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ABSTRACT

Many existing models that predict landslide hazards utilize ground-based sources of precipitation data.

In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe),

or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation

products offer a promising near-real-time alternative to ground-based data. NASA’s global Landslide

Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite

Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard ‘‘nowcasts’’ in near–

real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates,

however, can contain considerable systematic bias and random error, especially over mountainous terrain

and during extreme rainfall events. This study combines a precipitation error modeling framework with a

probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic

version correctly predicts more of the observed landslides in the study region with fewer false alarms by

high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be

achieved regardless of whether the IMERG error model is trained using abundant ground-based pre-

cipitation observations or using far fewer and more scattered observations, suggesting that the approach

is viable in data-limited regions. Results emphasize the importance of accounting for both random error

and systematic satellite precipitation bias. The approach provides an example of how environmen-

tal prediction models can incorporate satellite precipitation uncertainty. Other applications such as

flood and drought monitoring and forecasting could likely benefit from consideration of precipitation

uncertainty.

1. Introduction

Landslides result in thousands of fatalities, property

loss, and infrastructure damage around the world every

year (Dilley et al. 2005; Froude and Petley 2018; Petley

2012). They occur across a broad range of geographic,

climatic, and land use settings and can range fromminor

slope failures to kilometers-long debris flows. Factors

that determine landslide hazard can be sorted into two

categories: 1) static factors that determine an area’s

preexisting susceptibility to landsliding, such as slope,

aspect, forest loss, road cut activity, lithology, and

distance to fault zones, and 2) dynamic factors that

trigger landslides (Dai et al. 2002; Sassa et al. 2014).

Static factors can be conceptualized as determining

where landslides are most likely to occur and dynamic

factors as determining when they occur within suscep-

tible areas. Though landslides can be initiated by seismicCorresponding author: Samantha H. Hartke, shartke@wisc.edu
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and human activity, rainfall is recognized as the most

widespread and frequent trigger (Dai et al. 2002; Guzzetti

et al. 2007; Petley et al. 2005).

Most existing landslide hazardmonitoring systems use

ground-based precipitation measurements. Japan and

Norway, for example, operate nationwide early-warning

systems that use radar rainfall measurements (Krøgli
et al. 2018; Devoli et al. 2015; Osanai et al. 2010), while

Italy’s early-warning system for rainfall-induced land-

slides, SANF, and Rio de Janiero’s ‘‘Alerta Rio’’ system

rely on rain gauge networks (Calvello et al. 2015; Piciullo

et al. 2017; Rossi et al. 2012). In many parts of the globe,

however, including in steep terrain and developing coun-

tries, such measurements are often lacking (Gebregiorgis

and Hossain 2014; Kidd et al. 2017), hampering real time

monitoring and warning of potential landslide hazards.

Satellite multisensor precipitation products (SMPPs)

provide near-real-time estimates of precipitation with

near-global coverage, potentially enabling prediction of

landslides and other environmental phenomena in lo-

cations and at scales not previously possible. SMPPs use

algorithms that merge passive microwave and infrared

sensing data from multiple satellites (e.g., Kidd and

Levizzani 2011; Kidd and Huffman 2011; Tapiador et al.

2012; Wright 2018). Commonly used SMPPs include the

TRMM Multisatellite Precipitation Analysis (TMPA;

Huffman et al. 2007), the Climate Prediction Center

(CPC) morphing technique (CMORPH; Joyce et al.

2004), and the Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural Networks

(PERSIANN; Sorooshian et al. 2000). In this study, we

use the recent Integrated Multisatellite Retrievals for

GPM (IMERG; Huffman et al. 2017), which is available

at 0.18, 30-min resolution available for 2000–present.

IMERG retrieves passive microwave (PMW) precipi-

tation estimates using the Goddard profiling algorithm

(GPROF) and blends PMWestimates with the IR-based

PERSIANN–Cloud Classification System algorithm us-

ing the CMORPH–Kalman filter Lagrangian time inter-

polation scheme (Huffman et al. 2017; Joyce et al. 2004;

Sorooshian et al. 2000).

Hong et al. (2006) first demonstrated the potential

for near-real-time global landslide hazard assessment

by combining TMPA with a global susceptibility map

(Hong et al. 2007). Farahmand and AghaKouchak

(2013) developed a global landslide model based on

Support Vector Machines that used PERSIANN precip-

itation data to globally classify landslide events. Brunetti

et al. (2018) and Nikolopoulos et al. (2017) evaluated the

suitability of SMPPs for use in landslide prediction

in Italy, finding that rain gauge products and SMPPs

may differ in their estimation of landslide-triggering

precipitation thresholds. Kirschbaum et al. (2015b)

developed a model to assess landslide hazard in Central

America using precipitation data from TMPA. This effort

evolved into the global Landslide Hazard Assessment for

SituationalAwareness (LHASA)model framework, which

uses precipitation data from IMERG to provide pub-

licly available near-real-time ‘‘nowcasts’’ of landslide

hazard around the world (Kirschbaum and Stanley

2018). Nowcasts identify areas with currently elevated

landslide hazard by indicating either moderate hazard

(yellow shading) or high hazard (red shading) in LHASA

model output.

None of these existing global landslide hazard models

explicitly address the systematic biases and random er-

rors that are prevalent in SMPPs. These errors pose a

key obstacle to the usage of satellite precipitation in

landslide hazard prediction and environmental predic-

tionmore generally (e.g., AghaKouchak et al. 2011; Tian

et al. 2009; Wright et al. 2017). SMPP performance de-

clines at high latitudes and over ice-covered land sur-

faces (Ferraro et al. 2013; Tian and Peters-Lidard 2010).

SMPPs have difficulty accurately depicting the extreme

rainfall rates and orographic enhancement that typify

landslide triggering conditions (Shige et al. 2013;

AghaKouchak et al. 2011). Furthermore, retrospec-

tive studies that characterize bias and other error

statistics of satellite precipitation based on compari-

son to ground reference data, which constitute the

bulk of existing SMPP error studies (see Maggioni et al.

2016) are not directly applicable to models that ingest

precipitation estimates. Instead, it is necessary to use an

error model, which can generate a corrected estimate,

range, or distribution of errors or values as soon as new

satellite estimates are made available. Development of

such models is nontrivial, since SMPP errors tend to be

non-Gaussian, heteroscedastic, and can be both discrete

and continuous (Maggioni et al. 2014; Tian et al. 2013).

To date, SMPP error modeling has relied on ground-

based precipitation data (e.g., rain gauges; bias-corrected

radar) to use as ‘‘ground truth’’ in order for model fitting

(henceforth referred to as ‘‘training’’). Unfortunately,

many parts of the world lack spatially or temporally

complete records of ground-based precipitation (Kidd

et al. 2017; Sun et al. 2018). This paucity of ground-

truth information (e.g., limited numbers of rain gauges)

has led previous error modeling studies to note that

some form of ‘‘regionalization’’ of error estimates or er-

ror model parameters would be necessary (Gebregiorgis

and Hossain 2014, 2013; Tang and Hossain 2009, 2012).

Modeling SMPP errors regionally may reduce finescale

variability in error structure, but the alternative is no

error models in data-limited regions.

In addition to producing error estimates in the first place,

another challenge is enabling environmental models to
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ingest such estimates. One approach is to generate en-

sembles consisting of multiple realizations of precipita-

tion time series or space–time fields and then use each

ensemble member to drive a prediction model. This

approach allows prediction models to be used without

any particular modification, as demonstrated in a num-

ber of studies using stochastic rainfall input for soil

moisture and landslide hazardmodeling (Maggioni et al.

2011; Nikolopoulos et al. 2010; White and Singham

2012). Though ensemble prediction models have been

developed for some applications, flood forecasting in

particular (Cloke and Pappenberger 2009), assembling

such ensembles can be nontrivial, while for complex

physics-based models, the requisite multiple simulations

may not be computationally feasible for real-time appli-

cations. An alternative approach is to directly ingest pre-

cipitation distributions generated by SMPP error models

into environmental prediction models. This latter approach

is challenging to implement and has received little attention.

In this study, we combine IMERG with a recent, rel-

atively simple, SMPP error model (Wright et al. 2017)

and a probabilistic adaptation of the existing LHASA

model framework. The approach is evaluated in the

mountainous Appalachian region of the southeastern

United States. This region features high-quality ground-

based precipitation observations, which are used to train

the error model. We examine the sensitivity of both

SMPP error estimates and landslide predictions to the

quantity of ground reference data used to train the error

model. The results highlight the potential value of in-

corporating both systematic and random precipitation

errors into environmental models, as well as the benefits

of modifying those models’ structures to explicitly ac-

commodate such error estimates. We consider the latter

point to be critical, since probabilistic representations of

precipitation are anticipated to become more common

in the near future (Kirstetter et al. 2018; Wright 2018),

and existing prediction models are not generally

configured to directly ingest probabilistic estimates

of precipitation.

Study region, precipitation data, and landslide sus-

ceptibility and inventory data are presented in section 2.

The existing LHASA model, the SMPP error model,

and a new probabilistic formulation of LHASA are in-

troduced in section 3. Results are presented in section 4,

and a discussion follows in section 5. A closing summary

and conclusions are provided in section 6.

2. Study region and data

a. Study region

The study region encompasses the Appalachian

Mountains in western North Carolina and eastern

Tennessee and extends north into Virginia and Kentucky

and south into Georgia and South Carolina (Figs. 1a,b).

