing
the existence and regularity of the relevant paths of Lagrangian subspaces. Once this is known,
the main result follows from a straightforward crossing form calculation.

Throughout the section we assume Hypothesis 1, invoking the individual parts of Hypothesis 4
only as needed.

3.1. The Maslov index in infinite dimensions

Before describing the constrained eigenvalue problem, we will review the infinite-dimensional
Maslov index, following [13].

Suppose H is a symplectic Hilbert space: that is, a real Hilbert space equipped with a non-
degenerate, skew-symmetric bilinear form w. A subspace w C H is said to be isotropic if
w(v,w) =0 for all v, w € u, and is said to be Lagrangian if it is isotropic and maximal, in
the sense that it is not properly contained in any other isotropic subspace. The set of all La-
grangian subspaces is called the Lagrangian Grassmannian and is denoted A(#). This is a
smooth, contractible Banach manifold, whose differentiable structure comes from associating
to each Lagrangian subspace its orthogonal projection operator. Thus a family of Lagrangian
subspaces j1(7) is of class C* if and only if the corresponding family of projections Puiis C k.

We assume that the symplectic form can be written as (v, w) = (Jv, w), where J: H — H
is a skew-symmetric operator satisfying J? = —I. (Given a symplectic form w, one can always
find a complete inner product for which this is true; see [13, Proposition D.1].) If w is a given
Lagrangian subspace, and A: u — u is a bounded, selfadjoint operator, then the graph

Gry(A)={v+JAv:vepu}

will also be Lagrangian. Moreover, the orthogonal projection onto this graph can be computed
algebraically from A; see [13, Equation (2.16)]. Therefore, if A(t) is a C k family of bounded,
selfadjoint operators on , the corresponding family Gr, (A(¢)) of Lagrangian subspaces will
also be of class C¥. This simple observation is our main technical tool for establishing regularity
properties of paths of Lagrangian subspaces.

Since A(H) is contractible, there is no nontrivial notion of winding for general curves of
Lagrangian subspaces, and so we must restrict our attention to a smaller space in order to have a
useful index theory. For a fixed Lagrangian subspace B C H, we define the Fredholm-Lagrangian
Grassmannian,

FApg(H)={n e A(H) : n and B are a Fredholm pair},

recalling that © and B are said to be a Fredholm pair when w N B is finite dimensional and
w+ B is closed and has finite codimension. The Fredholm-Lagrangian Grassmannian is a smooth
Banach manifold with fundamental group 71 (FAg(H)) = Z. As aresult, there is an integer, the
Maslov index, associated to any continuous path of Lagrangian subspaces that is Fredholm with
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respect to 8. The Maslov index is invariant with respect to fixed-endpoint homotopies, and can
be thought of as a generalized winding number in the space F Ag(H). The utility of this index
in eigenvalue problems stems from the fact that it is simply a count (with sign and multiplicity)
of the nontrivial intersections between w(¢) and S.

To compute the Maslov index in practice, we use crossing forms. Suppose w: [a,b] —
FAg(H) is a continuously differentiable path of Lagrangian subspaces, and wu () N B # {0}
for some t, € [a, b]. Let v(-) be a continuously differentiable path in H, with v(¢) € u(¢) for ¢
close to t, and v(t,) € u(ty) N B. The crossing form is a quadratic form defined on the finite-
dimensional vector space () N B by

0(w(t,) dv
v =wlv, —
* dt )|,
It can be shown that this depends only on the vector v(#), and not on the path v(¢). If Q is
nondegenerate, then the crossing time ¢, is isolated. Suppose that z,, is the only crossing in [a, b]

and let (n4, n_) be the signature of Q. The Maslov is then given by

—n_ ifty=a,
Mas (pfa,p1; B) = A ny —n_  if t, € (a,b),
ni if t, = b.

The Maslov index is additive, in the sense that

Mas (M[a,b]? ,3) = Mas (M[a,c]; IB) + Mas (M[c,b]; :3)

for any ¢ € (a, b), so we can use the crossing form to compute the Maslov index of any piecewise
continuously differentiable curve, provided all of its crossings are nondegenerate.

If H is a real Hilbert space, with dual space H*, then H = H @ H* is a symplectic Hilbert
space. The symplectic form is given by

o((x, ), (0, ¥)) =¥ (x) — ¢ (),

and the corresponding complex structure J: H — H is

J(x,¢)=(R™'¢, —Rx),

where R: H — H* is the isomorphism from the Riesz representation theorem.

To study selfadjoint boundary value problems we will take H = H'/?(3Q2), hence H* =
H_1/2(8§2). Elements of H = H1/2(89) ® H_I/Z(BQ) will arise as the boundary values (or
“traces”) of weak solutions to the eigenvalue equation Lu = Au, or its constrained analogue, via
the trace map

5)

We will use integral notation to denote the dual pairing between H !/ 2(3Q) and H1/2(3), so
Green’s second identity yields
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v au
o(tru,trv) = u— —v— | = | (uAv—vAu) (16)
av av
R Q

for any u, v € H'(Q) with Au, Av e L?(2). This identity hints at a connection between the
Lagrangian subspaces of H'/2(3Q) @ H~'/?(32) and selfadjoint, second-order differential op-
erators on L2(2). While the current paper utilizes a particular version of this correspondence, it
is in fact part of a deeper phenomenon, which has been investigated systematically in [23].

3.2. Preliminaries on constrained boundary value problems

We define L = —A + V distributionally on H'(£2), via the bilinear form D in (7), so Lu =
F € H™(Q) means D(u,v) = (F,v) for all v € HO1 (£2). Throughout the section we assume
L% () is a closed subspace of L?(£2), only invoking the other parts of Hypothesis 4 when needed.

To define the trace of a weak solution, as in (15), we need to know that its normal derivative
is well defined. The statement and proof of the next result, a constrained version of Green’s first
identity, closely follow [25, Lemma 4.3].

