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Abstract

The Maslov index is a powerful tool for computing spectra of selfadjoint, elliptic boundary value prob-

lems. This is done by counting intersections of a fixed Lagrangian subspace, which designates the boundary 

conditions, with the set of Cauchy data for the differential operator. We apply this methodology to con-

strained eigenvalue problems, in which the operator is restricted to a (not necessarily invariant) subspace. 

The Maslov index is defined and used to compute the Morse index of the constrained operator. We then 

prove a constrained Morse index theorem, which says that the Morse index of the constrained problem 

equals the number of constrained conjugate points, counted with multiplicity, and give an application to the 

nonlinear Schrödinger equation.

 2018 Elsevier Inc. All rights reserved.

1. Introduction

Consider the nonlinear Schrödinger equation

−i
∂ψ

∂t
= �ψ + f (|ψ |2)ψ (1)
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on a bounded domain � ⊂ R
n. This admits a standing wave of the form ψ(x, t) = e−iωtφ(x)

precisely when φ solves the nonlinear elliptic equation

�φ + f (φ2)φ + ωφ = 0. (2)

The existence of nontrivial solutions to such equations on bounded domains can be seen as far 

back as the work of Pohozaev [29]. See for instance [5] for a recent generalization to compact 

manifolds with boundary and a fairly complete history of the problem (though note that the 

results therein specify power-law nonlinearities: f (s2) = sp for 1 < p < 4
d−2

).

Assuming the existence of a solution φ to (2), we can then study perturbative solutions to 

(1) of the form u(x, t) = e−iωt
(
φ(x) + eλtw(x)

)
. Plugging this ansatz into (1) and dropping 

higher-order terms in w yields the system of eigenvalue equations

L+u = −λv, L−v = λu, (3)

where we have written w = u + iv and L± are the operators

L− = −� − f (φ2) − ω (4)

L+ = −� − f (φ2) − 2f ′(φ2)φ2 − ω. (5)

The eigenvalue problem (3) is not selfadjoint, even though L+ and L− are. If L− is invertible, 

this system is equivalent to L+u = −λ2(L−)−1u. However, L− typically has a one-dimensional 

kernel generated by the bound state one is studying, since the standing wave equation (2) is just 

L−φ = 0. This lack of invertibility can be overcome by restricting the problem to the subspace 

(kerL−)⊥ ⊂ L2(�), and so one needs to describe the spectrum of the corresponding constrained 

L+ operator. (The precise functional analytic definition of the constrained operator is given in 

Section 3 below.) It can be shown, for instance, that unstable eigenvalues (namely those with 

positive real part) exist if the number of negative eigenvalues of L+ constrained to (kerL−)⊥

differs from the number of negative eigenvalues of L−. See the early work of Jones [19] and 

Grillakis [14,15] for an analysis of this phenomenon. For a modern treatment see [21], in par-

ticular Theorem 3.2. A thorough overview of the constrained eigenvalue problem and its role in 

stability theory can be found in [22, §5.2] and also in [28, §4.2].

In certain cases, for instance if φ is the positive ground state of a constrained minimization 

problem, the linear stability or instability can be ascertained from a constrained Morse index 

calculation. In other settings, for instance those involving excited states, linear stability criteria 

are harder to establish and generally are computed numerically. However, the nature of the such 

calculations can often be related to the Krein signature, which can also be framed in terms of a 

constrained eigenvalue problem; see [20,24].

Motivated by the above considerations, we are thus interested in describing the spectrum, 

and in particular the number of negative eigenvalues, of a Schrödinger operator L = −� + V

on a bounded domain �, constrained to act on a closed subspace of L2(�). In this paper we 

give a symplectic formulation of this problem, and use it to prove a constrained version of the 

celebrated Morse–Smale index theorem. We begin by reviewing the symplectic formulation of 

the unconstrained spectral problem, which first appeared in [10], and was elaborated on in [7,8]. 

Throughout we will assume the following.
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Hypothesis 1. � ⊂R
n is a bounded domain with Lipschitz boundary, and V ∈ L∞(�).

By a slight abuse of notation we let u
∣∣
∂�

∈ H 1/2(∂�) denote the Dirichlet trace of u ∈ H 1(�), 

and let ∂u/∂ν
∣∣
∂�

∈ H−1/2(∂�) denote the weak Neumann trace, which is defined if u ∈ H 1(�)

and �u ∈ L2(�); see [25]. We thus define the space of Cauchy data for L

μ(λ) =
{(

u,
∂u

∂ν

)∣∣∣∣
∂�

: Lu = λu

}
, (6)

where the equation Lu = λu is meant in a distributional sense. That is, D(u, v) = λ 〈u,v〉 for all 

v ∈ H 1
0 (�), where 〈·, ·〉 is the L2 inner product and D is the bilinear form

D(u,v) =
∫

�

[∇u · ∇v + V uv] . (7)

It is known that μ(λ) defines a smooth curve of Lagrangian subspaces in the symplectic Hilbert 

space H 1/2(∂�) ⊕H−1/2(∂�). A proof of this fact using standard PDE methods can be found in 

[8, Proposition 3.1]; a more abstract, functional analytic proof is given in [7, Proposition 4.10].

Boundary conditions are imposed by specifying the domain of the bilinear form D. The re-

lationship between the form domain X and the induced boundary conditions is described in [8, 

Appendix A], following [12].

Hypothesis 2. The form domain X is a closed subspace of H 1(�) that contains H 1
0 (�).

We then let β be a Lagrangian subspace of H 1/2(∂�) ⊕H−1/2(∂�) that encodes the boundary 

conditions; this depends on the choice of X. For instance,

βD =
{
(0, φ) : φ ∈ H−1/2(∂�)

}
(8)

if X = H 1
0 (�), and

βN =
{
(x,0) : x ∈ H 1/2(∂�)

}
(9)

if X = H 1(�). Note that μ(λ) intersects βD nontrivially whenever there is a solution to Lu = λu

satisfying Dirichlet boundary conditions. Similarly, the subspace βN encodes Neumann boundary 

conditions.

Let L denote the selfadjoint operator corresponding to the bilinear form D in (7), with form 

domain X satisfying Hypothesis 2. It was shown in [8] that the subspaces μ(λ) and β comprise 

a Fredholm pair for each value of λ, so the Maslov index (a topological invariant assigned to a 

continuous path of Lagrangian subspaces) of μ with respect to β is well defined, and there exists 

a number λ∞ < 0 such that

Mas
(
μ
∣∣
[λ∞,0];β

)
= −n(L), (10)
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where n(L) denotes the number of strictly negative eigenvalues (i.e. the Morse index) of L. See 

[8] for a more complete discussion of boundary conditions as well as the history of the problem.

We now turn to the constrained problem. We first require an assumption on the constrained 

space L2
c(�) ⊂ L2(�) where the problem will be formulated.

Hypothesis 3. L2
c(�) = {φ1, . . . , φm}⊥ for some functions φ1, . . . , φm ∈ H 1(�).

In particular, this implies L2
c(�) is closed and has finite codimension. This is the typical 

setting in which constrained index theorems are studied. While our construction of the Maslov 

index requires the full strength of Hypothesis 3, many of the intermediate results on constrained 

boundary value problems do not. We clarify this by rewriting the hypothesis as follows, where 

γ : H 1(�) → H 1/2(∂�) denotes the Dirichlet trace map.

Hypothesis 4. L2
c(�) ⊂ L2(�) is a closed subspace such that

(i) γ
(
H 1(�) ∩ L2

c(�)
)
= H 1/2(∂�);

(ii) X ∩ L2
c(�) is dense in L2

c(�);

(iii) L2
c(�)⊥ is continuously embedded in H 1(�).

Note that (ii) implies H 1(�) ∩L2
c(�) is dense in L2

c(�), since X ⊂ H 1(�). In Section 3.4 we 

show that Hypotheses 3 and 4 are equivalent. Parts (i) and (ii) of the hypothesis prevent L2
c(�)

from being too small. In particular, the trace condition (i) guarantees that the space of Cauchy 

data is rich enough to fully describe the constrained spectral problem, and the density condition 

(ii) ensures that the constrained operator (described below) is well defined. These conditions 

are trivially satisfied when L2
c(�) = L2(�), since γ

(
H 1(�)

)
= H 1/2(∂�); see, for instance, 

[25, Theorem 3.37]. The embedding condition (iii) means that L2
c(�)⊥ ⊂ H 1(�), and there is a 

constant C > 0 so that

‖φ‖H 1(�) ≤ C‖φ‖L2(�) (11)

for all φ ∈ L2
c(�)⊥. This condition implies that a weak solution u to the constrained eigenvalue 

problem satisfies Lu ∈ L2(�) (by Lemma 2), hence u ∈ H 2
loc(�) by elliptic regularity (see, for 

instance, [25, Theorem 4.16]).