Extreme precipitation is the primary natural hazard in

this region, causing floods and landslides that result in

deaths and economic losses (Moore et al. 2015). These

can result from tropical cyclones, mesoscale convective

systems, orographic uplift, and atmospheric rivers that

interact with the region’s complex terrain (Barros et al.

2014;Mahoney et al. 2016;Moore et al. 2015). Hurricane

Frances was followed by Hurricane Ivan within a

2-week period in September 2004, for example, and

caused approximately 400 landslides, 11 deaths,

and widespread property damage (Boyle 2014).

Landslides continue to pose a threat to the region, with

three fatalities occurring in May 2018 (Carter 2018;

Doom 2018).

b. Rainfall data

The study period is 2002–18. IMERG Version 6B

Early and Late, both of which are used in the opera-

tional version of LHASA and are produced with laten-

cies of 4 and 14h, respectively (Huffman et al. 2015), are

used. The Stage IV radar–gauge merged precipitation

product (Lin 2011), available over the continental

United States at hourly, roughly 4-km resolution,

serves as the ground reference. Stage IV has been used

previously to validate SMPPs (e.g., AghaKouchak

et al. 2011). Though ground-reference data such as

Stage IV can contain errors, we compared Stage IV

against rain gauge observations (results not shown)

and assume that such errors are negligible in com-

parison to SMPP errors for this study. Stage IV,

IMERG Early, and IMERG Late are aggregated to a

daily scale. Within the study area, IMERG observa-

tions of daily rainfall often differ from Stage IV and

IMERG observations of high precipitation are espe-

cially error-prone (Figs. 1c,d).

Rather than use precipitation directly, LHASA uses

an antecedent rainfall index (ARI) to define the dy-

namic component of a landslide hazard. ARIt is a 7-day

weighted accumulation of precipitation pt for day t and

the prior 6 days:

ARI
t
5
�
6

i50

p
t2i

w
i

�
6

i50

w
i

, (1)

where wi 5 (i 1 1)22. ARI is formulated to account for

the combined impacts of current and recent precipita-

tion on slope stability since soil moisture, pore water

pressure, and other physical processes are not explicitly

modeled in LHASA. More details on ARI and assigned
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weights can be found in Kirschbaum et al. (2015b) and

Kirschbaum and Stanley (2018).

c. Global landslide susceptibility map and landslide
inventory

The LHASA model (section 3a) uses the 1-km global

landslide susceptibility map developed by Stanley and

Kirschbaum (2017). The map depicts the static suscep-

tibility index (SI) determined using a fuzzy overlay

model to combine gridded datasets of five static factors:

slope, geology, distance to fault zones, presence of

roads, and forest loss. SI consists of integer values from 1

to 5, corresponding to very low, low,moderate, high, and

very high susceptibility (Fig. 2). The methodology used

to create the susceptibility map can be found in Stanley

and Kirschbaum (2017).

A landslide inventory was obtained from the North

Carolina Geological Survey (Wooten et al. 2016) and

the Global Landslide Catalog (GLC; Kirschbaum et al.

2010, 2015a), which provide databases of rainfall-

triggered landslides based on media reports and other

disaster databases. Landslide reports in theGLC include

information on the date, location, and impacts of the

events and provide an estimate of the landslide’s loca-

tion accuracy.

Only landslides occurring between 2002 and 2018

were used due to the limited length of IMERG and

Stage IV records. Additionally, landslide reports were

FIG. 1. (a) Eastern United States with study region inset. (b) Elevation and recorded landslides for study area. (c) Difference between

Stage IV and IMERG daily precipitation observations on 17 Sep 2004 during Hurricane Ivan. (d) Comparison of IMERG with Stage IV

throughout study area during 2002–18. Observations are fitted with a polynomial trend line. Observations less than 1mm are excluded

from this plot.
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only considered if the location accuracy in the inventory

was within 1 km, if the range of the date of occurrence

spanned less than 5 days, and if the trigger was listed as

rainfall. The inventory was inspected to remove any

duplicate landslide reports. This resulted in an inventory

of 214 landslides, approximately half of which are as-

sociated with Hurricane Frances and Hurricane Ivan in

September 2004 (Fig. 1b). Over 80% of landslides

recorded during the 2002–18 study period occurred in

high or very high susceptibility areas (SI $ 4; Table 1).

3. Methods

a. CSGD-based error modeling framework

SMPPs exhibit three types of error: false alarms, in

which the SMPP reports precipitation but none actually

occurs; missed cases, in which precipitation occurs but

the SMPP does not ‘‘see’’ it; and hits, in which the SMPP

correctly reports nonzero precipitation, but of the wrong

magnitude. The error modeling framework based on

censored shifted gamma distributions (CSGDs), de-

veloped by Scheuerer and Hamill (2015) for post-

processing ensemble numerical precipitation forecasts

and adapted by Wright et al. (2017) to model errors in

SMPPs, is capable of quantifying all three error types.

The CSGD is an adaptation of the two-parameter

gamma distribution (here written in terms of its mean

and standard deviation, but which can be reparame-

trized in terms of shape and scale parameters) with an

additional ‘‘shift’’ parameter d that shifts the probability

density function (PDF) leftward. The distribution is left-

censored at zero, replacing all negative values with zero.

The probability density left of zero thus represents the

probability of zero precipitation, while the density at any

value greater than zero represents the likelihood of that

amount of precipitation (Figs. 3a,b). The CSGD is thus

able to describe both precipitation occurrence and mag-

nitude. The cumulative distribution function (CDF;

Fig. 3a) is defined by

F
m,s,d

(x)5

�
F
m,s

(x2 d), for x. 0,

0, for x# 0:
(2)

A ‘‘climatological CSGD’’ with parameters m, s, and

d is fitted to the record of ground-truth precipitation

(Fig. 3a). A nonlinear regression system is then trained

based on contemporaneous collocated SMPP and ground-

truth observations to produce regression parameters a1,

a2, a3, a4 and, at any time t, unique ‘‘conditional’’ CSGD

parameters m(t), s(t), and d(t):

m
t
5

m

a
1

log

"
11 (ea1 2 1)

 
a
2
1a

3

R̂
t

R

!#
, (3)

FIG. 2. 1-km static susceptibility map for the study region. Mountainous terrain has the highest

susceptibility to landslides in the region.

TABLE 1. Static susceptibility zone coverage and landslide occurrence in study region using 388 landslides reported during 2002–18

study period. A total of 214 landslides were used for LHASA model evaluation; the remainder either occurred outside of the 2002–18

study period or failed to meet other necessary reporting requirements.

Static susceptibility 1 (very low) 2 (low) 3 (moderate) 4 (high) 5 (very high)

Study area 8.0% 42.0% 29.0% 16.0% 5.0%

No. of landslides 0 (0%) 5 (1.3%) 68 (17.5%) 225 (58.0%) 90 (23.2%)
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s
t
5 a

4
s

ffiffiffiffiffi
m
t

m

r
, (4)

d
t
5 d , (5)

where R is the mean of the satellite observations. The

terms mt, st, and dt define the distribution of possible

‘‘true’’ precipitation at time t based on the SMPP ob-

servation R̂t (Fig. 3b). The CSGD framework implicitly

downscales estimates if the spatial resolution of the sat-

ellite and ground-reference precipitation records differ,

as shown in Scheuerer and Hamill (2015). In this study,

we use the error model to downscale from IMERG’s 0.18
resolution to the 1/248 (roughly 4km) resolution of Stage

IV. The CSGD error model thus characterizes the rela-

tionship between 0.18 IMERG estimates of precipitation

and 1/248 Stage IV estimates. This relationship will differ

fromwhatwould be obtained if Stage IVwere used at 0.18
resolution, since some discrepancies between the two

datasets would be smoothed out at that coarser scale.

The CSGD error modeling framework could be ap-

plied to daily precipitation to generate an ensemble of

daily precipitation time series for input to LHASA. Such an

approach would be complicated, however, since it would be

necessary to preserve temporal autocorrelation in daily

precipitation. Instead, we train the CSGD model on ARI

time series since ARI is a time-integrated precipitation

value [Eq. (1)]. ClimatologicalCSGDsfit toARI time series

show good agreement with empirical ARI CDFs (Fig. 3c),

while the probability of zero precipitation both in the cli-

matological CSGD of ARI and in the conditional CSGDs

of ARI (Fig. 3d) are unsurprisingly much lower than that

for daily precipitation. It has been previously shown that

IMERG error depends on the amount and source of

passive microwave and infrared data used (Tan et al.

2016). Since this data availability varies over rela-

tively short time scales (generally subhourly), it is not

feasible to consider it when modeling multiday ARI.

Since both Stage IV and IMERGobservations of ARI

are available over the entire study domain, we can

train a CSGD error model for any collocated set of

IMERG and Stage IV ARI time series. This training

method produces unique error model parameters for

FIG. 3. The CSGD Model fits ground reference precipitation from a pixel in the study region near Asheville,

North Carolina, to (a) a climatological CSGD for daily precipitation and optimizes a nonlinear regression to

produce (b) conditional CSGDs based on IMERG observation R̂t . The same training process is used to fit (c) a

climatological CSGD for Stage IVARI and to generate (d) conditional CSGDs for any given IMERGAR̂It . Panel

(d) shows three conditional CSGDs for three possible values of IMERGAR̂It . The range of error tends to increase

with AR̂It magnitude. Both the climatological ARI distribution shown in (c) and the conditional CSGDs shown in

(d) exhibit a very low probability of ARIt 5 0, since it is a time-integrated precipitation metric.
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each of the 8640 four-kilometer pixels in the study area.

We henceforth referred to this as the ‘‘localized model.’’