Lemma 1. Assume Hypothesis 4(i). Letu € H'(Q) N L2(2), and suppose there exists f € L2(S2)

such that D(u,v) = (f,v) for all v € HO1 ()N L%(Q). Then there is a unique function g €
H=Y2(3Q) such that

D(u,v) =(f,v) +/g(yv) (17

02

forallve HY(Q)N LE(Q). Moreover, g satisfies the estimate

gl z-1200) < C (lull g + 1 fll2@) -

Proof. By Hypothesis 4(i) the constrained Dirichlet trace map

Ve = y|H1(Q)mL%(Q): H' (Q)NLAQ) — H? (%)

is surjective, and hence has a bounded right inverse, E: H2(9) - HY(Q) N LE(Q). Now
g€ H2(0Q) = H'/2(3Q)* can be defined by its action on & € H'2(5Q):

g(h) = D(u, Eh) — {f, Eh).
From the boundedness of D and E we obtain

lgm)] < C (lull iy + I1f 1 22e)) 121 120

forall h € H'/2(32), so g € H~/?(3K2) and the desired estimate follows.
To see that (17) holds, let v € H'! ()N L%(Q), and define & = yv. It follows that y Eh = yv,
and so Eh — v € H}(Q) N L2(R), hence D(u, Eh — v) = (f, Eh — v). We thus obtain
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/g(yv) _ g(h) = D(u, ER) — (f, Eh) = D(u,v) — {f,v).

Q2

which is the desired result.
To complete the proof, we establish the uniqueness of g. If g1, g € H~/2(32) both satisfy
(17), then

/(81 —g)yv=0
a0

for all v e H'(Q) N L2(R). Since y, is surjective, this implies g; — g2 =0. O

When u and v are sufficiently smooth, it follows from the classical version of Green’s first
identity that

u
—.
ov

/gv =D(u,v) — (Lu,v) =

02 02

That is, g is just the normal derivative of u. Thus in general we will refer to the function g €
H~2(3Q) defined by Lemma | as the normal derivative of u.

Note that this lemma does not immediately follow from the aforementioned result in [25]
because we do not know a priori that Lu € L*($2). However, using Lemma 1, we can prove a
posteriori that this is the case.

Lemma 2. Assume Hypothesis 4. If u satisfies the conditions of Lemma 1, then Lu € L?*(R) and
PLu=f.

Proof. To prove the result we will construct a function F € L?(Q) that satisfies

D(u,v) = (F,v) +/g()/v) (18)

I

for all v e H'(Q). Subtracting (17) and (18), we see that if such an F exists, it must satisfy
(F,v) = (f,v) forall ve HY() N Lg(Q), and hence for all v € L%(Q), by Hypothesis 4(ii).
This implies F = f + ¢ for some ¢ € L%(Q)L.

We first claim that

H'(Q) = (H' (@ nL2(Q) e LX)
This follows from writing v = Pv + (I — P)v. Hypothesis 4(iii) implies (I — P)v € L%(Q)J— C

H'(), so we also have Pv=v — (I — P)v € H'(Q) as required.
Now decompose v € H' () accordingly as vj + vo. Using Lemma 1 we obtain

D(u,v) =D, v1) + D(u,v2) = (f, v1) +/gv1 + D(u, v2).
0Q
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Comparing this to the right-hand side of (18),

<F,v)+/gv=<f,v1)+<¢,vz>+/gv1+/gvz,

Q2 Q Q2

we see that ¢ must satisfy

(@, v2) =D(u,v2)—/gvz (19)

Q
for all vy € L%(Q)J-. The inequality (11) from Hypothesis 4(iii) implies the right-hand side of
(19) is a bounded linear functional on LE(Q)L, so the existence of ¢ follows from the Riesz

representation theorem. Setting F' = f + ¢ completes the proof of (18). Then for any v € HO1 (2)
we obtain

D(u,v) =(F,v),
hence Lu = F € L>(Q) and PLu = PF = f as was claimed. O

We next give a result on the solvability of a Robin-type boundary value problem that will be
needed in the proof of Lemma 4. Suppose u € H Ln L%(Q) satisfies

D(u,v):k(u,v)+§‘/(Ru)v (20)
02

for every v € H'(Q)N L%(Q), where R: HY/2(3Q) — H~1/2(3Q) is the Riesz duality map and
¢ € R. It follows from Lemmas | and 2 that P Lu = Au and

ou

— —C¢Ru=0,

av
and so we refer to this as a constrained Robin-type problem. Note that this is not a traditional
Robin boundary value problem, even in the absence of constraints, on account of the Riesz oper-
ator R that appears in the boundary conditions.

Lemma 3. For any fixed Lo € R, there exists ¢y € R such that the constrained Robin-type bound-
ary value problem (20) is invertible for all ) sufficiently close to Ag.

In particular, this means the homogeneous problem only admits the zero solution, whereas the
inhomogeneous problem

9
PLu =, a—” —CoRu=nh Q1)
V

has a unique solution for each h € H “1205Q), provided |A — Ag| < 1. This construction is the
key ingredient in the proof of Lemma 4, where it will be used to write the constrained Cauchy
data space uu.(A) as the graph of a selfadjoint operator on a fixed Lagrangian subspace.
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Proof. We will in fact prove that £y can be chosen arbitrarily close to 0. Consider the bilinear
form

D¢ (u,v) =D, v) — Ao (u,v) — ¢ /(Ryu)yv
Q2

on H'(Q) N L2(Q), which is dense in L2(2) by Hypothesis 4(ii) as X C H' (). The boundary
term satisfies fm(Ryu)yu = ||yu||?{1/2(39) < C||u||§11(m, so the form D, is semibounded for
any ¢ <0, and for sufficiently small ¢ > 0. It is also closed, since H L)n L%(Q) is a closed
subspace of H 1 (€2), and hence generates an unbounded, selfadjoint operator L ; see [30, The-
orem VIII.15] for the general result, and [8, Appendix A] for a discussion of this construction
in the context of elliptic boundary value problems. By construction, u € ker £, if and only if u
solves the homogeneous problem

du
P(L—2)u=0, — —¢Ru=0.
ov

It follows immediately from the proof of Theorem 3.2 in [31] that the ordered eigenvalues of L
are strictly monotone with respect to ¢. Therefore, if Lo is not invertible, £, will be for any 0 <
|¢] < 1. Since L; has discrete spectrum, £, + (Ao — )1 is also invertible for A — 10| < 1. O