Now consider the bilinear form (7) restricted to X ∩ L2
c(�). It follows from Hypothesis 4(ii) 

that this restriction of D is densely defined, semibounded and closed, and hence defines a un-

bounded, selfadjoint operator Lc, with dense domain D(Lc) ⊂ L2
c(�); see, for instance, [30, 

Theorem VIII.15]. We call this the constrained operator. The goal of this paper is to understand 

its spectrum, σ(Lc); we refer to this as the constrained eigenvalue problem. In Proposition 1

we show that the constrained operator is in fact given by Lc = PL
∣∣
D(Lc)

, where P is the 

L2-orthogonal projection onto L2
c(�).

We define the space of Cauchy data for the constrained problem by

μc(λ) =
{(

u,
∂u

∂ν

)∣∣∣∣
∂�

: u ∈ H 1(�) ∩ L2
c(�) and D(u,v) = λ 〈u,v〉

for all v ∈ H 1
0 (�) ∩ L2

c(�)

}
.
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In Lemma 1 we show that the weak Neumann trace ∂u/∂ν
∣∣
∂�

∈ H−1/2(∂�) is well defined 

for any weak solution u to the constrained problem. This is not a consequence of [25], which 

requires Lu ∈ L2(�). Instead, we construct the trace directly, and then in Lemma 2 use its exis-

tence to prove that Lu ∈ L2(�).

Remark 1. The existence of ∂u/∂ν
∣∣
∂�

∈ H−1/2(∂�) only requires Hypothesis 4(i). Condi-

tion (iii) is only used in the proof of Lemma 2, which is needed to obtain u ∈ H 2
loc(�) for the 

unique continuation argument in Section 3.3. It may be possible to eliminate (iii) with a suitable 

unique continuation principle for the constrained equation, but do not pursue this in the present 

paper.

We now state our first result, relating the constrained Morse and Maslov indices.

Theorem 1. If Hypotheses 1, 2 and 3 are satisfied, then μc has a well-defined Maslov index with 

respect to β , and there exists λ∞ < 0 such that

n(Lc) = −Mas
(
μc

∣∣
[λ∞,0];β

)
.

In other words, the Maslov index determines the Morse index of the constrained operator Lc.

The classical approach to the constrained eigenvalue problem (see [22,28] and references 

therein) is to relate n(L) and n(Lc) through the index of a finite-dimensional “constraint matrix.” 

The most general statement we are aware of is [28, Theorem 4.1], although the method of proof 

appeared earlier in [9,27].

Theorem 2 ([28]). Suppose L2
c(�) has finite codimension, with L2

c(�)⊥ = span{φ1, . . . , φm}. 
The constrained and unconstrained Morse indices are related by

n(L) − n(Lc) = lim
μ→0−

n(M(μ)),

where M(μ) is the m × m matrix with entries Mij (μ) =
〈
(L− μ)−1φi, φj

〉
.

Remark 2. In [28] it is shown that the eigenvalues of M(μ) are continuous and strictly increasing 

as long as μ /∈ σ(L). Therefore, if L is invertible, the matrix M(0) is defined and the above result 

simplifies to

n(L) − n(Lc) = n(M(0)) + dim kerM(0).

A similar result appears in [21], with the added assumption that kerL ⊂ L2
c(�). This implies 

φi ∈ (kerL)⊥ = ranL, so the equation Lu = φi has a unique solution u ∈ L2
c(�)⊥, which we 

denote by L−1φi , and hence the matrix M(0) =
〈
L−1φi, φj

〉
is well defined.

This result allows one to compute n(Lc) from the unconstrained Morse index n(L) and the 

constraint matrix M . Here we take a different approach, combining Theorem 1 with a homotopy 

argument to compute the constrained Morse index directly, without having to first know the 

unconstrained index.
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To do this we describe what happens when the domain � is deformed through a smooth 

one-parameter family {�t }. The result is a constrained analog of Smale’s Morse index theorem 

[32], relating the Morse index of an operator to its conjugate points. Smale’s result, which only 

applies to the Dirichlet problem, was originally proved by variational methods (see also [33]). 

A proof using the Maslov index was given in [7] for star-shaped domains, and in [8] for the 

general case.

We prove a general result to this effect in Section 4; for now we just state the simplest case, 

when Dirichlet boundary conditions are imposed and there is only one constraint function, i.e. 

L2
c(�) = {φ}⊥. We say that t is a constrained conjugate point for the Dirichlet problem if there 

exists a nonzero function u ∈ H 2(�t ) ∩ H 1
0 (�t ) such that

∫

�t

uφ = 0, Lu = aφ on �t

for some constant a. In other words, 0 is an eigenvalue for the constrained Dirichlet problem 

on �t . Let d(t) denote its multiplicity, so that d(t) > 0 whenever t is a conjugate time.

Theorem 3. Let {�t : 0 < t ≤ 1} be a smooth, increasing family of domains in Rn, with �1 = �. 

Suppose L2
c(�) = {φ}⊥ for some φ ∈ H 1(�) with 

∫
�t

φ2 > 0 for all t > 0. If |�t | → 0 as t → 0, 

then

n(Lc) =
∑

t<1

d(t).

That is, the Morse index of the constrained operator equals the number of constrained conju-

gate points in (0, 1), counting multiplicity. The sum on the right-hand side is well defined because 

d(t) is only nonzero for a finite set of times. The assumption that φ is not identically zero on any 

�t ensures the constraint space does not change dimension as t varies; this is a crucial ingredient 

in establishing the continuity properties needed to have a well defined Maslov index.

We conclude in Section 5 by giving a formal application of Theorem 3 to the ground state 

solution φ of the one-dimensional NLS. We find that there is a constrained conjugate point (hence 

a negative eigenvalue of L+) if and only if the quantity

∂

∂ω

∞∫

−∞

φ2

is positive. This is the well-known Vakhitov–Kolokolov condition [34]; see also [16].
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2. A finite-dimensional example

We now give a simple illustration of Theorem 3, by computing the constrained Morse index 

of L = −� − C on (−1, 1), where C is a positive constant. We do this in three different ways: 

first by direct computation, and then using Theorems 2 and 3.

Let L denote the differential operator on (−1, 1) with Dirichlet boundary conditions, and Lc

the constrained operator on the space of zero mean functions

L2
c(−1,1) =

⎧
⎨
⎩u ∈ L2(−1,1) :

1∫

−1

u(x)dx = 0

⎫
⎬
⎭ .

The constrained eigenvalue equation Lcu = λu is equivalent to the conditions

uxx + Cu + λu = constant,

1∫

−1

u(x)dx = 0, u(−1) = u(1) = 0.

From the differential equation and the zero mean condition we obtain the general solution

u(x) = A(cosγ x − γ −1 sinγ ) + B sinγ x

where γ =
√

C + λ. Imposing the Dirichlet boundary conditions at x = ±1, we have

A(cosγ − γ −1 sinγ ) ± B sinγ = 0,

which implies either cosγ = γ −1 sinγ or sinγ = 0. Finally, observing that λ < 0 iff γ <
√

C, 

we find that the number of negative eigenvalues is

n(Lc) = #
{
γ ∈ (0,

√
C) : sinγ = 0 or tanγ = γ

}
. (12)

We next compute the Morse index using Theorem 3, counting the number of conjugate points 

t ∈ (0, 1) for the family of domains �t = (−t, t). The constrained equation on �t is

uxx + Cu = constant,

t∫

−t

u(x)dx = 0.

Setting γ =
√

C, we can write the general solution as

u(x) = A(cosγ x − γ −1 sinγ ) + B sinγ x.

Therefore, t ∈ (0, 1) is a conjugate point precisely when

A
(

cosγ t − (γ t)−1 sinγ t
)

± B sinγ t = 0.
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It follows that either cosγ t = (γ t)−1 sinγ t or sinγ t = 0. Recalling that γ =
√

C, we obtain

# conjugate points = #
{
t ∈ (0,1) : sin

√
Ct = 0 or tan

√
Ct =

√
Ct
}

, (13)

which agrees with the Morse index n(Lc) computed in (12).