Since ground-based precipitation data are more limited in

many parts of the world, we also adopt a regional param-

eter estimation scheme thatmay better reflect data-limited

settings. The ARI time series of all pixels in the region are

concatenated into a single satellite and ground-truth time

series to use as input into the CSGD error model frame-

work, generating one set of error model parameters. This

regional training scheme neglects the heterogeneity in er-

ror characteristics across the region and provides a more

generalized model of IMERG error in the study area.

The result of this regional approach is henceforth re-

ferred to as the ‘‘regional model.’’ We also explore the

possibility of training a regional model on data from

fewer pixels by using ten randomly selected locations

(instead of all study area pixels) in the regional pa-

rameter estimation scheme. This random regional

training, further detailed in section 4a, better reflects

operational conditions in data-limited regions where ex-

tensive precipitation records are likely unavailable.

Regional and localized CSGD error models for daily

ARI from IMERG are trained on the 5-yr period from

2002 to 2006. Both models are incorporated into the

probabilistic LHASA model [section 3b(3)]. We assess

the consequences of using these different trainingmethods

by comparing the probabilistic LHASA model perfor-

mance using each model (section 4b).

b. LHASA model

1) EXISTING ‘‘DETERMINISTIC LHASA’’

The LHASA model characterizes rainfall-induced

landslide potential worldwide in near–real time using a

heuristic decision tree model (Fig. 4; Kirschbaum and

Stanley 2018). Its outputs are 1-km resolution nowcasts,

i.e., predictions that indicate either moderate hazard or

high hazard if the combination of static and dynamic

factors meet specific criteria.

The LHASA model decision tree assesses landslide

hazard in two steps. In step 1, satellite-estimated ARI

on day t, or AR̂It, is calculated and compared against

the 95th percentile of historical (e.g., climatological)

satellite-estimated ARI (ARIthresh) for that location.

Thresholds other than ARIthresh could be used; this is out-

side the scope of our study. IMERG-Early observations are

used for the current day due to their lower latency, while

IMERG-Late observations are used for the prior 6 days due

to their improved accuracy. If AR̂It is below ARIthresh, no

nowcasts are issued to any of the 1-kmpixels covered by the

0.18 IMERG grid cell. If AR̂It exceeds ARIthresh, the 1-km

static susceptibility map (section 2c) is consulted in step 2.

FIG. 4. Decision trees of the (a) LHASA model (adapted from Kirschbaum and Stanley 2018) and (b) probabilistic LHASA model.
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One-kilometer pixels with moderate or high static suscep-

tibility (SI5 3 or 4) are issued a moderate hazard nowcast

and very high susceptibility pixels (SI5 5) are issued a high

hazardnowcast.All nowcasts are issuedat a 1-kmresolution

of the static susceptibility map.

This existing version of LHASA is referred to as

‘‘deterministic LHASA’’ in recognition that only the

IMERG observation is used, without any estimate of

the potential uncertainty associated with it. In this study,

deterministic LHASA is run on a daily scale using

IMERG for the period 2002–18.

2) DETERMINISTIC LHASA USING STAGE IV
AND CSGD-MEDIAN

Deterministic LHASA is additionally run using

Stage IV precipitation as input for the period 2002–18.

Accordingly, the ARIthresh values used in this run of

deterministic LHASA are based on Stage IV data.

This simulation is conducted to compare satellite-

based LHASA predictions to those produced by

ground-reference rainfall. This helps to contextualize

howmuch of LHASA’s predictive power is associated

with precipitation uncertainty, as opposed to other

possible sources of prediction error.

We also evaluate a version of deterministic LHASA in

which the median of the conditional CSGD, rather than

the original IMERG observation, is used to calculate daily

AR̂It. Using themedian ormean of the conditional CSGD

corrects for systematic bias in SMPPs, but does not address

randomerror.Aswill be shown in section 4, using this bias-

corrected value actually degrades LHASA’s predic-

tive capability, while considering the full conditional

CSGD improves prediction.

3) PROBABILISTIC LHASA WITH IMERG
ERROR MODELING

We adapted the LHASA framework so that it is able

to incorporate probabilistic precipitation estimates

produced by the CSGD error model (section 3a). This

modified version is referred to as ‘‘probabilistic LHASA’’

and is shown schematically in Fig. 5. It should be empha-

sized that our purpose was not to develop a newmodel, but

rather to make as few modifications to the existing frame-

work as possible to allow it to ingest probabilistic precipi-

tation estimates. Key elements, therefore, including the

fixed 95th percentile threshold of ARI, remain in the

probabilistic version. Concepts such as probabilistic ARI

thresholds or a continuous scale of static susceptibility may

be useful, but are beyond the scope of this study.

In step 1, a conditional CSGD for day t is generated for

each pixel based on the satellite-observed AR̂It and the

CSGD error model. The conditional CSGD is compared

toARIthresh of the same pixel;P(ARIt.ARIthresh) is the

area of the conditional CSGD PDF that lies above

FIG. 5. (a) The 90% confidence interval (CI) and median of regional CSGD error models trained over 2002–18 and 2002–06 and the full

range of the 90% CI and median of regional models trained on each 5-yr consecutive period in 2002–18. (b) The 2002–06 regional CSGD

model and the 90% CI of the 5th percentile, median, and 95th percentile of 100 CSGD models each trained regionally on 10 random

collocated pixels in study area. (c) The 90%CI andmedian of regional CSGDmodel trained 2002–06 and the 90%CI of the 5th percentile,

median, and 95th percentile of all localizedCSGDmodels, which are trained individually on each collocated IMERGand Stage IV pixel in

the study region.
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ARIthresh (highlighted as the light blue area in Fig. 4b),

where ARIt is the true ARI at time t, which is unknown.

In the CSGD PDF in Fig. 4b, IMERG AR̂It is depicted

in red to illustrate how deterministic LHASA evaluates

rainfall hazard: whether or not AR̂It is above or below

ARIthresh; probabilistic LHASA, in contrast, utilizes the

probability that the actual ARI value, ARIt, is above this

threshold based on the SMPP observation.

After calculating P(ARIt . ARIthresh), probabilistic

LHASA factors in static susceptibility using the global

susceptibility map (section 2c) in step 2. No nowcasts are

issued to pixels with very low or low susceptibility (SI#

2). P(ARIt . ARIthresh) for pixels with moderate, high,

and very high susceptibility (SI $ 3) are multiplied by

0.5, 0.75, and 1.0, respectively, to produce a landslide

hazard index (LHI). The 0.5 and 0.75 multipliers in

probabilistic LHASA were chosen to allow a category 4

(3) hazard nowcast to be issued in high (moderate)

susceptibility pixels provided that there is a near certain

probability that ARIt . ARIthresh. Pixels with LHI less

than 0.1 are assigned as no nowcast. The resulting 0.1–

1.0 LHI scale is continuous and reflects a range of

moderate to very high landslide hazard that considers

precipitation uncertainty. We divide this continuous

scale into five equally spaced categories: category 1

LHI 5 (0.1, 0.28], category 2 LHI 5 (0.28, 0.46], and so

on up to category 5 (Fig. 4b). While these LHI category

ranges as well as the aforementioned 0.5 and 0.75

multipliers are assigned somewhat arbitrarily, land-

sliding events are too sparse in the study area to justify

calibration of these values. We show in section 4 that

this uncalibrated formulation nonetheless improves

prediction compared with deterministic LHASA.

It should be noted that these nowcast categories 1–5 in

probabilistic LHASA are not the same as in determin-

istic LHASA, which instead issues moderate and high

hazard nowcasts. The continuous nature of the LHI

scale in probabilistic LHASA may lend itself to a vari-

ety of nowcast communication approaches that are not

available in deterministic LHASA.

c. LHASA evaluation metrics

To assess the performance of deterministic and prob-

abilistic LHASA, the true positive rate (TPR), false pos-

itive rate (FPR), and area-wide false alarm ratio (FAR)

are calculated. A nowcast is considered correct if it is

issued within 1km of a recorded landslide the day of or

the day before the date of occurrence. A correct nowcast

is said to ‘‘capture’’ a landslide. A ‘‘pixel-day’’ refers to a

1-kmpixel on any given day in the study period, to which a

landslide may be reported or a nowcast may be issued.

TPR is the percentage of reported landslides that are

correctly detected by a landslide hazard nowcast. FPR is

the percentage of pixel-days when a nowcast was issued

but should not have been (i.e., no landslide was reported

within 1km). Area-wide FAR is the percentage of pixel-

days in which a nowcast is issued but no landslide occurs

anywhere in the study area on the day of or the day after

the nowcast. Area-wide FAR allows for nowcasts to not

be considered false alarms as long as a landslide is re-

ported within the study area. This is relevant because the

static and dynamic conditions at a particular location can

indeed be hazardous even if no landslide actually occurs,

and thus a nowcast in such conditions should not neces-

sarily be considered erroneous. These three evaluation

metrics are provided in the form of equations below:

TPR5
reported landslides captured by a nowcast

reported landslides
, (6)

FPR5
pixel-days when nowcast was issued and no landslide occurred

all pixel-days in which no landslide occurred
, (7)

FAR5
pixel-days when nowcast was issued and no landslide occurred in study area

all pixel-days when nowcast was issued
. (8)

4. Results

a. CSGD error model

To explore how SMPP error models may be applied to

areas without extensive ground-truth precipitation es-

timates, it is critical to evaluate the robustness of error

model parameter estimation. Localized and regional

CSGDerrormodels for IMERGobservations ofARIwere

trained over the 2002–06 period using data from all collo-

cated IMERG and Stage IV grid cells in the study region.