Finally, we discuss the relationship of the selfadjoint operator £, defined using the bilinear

form (7) restricted to X N LZ(Q) (which is dense in L%(Q) by Hypothesis 4(ii)) to the operator
P£| L2Q) that typically arises in the stability literature. To simplify the discussion here we will

only consider X = HO1 () (Dirichlet) or X = H'(€2) (Neumann). Recall that £ is the operator
corresponding to the bilinear form D with form domain X ¢ H'(£2), whereas £, corresponds to
the form D restricted to X N LE(SZ). By definition, these operators have domains

DL)y={ueX:3F¢€ L*(Q) with D(u,v) = (F,v) forallv e X}
and
D(L) ={ueXNLAQ) :3 f e LA(RQ) with D(u,v) = (f,v) forall ve X NLI(Q)}
which are dense in L%(£2) and L%(Q), respectively.

Proposition 1. If Hypothesis 4 is satisfied and X is either H(} (Q) or HY(Q), then L. =

P£|LZ(Q).

Proof. Let u € D(L) N L%(Q), with Lu = F € L*(Q). From the definition of £, this means
D(u,v) = (F,v) for all v € X. In particular, for any v € X N Lz(Q) we have

D(u,v)=(F,v)=(PF,v),

hence u € D(L;) and L.u = PF = P Lu. It follows that P£|L2(Q) c L.
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To prove the other direction, let u € D(L;), with L.u = f. This means D(u, v) = ( f, v) for all
veXn Lg(Q), and hence for all v € HO1 )N L%(Q). By Lemmas | and 2 there exist functions
g€ H™'2(3Q) and F € L*(R) such that

D, v) = <F,v>+/gyv 22)
Q2

for all v € H'(2), and hence for all v € X.

If X= HO1 (2), then yv =0 for all v € X. It follows from (22) that D(u, v) = (F, v) for all
v e X, hence u € D(L£) and Lu = F. On the other hand, if X = H'(Q), then u € D(L.) implies
D(u,v)=(f,v)forallv e HY Q)N L%(Q). Comparing with (22), we see that

/gyv:O

R

for all v € H'(Q) N L2(). Using Hypothesis 4(i), we conclude that g = 0. It follows that
D(u,v) = (F,v) for all ve H'(Q) = X, which means u € D(£) and Lu = F. Thus for ei-
ther choice of X we have u € D(L) and Lu = F, hence PLu = PF = f = L.u. This implies
L. C PE] L2 and thus completes the proof. O
3.3. Construction of the Maslov index

We now have all of the ingredients in place to define the constrained Maslov index, and prove
that it equals (minus) the Morse index of the constrained operator L.. For the remainder of the
section we assume Hypotheses 1, 2 and 3.

The space of weak solutions for the constrained problem, in the absence of boundary condi-
tions, 18

Kc)={ue H(QNLAQ): D(u,v) =2 (u,v) forallve H} () NLAQ)}, (23)

where the bilinear form D is defined in (7). Any u € K.(A) satisfies the hypotheses of Lemma 1,
with f = Au, and so the boundary trace (or Cauchy data)

(3)
tru = \u, —
av

is a well-defined element of H/2(32) & H~1/2(32), and

Q2

pe@) ={tru:u € Kc(1)} (24)

defines a subspace of HY20Q) @ H~1/2(3Q). In fact, from Lemma 2 we have u € HI%C(Q),
and so it follows from a unique continuation argument (as in [2]) that

tr: K.(A) — H'2(0Q) @ H™'2(3Q)

is injective.
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Lemma 4. The mapping X — . (L) defines a smooth family of Lagrangian subspaces in H.

Proof. We first prove that u.()) is isotropic. Let u, v € K.(}). Then Lemma | implies

v du
w(tru,trv):/ Uu— —v—
av ov

Q2
=D, u) — (Av,u) — D(u,v) + (Au, v)
=0

because D is symmetric.

We now use the strategy of [8, Proposition 3.5] to prove that u.(A) is Lagrangian and is
smooth with respect to A. The idea, as described in Section 3.1, is to realize each subspace
Ue(A) as the graph of a bounded, selfadjoint operator A(X) on a fixed Lagrangian subspace.
This will imply each subspace is in fact Lagrangian, and the family {u.(A)} is as smooth with
respect to A as the family {A(A)} is. The operator A(X) will be a constrained Robin-to-Robin
map for L — A. (The Neumann-to-Dirichlet map suffices whenever it is defined, i.e. when the
constrained operator with Neumann boundary conditions is invertible.) The main modification
to the argument in [8] stems from using Lemma 3 to find a Robin-type boundary condition for
which the constrained operator is invertible.

Since smoothness is a local property, it will suffice to construct A(X) in a neighborhood of a
fixed Ag. By Lemma 3 there exists {y € R so that the constrained boundary value problem (21) is
invertible for |A — Ag| < 1. Using this fixed value of ¢y we define the subspace

p={(fre)eH:f+&HR 'g=0}.

By construction, for any (f, g) € p there is a unique weak solution u = u(}) € H'(Q)nN L%(Q)
to

3
PLu =, a—” — CRu=nh (25)
V

with h = g — (oRf € H~'/2(32). From this solution u we define
AG(f.9) =" (vu = f.00R(ru = ).

Since (yu — f, CoR(yu — f)) is contained in the subspace Jp = {(f, g) : g = {oRf}, we have
A(A): p — p asdesired. The proof that A()) is selfadjoint follows directly from Green’s identity,
as in [8], Proposition 3.5. Moreover, A(A) must be bounded, as it is defined on all of p. Therefore,
the graph Gr, (A(1)) is Lagrangian for each .