A similar computation shows that the unconstrained Morse index is

n(L) = #
{
γ ∈ (0,

√
C) : sinγ = 0 or cosγ = 0

}
.

Comparing solutions of cosγ = 0 and tanγ = γ , we see that the constrained and unconstrained 

indices are related by

n(L) =

⎧
⎪⎨
⎪⎩

n(Lc) + 1 if tan
√

C ≤
√

C

n(Lc) if tan
√

C >
√

C

n(Lc) if cos
√

C = 0

(14)

Finally, we verify that this is consistent with the prediction of Theorem 2 by computing the 

constraint matrix M(μ) for small negative values of μ. Since L2
c(−1, 1)⊥ is spanned by the 

constant function 1, M(μ) is simply the number 
〈
(L− μ)−11,1

〉
. To compute (L − μ)−11 we 

must solve the boundary value problem

uxx + (C + μ)u + 1 = 0, u(−1) = u(1) = 0.

Setting γ =
√

C + μ, we find

u(x) = 1

γ 2

(
cosγ x

cosγ
− 1

)

and so

〈
(L− μ)−11,1

〉
=

1∫

−1

u(x)dx = 2

γ 2

(
tanγ

γ
− 1

)
.

This is a strictly increasing function of γ (and hence of μ), so we obtain

lim
μ→0−

M(μ) =

⎧
⎪⎨
⎪⎩

≤ 0 if tan
√

C ≤
√

C

> 0 if tan
√

C >
√

C

+∞ if cos
√

C = 0

and hence

lim
μ→0−

n(M(μ)) =
{

1 if tan
√

C ≤
√

C

0 otherwise

as expected from comparing the result in (14) with Theorem 2.
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3. The constrained Maslov index

In this section we define the Maslov index for constrained eigenvalue problems in multiple 

dimensions. After reviewing the Fredholm–Lagrangian Grassmannian and the Maslov index, as 

well as some necessary details of constrained operators and boundary value problems, we define 

the constrained Maslov index, and prove that it equals (minus) the constrained Morse index, thus 

proving Theorem 1. As is common for such problems, most of the work goes into establishing 

the existence and regularity of the relevant paths of Lagrangian subspaces. Once this is known, 

the main result follows from a straightforward crossing form calculation.

Throughout the section we assume Hypothesis 1, invoking the individual parts of Hypothesis 4

only as needed.

3.1. The Maslov index in infinite dimensions

Before describing the constrained eigenvalue problem, we will review the infinite-dimensional 

Maslov index, following [13].

Suppose H is a symplectic Hilbert space: that is, a real Hilbert space equipped with a non-

degenerate, skew-symmetric bilinear form ω. A subspace μ ⊂ H is said to be isotropic if 

ω(v, w) = 0 for all v, w ∈ μ, and is said to be Lagrangian if it is isotropic and maximal, in 

the sense that it is not properly contained in any other isotropic subspace. The set of all La-

grangian subspaces is called the Lagrangian Grassmannian and is denoted 
(H). This is a 

smooth, contractible Banach manifold, whose differentiable structure comes from associating 

to each Lagrangian subspace its orthogonal projection operator. Thus a family of Lagrangian 

subspaces μ(t) is of class Ck if and only if the corresponding family of projections Pμ(t) is Ck .

We assume that the symplectic form can be written as ω(v, w) = 〈Jv,w〉, where J : H → H

is a skew-symmetric operator satisfying J 2 = −I . (Given a symplectic form ω, one can always 

find a complete inner product for which this is true; see [13, Proposition D.1].) If μ is a given 

Lagrangian subspace, and A : μ → μ is a bounded, selfadjoint operator, then the graph

Grμ(A) = {v + JAv : v ∈ μ}

will also be Lagrangian. Moreover, the orthogonal projection onto this graph can be computed 

algebraically from A; see [13, Equation (2.16)]. Therefore, if A(t) is a Ck family of bounded, 

selfadjoint operators on μ, the corresponding family Grμ(A(t)) of Lagrangian subspaces will 

also be of class Ck . This simple observation is our main technical tool for establishing regularity 

properties of paths of Lagrangian subspaces.

Since 
(H) is contractible, there is no nontrivial notion of winding for general curves of 

Lagrangian subspaces, and so we must restrict our attention to a smaller space in order to have a 

useful index theory. For a fixed Lagrangian subspace β ⊂H, we define the Fredholm–Lagrangian 

Grassmannian,

F
β(H) = {μ ∈ 
(H) : μ and β are a Fredholm pair},

recalling that μ and β are said to be a Fredholm pair when μ ∩ β is finite dimensional and 

μ +β is closed and has finite codimension. The Fredholm–Lagrangian Grassmannian is a smooth 

Banach manifold with fundamental group π1(F
β(H)) = Z. As a result, there is an integer, the 

Maslov index, associated to any continuous path of Lagrangian subspaces that is Fredholm with 
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respect to β . The Maslov index is invariant with respect to fixed-endpoint homotopies, and can 

be thought of as a generalized winding number in the space F
β(H). The utility of this index 

in eigenvalue problems stems from the fact that it is simply a count (with sign and multiplicity) 

of the nontrivial intersections between μ(t) and β .

To compute the Maslov index in practice, we use crossing forms. Suppose μ : [a, b] →
F
β(H) is a continuously differentiable path of Lagrangian subspaces, and μ(t∗) ∩ β �= {0}
for some t∗ ∈ [a, b]. Let v(·) be a continuously differentiable path in H, with v(t) ∈ μ(t) for t

close to t∗ and v(t∗) ∈ μ(t∗) ∩ β . The crossing form is a quadratic form defined on the finite-

dimensional vector space μ(t∗) ∩ β by

Q(v(t∗)) = ω

(
v,

dv

dt

)∣∣∣∣
t=t∗

.

It can be shown that this depends only on the vector v(t∗), and not on the path v(t). If Q is 

nondegenerate, then the crossing time t∗ is isolated. Suppose that t∗ is the only crossing in [a, b]
and let (n+, n−) be the signature of Q. The Maslov is then given by

Mas
(
μ[a,b];β

)
=

⎧
⎪⎨
⎪⎩

−n− if t∗ = a,

n+ − n− if t∗ ∈ (a, b),

n+ if t∗ = b.

The Maslov index is additive, in the sense that

Mas
(
μ[a,b];β

)
= Mas

(
μ[a,c];β

)
+ Mas

(
μ[c,b];β

)

for any c ∈ (a, b), so we can use the crossing form to compute the Maslov index of any piecewise 

continuously differentiable curve, provided all of its crossings are nondegenerate.

If H is a real Hilbert space, with dual space H ∗, then H = H ⊕ H ∗ is a symplectic Hilbert 

space. The symplectic form is given by

ω
(
(x,φ), (y,ψ)

)
= ψ(x) − φ(y),

and the corresponding complex structure J : H → H is

J (x,φ) =
(
R−1φ,−Rx

)
,

where R : H → H ∗ is the isomorphism from the Riesz representation theorem.

To study selfadjoint boundary value problems we will take H = H 1/2(∂�), hence H ∗ =
H−1/2(∂�). Elements of H = H 1/2(∂�) ⊕ H−1/2(∂�) will arise as the boundary values (or 

“traces”) of weak solutions to the eigenvalue equation Lu = λu, or its constrained analogue, via 

the trace map

tru :=
(

u,
∂u

∂ν

)∣∣∣∣
∂�

. (15)

We will use integral notation to denote the dual pairing between H 1/2(∂�) and H−1/2(∂�), so 

Green’s second identity yields
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ω(tru, trv) =
∫

∂�

(
u

∂v

∂ν
− v

∂u

∂ν

)
=
∫

�

(u�v − v�u) (16)

for any u, v ∈ H 1(�) with �u, �v ∈ L2(�). This identity hints at a connection between the 

Lagrangian subspaces of H 1/2(∂�) ⊕ H−1/2(∂�) and selfadjoint, second-order differential op-

erators on L2(�). While the current paper utilizes a particular version of this correspondence, it 

is in fact part of a deeper phenomenon, which has been investigated systematically in [23].

3.2. Preliminaries on constrained boundary value problems

We define L = −� + V distributionally on H 1(�), via the bilinear form D in (7), so Lu =
F ∈ H−1(�) means D(u, v) = 〈F,v〉 for all v ∈ H 1

0 (�). Throughout the section we assume 

L2
c(�) is a closed subspace of L2(�), only invoking the other parts of Hypothesis 4 when needed.

