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ABSTRACT

Many existing models that predict landslide hazards utilize ground-based sources of precipitation data.
In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe),
or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation
products offer a promising near-real-time alternative to ground-based data. NASA’s global Landslide
Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite
Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard ‘‘nowcasts’ in near—
real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates,
however, can contain considerable systematic bias and random error, especially over mountainous terrain
and during extreme rainfall events. This study combines a precipitation error modeling framework with a
probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic
version correctly predicts more of the observed landslides in the study region with fewer false alarms by
high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be
achieved regardless of whether the IMERG error model is trained using abundant ground-based pre-
cipitation observations or using far fewer and more scattered observations, suggesting that the approach
is viable in data-limited regions. Results emphasize the importance of accounting for both random error
and systematic satellite precipitation bias. The approach provides an example of how environmen-
tal prediction models can incorporate satellite precipitation uncertainty. Other applications such as
flood and drought monitoring and forecasting could likely benefit from consideration of precipitation
uncertainty.

1. Introduction that determine landslide hazard can be sorted into two
categories: 1) static factors that determine an area’s
preexisting susceptibility to landsliding, such as slope,
aspect, forest loss, road cut activity, lithology, and
distance to fault zones, and 2) dynamic factors that
trigger landslides (Dai et al. 2002; Sassa et al. 2014).
Static factors can be conceptualized as determining
where landslides are most likely to occur and dynamic
factors as determining when they occur within suscep-
Corresponding author: Samantha H. Hartke, shartke@wisc.edu  tible areas. Though landslides can be initiated by seismic

Landslides result in thousands of fatalities, property
loss, and infrastructure damage around the world every
year (Dilley et al. 2005; Froude and Petley 2018; Petley
2012). They occur across a broad range of geographic,
climatic, and land use settings and can range from minor
slope failures to kilometers-long debris flows. Factors
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and human activity, rainfall is recognized as the most
widespread and frequent trigger (Dai et al. 2002; Guzzetti
et al. 2007; Petley et al. 2005).

Most existing landslide hazard monitoring systems use
ground-based precipitation measurements. Japan and
Norway, for example, operate nationwide early-warning
systems that use radar rainfall measurements (Krggli
et al. 2018; Devoli et al. 2015; Osanai et al. 2010), while
Italy’s early-warning system for rainfall-induced land-
slides, SANF, and Rio de Janiero’s ““Alerta Rio” system
rely on rain gauge networks (Calvello et al. 2015; Piciullo
et al. 2017; Rossi et al. 2012). In many parts of the globe,
however, including in steep terrain and developing coun-
tries, such measurements are often lacking (Gebregiorgis
and Hossain 2014; Kidd et al. 2017), hampering real time
monitoring and warning of potential landslide hazards.

Satellite multisensor precipitation products (SMPPs)
provide near-real-time estimates of precipitation with
near-global coverage, potentially enabling prediction of
landslides and other environmental phenomena in lo-
cations and at scales not previously possible. SMPPs use
algorithms that merge passive microwave and infrared
sensing data from multiple satellites (e.g., Kidd and
Levizzani 2011; Kidd and Huffman 2011; Tapiador et al.
2012; Wright 2018). Commonly used SMPPs include the
TRMM Multisatellite Precipitation Analysis (TMPA;
Huffman et al. 2007), the Climate Prediction Center
(CPC) morphing technique (CMORPH; Joyce et al.
2004), and the Precipitation Estimation from Remotely
Sensed Information Using Artificial Neural Networks
(PERSIANN; Sorooshian et al. 2000). In this study, we
use the recent Integrated Multisatellite Retrievals for
GPM (IMERG:; Huffman et al. 2017), which is available
at 0.1°, 30-min resolution available for 2000—present.
IMERG retrieves passive microwave (PMW) precipi-
tation estimates using the Goddard profiling algorithm
(GPROF) and blends PMW estimates with the IR-based
PERSIANN-Cloud Classification System algorithm us-
ing the CMORPH-Kalman filter Lagrangian time inter-
polation scheme (Huffman et al. 2017; Joyce et al. 2004;
Sorooshian et al. 2000).