For each (f, g) € p we have

(f,9) +JAMW(f. &) = (yu.g + toR(yu — f)) =tru,

where u is a weak solution to PLu = Au and as such is contained in K (A). This implies
Gr,(A(A)) C pe(2). Using the fact that p. (1) is isotropic and Gr, (A(%)) is Lagrangian (hence
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maximal), we conclude that Gr,(A(X)) = c(2). This completes the proof that w.(1) is La-
grangian. 0O

We next consider the boundary conditions. The following result was established in [8,
Lemma 3.6].

Lemma 5. The boundary space B C H is Lagrangian.
Next, we study the intersection properties of w.(A) and S.

Lemma 6. For each ) € R, u.(}) and B comprise a Fredholm pair, with dimu.(A) N B =
dimker(L. — A).

Proof. We follow the proof of Lemma 3.4 in [6]. Let Pg denote the orthogonal projection onto
the boundary subspace § C ‘H, and PﬂL = I — Py the complementary projection. Suppose u €
K.(A). Letting v =u in Lemma 1, we obtain

/[|Vu|2+(V—A)u2]=/ua—u
av
Q R

and so

du
[APee ||u||iz(m+/u5
Q2

for some constant C = C'(1). Next, from [8, Lemma 3.7] we have
du 2 —1| pL 2
/ua—v <c <e||u||H1(Q) te HP/3 (tru)HH
Q

for any € > 0, from which we obtain
Il 1y = € (Il 20y + | P, ) 26)

It now follows from Peetre’s Lemma [26, Lemma 3] (cf. the proof of [6, Lemma 3.4]) that
Pﬂﬂuc e te(A) — H is Fredholm, hence . (A) and 8 are a Fredholm pair, by [13, Proposi-
tion 2.27].

Finally, the fact that dim p.(A) N B = dimker(L, — A) follows from the definitions of both
spaces and the fact that the trace map is injective. 0O

Remark 3. In general, the statement of Lemma 3 of [26] is that an estimate of the form (26) only

implies that u.(1) 4+ B is closed and (1) N B is finite dimensional. However, since (1) and
B are already known to be Lagrangian (by Lemmas 4 and 5), we have

(e + B = e N B =T () N IB = T (1ne(X) N B).
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Since J is an isomorphism and wu.(A) + B is closed, this implies codim(u.(A) + B) =
dim(ue(A) N B) < 00, s0 ue(A) and B are indeed a Fredholm pair.

Combining Lemmas 4, 5 and 6, we see that w.(2) is a smooth path in F A g(H), so its Maslov
index is well defined. In the final lemma of this section we relate this Maslov index to the Morse
index of the constrained operator L., thus completing the proof of Theorem 1.

Lemma 7. There exists Aoo < 0 such that ue(A) N B ={0} for all A < Ao, and

n(Le) = — Mas (MC|[%O’0]; ,3) .

Proof. We first prove the existence of Ao. Suppose uc(A) N B # {0}, so the constrained eigen-
value problem has a nontrivial solution. That is, there exists u € H'(2) N LE(Q) satisfying
P(L — A)u = 0, with the given boundary conditions. It follows that

Afu2:/[|Vu|2+Vu2],
Q Q

so A > inf V. Therefore any Ao, < inf V will suffice.

We next claim that the path w.(}) is negative definite, in the sense that is always passes
through g in the same direction. This means the Maslov index is equal to (minus) the number of
intersections of u.(A) with 8, hence

Mas (pel, o B) == Y. dim(ue()Np)=— Y dim(uc(2) N ) = —n(Lo).

roo<A<0 r<0

The second equality follows from the fact that there are no intersections for A < Ao, and the
third equality is just the definition of the Morse index.

It only remains to prove the claimed monotonicity of j.(1). We do this using crossing forms,
as described in Section 3.1.

Suppose u(A) is a smooth curve in K.(X), so D(u,v) = A (u, v) forall v e HOI(SZ) N Lg(Q),
hence D(u’, v) = (Au’ +u, v), where ’ denotes differentiation with respect to A. It follows from
Lemma | that

ou’ 0
w (tru, tru’) =/ Wy
ov av

Q2

= (D(u/, u) — (Au/ + u, u)) — (D(u, u') — k(u, u/))

:_/uz

Q

and so the path is negative definite as claimed. O
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3.4. Equivalence of Hypotheses 3 and 4

Before proving the constrained Morse index theorem, we verify the claim made in the Intro-
duction about Hypotheses 3 and 4. As usual, we assume Hypothesis 1, which implies H'() is
compactly embedded in L?().

First suppose Hypothesis 4 is satisfied. Part (iii) implies L%(Q)L is compactly embed-
ded in Lz(Q), and hence is finite dimensional. Therefore it can be written as L%(Q)J- =
span{¢, ..., ¢}, with each ¢; € H' (). Since L%(Q) is closed, Hypothesis 3 follows.

Conversely, suppose Hypothesis 3 is satisfied. It follows immediately that Lg(Q) is closed and
has finite codimension. The remainder of Hypothesis 4 is then a consequence of the following
lemma.

Lemma 8. [f L2(Q) = span{¢1, ..., ¢u} for functions ¢; € H'(Q), then
y (H'@nL2@)=H'"02),
and
HY(Q) N LAQ) = LA(9).

Proof. Let x. be a smooth cutoff function on €2 that vanishes on the boundary and satisfies
Xe(x) = 1 whenever dist(x, 92) > €. We assume without loss of generality that the {¢;} are
orthonormal.