To define the trace of a weak solution, as in (15), we need to know that its normal derivative 

is well defined. The statement and proof of the next result, a constrained version of Green’s first 

identity, closely follow [25, Lemma 4.3].

Lemma 1. Assume Hypothesis 4(i). Let u ∈ H 1(�) ∩L2
c(�), and suppose there exists f ∈ L2

c(�)

such that D(u, v) = 〈f, v〉 for all v ∈ H 1
0 (�) ∩ L2

c(�). Then there is a unique function g ∈
H−1/2(∂�) such that

D(u,v) = 〈f, v〉 +
∫

∂�

g(γ v) (17)

for all v ∈ H 1(�) ∩ L2
c(�). Moreover, g satisfies the estimate

‖g‖H−1/2(∂�) ≤ C
(
‖u‖H 1(�) + ‖f ‖L2(�)

)
.

Proof. By Hypothesis 4(i) the constrained Dirichlet trace map

γc := γ
∣∣
H 1(�)∩L2

c(�)
: H 1(�) ∩ L2

c(�) → H 1/2(∂�)

is surjective, and hence has a bounded right inverse, E : H 1/2(∂�) → H 1(�) ∩ L2
c(�). Now 

g ∈ H−1/2(∂�) = H 1/2(∂�)∗ can be defined by its action on h ∈ H 1/2(∂�):

g(h) = D(u,Eh) − 〈f,Eh〉 .

From the boundedness of D and E we obtain

|g(h)| ≤ C
(
‖u‖H 1(�) + ‖f ‖L2(�)

)
‖h‖H 1/2(∂�)

for all h ∈ H 1/2(∂�), so g ∈ H−1/2(∂�) and the desired estimate follows.

To see that (17) holds, let v ∈ H 1(�) ∩ L2
c(�), and define h = γ v. It follows that γEh = γ v, 

and so Eh − v ∈ H 1
0 (�) ∩ L2

c(�), hence D(u, Eh − v) = 〈f,Eh − v〉. We thus obtain
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∫

∂�

g(γ v) = g(h) = D(u,Eh) − 〈f,Eh〉 = D(u,v) − 〈f, v〉 ,

which is the desired result.

To complete the proof, we establish the uniqueness of g. If g1, g2 ∈ H−1/2(∂�) both satisfy 

(17), then

∫

∂�

(g1 − g2)γ v = 0

for all v ∈ H 1(�) ∩ L2
c(�). Since γc is surjective, this implies g1 − g2 = 0. �

When u and v are sufficiently smooth, it follows from the classical version of Green’s first 

identity that

∫

∂�

gv = D(u,v) − 〈Lu,v〉 =
∫

∂�

∂u

∂ν
v.

That is, g is just the normal derivative of u. Thus in general we will refer to the function g ∈
H−1/2(∂�) defined by Lemma 1 as the normal derivative of u.

Note that this lemma does not immediately follow from the aforementioned result in [25]

because we do not know a priori that Lu ∈ L2(�). However, using Lemma 1, we can prove a 

posteriori that this is the case.

Lemma 2. Assume Hypothesis 4. If u satisfies the conditions of Lemma 1, then Lu ∈ L2(�) and 

PLu = f .

Proof. To prove the result we will construct a function F ∈ L2(�) that satisfies

D(u,v) = 〈F,v〉 +
∫

∂�

g(γ v) (18)

for all v ∈ H 1(�). Subtracting (17) and (18), we see that if such an F exists, it must satisfy 

〈F,v〉 = 〈f, v〉 for all v ∈ H 1(�) ∩ L2
c(�), and hence for all v ∈ L2

c(�), by Hypothesis 4(ii). 

This implies F = f + φ for some φ ∈ L2
c(�)⊥.

We first claim that

H 1(�) =
(
H 1(�) ∩ L2

c(�)
)
⊕ L2

c(�)⊥.

This follows from writing v = Pv + (I − P)v. Hypothesis 4(iii) implies (I − P)v ∈ L2
c(�)⊥ ⊂

H 1(�), so we also have Pv = v − (I − P)v ∈ H 1(�) as required.

Now decompose v ∈ H 1(�) accordingly as v1 + v2. Using Lemma 1 we obtain

D(u,v) = D(u,v1) + D(u,v2) = 〈f, v1〉 +
∫

∂�

gv1 + D(u,v2).
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Comparing this to the right-hand side of (18),

〈F,v〉 +
∫

∂�

gv = 〈f, v1〉 + 〈φ,v2〉 +
∫

∂�

gv1 +
∫

∂�

gv2,

we see that φ must satisfy

〈φ,v2〉 = D(u,v2) −
∫

∂�

gv2 (19)

for all v2 ∈ L2
c(�)⊥. The inequality (11) from Hypothesis 4(iii) implies the right-hand side of 

(19) is a bounded linear functional on L2
c(�)⊥, so the existence of φ follows from the Riesz 

representation theorem. Setting F = f +φ completes the proof of (18). Then for any v ∈ H 1
0 (�)

we obtain

D(u,v) = 〈F,v〉 ,

hence Lu = F ∈ L2(�) and PLu = PF = f as was claimed. �

We next give a result on the solvability of a Robin-type boundary value problem that will be 

needed in the proof of Lemma 4. Suppose u ∈ H 1(�) ∩ L2
c(�) satisfies

D(u,v) = λ 〈u,v〉 + ζ

∫

∂�

(Ru)v (20)

for every v ∈ H 1(�) ∩ L2
c(�), where R : H 1/2(∂�) → H−1/2(∂�) is the Riesz duality map and 

ζ ∈R. It follows from Lemmas 1 and 2 that PLu = λu and

∂u

∂ν
− ζRu = 0,

and so we refer to this as a constrained Robin-type problem. Note that this is not a traditional 

Robin boundary value problem, even in the absence of constraints, on account of the Riesz oper-

ator R that appears in the boundary conditions.

Lemma 3. For any fixed λ0 ∈R, there exists ζ0 ∈R such that the constrained Robin-type bound-

ary value problem (20) is invertible for all λ sufficiently close to λ0.

In particular, this means the homogeneous problem only admits the zero solution, whereas the 

inhomogeneous problem

PLu = λu,
∂u

∂ν
− ζ0Ru = h (21)

has a unique solution for each h ∈ H−1/2(∂�), provided |λ − λ0| � 1. This construction is the 

key ingredient in the proof of Lemma 4, where it will be used to write the constrained Cauchy 

data space μc(λ) as the graph of a selfadjoint operator on a fixed Lagrangian subspace.
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Proof. We will in fact prove that ζ0 can be chosen arbitrarily close to 0. Consider the bilinear 

form

Dζ (u, v) = D(u,v) − λ0 〈u,v〉 − ζ

∫

∂�

(Rγ u)γ v

on H 1(�) ∩ L2
c(�), which is dense in L2

c(�) by Hypothesis 4(ii) as X ⊂ H 1(�). The boundary 

term satisfies 
∫
∂�

(Rγ u)γ u = ‖γ u‖2
H 1/2(∂�)

≤ C‖u‖2
H 1(�)

, so the form Dζ is semibounded for 

any ζ ≤ 0, and for sufficiently small ζ > 0. It is also closed, since H 1(�) ∩ L2
c(�) is a closed 

subspace of H 1(�), and hence generates an unbounded, selfadjoint operator Lζ ; see [30, The-

orem VIII.15] for the general result, and [8, Appendix A] for a discussion of this construction 

in the context of elliptic boundary value problems. By construction, u ∈ kerLζ if and only if u

solves the homogeneous problem

P(L − λ0)u = 0,
∂u

∂ν
− ζRu = 0.

It follows immediately from the proof of Theorem 3.2 in [31] that the ordered eigenvalues of Lζ

are strictly monotone with respect to ζ . Therefore, if L0 is not invertible, Lζ will be for any 0 <

|ζ | � 1. Since Lζ has discrete spectrum, Lζ + (λ0 − λ)I is also invertible for |λ − λ0| � 1. �

Finally, we discuss the relationship of the selfadjoint operator Lc defined using the bilinear 

form (7) restricted to X ∩ L2
c(�) (which is dense in L2

c(�) by Hypothesis 4(ii)) to the operator 

PL
∣∣
L2

c(�)
that typically arises in the stability literature. To simplify the discussion here we will 

only consider X = H 1
0 (�) (Dirichlet) or X = H 1(�) (Neumann). Recall that L is the operator 

corresponding to the bilinear form D with form domain X ⊂ H 1(�), whereas Lc corresponds to 

the form D restricted to X ∩ L2
c(�). By definition, these operators have domains

D(L) =
{
u ∈ X : ∃ F ∈ L2(�) with D(u,v) = 〈F,v〉 for all v ∈ X

}

and

D(Lc) =
{
u ∈ X ∩ L2

c(�) : ∃ f ∈ L2
c(�) with D(u,v) = 〈f, v〉 for all v ∈ X ∩ L2

c(�)
}

which are dense in L2(�) and L2
c(�), respectively.