Hong et al. (2006) first demonstrated the potential
for near-real-time global landslide hazard assessment
by combining TMPA with a global susceptibility map
(Hong et al. 2007). Farahmand and AghaKouchak
(2013) developed a global landslide model based on
Support Vector Machines that used PERSIANN precip-
itation data to globally classify landslide events. Brunetti
et al. (2018) and Nikolopoulos et al. (2017) evaluated the
suitability of SMPPs for use in landslide prediction
in Italy, finding that rain gauge products and SMPPs
may differ in their estimation of landslide-triggering
precipitation thresholds. Kirschbaum et al. (2015b)
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developed a model to assess landslide hazard in Central
America using precipitation data from TMPA. This effort
evolved into the global Landslide Hazard Assessment for
Situational Awareness (LHASA) model framework, which
uses precipitation data from IMERG to provide pub-
licly available near-real-time “‘nowcasts’ of landslide
hazard around the world (Kirschbaum and Stanley
2018). Nowcasts identify areas with currently elevated
landslide hazard by indicating either moderate hazard
(yellow shading) or high hazard (red shading) in LHASA
model output.

None of these existing global landslide hazard models
explicitly address the systematic biases and random er-
rors that are prevalent in SMPPs. These errors pose a
key obstacle to the usage of satellite precipitation in
landslide hazard prediction and environmental predic-
tion more generally (e.g., AghaKouchak et al. 2011; Tian
et al. 2009; Wright et al. 2017). SMPP performance de-
clines at high latitudes and over ice-covered land sur-
faces (Ferraro et al. 2013; Tian and Peters-Lidard 2010).
SMPPs have difficulty accurately depicting the extreme
rainfall rates and orographic enhancement that typify
landslide triggering conditions (Shige et al. 2013;
AghaKouchak et al. 2011). Furthermore, retrospec-
tive studies that characterize bias and other error
statistics of satellite precipitation based on compari-
son to ground reference data, which constitute the
bulk of existing SMPP error studies (see Maggioni et al.
2016) are not directly applicable to models that ingest
precipitation estimates. Instead, it is necessary to use an
error model, which can generate a corrected estimate,
range, or distribution of errors or values as soon as new
satellite estimates are made available. Development of
such models is nontrivial, since SMPP errors tend to be
non-Gaussian, heteroscedastic, and can be both discrete
and continuous (Maggioni et al. 2014; Tian et al. 2013).

To date, SMPP error modeling has relied on ground-
based precipitation data (e.g., rain gauges; bias-corrected
radar) to use as ‘‘ground truth” in order for model fitting
(henceforth referred to as ““training’’). Unfortunately,
many parts of the world lack spatially or temporally
complete records of ground-based precipitation (Kidd
et al. 2017; Sun et al. 2018). This paucity of ground-
truth information (e.g., limited numbers of rain gauges)
has led previous error modeling studies to note that
some form of “‘regionalization” of error estimates or er-
ror model parameters would be necessary (Gebregiorgis
and Hossain 2014, 2013; Tang and Hossain 2009, 2012).
Modeling SMPP errors regionally may reduce finescale
variability in error structure, but the alternative is no
error models in data-limited regions.

In addition to producing error estimates in the first place,
another challenge is enabling environmental models to
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ingest such estimates. One approach is to generate en-
sembles consisting of multiple realizations of precipita-
tion time series or space—time fields and then use each
ensemble member to drive a prediction model. This
approach allows prediction models to be used without
any particular modification, as demonstrated in a num-
ber of studies using stochastic rainfall input for soil
moisture and landslide hazard modeling (Maggioni et al.
2011; Nikolopoulos et al. 2010; White and Singham
2012). Though ensemble prediction models have been
developed for some applications, flood forecasting in
particular (Cloke and Pappenberger 2009), assembling
such ensembles can be nontrivial, while for complex
physics-based models, the requisite multiple simulations
may not be computationally feasible for real-time appli-
cations. An alternative approach is to directly ingest pre-
cipitation distributions generated by SMPP error models
into environmental prediction models. This latter approach
is challenging to implement and has received little attention.

In this study, we combine IMERG with a recent, rel-
atively simple, SMPP error model (Wright et al. 2017)
and a probabilistic adaptation of the existing LHASA
model framework. The approach is evaluated in the
mountainous Appalachian region of the southeastern
United States. This region features high-quality ground-
based precipitation observations, which are used to train
the error model. We examine the sensitivity of both
SMPP error estimates and landslide predictions to the
quantity of ground reference data used to train the error
model. The results highlight the potential value of in-
corporating both systematic and random precipitation
errors into environmental models, as well as the benefits
of moditfying those models’ structures to explicitly ac-
commodate such error estimates. We consider the latter
point to be critical, since probabilistic representations of
precipitation are anticipated to become more common
in the near future (Kirstetter et al. 2018; Wright 2018),
and existing prediction models are not generally
configured to directly ingest probabilistic estimates
of precipitation.