Suppose f € H'/2(3Q) is given. Since y: H'(Q) — H'/2(dQ) is surjective (see, for in-
stance, [25, Lemma 3.37]), there exists u € Hl(Q) with yu = f. Now define

m
Ue =1+ Xe Yy i

i=1

with coefficients o1, ..., @, to be determined. Since x. vanishes on the boundary, u, satisfies
yuc=yu = f. Moreover, u. € L2(Q) if and only if

m

Zai/Xe¢i¢j=—/u¢j

i=1 Q Q

for each j. This is a linear equation for the coefficients {«;}, and will have a solution if the matrix

M;j(e) = / Xebid;

Q

is invertible. The dominated convergence theorem implies

tim [ xeid; = [ oi6; =5
Q Q

hence M;;(€) is invertible for sufficiently small .
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The second claim follows from a similar construction. Suppose u € Lg(Q), so there exists
a sequence (ux) in H& (2) with uy — u in LZ(Q). To obtain an approximating sequence in
HO1 ()N LE(Q), we replace each uy by

m
~ k
Uk = Uk + Xe E a; éi,
i=1

where (ozl'f) solve the linear equation

ZMij(G)a;{Z—f”kfbj
i=1 o

and € is chosen small enough to ensure M;;(¢) is invertible. The fact that u; — u implies

/ukqu—)/uqu:O,
Q

Q

for each j, hence oz;‘ — 0 as k — oo. It follows that 71y —uy — 0, and so iy — u. O
4. The constrained Morse index theorem

Now consider a one-parameter family of domains {2;},<;<» in R”. For simplicity we will
assume that each €2, has smooth boundary, and that the domains are increasing and varying
smoothly in time. More precisely, we suppose that there is a fixed domain Q2 = ©; C R", with
smooth boundary, and a one-parameter family of diffeomorphisms ¢;: 2 — €2; such that the
outward normal component of the velocity

d
Vo, (x) EQDI (x)

is strictly positive for each x € 92 and ¢ € [a, b]. (Here vy, (r) denotes the outward unit nor-
mal to 9€2; at the point ¢;(x).) See [8, §2.2] for a description of the nonsmooth case for the
unconstrained problem.

The idea is to define a Maslov index with respect to the ¢ parameter, then use a homotopy
argument to relate this to the Maslov index defined in Section 3, and hence to the Morse index
of the constrained operator. There is some freedom in how one chooses the constraints on 2;
in relation to the original constraints on 2. Our choice is motivated by the requirement that the
resulting path be monotone in ¢, which is necessary for the proof of Theorem 3.

4.1. The general index theorem

Let E;: L*(2,) — L%*(Q) denote the operator of extension by zero, and define

L2(2) = Hu € LX) : Eju e Lﬁ(sz)} . 27)
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In other words, Lg(SZ,) consists of functions whose extension by zero satisfies the constraints on
the larger domain 2. To motivate this choice, suppose L%(Q) = {d)}J- for some function ¢. Then
for any function u € L?(;) we have

uelX(Q) < Eucl’(Q) /(E,u)¢ =0 /uqs =0,
Q Q
and so Lg(Qt) ={dlq, }-. We then define L to be the selfadjoint operator corresponding to the
bilinear form (7) with form domain H($2,) N LE(Q,) (for the Neumann problem) or HO1 ()N
LZ(Q;) (for the Dirichlet problem). Our index theorem computes the spectral flow of the family
{LL}, i.e. the difference in Morse indices, n(Ef.) — n(L%). To describe this, it is convenient to

reformulate the problem in terms of a 7-dependent family of bilinear forms on a fixed domain.
To that end, we define the bilinear form

D)= [ [y - Vwoy ) + Vauog oy )] 28)
Q

for u, v e H (), and define the subspace
2 _ . 2 2
LCJ(Q) ={uog:uelL ()} CL(L2).
Suppose ¢ € L2(2)*. Then for any u € L2 () we have u o o7 e L2(), hence
0=/(uow:‘)¢=fu<¢ogo,>det<w,).
Q Q

In other words, the rescaled constraint space in LZ(Q) is

L2, " = [detDo)@ o) ¢ € LA 29)

This explicit description of the rescaled constraint functions will be used below in the crossing
form calculation for the Dirichlet problem. However, in order to define the Maslov index, it is
convenient to transform the problem into one with constraints independent of ¢. This motivates
the following.

Hypothesis 5. For each 1y € [a, b] there exists a smooth family of operators 7;: H'(Q) N
L%, () — H'(RQ), defined in a neighborhood of 7, with ran(7;) = H'(Q) N LZ (Q) and
||7}u”H1(Q) > CHMHHI(Q) for some ¢ > 0.

It is easy to see that this hypothesis is satisfied for a single constraint function, as in Theorem 3.

Lemma 9. Suppose L7() = {}* for some ¢ € H'(Q). If [g ¢* > 0 for all 1, then L7 ()
satisfies Hypothesis 5.
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Proof. Since ¢ € H' (), the - dependent constraint functions ¢, = det(Dgo,)(d) o ¢;) found in
(29) form a smooth curve in H(), so the L2(SZ) normalized constraints q), do as well. Now
define

Tiu=u— Pu,

Where P,u denotes the L? orthogonal projection onto é:. 1t follows from the definition that
- HY(Q) - H'(Q) is bounded, and in fact is smooth with respect tot.
We now fix #g € [a, b] and consider the restriction to H' ()N L? . which we again denote T;.

Letu € H'(Q)N L2 100 S so (u, (]),o) = 0. We thus compute

c,lp?

I Pl g1 ey = [{oa b — i )[11b1 1l 111

<ol g llor — b ll 2 lull 51 ()

80 || Prull g1y < %||u|| H1(q) for 7 sufficiently close to 7. It follows from the definition of 7; that

1
lull gy < 1Tiull gy + 1Pl gy < 1 Tvull gy + E”MHH'(Q)

and so ||T‘[M||HI(Q) > %”M”HI(Q) forall u € L%,IO(Q)' O

In order to state the main result in this section, we observe that there is a formal differential
operator L;, and a boundary operator B;, so that a version of Green’s first identity