Proposition 1. If Hypothesis 4 is satisfied and X is either H 1
0 (�) or H 1(�), then Lc =

PL
∣∣
L2

c(�)
.

Proof. Let u ∈ D(L) ∩ L2
c(�), with Lu = F ∈ L2(�). From the definition of L, this means 

D(u, v) = 〈F,v〉 for all v ∈ X. In particular, for any v ∈ X ∩ L2
c(�) we have

D(u,v) = 〈F,v〉 = 〈PF,v〉 ,

hence u ∈ D(Lc) and Lcu = PF = PLu. It follows that PL
∣∣
L2

c(�)
⊂ Lc.
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To prove the other direction, let u ∈ D(Lc), with Lcu = f . This means D(u, v) = 〈f, v〉 for all 

v ∈ X ∩ L2
c(�), and hence for all v ∈ H 1

0 (�) ∩ L2
c(�). By Lemmas 1 and 2 there exist functions 

g ∈ H−1/2(∂�) and F ∈ L2(�) such that

D(u,v) = 〈F,v〉 +
∫

∂�

gγ v (22)

for all v ∈ H 1(�), and hence for all v ∈ X.

If X = H 1
0 (�), then γ v = 0 for all v ∈ X. It follows from (22) that D(u, v) = 〈F,v〉 for all 

v ∈ X, hence u ∈ D(L) and Lu = F . On the other hand, if X = H 1(�), then u ∈ D(Lc) implies 

D(u, v) = 〈f, v〉 for all v ∈ H 1(�) ∩ L2
c(�). Comparing with (22), we see that

∫

∂�

gγ v = 0

for all v ∈ H 1(�) ∩ L2
c(�). Using Hypothesis 4(i), we conclude that g = 0. It follows that 

D(u, v) = 〈F,v〉 for all v ∈ H 1(�) = X, which means u ∈ D(L) and Lu = F . Thus for ei-

ther choice of X we have u ∈ D(L) and Lu = F , hence PLu = PF = f = Lcu. This implies 

Lc ⊂ PL
∣∣
L2

c(�)
and thus completes the proof. �

3.3. Construction of the Maslov index

We now have all of the ingredients in place to define the constrained Maslov index, and prove 

that it equals (minus) the Morse index of the constrained operator Lc. For the remainder of the 

section we assume Hypotheses 1, 2 and 3.

The space of weak solutions for the constrained problem, in the absence of boundary condi-

tions, is

Kc(λ) =
{
u ∈ H 1(�) ∩ L2

c(�) : D(u,v) = λ 〈u,v〉 for all v ∈ H 1
0 (�) ∩ L2

c(�)
}
, (23)

where the bilinear form D is defined in (7). Any u ∈ Kc(λ) satisfies the hypotheses of Lemma 1, 

with f = λu, and so the boundary trace (or Cauchy data)

tru :=
(

u,
∂u

∂ν

)∣∣∣∣
∂�

is a well-defined element of H 1/2(∂�) ⊕ H−1/2(∂�), and

μc(λ) = {tru : u ∈ Kc(λ)} (24)

defines a subspace of H 1/2(∂�) ⊕ H−1/2(∂�). In fact, from Lemma 2 we have u ∈ H 2
loc(�), 

and so it follows from a unique continuation argument (as in [2]) that

tr : Kc(λ) → H 1/2(∂�) ⊕ H−1/2(∂�)

is injective.
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Lemma 4. The mapping λ �→ μc(λ) defines a smooth family of Lagrangian subspaces in H.

Proof. We first prove that μc(λ) is isotropic. Let u, v ∈ Kc(λ). Then Lemma 1 implies

ω(tru, trv) =
∫

∂�

(
u

∂v

∂ν
− v

∂u

∂ν

)

= D(v,u) − 〈λv,u〉 − D(u,v) + 〈λu, v〉
= 0

because D is symmetric.

We now use the strategy of [8, Proposition 3.5] to prove that μc(λ) is Lagrangian and is 

smooth with respect to λ. The idea, as described in Section 3.1, is to realize each subspace 

μc(λ) as the graph of a bounded, selfadjoint operator A(λ) on a fixed Lagrangian subspace. 

This will imply each subspace is in fact Lagrangian, and the family {μc(λ)} is as smooth with 

respect to λ as the family {A(λ)} is. The operator A(λ) will be a constrained Robin-to-Robin 

map for L − λ. (The Neumann-to-Dirichlet map suffices whenever it is defined, i.e. when the 

constrained operator with Neumann boundary conditions is invertible.) The main modification 

to the argument in [8] stems from using Lemma 3 to find a Robin-type boundary condition for 

which the constrained operator is invertible.

Since smoothness is a local property, it will suffice to construct A(λ) in a neighborhood of a 

fixed λ0. By Lemma 3 there exists ζ0 ∈R so that the constrained boundary value problem (21) is 

invertible for |λ − λ0| � 1. Using this fixed value of ζ0 we define the subspace

ρ = {(f, g) ∈ H : f + ζ0R
−1g = 0}.

By construction, for any (f, g) ∈ ρ there is a unique weak solution u = u(λ) ∈ H 1(�) ∩ L2
c(�)

to

PLu = λu,
∂u

∂ν
− ζ0Ru = h (25)

with h = g − ζ0Rf ∈ H−1/2(∂�). From this solution u we define

A(λ)(f,g) = J−1
(
γ u − f, ζ0R(γu − f )

)
.

Since 
(
γ u − f, ζ0R(γu − f )

)
is contained in the subspace Jρ = {(f, g) : g = ζ0Rf }, we have 

A(λ) : ρ → ρ as desired. The proof that A(λ) is selfadjoint follows directly from Green’s identity, 

as in [8], Proposition 3.5. Moreover, A(λ) must be bounded, as it is defined on all of ρ. Therefore, 

the graph Grρ(A(λ)) is Lagrangian for each λ.

For each (f, g) ∈ ρ we have

(f, g) + JA(λ)(f, g) =
(
γ u,g + ζ0R(γu − f )

)
= tru,

where u is a weak solution to PLu = λu and as such is contained in Kc(λ). This implies 

Grρ(A(λ)) ⊂ μc(λ). Using the fact that μc(λ) is isotropic and Grρ(A(λ)) is Lagrangian (hence 
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maximal), we conclude that Grρ(A(λ)) = μc(λ). This completes the proof that μc(λ) is La-

grangian. �

We next consider the boundary conditions. The following result was established in [8, 

Lemma 3.6].

Lemma 5. The boundary space β ⊂H is Lagrangian.

Next, we study the intersection properties of μc(λ) and β .

Lemma 6. For each λ ∈ R, μc(λ) and β comprise a Fredholm pair, with dimμc(λ) ∩ β =
dim ker(Lc − λ).

Proof. We follow the proof of Lemma 3.4 in [6]. Let Pβ denote the orthogonal projection onto 

the boundary subspace β ⊂ H, and P ⊥
β = I − Pβ the complementary projection. Suppose u ∈

Kc(λ). Letting v = u in Lemma 1, we obtain

∫

�

[
|∇u|2 + (V − λ)u2

]
=
∫

∂�

u
∂u

∂ν

and so

‖u‖2
H 1(�)

≤ C

⎛
⎝‖u‖2

L2(�)
+
∫

∂�

u
∂u

∂ν

⎞
⎠

for some constant C = C(λ). Next, from [8, Lemma 3.7] we have

∫

∂�

u
∂u

∂ν
≤ C

(
ε‖u‖2

H 1(�)
+ ε−1

∥∥∥P ⊥
β (tru)

∥∥∥
2

H

)

for any ε > 0, from which we obtain

‖u‖H 1(�) ≤ C
(
‖u‖L2(�) +

∥∥∥P ⊥
β (tru)

∥∥∥
H

)
. (26)

It now follows from Peetre’s Lemma [26, Lemma 3] (cf. the proof of [6, Lemma 3.4]) that 

P⊥
β

∣∣
μc(λ)

: μc(λ) → H is Fredholm, hence μc(λ) and β are a Fredholm pair, by [13, Proposi-

tion 2.27].