To assess the importance of record length in error

model parameter estimation, a regional CSGD model
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trained using the entire 2002–18 period was compared

against one trained using only the 2002–06 period (lines

in Fig. 5a). These two models are nearly indistinguish-

able. Additional models were fit using 5-yr subsets from

2003 to 2018 (i.e., 2003–07, 2004–08, etc.; shaded areas of

Fig. 5a). Only modest differences from the 2002–06 and

the 2002–18 models are visible. These results suggest

that relatively short data records can produce satisfac-

tory parameter estimates.

One-hundred additional CSGD error models were

fitted that were intended to assess the model variability

that would result if spatially incomplete rainfall data

were available. Each error model was trained on ARI

data (for 2002–06) from 10 pixels randomly selected

from the study region. The spread of the uncertainty

estimates from these 100 models (shaded areas in

Fig. 5b) are very similar to those produced by the 2002–

06 regional model (lines in Fig. 5b), and nearly identical

for IMERG-observed ARI below 30mm. Thus, al-

though the regional CSGD model utilizes all 8640

collocated Stage IV and IMERG pixels in the study

region, such a model can be effectively approximated

using data from far fewer pixels. The 2002–06 regional

model with all pixels is used in the evaluation of

probabilistic LHASA (section 4b).

Localized CSGD models fitted for every single pixel

in the domain yielded uncertainty estimates (shaded

areas in Fig. 5c) that can vary widely from the regional

model (lines in Fig. 5c). This highlights that substantial

variation in IMERG-observed ARI error properties can

exist throughout the study region (Fig. 6) which is ig-

nored in the regional model. While radar beam patterns

and umbrellas are visible in the Localizedmodel outputs

in Fig. 6, the regional model smooths out such artifacts

of radar estimation, demonstrating one benefit of a re-

gional approach. The regional approach also reduces

sampling error because it uses a larger sample of precipi-

tation estimates during model calibration. The implicit

downscaling of IMERG uncertainty in the CSGD model

training process results in localized models that reflect the

very specific relationships between precipitation in indi-

vidual Stage IV grid cells and the IMERG estimates cov-

ering those grid cells. For this reason, radar artifacts

indicating beamblockage are visible in the localizedmodel

results in Fig. 6. Regardless, we show in section 4b that

once uncertainty estimates are integrated into theLHASA

framework, the lack of spatial variability in the regional

error model approach is of virtually no consequence.

b. LHASA model performance

Fifteen landslides were reported in the study region

on 5 May 2003. For this day, deterministic LHASA is-

sues nowcasts encompassing all landslides (Fig. 7a). The

same is true for probabilistic LHASA using the regional

CSGD error model (Fig. 7b). The spatial distributions

of nowcasts differ, however. Deterministic LHASA

issues high hazard nowcasts throughout the study area,

including a large part of the north where no landslides

FIG. 6. Median of the conditional CSGD for AR̂It 5 10mm generated by (a) the regional error model and (b) the

localized error model.Median of the conditional CSGD for AR̂It 5 50mm generated by (c) the regional model and

(d) the localizedmodel. The regional error model produces a nearly uniformmedian (i.e., expected values of ARIt)

for all pixels while the localized model’s characterization of error exhibits heterogeneity, including radar artifacts

indicative of beam blockage. A conditional CSGDmedian below AR̂It reflects IMERG’s positive systematic bias.
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were reported. Probabilistic LHASA, on the other

hand, issues category 3–5 nowcasts in the central part of

the study area where most landslides were reported;

nowcast categories were generally low (1–3) farther

away from reported landslides.

Conditional CSGDs for two 0.18 IMERG pixels dem-

onstrate howdeterministic andprobabilistic LHASAdiffer

in their evaluation of IMERG-observed AR̂It (Figs. 7c,d;

locations shown in Figs. 7a,b). IMERG-observed AR̂It for

both locations is above ARIthresh. Deterministic

LHASA therefore issues moderate hazard (high haz-

ard) nowcasts for all areas within the two pixels that

havemoderate to high (very high) static susceptibility, in

accordance with Fig. 4a. Probabilistic LHASA, on the

other hand, estimates the probability that the true ARIt
is above ARIthresh by calculating P(ARIt . ARIthresh). For

location 1,P(ARIt.ARIthresh)5 0.47, while for location 2,

P(ARIt . ARIthresh) 5 0.99 (Figs. 7c,d). For this reason,

FIG. 7. (a) Deterministic LHASA model output and (b) probabilistic LHASA model (using

regional CSGD model) output on 5 May 2003. Locations 1 and 2 are also shown. Conditional

CSGDPDFs generated by probabilistic LHASA to describe uncertainty surrounding IMERG-

observed ARI on 5 May 2003 at (c) location 1 and (d) location 2.
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probabilistic LHASA issues higher category nowcasts for

location 2, in accordance with Fig. 4b.

Over the 2002–18 study period deterministic (proba-

bilistic) LHASA using IMERG captures 150 (157) of

214 reported landslides (Figs. 8a,b). TPR is fairly evenly

dispersed for probabilistic LHASA among all nowcast

categories (Fig. 8b). FPR for category 5 nowcasts from

probabilistic LHASA is an order of magnitude lower

than the FPR for high hazard nowcasts in deterministic

LHASA (Figs. 8c,d). With the exception of category 1,

FAR for all probabilistic LHASA nowcast categories

is less than 55%. This is lower than the FAR of both

moderate and high hazard nowcasts from deterministic

LHASA (both have FAR of 60%), meaning that prob-

abilistic LHASA category $ 2 nowcasts are less likely

to be issued than moderate or high hazard nowcasts

by deterministic LHASA when conditions do not ac-

tually produce landsliding in the region (Figs. 8e,f).

The relatively high FPR and FAR for category 1 now-

casts from probabilistic LHASA are expected since

these nowcasts are issued when there exists a nonzero

but low probability of ARI exceeding ARIthresh.

FIG. 8. Evaluation statistics TPR, FPR, and FAR of (a),(c),(e) deterministic LHASA models and (b),(d),(f)

probabilistic LHASA models over 2002–18. The total number of landslides in the 2002–18 study period is 214.
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Deterministic LHASA will never issue a nowcast

when the AR̂It is less than ARIthresh, which is prob-

lematic given the prevalence of large random errors in

SMPPs, particularly during extreme rainfall events. In

contrast, probabilistic LHASA evaluates P(ARIt .
ARIthresh) to determine the probability of hazardous

ARI. Though P(ARIt . ARIthresh) may not be high

whenAR̂It is belowARIthresh, probabilistic LHASA can

still generate a category 1 or 2 nowcast.

Differences between probabilistic LHASA using the

regional and localized CSGD models are negligible

(Figs. 8b,d,f). Probabilistic LHASA captures the same

number of landslides regardless of which CSGD error

model is used, while the localized CSGD error model

within probabilistic LHASA produces a slightly lower

total FPR (Fig. 8d). Even though the two models gen-

erate different P(ARIt .ARIthresh) estimates, resulting

in slight differences in which nowcast category is issued,

each model is able to broadly identify cases when AR̂It
is associated with greater uncertainty and when ARIt
has a nonnegligible probability of exceeding ARIthresh.

Deterministic LHASA using the CSGD median per-

forms poorly, capturing only 110 out of 214 reported

landslides (Fig. 8a). Recall from section 3b(2) that the

median or mean from the CSGD error model removes

systematic bias, but does not reflect random error. This

effectively eliminates any high values of ARI, resulting

in fewer nowcasts and fewer landslides captured.

Although FPR and FAR are low in this case relative

to other models (Figs. 8c,e), this is outweighed by an

unsatisfactory TPR.

Deterministic LHASA using Stage IV captures 193

out of 214 landslides, with lower FAR and FPR than

deterministic LHASA using IMERG. This represents

the maximum performance achievable when LHASA is

forced with the best available precipitation dataset. In

terms of TPR, probabilistic LHASA is closer to this

‘‘optimal’’ performance than either of the IMERG-

based deterministic models. Because of the conceptual

differences in nowcast categories between the deter-

ministic and probabilistic versions of LHASA, it is dif-

ficult to directly compare FAR and FPR between the

two versions.

c. Spatial variation in nowcasts

Nowcast rates over the study region, calculated as the

percentage of days on which nowcasts are issued for

2002–18, are shown in Fig. 9. Nowcast rates for all

models are zero in areas of low or very low static sus-

ceptibility (see Fig. 2). The nowcast rate for determin-

istic LHASA using IMERG (Stage IV) is 6%–8%

(4%–6%) for most of the study region in pixels with

moderate or higher static susceptibility, which is logical since

AR̂It exceeds ARIthresh on 5% of days. Probabilistic

LHASA using the regional CSGD model has higher now-

cast rates in the mountainous terrain in the center and

northeast of the study regionand lower rates in the less-steep

northwest (Fig. 9c). Probabilistic LHASA using the local-

ized CSGDmodel increases nowcast rates along the edges

of the mountainous terrain and decreases nowcast rates

in the center, reflecting differing levels of uncertainty in

IMERG estimates in these two regions (Fig. 9d).