Di(u,v) = (Lu,v) + /(B,u)v
holds if u € H'(Q) and L,u € L*(2). We thus define the space of weak solutions to the
(rescaled) constrained problem
K t)={ue H'(Q)NLZ,(Q): Dy(u,v) =2 (u,v) forallve Hy () NLZ, ()},
and the space of Cauchy data
ue,t)={trru:ue K.\, 1)},
using the rescaled trace map

tryu = u,Bu‘
1 ( z)m

Theorem 4. Let {2} be a smooth increasing family of domains, defined for a <t <b. If L%(Q)
satisfies Hypotheses 3 and 5, then

n(£E) = n(L8) =Mas (10, )], 45 B) (30)
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In other words, the Maslov index computes the spectral flow of the constrained family {£}.
Proof. The proof is a standard application of the homotopy invariance of the Maslov index. The
space K (X, t) of weak solutions is defined in terms of the form D; on HYQ)N L%’Z(Q). By

Hypothesis 5, in a neighborhood of each fq this is equivalent to a coercive form D; o T; on the

fixed (¢-independent) domain H L@ n L%,IO (2). Since D; o T; is a smooth family of coercive

forms, we can use the theory developed in [8] (which is reviewed in the proof of Lemma 4), to
see that

pet [hoo, O] x [a, b] —> FA(H)
is a smooth two-parameter family of Lagrangian subspaces.
This means the image under . of the boundary of [A~, 0] X [a, b] is null-homotopic, hence

its Maslov vanishes. Summing the four sides of the boundary with the appropriate orientation,
we obtain

Mas (li(" a)i[/\oo,()]) + Mas (;/,(0, -)|[a’b]) = Mas (/L()»OO, .)|[a,b]> + Mas (M(-, b)|[xm,0]> )

The monotonicity computation in Lemma 7 shows that
Mas (u(-, ﬂ‘[m,O]) =-—n(Ll)
for any ¢ € [a, b], and the choice of Ao, implies that
Mas (M(xoo, -)|[a’b]) —0.

This completes the proof. O
4.2. The Dirichlet crossing form

We now complete the proof of Theorem 3 by computing the right-hand side of (30) when
B is the Dirichlet subspace. This closely follows the crossing form computation in [8, §5]. In
particular, it suffices to prove that the crossing form is negative definite at any crossing.

Let {u;} be a smooth family of solutions to the constrained problem with A =0, i.e. tru; €
K.(0, t). This means fQ u;p; =0 and L,u; < ¢y, where

¢r = det(Der)(d o ¢r) &1y

is the rescaled constraint function. More concretely, we can write L;u; = a;¢;, where a; depends
only on 7, so that

Dy (us,v) =a; (¢r, v) + f(Bzur)v
Q2

forall ve H' ().
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Letting v = u}, we obtain
Dt(utvu;) =day (¢17M;)+/(Btut)14;~
IQ

On the other hand, differentiating with respect to ¢ and then plugging in v = u,, we obtain
D;(uts us) + Dy (U;, up) = a;/ (@1, us) + ay (Cb;a Mt) + /(Blut)/ut-
a0
Therefore, the crossing form is

O(try uy) = w((tryuy), (tryug)') = /(Btut)/ut — (Buuy)uy, = Dj(us, us) — 2a, (‘15;/7 Mt)» (32)
Q2

where we have used the fact that (u;, ¢;) =0, hence (¢, u}) = — (¢}, u;).
To complete the computation we must find D;. Differentiating D; (u, u) for a fixedu € H L),
we have

2
D;(u,u>=—2D,(u,vx(uogo,—1>ogot)+/ vaow;l)] +V
082,

-1 2
uoe, ‘ i|(X~vt).
(33)

Here X denotes the velocity of the flow {¢;}, i.e. ¢/(x) = X (¢;(x)), and we have used the fact
that

d -1 -1
E(u 0@, )=—Vx(uog, ),
which is obtained by writing
d _ d _ -
0=—(og  op)=—(og ) op +Vxwop Hog.

We now assume that 7 is a crossing time, so tr; #; € B. Evaluating the first term on the right-hand
side of (33) at u = u; € HO1 (2), and defining 7 = u; o <pf1, we obtain

D, (uz, Vx@iop ) o @z) = D, (uy, (Vx@0) o ¢r)

= (Lsu;, (Vxit) o @) + /(Btut)(vxﬁ) X
Q2

aA 2
=ay <¢I3 (VXﬁ)o(Pz)‘i‘ / (8_u> (X'V[).
B vt

t
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Since u vanishes on 9€;, the boundary term in (33) simplifies to

~\ 2
[ [vae+vae] o= | (g—”) (X v)
Vi

082 082
and so
3u \ 2
, u
Dz(”t, ur) = —2a; (¢, (VXﬁ) o@) — / <8_\1) (X -v)dpy. (34)
EIoN !
Combining this with (32), we find that
- ) o\ >
Q(tryur) = —2a; (¢r, (Vxu) o ¢r) — 2a; (45,7 Mt) - o (X - vp). (35)
t
EIoN

This expression for the crossing form is generally valid, in the sense that it holds for any
smooth family of constraint functions {¢,}. We now show that our choice of ¢; is such that the
first two terms on the right-hand side cancel, resulting in a form that is sign definite.

Differentiating (31), we obtain

¢; = det(Dgy) div(X)(¢ o ¢;) + det(Dg;) (Vxp) 0 ¢ = det(Dgy) div(9X) o ¢y

On the other hand, we can use the divergence theorem, together with the fact that  vanishes on
0€2;, to write

(6, (VxD) 0 ) = / det(De) (@ o ¢) (Vx@D) o ¢y

Q
Z/(lvaﬁ
Q
= —/Tidiv((]ﬁX)

__ / u, det(Dgy) div($X) o
Q

= _<ul’¢)t/)

Thus the first two terms on the right-hand side of (35) cancel, and the crossing form simplifies to

3\ 2
Q(truz)=—/ <3_> X -vy). (36)
Vr

t
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Remark 4. The above computation readily generalizes to any finite number of constraints. The
constrained equation becomes L;u; =Y al ¢}, where {¢!} are the rescaled constraint functions,
and the right-hand side of (35) simply becomes

-2)_a [<¢§»(Vxﬁ>°¢t>+<<¢§>’,uz)]—f(§—Z>2<X~vt)=—f (g—i)z(x.w),
a

t t

where each of the terms in brackets vanishes, as in the case of a single constraint.
5. An application to the nonlinear Schrodinger equation

As a final application of Theorem 3, we study the stability of the ground state solution of the
nonlinear Schrodinger equation (1). Under a mild condition on f and w (see, for instance, [3,
Appendix]), there exists an even, positive solution ¢ to

bux + [ () + 0d =0, \xl|iinoo¢(x) =0 (37

that is decreasing for x > 0. It follows that L_¢ = 0, hence n(L_) = 0 since ¢ > 0 is then
the ground state eigenfunction of L_. We are interested in computing the Morse index of L,
constrained to (ker L_ )+ = {¢}. We do this by applying Theorem 3 to the semi-infinite domain
Q[ == (_OO, t).