Finally, the fact that dimμc(λ) ∩ β = dim ker(Lc − λ) follows from the definitions of both 

spaces and the fact that the trace map is injective. �

Remark 3. In general, the statement of Lemma 3 of [26] is that an estimate of the form (26) only 

implies that μc(λ) + β is closed and μc(λ) ∩ β is finite dimensional. However, since μc(λ) and 

β are already known to be Lagrangian (by Lemmas 4 and 5), we have

(μc(λ) + β)⊥ = μc(λ)⊥ ∩ β⊥ = J (μc(λ)) ∩ Jβ = J (μc(λ) ∩ β).
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Since J is an isomorphism and μc(λ) + β is closed, this implies codim(μc(λ) + β) =
dim(μc(λ) ∩ β) < ∞, so μc(λ) and β are indeed a Fredholm pair.

Combining Lemmas 4, 5 and 6, we see that μc(λ) is a smooth path in F
β(H), so its Maslov 

index is well defined. In the final lemma of this section we relate this Maslov index to the Morse 

index of the constrained operator Lc, thus completing the proof of Theorem 1.

Lemma 7. There exists λ∞ < 0 such that μc(λ) ∩ β = {0} for all λ ≤ λ∞, and

n(Lc) = −Mas
(
μc

∣∣
[λ∞,0];β

)
.

Proof. We first prove the existence of λ∞. Suppose μc(λ) ∩ β �= {0}, so the constrained eigen-

value problem has a nontrivial solution. That is, there exists u ∈ H 1(�) ∩ L2
c(�) satisfying 

P(L − λ)u = 0, with the given boundary conditions. It follows that

λ

∫

�

u2 =
∫

�

[
|∇u|2 + V u2

]
,

so λ ≥ infV . Therefore any λ∞ < infV will suffice.

We next claim that the path μc(λ) is negative definite, in the sense that is always passes 

through β in the same direction. This means the Maslov index is equal to (minus) the number of 

intersections of μc(λ) with β , hence

Mas
(
μc

∣∣
[λ∞,0];β

)
= −

∑

λ∞≤λ<0

dim(μc(λ) ∩ β) = −
∑

λ<0

dim(μc(λ) ∩ β) = −n(Lc).

The second equality follows from the fact that there are no intersections for λ < λ∞, and the 

third equality is just the definition of the Morse index.

It only remains to prove the claimed monotonicity of μc(λ). We do this using crossing forms, 

as described in Section 3.1.

Suppose u(λ) is a smooth curve in Kc(λ), so D(u, v) = λ 〈u,v〉 for all v ∈ H 1
0 (�) ∩ L2

c(�), 

hence D(u′, v) =
〈
λu′ + u,v

〉
, where ′ denotes differentiation with respect to λ. It follows from 

Lemma 1 that

ω
(
tru, tru′)=

∫

∂�

(
u

∂u′

∂ν
− u′ ∂u

∂ν

)

=
(
D(u′, u) −

〈
λu′ + u,u

〉 )
−
(
D(u,u′) − λ

〈
u,u′〉 )

= −
∫

�

u2

and so the path is negative definite as claimed. �



2942 G. Cox, J.L. Marzuola / J. Differential Equations 266 (2019) 2924–2952

3.4. Equivalence of Hypotheses 3 and 4

Before proving the constrained Morse index theorem, we verify the claim made in the Intro-

duction about Hypotheses 3 and 4. As usual, we assume Hypothesis 1, which implies H 1(�) is 

compactly embedded in L2(�).

First suppose Hypothesis 4 is satisfied. Part (iii) implies L2
c(�)⊥ is compactly embed-

ded in L2(�), and hence is finite dimensional. Therefore it can be written as L2
c(�)⊥ =

span{φ1, . . . , φm}, with each φi ∈ H 1(�). Since L2
c(�) is closed, Hypothesis 3 follows.

Conversely, suppose Hypothesis 3 is satisfied. It follows immediately that L2
c(�) is closed and 

has finite codimension. The remainder of Hypothesis 4 is then a consequence of the following 

lemma.

Lemma 8. If L2
c(�)⊥ = span{φ1, . . . , φm} for functions φi ∈ H 1(�), then

γ
(
H 1(�) ∩ L2

c(�)
)

= H 1/2(∂�),

and

H 1
0 (�) ∩ L2

c(�) = L2
c(�).

Proof. Let χε be a smooth cutoff function on � that vanishes on the boundary and satisfies 

χε(x) = 1 whenever dist(x, ∂�) > ε. We assume without loss of generality that the {φi} are 

orthonormal.

Suppose f ∈ H 1/2(∂�) is given. Since γ : H 1(�) → H 1/2(∂�) is surjective (see, for in-

stance, [25, Lemma 3.37]), there exists u ∈ H 1(�) with γ u = f . Now define

uc = u + χε

m∑

i=1

αiφi

with coefficients α1, . . . , αm to be determined. Since χε vanishes on the boundary, uc satisfies 

γ uc = γ u = f . Moreover, uc ∈ L2
c(�) if and only if

m∑

i=1

αi

∫

�

χεφiφj = −
∫

�

uφj

for each j . This is a linear equation for the coefficients {αi}, and will have a solution if the matrix

Mij (ε) =
∫

�

χεφiφj

is invertible. The dominated convergence theorem implies

lim
ε→0

∫

�

χεφiφj =
∫

�

φiφj = δij ,

hence Mij (ε) is invertible for sufficiently small ε.
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The second claim follows from a similar construction. Suppose u ∈ L2
c(�), so there exists 

a sequence (uk) in H 1
0 (�) with uk → u in L2(�). To obtain an approximating sequence in 

H 1
0 (�) ∩ L2

c(�), we replace each uk by

ũk = uk + χε

m∑

i=1

αk
i φi,

where (αk
i ) solve the linear equation

m∑

i=1

Mij (ε)α
k
i = −

∫

�

ukφj

and ε is chosen small enough to ensure Mij (ε) is invertible. The fact that uk → u implies

∫

�

ukφj −→
∫

�

uφj = 0,

for each j , hence αk
i → 0 as k → ∞. It follows that ũk − uk → 0, and so ũk → u. �

4. The constrained Morse index theorem

Now consider a one-parameter family of domains {�t}a≤t≤b in Rn. For simplicity we will 

assume that each �t has smooth boundary, and that the domains are increasing and varying 

smoothly in time. More precisely, we suppose that there is a fixed domain � = �b ⊂ R
n, with 

smooth boundary, and a one-parameter family of diffeomorphisms ϕt : � → �t such that the 

outward normal component of the velocity

νϕt (x) · d

dt
ϕt (x)

is strictly positive for each x ∈ ∂� and t ∈ [a, b]. (Here νϕt (x) denotes the outward unit nor-

mal to ∂�t at the point ϕt (x).) See [8, §2.2] for a description of the nonsmooth case for the 

unconstrained problem.

The idea is to define a Maslov index with respect to the t parameter, then use a homotopy 

argument to relate this to the Maslov index defined in Section 3, and hence to the Morse index 

of the constrained operator. There is some freedom in how one chooses the constraints on �t

in relation to the original constraints on �. Our choice is motivated by the requirement that the 

resulting path be monotone in t , which is necessary for the proof of Theorem 3.

4.1. The general index theorem

Let Et : L2(�t ) → L2(�) denote the operator of extension by zero, and define

L2
c(�t ) =

{
u ∈ L2(�t ) : Etu ∈ L2

c(�)
}

. (27)
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In other words, L2
c(�t ) consists of functions whose extension by zero satisfies the constraints on 

the larger domain �. To motivate this choice, suppose L2
c(�) = {φ}⊥ for some function φ. Then 

for any function u ∈ L2(�t ) we have

u ∈ L2
c(�t ) ⇐⇒ Etu ∈ L2

c(�) ⇐⇒
∫

�

(Etu)φ = 0 ⇐⇒
∫

�t

uφ = 0,

and so L2
c(�t ) = {φ|�t }⊥. We then define Lt

c to be the selfadjoint operator corresponding to the 

bilinear form (7) with form domain H 1(�t ) ∩ L2
c(�t ) (for the Neumann problem) or H 1

0 (�t ) ∩
L2

c(�t ) (for the Dirichlet problem). Our index theorem computes the spectral flow of the family 

{Lt
c}, i.e. the difference in Morse indices, n(Lb

c) − n(La
c ). To describe this, it is convenient to 

reformulate the problem in terms of a t -dependent family of bilinear forms on a fixed domain.