In both cases, nowcast rates from probabilistic LHASA

exhibit more spatial variability than deterministic

LHASA. While all moderate to very high suscepti-

bility areas within an 0.18 IMERG grid cell will have

the same nowcast rate in deterministic LHASA, the

nowcast rate in probabilistic LHASA will vary ac-

cording to static susceptibility (Fig. 9). For instance, if

IMERG-observed AR̂It in a 0.18 pixel barely exceeds

ARIthresh, deterministic LHASA will issue nowcasts

for all areas in that pixel with moderate to very high

susceptibility, as per Fig. 4a. Probabilistic LHASA, on

the other hand, calculates P(ARIt . ARIthresh) to

determine which static susceptibility level merits a

nowcast. A probability P(ARIt .ARIthresh)5 0.2, for

example, would result in nowcasts being issued only

for high and very high static susceptibility pixels, as

per Fig. 4b.

When category 1 nowcasts, which imply relatively

modest landslide hazard, are excluded, the nowcast

rate of probabilistic LHASA drops by approximately

50% (Figs. 9e,f). Results show that when probabilistic

LHASA issues nowcasts to an area but deterministic

LHASA does not, these nowcasts are moderate hazard

(category 1) and are issued because probabilistic LHASA

predicts a low but nonzero probability of landslide hazard

(see nowcasts issued in the north east of study region in

Figs. 7a,b).

5. Discussion

a. CSGD error models with limited ground-truth data

CSGD model training results (section 4a) demon-

strate that relatively little ground-reference data is

needed to approximate the regional SMPP error model

trained on abundant ground data. Specifically, 10 ran-

domly selected pixels in the study area are found to be

sufficient to approximate a regional CSGD error model

of ARI trained over all 8640 pixels (Fig. 5b). This ex-

tends the applicability of the regional CSGD error

model incorporated in probabilistic LHASA to data-

limited regions with few ground reference records,

and indicates that SMPP uncertainty can still be ac-

counted for in the LHASA model in data-limited re-

gions provided that at least some amount of ground
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truth precipitation such as multiyear rain gauge rec-

ords are available.

Localized CSGD error models trained on individual

IMERG and Stage IV pixels reveal that there can be a

wide range of variation in the uncertainty around

IMERG-based ARI across the study region (Fig. 5c).

Such variation could imply that the regional approach

may not adequately characterize the uncertainties as-

sociated with IMERG-based ARI at any particular

location, but could also stem at least in part from

sampling error. True regional variability would argue

in favor of localized error modeling; regional variabil-

ity resulting from sampling error (e.g., insufficient re-

cord length to sample the extreme tail of the local

precipitation distribution) would argue in favor of a

regional approach. The consequence of differences

between regional and localized CSGD error models is

not readily apparent in comparing the CSGD model

results (i.e., Fig. 5c), but is best evaluated through the

resulting performance of probabilistic LHASA, which

is discussed below. More work would be needed to

verify whether or not the conclusions regarding local-

ized versus regional error models of 7-day ARI would

pertain to error models of precipitation at shorter time

steps (e.g., daily, hourly, etc.).

Even though regional and localized error models

generate varying estimates of ARI uncertainty (Fig. 5c),

their incorporation into the probabilistic LHASAmodel

produces nearly identical results: improved TPR rela-

tive to deterministic LHASA and lower FAR in all but

the lowest nowcast category (Fig. 8). This indicates that

the mere inclusion of IMERG uncertainty in LHASA is

FIG. 9. Nowcast rate (%), or percentage of days on which a nowcast is issued, over 2002–18 for (a) deterministic

LHASA using IMERG, (b) deterministic LHASA using Stage IV, (c) probabilistic LHASA using regional CSGD

error model, and (d) probabilistic LHASA using localized CSGD error model. Also shown is the nowcast rate

considering only category 2–5 nowcasts for (e) probabilistic LHASAwith regional error model and (f) probabilistic

LHASA with localized error model. Note the significant decrease in nowcast rate for probabilistic LHASA when

category 1 nowcasts are excluded.
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more critical than whether this uncertainty is estimated

based on broader regional error characteristics or lo-

calized error characteristics.

b. Deterministic and probabilistic LHASA model
performance

Probabilistic LHASAoutperforms deterministic LHASA

and provides greater gradation in landslide hazard

using a continuous nowcast scale. Since probabilistic

LHASA models using localized and regional CSGD

error models perform similarly (section 5a), discussion

of probabilistic LHASA in this section refers to the

results using the regional error model.

The superior performance of deterministic LHASA

using Stage IV confirms that accurate precipitation

data can significantly improve LHASA’s performance

(Figs. 8a,c,e). The Stage IV–based model only misses

10% (21 out of 214) landslides in the study period.

These missed landslides are attributable to some com-

bination of deficiencies in Stage IV, the LHASA model

structure, the susceptibility map, or the landslide in-

ventory. Deterministic LHASA using IMERG, in con-

trast misses 64 out of 214 (30%). This is improved

somewhat by incorporating the IMERG uncertainty

information via probabilistic LHASA (57 out of 214

landslides missed; 27%). This modest improvement in

TPR is accompanied by reductions in FAR and FPR

associated with higher hazard (category 2–5) nowcasts

and more realistic spatial distributions of nowcasts.

While probabilistic LHASA improves total TPR and

landslides captured relative to its deterministic coun-

terpart (Figs. 8a,b), comparing the distribution of TPR

across nowcasts is less straightforward since the two

model frameworks use different nowcast categories. For

deterministic LHASA, TPR for high hazard nowcasts is

higher than for moderate hazard nowcasts, and thus can

be said to have higher skill. On the other hand, TPR for

probabilistic LHASA is more evenly dispersed across

nowcast categories. Though this suggests equal skill in

all nowcast categories, the FAR and FPR indicate far

fewer instances of category 3–5 nowcasts being issued in

error. While moderate hazard and high hazard nowcasts

from deterministic LHASA are equally likely to be a

false alarm (Fig. 8e), the FAR for probabilistic LHASA

nowcasts decreases above category 1 such that higher

category nowcasts are less likely to be false alarms

(Fig. 8f). When category 1 nowcasts are excluded, the

total FPR of probabilistic LHASA is half that of

deterministic LHASA (Fig. 8d). Probabilistic LHASA

category 4 and 5 nowcasts have much lower FPRs and

FARs than high hazard nowcasts from deterministic

LHASA, which are important for stakeholders to estab-

lish how confident they can be in a nowcast. Probabilistic

LHASA’s ability to issue low category nowcasts even

when AR̂It , ARIthresh could be particularly beneficial

in regions with high random error (such as mountainous

terrain with finescale heterogeneities) or where satellite

observations frequently underestimate heavy precipita-

tion events (Derin et al. 2019).

Eighty-six percent of reported landslides in the study

area occur in moderate and high static susceptibility

pixels (Table 1). This suggests that it would be reason-

able for moderate and high static susceptibility areas

(from SI 5 3 to SI 5 4) to merit high hazard nowcasts

under certain conditions, which is not possible in deter-

ministic LHASA (Fig. 4a). The deterministic LHASA

decision tree only permits high hazard nowcasts to be

issued in areas with SI 5 5 (Fig. 4a). The deterministic

LHASA framework could be modified to allow issuance

of high hazard nowcasts in areas with SI 5 4 by greatly

increasing the associated FPR and FAR, or by intro-

ducing some moderating factor to decide whether a High

susceptibility pixel is issued a moderate or high hazard

nowcast. Probabilistic LHASA allows the nowcast cate-

gory to vary based on the probability of hazardous ARI

(Fig. 4b). For example, a category 4 nowcast can be issued

to areas with SI 5 4 under the circumstance that

P(ARIt . ARIthresh) is greater than 0.85. Thus, proba-

bilistic LHASA is able to differentiate between two lo-

cations with the same static susceptibility and for which

AR̂It .ARIthresh, but which have different probabilities

of experiencing hazardous precipitation (Figs. 7c,d).

The poor performance of deterministic LHASA using

the CSGD-median of IMERG reveals that removing

systematic bias in SMPPs can actually significantly worsen

model performance, if the potential for random error is

neglected. These results emphasize the importance of

considering the range of random error present in SMPP

observations in addition to systematic bias when ac-

counting for SMPP uncertainty, especially for models of

environmental processes driven by extreme precipitation

(such as floods and landslides).

c. Spatial nowcast variations

The largest differences in nowcast rates between de-

terministic and probabilistic LHASA occur in the steep-

est terrain (Fig. 9), where uncertainty-prone extreme

precipitation events occur most frequently. Probabilistic

LHASA’s incorporation of the relatively wide range of

error surrounding extreme events results in more fre-

quent nowcasts. It is also noteworthy that probabilistic

LHASA does not uniformly increase the nowcast rate

across the entire study region, but actually decreases the

nowcast rate in the lower-elevation northwest, which ex-

periences positive systematic bias from IMERG (Fig. 6)

and receives less extreme rainfall. Even though the
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evaluation statistics for regional and localized CSGD

models are very similar (Fig. 8), the spatial patterns of

nowcast rate for these two models across the study area

are distinct (Figs. 9c,d). Although probabilistic LHASA is

issuing more nowcasts than deterministic LHASA

(Figs. 9a,c,d), the two models’ nearly identical overall

FAR implies that probabilistic nowcasts are more likely

to be issued on days when conditions actually produce

landsliding in the region. Further, if a user chose to only

consider category 2–5 nowcasts from probabilistic

LHASA, the nowcast rate and associated FAR and FPR

drop significantly (Figs. 8d,f, 9e,f).