Remark 5. The following computation is not, strictly speaking, an application of Theorem 3,
which was only proved for bounded domains. A Morse—Maslov index theorem for semi-infinite
domains recently appeared in [1]; see also [4,17,18]. Instead of focusing on technical details, we
simply compute the conjugate points, and observe that a formal application of Theorem 3 yields
the well-known stability criterion of Vakhitov and Kolokolov.

Differentiating (37) with respect to x, we obtain L, (¢,) = 0. Moreover, assuming the map
w > ¢ is C', we also have L (¢,) = ¢. As proved in [35, Appendix A], the homogeneous
equation L u = 0 has one linearly independent solution that is in L> as x — —oo, namely ¢,
and so as 0 is an isolated eigenvalue of L, any solution to the inhomogeneous equation L yu = ¢
that decays at —oo is of the form

u=A¢x + do

for some A € R. The constraint on (—o0, t) is

t t t
1 ad
0= [ ug = f (Aps +9g) =5 | AS* () + / ¢*(x) dx (38)
and the Dirichlet boundary condition at ¢ is
Ay (1) + ¢ (1) =0. (39

By definition, ¢ € R is a conjugate point when both (38) and (39) are satisfied.
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(a)p=1 (b)yp=3
Fig. 1. The function c(¢) for the power-law nonlinearity f(¢2) =(p+ 1)¢217.

Now define
u
g<u>=u—1ff<v)dv, u>0,
0

so that ug’(u) + g(u) = f(u). It follows that ¢§ + [w + g(d)z)]qb2 is constant for any solution
to (37). Since ¢ € H'(R), we have qb,% + [w + g(¢*)]¢* = 0. Differentiating this equation with
respect to w, we find that

1
Pxdro + & @) P + 5¢2 +[w + g(@*)1p¢w = 0. (40)

Since ¢ is positive, this implies ¢, and ¢,, do not simultaneously vanish. Together with (39), this
implies ¢y (t) # 0 if ¢ is a conjugate point, hence A = —¢,, (t) /P« (¢). Substituting this into (38),
we find that ¢ is a conjugate point precisely when it is a root of the function

(D¢ ()

=50

t
+i/¢2(x)dx. (41)
Jw

—00

This function is plotted in Fig. 1 for the power law f(¢?) = ¢>P. In this case it is easily verified
that there is a conjugate point if and only if p > 2.
It is not difficult to verify that the function ¢ has the following properties:

€y t_l)ir_HOOC(t)=0;

(i) liI(I)l c(t) = o0;
t—0—

(i) lim c(f) = —o0;
t—0+

(v) lim c(f):i / &> (x) dx;
t—00 ow

(v) ¢’(t) >0fort+#0.
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In particular, for (v) we differentiate to obtain

C/(t) — ¢2 <¢w¢xx¢_)%¢’a)x¢x)

for ¢ # 0. Using (37) and (40) to compute ¢, and ¢,,, we find that

x=t

_1.
¢w¢xx - ¢wx¢x - E‘b .

Since ¢ > 0, this implies ¢’(¢) > 0.

It follows immediately that there are no conjugate points in (—oo, 0), and there is a single
conjugate point in (0, co) if and only if the “slope” 9, [ ¢? is positive. Hence, by a formal
application of Theorem 3, the slope condition determines whether or not the number of negative
eigenvalues of L constrained to (ker L )~ differs from the number of negative eigenvalues
of L_. As aresult, the (in)stability of the resulting non-selfadjoint operator for the ground state
follows from the results of Jones [19] and Grillakis [14,15], as recalled the discussion in the
Introduction. Note that this also suggests that for a domain of sufficiently small volume, an
unstable problem can be stabilized. As seen in the recent paper [1 1], this phenomenon can be seen
in excited states as well and is a natural further direction for analysis involving the constrained
Maslov index tools developed here.

References

[1] M. Beck, G. Cox, C. Jones, Y. Latushkin, K. McQuighan, A. Sukhtayev, Instability of pulses in gradient reaction—
diffusion systems: a symplectic approach, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 376 (2117)
(2018).

[2] Jussi Behrndt, Jonathan Rohleder, An inverse problem of Calderdn type with partial data, Comm. Partial Differential
Equations 37 (6) (2012) 1141-1159. MR 2924468.

[3] H. Berestycki, P--L. Lions, Existence of a ground state in nonlinear equations of the Klein—Gordon type, in: Vari-
ational Inequalities and Complementarity Problems, Proc. Internat. School, Erice, 1978, Wiley, Chichester, 1980,
pp- 35-51. MR 578738.

[4] Chao-Nien Chen, Xijun Hu, Maslov index for homoclinic orbits of Hamiltonian systems, Ann. Inst. H. Poincaré
Anal. Non Linéaire 24 (4) (2007) 589-603. MR 2334994 (2008f:37130).

[5] Hans Christianson, Jeremy Marzuola, Jason Metcalfe, Michael Taylor, Nonlinear bound states on weakly homoge-
neous spaces, Comm. Partial Differential Equations 39 (1) (2014) 34-97.

[6] Graham Cox, Christoper K.R.T. Jones, Jeremy L. Marzuola, Manifold decompositions and indices of Schrodinger
operators, Indiana Univ. Math. J. 66 (5) (2017) 1573-1602. MR 3718436.