To that end, we define the bilinear form

Dt (u, v) =
∫

�t

[
∇(u ◦ ϕ−1

t ) · ∇(v ◦ ϕ−1
t ) + V (u ◦ ϕ−1

t )(v ◦ ϕ−1
t )
]

(28)

for u, v ∈ H 1(�), and define the subspace

L2
c,t (�) = {u ◦ ϕt : u ∈ L2

c(�t )} ⊂ L2(�).

Suppose φ ∈ L2
c(�)⊥. Then for any u ∈ L2

c,t (�) we have u ◦ ϕ−1
t ∈ L2

c(�t ), hence

0 =
∫

�t

(u ◦ ϕ−1
t )φ =

∫

�

u(φ ◦ ϕt )det(Dϕt ).

In other words, the rescaled constraint space in L2(�) is

L2
c,t (�)⊥ =

{
det(Dϕt )(φ ◦ ϕt ) : φ ∈ L2

c(�)⊥
}

. (29)

This explicit description of the rescaled constraint functions will be used below in the crossing 

form calculation for the Dirichlet problem. However, in order to define the Maslov index, it is 

convenient to transform the problem into one with constraints independent of t . This motivates 

the following.

Hypothesis 5. For each t0 ∈ [a, b] there exists a smooth family of operators Tt : H 1(�) ∩
L2

c,t0
(�) → H 1(�), defined in a neighborhood of t0, with ran(Tt ) = H 1(�) ∩ L2

c,t (�) and 

‖Ttu‖H 1(�) ≥ c‖u‖H 1(�) for some c > 0.

It is easy to see that this hypothesis is satisfied for a single constraint function, as in Theorem 3.

Lemma 9. Suppose L2
c(�) = {φ}⊥ for some φ ∈ H 1(�). If 

∫
�t

φ2 > 0 for all t , then L2
c,t (�)

satisfies Hypothesis 5.
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Proof. Since φ ∈ H 1(�), the t -dependent constraint functions φt = det(Dϕt )(φ ◦ ϕt ) found in 

(29) form a smooth curve in H 1(�), so the L2(�) normalized constraints φ̂t do as well. Now 

define

Ttu = u − Ptu,

where Ptu denotes the L2 orthogonal projection onto φ̂t . It follows from the definition that 

Tt : H 1(�) → H 1(�) is bounded, and in fact is smooth with respect to t .

We now fix t0 ∈ [a, b] and consider the restriction to H 1(�) ∩L2
c,t0

, which we again denote Tt . 

Let u ∈ H 1(�) ∩ L2
c,t0

, so 
〈
u, φ̂t0

〉
= 0. We thus compute

‖Ptu‖H 1(�) =
∣∣〈u, φ̂t − φ̂t0

〉∣∣‖φ̂t‖H 1(�)

≤ ‖φ̂t‖H 1(�)‖φ̂t − φ̂t0‖L2(�)‖u‖H 1(�)

so ‖Ptu‖H 1(�) ≤ 1
2
‖u‖H 1(�) for t sufficiently close to t0. It follows from the definition of Tt that

‖u‖H 1(�) ≤ ‖Ttu‖H 1(�) + ‖Ptu‖H 1(�) ≤ ‖Ttu‖H 1(�) + 1

2
‖u‖H 1(�)

and so ‖Ttu‖H 1(�) ≥ 1
2
‖u‖H 1(�) for all u ∈ L2

c,t0
(�). �

In order to state the main result in this section, we observe that there is a formal differential 

operator Lt , and a boundary operator Bt , so that a version of Green’s first identity

Dt (u, v) = 〈Ltu,v〉 +
∫

∂�

(Btu)v

holds if u ∈ H 1(�) and Ltu ∈ L2(�). We thus define the space of weak solutions to the 

(rescaled) constrained problem

Kc(λ, t) =
{
u ∈ H 1(�) ∩ L2

c,t (�) : Dt (u, v) = λ 〈u,v〉 for all v ∈ H 1
0 (�) ∩ L2

c,t (�)
}
,

and the space of Cauchy data

μc(λ, t) = {trt u : u ∈ Kc(λ, t)},

using the rescaled trace map

trt u := (u,Btu)

∣∣∣
∂�

.

Theorem 4. Let {�t } be a smooth increasing family of domains, defined for a ≤ t ≤ b. If L2
c(�)

satisfies Hypotheses 3 and 5, then

n(La
c ) − n(Lb

c) = Mas
(
μc(0, ·)

∣∣
[a,b];β

)
. (30)
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In other words, the Maslov index computes the spectral flow of the constrained family {Lt
c}.

Proof. The proof is a standard application of the homotopy invariance of the Maslov index. The 

space Kc(λ, t) of weak solutions is defined in terms of the form Dt on H 1(�) ∩ L2
c,t (�). By 

Hypothesis 5, in a neighborhood of each t0 this is equivalent to a coercive form Dt ◦ Tt on the 

fixed (t -independent) domain H 1(�) ∩ L2
c,t0

(�). Since Dt ◦ Tt is a smooth family of coercive 

forms, we can use the theory developed in [8] (which is reviewed in the proof of Lemma 4), to 

see that

μc : [λ∞,0] × [a, b] −→F
β(H)

is a smooth two-parameter family of Lagrangian subspaces.

This means the image under μc of the boundary of [λ∞, 0] × [a, b] is null-homotopic, hence 

its Maslov vanishes. Summing the four sides of the boundary with the appropriate orientation, 

we obtain

Mas
(
μ(·, a)

∣∣
[λ∞,0]

)
+ Mas

(
μ(0, ·)

∣∣
[a,b]

)
= Mas

(
μ(λ∞, ·)

∣∣
[a,b]

)
+ Mas

(
μ(·, b)

∣∣
[λ∞,0]

)
.

The monotonicity computation in Lemma 7 shows that

Mas
(
μ(·, t)

∣∣
[λ∞,0]

)
= −n(Lt

c)

for any t ∈ [a, b], and the choice of λ∞ implies that

Mas
(
μ(λ∞, ·)

∣∣
[a,b]

)
= 0.

This completes the proof. �

4.2. The Dirichlet crossing form

We now complete the proof of Theorem 3 by computing the right-hand side of (30) when 

β is the Dirichlet subspace. This closely follows the crossing form computation in [8, §5]. In 

particular, it suffices to prove that the crossing form is negative definite at any crossing.

Let {ut } be a smooth family of solutions to the constrained problem with λ = 0, i.e. trut ∈
Kc(0, t). This means 

∫
�

utφt = 0 and Ltut ∝ φt , where

φt = det(Dϕt )(φ ◦ ϕt ) (31)

is the rescaled constraint function. More concretely, we can write Ltut = atφt , where at depends 

only on t , so that

Dt (ut , v) = at 〈φt , v〉 +
∫

∂�

(Btut )v

for all v ∈ H 1(�).
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Letting v = u′
t , we obtain

Dt (ut , u
′
t ) = at

〈
φt , u

′
t

〉
+
∫

∂�

(Btut )u
′
t .

On the other hand, differentiating with respect to t and then plugging in v = ut , we obtain

D′
t (ut , ut ) + Dt (u

′
t , ut ) = a′

t 〈φt , ut 〉 + at

〈
φ′

t , ut

〉
+
∫

∂�

(Btut )
′ut .

Therefore, the crossing form is

Q(trt ut ) = ω((trt ut ), (trt ut )
′) =

∫

∂�

(Btut )
′ut − (Btut )u

′
t = D′

t (ut , ut ) − 2at

〈
φ′

t , ut

〉
, (32)

where we have used the fact that 〈ut , φt 〉 = 0, hence 
〈
φt , u

′
t

〉
= − 

〈
φ′

t , ut

〉
.

To complete the computation we must find D′
t . Differentiating Dt (u, u) for a fixed u ∈ H 1(�), 

we have

D′
t (u,u) = −2Dt

(
u,∇X(u ◦ ϕ−1

t ) ◦ ϕt

)
+
∫

∂�t

[∣∣∣∇(u ◦ ϕ−1
t )

∣∣∣
2
+ V

∣∣∣u ◦ ϕ−1
t

∣∣∣
2
]

(X · νt ).