6. Summary and conclusions

Satellite multisensor precipitation products (SMPPs) of-

fer promise for environmentalmodeling in regions that lack

ground-based sources of precipitation information. This

promise has gone largely unfulfilled, however, mainly due

to the high uncertainty of satellite-based precipitation

estimates. This study demonstrates how accounting for

SMPP uncertainty can improve predictions from a land-

slide hazard model over the mountainous southeastern

United States.Historical records of IntegratedMultisatellite

Retrievals for GPM (IMERG) and ground-based precipi-

tation are used to train an error model that characterizes

uncertainty in current and antecedent rainfall. A probabi-

listic version of NASA’s Landslide Hazard Assessment for

Situational Awareness (LHASA) model is developed

that can translate this rainfall uncertainty into near-real-

time landslide nowcasts. The hazard nowcast scale is

continuous, though we transform it into a simple five-

category scale. Run retrospectively using IMERG, the

probabilistic version of LHASA performs well in the

study region, capturing more landslides than the existing

deterministic version with lower false positive rates and

false alarm ratios in high hazard nowcast categories.

Using the error model to generate only the ‘‘best guess’’

(e.g., median) antecedent rainfall as input for the de-

terministic LHASA model leads to worse model per-

formance, highlighting that removal of systematic bias is

not sufficient for addressing SMPP uncertainty in mod-

eling. Instead, results demonstrate the need to account

for the range of SMPP random error.

Data-limited regions have few available ground records

on which to train SMPP error models. We show that while

ground truth precipitation data are indeed necessary for

error model training, such data need not be ubiquitous

and a few ground truth records can go a long way. Nearly

identical improvements in landslide hazard model perfor-

mance can be obtained by using a regionalized parameter

training scheme instead of a data-intensive localized

training scheme, and this regionalized scheme can be

robust with relatively few training data. These findings

suggest accounting for SMPP uncertainty within a land-

slide hazard model is viable even in data-limited regions.

Though the probabilistic LHASA model framework

was developed over a limited region in the United

States, its performance is promising for application to

other regions. The probabilistic nowcast scale, which can

be subdivided into discrete categories indicating varied

levels of landslide hazard based on factors such as

number of desired categories or a desired trade-off

between true positive rate and false positive rate,

provides a flexible way to adapt landslide hazard

nowcast categories to stakeholder requirements. Though

the nowcast categories in probabilistic LHASA are pre-

sented here as equally subdivided portions of a continu-

ous scale (Fig. 4b), this scale could be divided in any

number of ways. This flexibility could be used to optimize

specific performance metrics such as TPR or FPR. A

stakeholder could, for example, use four categories in-

stead of five, and specify that the highest category have a

minimum TPR of 0.25 or a maximum FPR of 0.001. This

is consistent with the original goal of the LHASA

framework—to provide a flexible model for providing

situational awareness of landslide hazard that can be

fine-tuned as required (Kirschbaum et al. 2015b;

Kirschbaum and Stanley 2018).

Accounting for SMPP uncertainty would allow the

LHASA model to better utilize SMPPs globally and in

data-limited regions. Since precipitation forecasts such

as those from theGlobal Forecasting System (Saha et al.

2006) are generally produced as ensembles, this method-

ology could be used to incorporate probabilistic precipi-

tation forecasts as inputs into the probabilistic LHASA

model to generate landslide hazard forecasts. We antici-

pate that other environmental prediction models such as

the Global FloodMonitoring System (Wu et al. 2012) and

the Global Land Data Assimilation System (GLDAS;

Fang et al. 2009) could likely benefit from deeper con-

sideration of SMPP uncertainty and error—both system-

atic and random.

In this study, we found it necessary to modify (albeit

modestly) the operational LHASA framework to ac-

commodate IMERG uncertainty estimates, as opposed

to inserting those estimates directly into the existing ver-

sion. Probabilistic precipitation estimates are likely to be-

come more common in the near future. To realize the full

benefits of probabilistic representations of precipitation,

we believe that it will be necessary to seriously consider

how existing environmental models can be adapted to

accommodate such estimates, or how new models

could be developed that are explicitly designed around

such estimates. We acknowledge that this may be very

challenging for more complex physically based models.
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Given the centrality of precipitation (and thus, pre-

cipitation errors) to so many phenomena, however,

relatively simple models that make effective use of

precipitation uncertainty could prove useful. In addi-

tion, as our experience with LHASA has shown, it may

be necessary to rethink how outputs from such models

would be produced and interpreted. This study shows

that quantifying satellite precipitation uncertainty and

converting SMPPs from an unknown to a known source

of uncertainty can significantly improve model perfor-

mance, even if it remains impossible to derive the true

precipitation from SMPP observations.

Acknowledgments. S.H. Hartke was supported by the

NASA Earth and Space Science Fellowship Program

(Grant 80NSSC18K1321) and the Arthur H. Frazier

Fellowship at University of Wisconsin–Madison. D.B.

Wright, D.B. Kirschbaum, T.A. Stanley, and Z. Li were

supported by the NASA Precipitation Measurement

Mission Program (Grant NNX16AH72G). We thank

Ana Barros for sharing rain gage data from the region,

which we used to confirm the accuracy of the Stage IV

dataset. We also thank the organizers of the 12th

International Precipitation Conference for their con-

tributions towards publication fees. The generous

support by NSF (Conference Grant EAR-1928724)

and NASA (Conference Grant 80NSSC19K0726) to

organize IPC12 and produce the IPC12 Special

Collection of papers is gratefully acknowledged.

REFERENCES

AghaKouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai,

2011: Evaluation of satellite-retrieved extreme precipitation rates

across the central United States. J. Geophys. Res., 116, D02115,

https://doi.org/10.1029/2010JD014741.

Barros, A. P., and Coauthors, 2014: NASA GPM-Ground Validation

IntegratedPrecipitation andHydrologyExperiment 2014 Science

Plan. Duke University Tech. Rep., 64 pp., https://doi.org/10.7924/

G8CC0XMR.

Boyle, J., 2014: From the archives: Impact of Frances, Ivan lingers

years later.Asheville Citizen-Times, 6 September, accessed 1April

2018, https://www.citizen-times.com/story/news/local/2014/09/06/

hurricanes-frances-ivan-impact-lingers-years-later/15217637/.

Brunetti, M. T., M. Melillo, S. Peruccacci, L. Ciabatta, and

L. Brocca, 2018: How far are we from the use of satellite

rainfall products in landslide forecasting?Remote Sens. Environ.,

210, 65–75, https://doi.org/10.1016/j.rse.2018.03.016.

Calvello, M., R. N. D’Orsi, L. Piciullo, N. M. Paes, M. A.

Magalhaes, R. Coelho, and W. A. Lacerda, 2015: The

community-based alert and alarm system for rainfall induced

landslides in Rio de Janeiro, Brazil. Landslide Processes, G.

Lollino et al., Eds., Vol. 2, Engineering Geology for Society

and Territory, Springer, 653–657, https://doi.org/10.1007/978-

3-319-09057-3_109.

Carter, A., 2018: ‘‘Shouldn’t you have a right to know?’’

Daughter of landslide victim says warnings needed.

News & Observer, 4 June, https://www.newsobserver.com/

latest-news/article212367984.html.

Cloke, H. L., and F. Pappenberger, 2009: Ensemble flood fore-

casting: A review. J. Hydrol., 375, 613–626, https://doi.org/

10.1016/j.jhydrol.2009.06.005.

Dai, F. C., C. F. Lee, and Y. Y. Ngai, 2002: Landslide risk assess-

ment and management: An overview. Eng. Geol., 64, 65–87,

https://doi.org/10.1016/S0013-7952(01)00093-X.

Derin, Y., and Coauthors, 2019: Evaluation of GPM-era global

satellite precipitation products over multiple complex ter-

rain regions. Remote Sens., 11, 2936, https://doi.org/10.3390/

rs11242936.

Devoli, G., I. Kleivane, M. Sund, N. K. Orthe, R. Ekker,

E. Johnsen, and H. Colleuille, 2015: Landslide early warning

system and web tools for real-time scenarios and for distri-

bution of warning messages in Norway. Landslide Processes,

G. Lollino et al., Eds., Vol. 2, Engineering Geology for Society

and Territory, Springer, 625–629, https://doi.org/10.1007/978-

3-319-09057-3_104.

Dilley, M., R. S. Chen, U. Deichmann, A. L. Lerner-Lam, and

M. Arnold, 2005: Natural Disaster Hotspots: A Global Risk

Analysis. World Bank Publications, 132 pp., https://doi.org/

10.1596/0-8213-5930-4.

Doom, J., 2018: Landslide kills two in North Carolina. ABC News,

31 May, https://abcnews.go.com/US/landslide-kills-north-carolina/

story?id555553200.

Fang, H., H. K. Beaudoing, M. Rodell, W. L. Teng, and B. E. Vollmer,

2009:Global LandDataAssimilation System (GLDAS) products,

services and application from NASA Hydrology Data and

Information Services Center (HDISC). ASPRS 2009 Annual

Conf., Baltimore,MD,American Society for Photogrammetry

andRemote Sensing, 9 pp., https://www.asprs.org/a/publications/

proceedings/baltimore09/0020.pdf.

Farahmand, A., and A. AghaKouchak, 2013: A satellite-based

global landslidemodel.Nat. HazardsEarth Syst. Sci., 13, 1259–

1267, https://doi.org/10.5194/nhess-13-1259-2013.

Ferraro, R. R., and Coauthors, 2013: An evaluation of microwave

land surface emissivities over the continental United States

to benefit GPM-Era precipitation algorithms. IEEE Trans.

Geosci. Remote Sens., 51, 378–398, https://doi.org/10.1109/

TGRS.2012.2199121.

Froude, M. J., and D. N. Petley, 2018: Global fatal landslide oc-

currence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., 18,

2161–2181, https://doi.org/10.5194/nhess-18-2161-2018.