[7] Graham Cox, Christopher K.R.T. Jones, Yuri Latushkin, Alim Sukhtayev, The Morse and Maslov indices for
multidimensional Schrodinger operators with matrix-valued potentials, Trans. Amer. Math. Soc. 368 (11) (2016)
8145-8207. MR 3546796.

[8] Graham Cox, Christopher K.R.T. Jones, Jeremy L. Marzuola, A Morse index theorem for elliptic operators on
bounded domains, Comm. Partial Differential Equations 40 (8) (2015) 1467-1497. MR 3355500.

[9] Scipio Cuccagna, Dmitry Pelinovsky, Vitali Vougalter, Spectra of positive and negative energies in the linearized
NLS problem, Comm. Pure Appl. Math. 58 (1) (2005) 1-29. MR 2094265.

[10] Jian Deng, Christopher Jones, Multi-dimensional Morse index theorems and a symplectic view of elliptic boundary
value problems, Trans. Amer. Math. Soc. 363 (3) (2011) 1487-1508. MR 2737274 (2011k:35156).

[11] Gadi Fibich, Dima Shpigelman, Positive and necklace solitary waves on bounded domains, Phys. D 315 (2016)
13-32.

[12] Gerald B. Folland, Introduction to Partial Differential Equations, second ed., Princeton University Press, Princeton,
NJ, 1995. MR 1357411 (96h:35001).



2952 G. Cox, J.L. Marzuola / J. Differential Equations 266 (2019) 2924-2952

[13] Kenro Furutani, Fredholm-Lagrangian—Grassmannian and the Maslov index, J. Geom. Phys. 51 (3) (2004)
269-331. MR 2079414 (2005g:53150).

[14] Manoussos Grillakis, Linearized instability for nonlinear Schrodinger and Klein—Gordon equations, Comm. Pure
Appl. Math. 41 (6) (1988) 747-774.

[15] Manoussos Grillakis, Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian
system, Comm. Pure Appl. Math. 43 (3) (1990) 299-333.

[16] Manoussos Grillakis, Jalal Shatah, Walter Strauss, Stability theory of solitary waves in the presence of symmetry. I,
J. Funct. Anal. 74 (1) (1987) 160-197. MR 901236.

[17] Peter Howard, Yuri Latushkin, Alim Sukhtayev, The Maslov and Morse indices for Schrodinger operators on R,
Indiana Univ. Math. J. (2018), in press, http://arxiv.org/abs/1608.05692, 2016.

[18] Xijun Hu, Alessandro Portaluri, Index theory for heteroclinic orbits of Hamiltonian systems, Calc. Var. Partial
Differential Equations 56 (6) (2017) 167. MR 3719553.

[19] Christopher K.R.T. Jones, Instability of standing waves for non-linear Schrodinger-type equations, Ergodic Theory
Dynam. Systems 8 (8*) (1988) 119-138.

[20] Todd Kapitula, Panayotis G. Kevrekidis, Bjorn Sandstede, Counting eigenvalues via the Krein signature in infinite-
dimensional Hamiltonian systems, Phys. D 195 (3) (2004) 263-282.

[21] Todd Kapitula, Keith Promislow, Stability indices for constrained self-adjoint operators, Proc. Amer. Math. Soc.
140 (3) (2012) 865-880.

[22] Todd Kapitula, Keith Promislow, Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical
Sciences, vol. 185, Springer, New York, 2013. MR 3100266.

[23] Yuri Latushkin, Selim Sukhtaiev, The Maslov index and the spectra of second order elliptic operators, preprint
arXiv:1610.09765, 2016.

[24] R.S. MacKay, Stability of equilibria of Hamiltonian systems, in: Hamiltonian Dynamical Systems, 1987,
pp. 137-153.

[25] William McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cam-
bridge, 2000. MR 1742312 (2001a:35051).

[26] Jaak Peetre, Another approach to elliptic boundary problems, Comm. Pure Appl. Math. 14 (1961) 711-731.
MR 0171069 (30 #1301).

[27] Dmitry E. Pelinovsky, Inertia law for spectral stability of solitary waves in coupled nonlinear Schrodinger equations,
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2055) (2005) 783-812. MR 2121936.

[28] Dmitry E. Pelinovsky, Localization in Periodic Potentials, London Mathematical Society Lecture Note Series,
vol. 390, Cambridge University Press, Cambridge, 2011. MR 2894529.

[29] S. Pohozaev, Eigenfunctions of the equation Au + Af (1) =0, Sov. Math. 5 (1965) 1408-1411.

[30] Michael Reed, Barry Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, Academic Press,
New York, 1972. MR 0493419 (58 #12429a).

[31] J. Rohleder, Strict inequality of Robin eigenvalues for elliptic differential operators on Lipschitz domains, J. Math.
Anal. Appl. 418 (2014) 978-984.

[32] S. Smale, On the Morse index theorem, J. Math. Mech. 14 (1965) 1049-1055. MR 0182027 (31 #6251).

[33] K. Uhlenbeck, The Morse index theorem in Hilbert space, J. Differential Geom. 8 (1973) 555-564. MR 0350778
(50 #3270).

[34] N.G. Vakhitov, A.A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation,
Radiophys. Quantum Electron. 16 (1973) 783-789.

[35] Michael I. Weinstein, Modulational stability of ground states of nonlinear Schrodinger equations, SIAM J. Math.
Anal. 16 (3) (1985) 472-491.



	A symplectic perspective on constrained eigenvalue problems
	1 Introduction
	Acknowledgments

	2 A ﬁnite-dimensional example
	3 The constrained Maslov index
	3.1 The Maslov index in inﬁnite dimensions
	3.2 Preliminaries on constrained boundary value problems
	3.3 Construction of the Maslov index
	3.4 Equivalence of Hypotheses 3 and 4

	4 The constrained Morse index theorem
	4.1 The general index theorem
	4.2 The Dirichlet crossing form

	5 An application to the nonlinear Schrödinger equation
	References