(33)

Here X denotes the velocity of the flow {ϕt}, i.e. ϕ′
t (x) = X(ϕt (x)), and we have used the fact 

that

d

dt
(u ◦ ϕ−1

t ) = −∇X(u ◦ ϕ−1
t ),

which is obtained by writing

0 = d

dt
(u ◦ ϕ−1

t ◦ ϕt ) = d

dt
(u ◦ ϕ−1

t ) ◦ ϕt + ∇X(u ◦ ϕ−1
t ) ◦ ϕt .

We now assume that t is a crossing time, so trt ut ∈ β . Evaluating the first term on the right-hand 

side of (33) at u = ut ∈ H 1
0 (�), and defining ̂u = ut ◦ ϕ−1

t , we obtain

Dt

(
ut ,∇X(ut ◦ ϕ−1

t ) ◦ ϕt

)
= Dt (ut , (∇Xû) ◦ ϕt )

= 〈Ltut , (∇Xû) ◦ ϕt 〉 +
∫

∂�

(Btut )(∇Xû) ◦ ϕt

= at 〈φt , (∇Xû) ◦ ϕt 〉 +
∫

∂�t

(
∂û

∂νt

)2

(X · νt ).
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Since ̂u vanishes on ∂�t , the boundary term in (33) simplifies to

∫

∂�t

[
|∇û|2 + V |̂u|2

]
(X · νt ) =

∫

∂�t

(
∂û

∂νt

)2

(X · νt )

and so

D′
t (ut , ut ) = −2at 〈φt , (∇Xû) ◦ ϕt 〉 −

∫

∂�t

(
∂u

∂νt

)2

(X · νt ) dμt . (34)

Combining this with (32), we find that

Q(trt ut ) = −2at 〈φt , (∇Xû) ◦ ϕt 〉 − 2at

〈
φ′

t , ut

〉
−
∫

∂�t

(
∂û

∂νt

)2

(X · νt ). (35)

This expression for the crossing form is generally valid, in the sense that it holds for any 

smooth family of constraint functions {φt }. We now show that our choice of φt is such that the 

first two terms on the right-hand side cancel, resulting in a form that is sign definite.

Differentiating (31), we obtain

φ′
t = det(Dϕt )div(X)(φ ◦ ϕt ) + det(Dϕt )(∇Xφ) ◦ ϕt = det(Dϕt )div(φX) ◦ ϕt .

On the other hand, we can use the divergence theorem, together with the fact that ̂u vanishes on 

∂�t , to write

〈φt , (∇Xû) ◦ ϕt 〉 =
∫

�

det(Dϕt )(φ ◦ ϕt )(∇Xû) ◦ ϕt

=
∫

�t

φ∇Xû

= −
∫

�t

ûdiv(φX)

= −
∫

�

ut det(Dϕt )div(φX) ◦ ϕt

= −
〈
ut , φ

′
t

〉
.

Thus the first two terms on the right-hand side of (35) cancel, and the crossing form simplifies to

Q(trut ) = −
∫

∂�t

(
∂û

∂νt

)2

(X · νt ). (36)
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Remark 4. The above computation readily generalizes to any finite number of constraints. The 

constrained equation becomes Ltut =
∑

ai
t φ

i
t , where {φi

t } are the rescaled constraint functions, 

and the right-hand side of (35) simply becomes

−2
∑

ai
t

[〈
φi

t , (∇Xû) ◦ ϕt

〉
+
〈
(φi

t )
′, ut

〉]
−
∫

∂�t

(
∂û

∂νt

)2

(X · νt ) = −
∫

∂�t

(
∂û

∂νt

)2

(X · νt ),

where each of the terms in brackets vanishes, as in the case of a single constraint.

5. An application to the nonlinear Schrödinger equation

As a final application of Theorem 3, we study the stability of the ground state solution of the 

nonlinear Schrödinger equation (1). Under a mild condition on f and ω (see, for instance, [3, 

Appendix]), there exists an even, positive solution φ to

φxx + f (φ2)φ + ωφ = 0, lim
|x|→∞

φ(x) = 0 (37)

that is decreasing for x > 0. It follows that L−φ = 0, hence n(L−) = 0 since φ > 0 is then 

the ground state eigenfunction of L−. We are interested in computing the Morse index of L+, 

constrained to (kerL−)⊥ = {φ}⊥. We do this by applying Theorem 3 to the semi-infinite domain 

�t = (−∞, t).

Remark 5. The following computation is not, strictly speaking, an application of Theorem 3, 

which was only proved for bounded domains. A Morse–Maslov index theorem for semi-infinite 

domains recently appeared in [1]; see also [4,17,18]. Instead of focusing on technical details, we 

simply compute the conjugate points, and observe that a formal application of Theorem 3 yields 

the well-known stability criterion of Vakhitov and Kolokolov.

Differentiating (37) with respect to x, we obtain L+(φx) = 0. Moreover, assuming the map 

ω �→ φ is C1, we also have L+(φω) = φ. As proved in [35, Appendix A], the homogeneous 

equation L+u = 0 has one linearly independent solution that is in L2 as x → −∞, namely φx , 

and so as 0 is an isolated eigenvalue of L+, any solution to the inhomogeneous equation L+u = φ

that decays at −∞ is of the form

u = Aφx + φω

for some A ∈R. The constraint on (−∞, t) is

0 =
t∫

−∞

uφ =
t∫

−∞

(Aφφx + φφω) = 1

2

⎛
⎝Aφ2(t) + ∂

∂ω

t∫

−∞

φ2(x) dx

⎞
⎠ (38)

and the Dirichlet boundary condition at t is

Aφx(t) + φω(t) = 0. (39)

By definition, t ∈R is a conjugate point when both (38) and (39) are satisfied.
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Fig. 1. The function c(t) for the power-law nonlinearity f (φ2) = (p + 1)φ2p .

Now define

g(u) = u−1

u∫

0

f (v) dv, u > 0,

so that ug′(u) + g(u) = f (u). It follows that φ2
x + [ω + g(φ2)]φ2 is constant for any solution 

to (37). Since φ ∈ H 1(R), we have φ2
x + [ω + g(φ2)]φ2 = 0. Differentiating this equation with 

respect to ω, we find that

φxφxω + g′(φ2)φ3φω + 1

2
φ2 + [ω + g(φ2)]φφω = 0. (40)

Since φ is positive, this implies φx and φω do not simultaneously vanish. Together with (39), this 

implies φx(t) �= 0 if t is a conjugate point, hence A = −φω(t)/φx(t). Substituting this into (38), 

we find that t is a conjugate point precisely when it is a root of the function

c(t) = −φ2(t)φω(t)

φx(t)
+ ∂

∂ω

t∫

−∞

φ2(x) dx. (41)

This function is plotted in Fig. 1 for the power law f (φ2) = φ2p . In this case it is easily verified 

that there is a conjugate point if and only if p > 2.

It is not difficult to verify that the function c has the following properties:

(i) lim
t→−∞

c(t) = 0;

(ii) lim
t→0−

c(t) = ∞;

(iii) lim
t→0+

c(t) = −∞;

(iv) lim
t→∞

c(t) = ∂

∂ω

∞∫

−∞

φ2(x) dx;

(v) c′(t) > 0 for t �= 0.
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In particular, for (v) we differentiate to obtain

c′(t) = φ2

(
φωφxx − φωxφx

φ2
x

)∣∣∣∣
x=t

for t �= 0. Using (37) and (40) to compute φxx and φxω we find that

φωφxx − φωxφx = 1

2
φ2.

Since φ > 0, this implies c′(t) > 0.

It follows immediately that there are no conjugate points in (−∞, 0), and there is a single 

conjugate point in (0, ∞) if and only if the “slope” ∂ω

∫
φ2 is positive. Hence, by a formal 

application of Theorem 3, the slope condition determines whether or not the number of negative 

eigenvalues of L+ constrained to (kerL−)⊥ differs from the number of negative eigenvalues 

of L−. As a result, the (in)stability of the resulting non-selfadjoint operator for the ground state 

follows from the results of Jones [19] and Grillakis [14,15], as recalled the discussion in the 

Introduction. Note that this also suggests that for a domain of sufficiently small volume, an 

unstable problem can be stabilized. As seen in the recent paper [11], this phenomenon can be seen 

in excited states as well and is a natural further direction for analysis involving the constrained 

Maslov index tools developed here.
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