Gebregiorgis, A. S., and F. Hossain, 2013: Understanding the

dependence of satellite rainfall uncertainty on topography

and climate for hydrologic model simulation. IEEE Trans.

Geosci. Remote Sens., 51, 704–718, https://doi.org/10.1109/

TGRS.2012.2196282.

——, and ——, 2014: Making satellite precipitation data work

for the developing world. IEEEGeosci. Remote Sens. Mag., 2,

24–36, https://doi.org/10.1109/MGRS.2014.2317561.

Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark, 2007: Rainfall

thresholds for the initiation of landslides in central and

southern Europe. Meteor. Atmos. Phys., 98, 239–267, https://

doi.org/10.1007/s00703-007-0262-7.

Hong, Y., R. Adler, and G. Huffman, 2006: Evaluation of the po-

tential of NASAmulti-satellite precipitation analysis in global

landslide hazard assessment. Geophys. Res. Lett., 33, L22402,

https://doi.org/10.1029/2006GL028010.

——, ——, and ——, 2007: Use of satellite remote sensing data in

the mapping of global landslide susceptibility. Nat. Hazards,

43, 245–256, https://doi.org/10.1007/s11069-006-9104-z.

AUGUST 2020 HARTKE ET AL . 1757

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:44 PM UTC

https://doi.org/10.1029/2010JD014741
https://doi.org/10.7924/G8CC0XMR
https://doi.org/10.7924/G8CC0XMR
https://www.citizen-times.com/story/news/local/2014/09/06/hurricanes-frances-ivan-impact-lingers-years-later/15217637/
https://www.citizen-times.com/story/news/local/2014/09/06/hurricanes-frances-ivan-impact-lingers-years-later/15217637/
https://doi.org/10.1016/j.rse.2018.03.016
https://doi.org/10.1007/978-3-319-09057-3_109
https://doi.org/10.1007/978-3-319-09057-3_109
https://www.newsobserver.com/latest-news/article212367984.html
https://www.newsobserver.com/latest-news/article212367984.html
https://doi.org/10.1016/j.jhydrol.2009.06.005
https://doi.org/10.1016/j.jhydrol.2009.06.005
https://doi.org/10.1016/S0013-7952(01)00093-X
https://doi.org/10.3390/rs11242936
https://doi.org/10.3390/rs11242936
https://doi.org/10.1007/978-3-319-09057-3_104
https://doi.org/10.1007/978-3-319-09057-3_104
https://doi.org/10.1596/0-8213-5930-4
https://doi.org/10.1596/0-8213-5930-4
https://abcnews.go.com/US/landslide-kills-north-carolina/story?id=55553200
https://abcnews.go.com/US/landslide-kills-north-carolina/story?id=55553200
https://www.asprs.org/a/publications/proceedings/baltimore09/0020.pdf
https://www.asprs.org/a/publications/proceedings/baltimore09/0020.pdf
https://doi.org/10.5194/nhess-13-1259-2013
https://doi.org/10.1109/TGRS.2012.2199121
https://doi.org/10.1109/TGRS.2012.2199121
https://doi.org/10.5194/nhess-18-2161-2018
https://doi.org/10.1109/TGRS.2012.2196282
https://doi.org/10.1109/TGRS.2012.2196282
https://doi.org/10.1109/MGRS.2014.2317561
https://doi.org/10.1007/s00703-007-0262-7
https://doi.org/10.1007/s00703-007-0262-7
https://doi.org/10.1029/2006GL028010
https://doi.org/10.1007/s11069-006-9104-z


Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite

Precipitation Analysis (TMPA): Quasi-global, multiyear,

combined-sensor precipitation estimates at fine scales.

J. Hydrometeor., 8, 38–55, https://doi.org/10.1175/JHM560.1.

——, D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd,

E. J. Nelkin, and P. Xie, 2015: NASA Global Precipitation

Measurement IntegratedMulti-satellitE Retrievals for GPM

(IMERG). Algorithm Theoretical Basis Doc., version 4.5, 30

pp., http://pmm.nasa.gov/sites/default/files/document_files/

IMERG_ATBD_V4.5.pdf.

——, ——, and E. J. Nelkin, 2017: Integrated Multi-satellitE

Retrievals for GPM (IMERG) technical documentation.

NASA Tech. Doc., 54 pp., https://pmm.nasa.gov/sites/default/

files/document_files/IMERG_technical_doc_3_22_17.pdf.

Joyce, R. J., J. E. Janowiak, P.A.Arkin, and P.Xie, 2004: CMORPH:

A method that produces global precipitation estimates from

passivemicrowave and infrared data at high spatial and temporal

resolution. J. Hydrometeor., 5, 487–503, https://doi.org/10.1175/

1525-7541(2004)005,0487:CAMTPG.2.0.CO;2.

Kidd, C., and G. Huffman, 2011: Global precipitation measurement.

Meteor. Appl., 18, 334–353, https://doi.org/10.1002/met.284.

——, and V. Levizzani, 2011: Status of satellite precipitation re-

trievals.Hydrol. Earth Syst. Sci., 15, 1109–1116, https://doi.org/

10.5194/hess-15-1109-2011.

——, A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-

Jackson, and D. B. Kirschbaum, 2017: So, how much of the

Earth’s surface is covered by rain gauges? Bull. Amer. Meteor.

Soc., 98, 69–78, https://doi.org/10.1175/BAMS-D-14-00283.1.

Kirschbaum, D. B., and T. Stanley, 2018: Satellite-based assess-

ment of rainfall-triggered landslide hazard for situational

awareness. Earth’s Future, 6, 505–523, https://doi.org/10.1002/

2017EF000715.

——, R. Adler, Y. Hong, S. Hill, and A. Lerner-Lam, 2010: A

global landslide catalog for hazard applications: Method, re-

sults, and limitations. Nat. Hazards, 52, 561–575, https://

doi.org/10.1007/s11069-009-9401-4.

——, T. Stanley, and Y. Zhou, 2015a: Spatial and temporal analysis

of a global landslide catalog. Geomorphology, 249, 4–15,

https://doi.org/10.1016/j.geomorph.2015.03.016.

——, ——, and J. Simmons, 2015b: A dynamic landslide hazard

assessment system for Central America and Hispaniola.

HazardsEarth Syst. Sci, 15, 2257–2272, https://doi.org/10.5194/

nhess-15-2257-2015.

Kirstetter, P. E., N. Karbalaee, K. Hsu, and Y. Hong, 2018:

Probabilistic precipitation rate estimates with space-based

infrared sensors. Quart. J. Roy. Meteor. Soc., 144, 191–205,

https://doi.org/10.1002/qj.3243.

Krøgli, I. K., G. Devoli, H. Colleuille, S. Boje, M. Sund, and I. K.

Engen, 2018: The Norwegian forecasting and warning service for

rainfall-and snowmelt-induced landslides. Hazards Earth Syst.

Sci, 18, 1427–1450, https://doi.org/10.5194/nhess-18-1427-2018.

Lin, Y., 2011: GCIP/EOP Surface: Precipitation NCEP/EMC 4KM

GriddedData (GRIB) Stage IVData, version 1.0.UCAR/NCAR

Earth Observing Laboratory, accessed 1 February 2018, https://

doi.org/10.5065/D6PG1QDD.

Maggioni, V., R. H. Reichle, and E. N. Anagnostou, 2011: The

effect of satellite rainfall error modeling on soil moisture

prediction uncertainty. J. Hydrometeor., 12, 413–428, https://

doi.org/10.1175/2011JHM1355.1.

——, M. R. P. Sapiano, R. F. Adler, Y. Tian, and G. J. Huffman,

2014: An error model for uncertainty quantification in high-

time-resolution precipitation products. J. Hydrometeor., 15,

1274–1292, https://doi.org/10.1175/JHM-D-13-0112.1.

——, ——, and ——, 2016: Estimating uncertainties in high-

resolution satellite precipitation products: Systematic or ran-

dom error? J. Hydrometeor., 17, 1119–1129, https://doi.org/

10.1175/JHM-D-15-0094.1.

Mahoney, K., and Coauthors, 2016: Understanding the role of at-

mospheric rivers in heavy precipitation in the southeast

United States. Mon. Wea. Rev., 144, 1617–1632, https://

doi.org/10.1175/MWR-D-15-0279.1.

Moore, B. J., K. M. Mahoney, E. M. Sukovich, R. Cifelli, and T. M.

Hamill, 2015: Climatology and environmental characteristics

of extreme precipitation events in the southeastern United

States. Mon. Wea. Rev., 143, 718–741, https://doi.org/10.1175/

MWR-D-14-00065.1.

Nikolopoulos, E. I., E. N. Anagnostou, F. Hossain,M.Gebremichael,

and M. Borga, 2010: Understanding the scale relationships of

uncertainty propagation of satellite rainfall through a distributed

hydrologic model. J. Hydrometeor., 11, 520–532, https://doi.org/

10.1175/2009JHM1169.1.

——, E. Destro, V. Maggioni, F. Marra, and M. Borga, 2017:

Satellite rainfall estimates for debris flow prediction: An

evaluation based on rainfall accumulation–duration thresh-

olds. J. Hydrometeor., 18, 2207–2214, https://doi.org/10.1175/

JHM-D-17-0052.1.

Osanai, N., I. Takeshi, S. I. Kazumasa, K. I. Shinichi Kojima, and

T. Noro, 2010: Japanese early-warning for debris flows and

slope failures using rainfall indices with radial basis function

network. Landslides, 7, 325–338, https://doi.org/10.1007/

s10346-010-0229-5.

Petley, D., 2012: Global patterns of loss of life from landslides.

Geology, 40, 927–930, https://doi.org/10.1130/G33217.1.

——, S. A. Dunning, and N. J. Rosser, 2005: The analysis of global

landslide risk through the creation of a database of worldwide

landslide fatalities. Landslide Risk Management, O. Hungr

et al., Eds., CRC Press, 367–374.

Piciullo, L., S. L.Gariano,M.Melillo,M. T. Brunetti, S. Peruccacci,

F. Guzzetti, and M. Calvello, 2017: Definition and perfor-

mance of a threshold-based regional early warning model for

rainfall-induced landslides. Landslides, 14, 995–1008, https://

doi.org/10.1007/s10346-016-0750-2.

Rossi, M., and Coauthors, 2012: SANF : National warning system

for rainfall-induced landslides in Italy. Landslides and

Engineered Slopes: Protecting Society through Improved

Understanding, E. Eberhardt et al., Eds., CRC Press, 1895–

1899, https://doi.org/10.13140/2.1.4857.9527.

Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System.

J. Climate, 19, 3483–3517, https://doi.org/10.1175/JCLI3812.1.
Sassa, K., P. Canuti, and Y. Yin, Eds., 2014: Methods of

Landslide Studies. Vol. 2, Landslide Science for a Safer

Geoenvironment, Springer, 851 pp., https://doi.org/10.1007/

978-3-319-05050-8.

Scheuerer, M., and T.M. Hamill, 2015: Statistical postprocessing of

ensemble precipitation forecasts by fitting censored, shifted

gamma distributions.Mon. Wea. Rev., 143, 4578–4596, https://

doi.org/10.1175/MWR-D-15-0061.1.

Shige, S., S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, 2013:

Improvement of TMI rain retrievals in mountainous areas.

J. Appl. Meteor. Climatol., 52, 242–254, https://doi.org/10.1175/

JAMC-D-12-074.1.

Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and

D. Braithwaite, 2000: Evaluation of PERSIANN system

satellite-based estimates of tropical rainfall. Bull. Amer.

Meteor. Soc., 81, 2035–2046, https://doi.org/10.1175/1520-

0477(2000)081,2035:EOPSSE.2.3.CO;2.

1758 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:44 PM UTC

https://doi.org/10.1175/JHM560.1
http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf
http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.5.pdf
https://pmm.nasa.gov/sites/default/files/document_files/IMERG_technical_doc_3_22_17.pdf
https://pmm.nasa.gov/sites/default/files/document_files/IMERG_technical_doc_3_22_17.pdf
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
https://doi.org/10.1002/met.284
https://doi.org/10.5194/hess-15-1109-2011
https://doi.org/10.5194/hess-15-1109-2011
https://doi.org/10.1175/BAMS-D-14-00283.1
https://doi.org/10.1002/2017EF000715
https://doi.org/10.1002/2017EF000715
https://doi.org/10.1007/s11069-009-9401-4
https://doi.org/10.1007/s11069-009-9401-4
https://doi.org/10.1016/j.geomorph.2015.03.016
https://doi.org/10.5194/nhess-15-2257-2015
https://doi.org/10.5194/nhess-15-2257-2015
https://doi.org/10.1002/qj.3243
https://doi.org/10.5194/nhess-18-1427-2018
https://doi.org/10.5065/D6PG1QDD
https://doi.org/10.5065/D6PG1QDD
https://doi.org/10.1175/2011JHM1355.1
https://doi.org/10.1175/2011JHM1355.1
https://doi.org/10.1175/JHM-D-13-0112.1
https://doi.org/10.1175/JHM-D-15-0094.1
https://doi.org/10.1175/JHM-D-15-0094.1
https://doi.org/10.1175/MWR-D-15-0279.1
https://doi.org/10.1175/MWR-D-15-0279.1
https://doi.org/10.1175/MWR-D-14-00065.1
https://doi.org/10.1175/MWR-D-14-00065.1
https://doi.org/10.1175/2009JHM1169.1
https://doi.org/10.1175/2009JHM1169.1
https://doi.org/10.1175/JHM-D-17-0052.1
https://doi.org/10.1175/JHM-D-17-0052.1
https://doi.org/10.1007/s10346-010-0229-5
https://doi.org/10.1007/s10346-010-0229-5
https://doi.org/10.1130/G33217.1
https://doi.org/10.1007/s10346-016-0750-2
https://doi.org/10.1007/s10346-016-0750-2
https://doi.org/10.13140/2.1.4857.9527
https://doi.org/10.1175/JCLI3812.1
https://doi.org/10.1007/978-3-319-05050-8
https://doi.org/10.1007/978-3-319-05050-8
https://doi.org/10.1175/MWR-D-15-0061.1
https://doi.org/10.1175/MWR-D-15-0061.1
https://doi.org/10.1175/JAMC-D-12-074.1
https://doi.org/10.1175/JAMC-D-12-074.1
https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2


Stanley, T., and D. B. Kirschbaum, 2017: A heuristic approach to

global landslide susceptibility mapping.Nat. Hazards, 87, 145–

164, https://doi.org/10.1007/s11069-017-2757-y.

Sun, Q., C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K. L.

Hsu, 2018: A review of global precipitation data sets: Data

sources, estimation, and intercomparisons. Rev. Geophys., 56,

79–107, https://doi.org/10.1002/2017RG000574.

Tan, J., W. Petersen, and A. Tokay, 2016: A novel approach to

identify sources of errors in IMERG for GPM ground val-

idation. J. Hydrometeor., 17, 2477–2491, https://doi.org/

10.1175/JHM-D-16-0079.1.

Tang, L., and F. Hossain, 2009: Transfer of satellite rainfall error

from gaged to ungaged locations: How realistic will it be for

the global precipitation mission? Geophys. Res. Lett., 36,

L10405, https://doi.org/10.1029/2009GL037965.

——, and ——, 2012: Investigating the similarity of satellite

rainfall error metrics as a function of Köppen climate

classification. Atmos. Res., 104-105, 182–192, https://doi.org/

10.1016/j.atmosres.2011.10.006.

Tapiador, F. J., and Coauthors, 2012: Global precipitation mea-

surement: Methods, datasets and applications. Atmos. Res.,

104–105, 70–97, https://doi.org/10.1016/j.atmosres.2011.10.021.

Tian,Y., andC.D. Peters-Lidard, 2010:A globalmap of uncertainties

in satellite-based precipitation measurements. Geophys. Res.

Lett., 37, L24407, https://doi.org/10.1029/2010GL046008.

——, and Coauthors, 2009: Component analysis of errors in

satellite-based precipitation estimates. J. Geophys. Res., 114,

D24101, https://doi.org/10.1029/2009JD011949.

——,G. J. Huffman, R. F. Adler, L. Tang, M. Sapiano, V.Maggioni,

and H. Wu, 2013: Modeling errors in daily precipitation mea-

surements: Additive or multiplicative? Geophys. Res. Lett., 40,

2060–2065, https://doi.org/10.1002/grl.50320.

White, J. A., and D. I. Singham, 2012: Slope stability assessment

using stochastic rainfall simulation. Procedia Comput. Sci., 9,

699–706, https://doi.org/10.1016/j.procs.2012.04.075.

Wooten, R. M., A. C. Witt, C. F. Miniat, T. C. Hales, and J. L.

Aldred, 2016: Frequency and magnitude of selected historical

landslide events in the southern appalachian highlands of North

Carolina and Virginia: Relationships to rainfall, geological and

ecohydrological controls, and effects.Natural Disturbances and

Historic Range of Variation, C. Greenberg and B. Collins, Eds.,

Managing Forest Ecosystems Series, Vol 32, Springer, 203–262,

https://doi.org/10.1007/978-3-319-21527-3_9.

Wright, D. B., 2018: Rainfall information for global flood mod-

eling. Global Flood Hazard: Applications in Modeling,

Mapping, and Forecasting, G. Schumann et al., Eds., John

Wiley & Sons, 19–42.

——, D. B. Kirschbaum, and S. Yatheendradas, 2017: Satellite

precipitation characterization, error modeling, and error

correction using censored shifted gamma distributions.

J. Hydrometeor., 18, 2801–2815, https://doi.org/10.1175/

JHM-D-17-0060.1.

Wu, H., R. F. Adler, Y. Hong, Y. Tian, and F. Policelli, 2012:

Evaluation of global flood detection using satellite-based

rainfall and a hydrologic model. J. Hydrometeor., 13, 1268–

1284, https://doi.org/10.1175/JHM-D-11-087.1.

AUGUST 2020 HARTKE ET AL . 1759

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 05/04/21 04:44 PM UTC

https://doi.org/10.1007/s11069-017-2757-y
https://doi.org/10.1002/2017RG000574
https://doi.org/10.1175/JHM-D-16-0079.1
https://doi.org/10.1175/JHM-D-16-0079.1
https://doi.org/10.1029/2009GL037965
https://doi.org/10.1016/j.atmosres.2011.10.006
https://doi.org/10.1016/j.atmosres.2011.10.006
https://doi.org/10.1016/j.atmosres.2011.10.021
https://doi.org/10.1029/2010GL046008
https://doi.org/10.1029/2009JD011949
https://doi.org/10.1002/grl.50320
https://doi.org/10.1016/j.procs.2012.04.075
https://doi.org/10.1007/978-3-319-21527-3_9
https://doi.org/10.1175/JHM-D-17-0060.1
https://doi.org/10.1175/JHM-D-17-0060.1
https://doi.org/10.1175/JHM-D-11-087.1