Study region, precipitation data, and landslide sus-
ceptibility and inventory data are presented in section 2.
The existing LHASA model, the SMPP error model,
and a new probabilistic formulation of LHASA are in-
troduced in section 3. Results are presented in section 4,
and a discussion follows in section 5. A closing summary
and conclusions are provided in section 6.

2. Study region and data

a. Study region

The study region encompasses the Appalachian
Mountains in western North Carolina and eastern
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Tennessee and extends north into Virginia and Kentucky
and south into Georgia and South Carolina (Figs. 1a,b).
Extreme precipitation is the primary natural hazard in
this region, causing floods and landslides that result in
deaths and economic losses (Moore et al. 2015). These
can result from tropical cyclones, mesoscale convective
systems, orographic uplift, and atmospheric rivers that
interact with the region’s complex terrain (Barros et al.
2014; Mahoney et al. 2016; Moore et al. 2015). Hurricane
Frances was followed by Hurricane Ivan within a
2-week period in September 2004, for example, and
caused approximately 400 landslides, 11 deaths,
and widespread property damage (Boyle 2014).
Landslides continue to pose a threat to the region, with
three fatalities occurring in May 2018 (Carter 2018;
Doom 2018).

b. Rainfall data

The study period is 2002-18. IMERG Version 6B
Early and Late, both of which are used in the opera-
tional version of LHASA and are produced with laten-
cies of 4 and 14 h, respectively (Huffman et al. 2015), are
used. The Stage I'V radar—gauge merged precipitation
product (Lin 2011), available over the continental
United States at hourly, roughly 4-km resolution,
serves as the ground reference. Stage I'V has been used
previously to validate SMPPs (e.g., AghaKouchak
et al. 2011). Though ground-reference data such as
Stage IV can contain errors, we compared Stage IV
against rain gauge observations (results not shown)
and assume that such errors are negligible in com-
parison to SMPP errors for this study. Stage IV,
IMERG Early, and IMERG Late are aggregated to a
daily scale. Within the study area, IMERG observa-
tions of daily rainfall often differ from Stage IV and
IMERG observations of high precipitation are espe-
cially error-prone (Figs. 1c,d).

Rather than use precipitation directly, LHASA uses
an antecedent rainfall index (ARI) to define the dy-
namic component of a landslide hazard. ARI, is a 7-day
weighted accumulation of precipitation p, for day ¢ and
the prior 6 days:

oy, 1)

where w; = (i + 1) 2. ARI is formulated to account for
the combined impacts of current and recent precipita-
tion on slope stability since soil moisture, pore water
pressure, and other physical processes are not explicitly
modeled in LHASA. More details on ARI and assigned
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weights can be found in Kirschbaum et al. (2015b) and
Kirschbaum and Stanley (2018).

c¢. Global landslide susceptibility map and landslide
inventory

The LHASA model (section 3a) uses the 1-km global
landslide susceptibility map developed by Stanley and
Kirschbaum (2017). The map depicts the static suscep-
tibility index (SI) determined using a fuzzy overlay
model to combine gridded datasets of five static factors:
slope, geology, distance to fault zones, presence of
roads, and forest loss. SI consists of integer values from 1
to 5, corresponding to very low, low, moderate, high, and
very high susceptibility (Fig. 2). The methodology used
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to create the susceptibility map can be found in Stanley
and Kirschbaum (2017).

A landslide inventory was obtained from the North
Carolina Geological Survey (Wooten et al. 2016) and
the Global Landslide Catalog (GLC; Kirschbaum et al.
2010, 2015a), which provide databases of rainfall-
triggered landslides based on media reports and other
disaster databases. Landslide reports in the GLC include
information on the date, location, and impacts of the
events and provide an estimate of the landslide’s loca-
tion accuracy.

Only landslides occurring between 2002 and 2018
were used due to the limited length of IMERG and
Stage IV records. Additionally, landslide reports were
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FIG. 2. 1-km static susceptibility map for the study region. Mountainous terrain has the highest
susceptibility to landslides in the region.

only considered if the location accuracy in the inventory
was within 1km, if the range of the date of occurrence
spanned less than 5 days, and if the trigger was listed as
rainfall. The inventory was inspected to remove any
duplicate landslide reports. This resulted in an inventory
of 214 landslides, approximately half of which are as-
sociated with Hurricane Frances and Hurricane Ivan in
September 2004 (Fig. 1b). Over 80% of landslides
recorded during the 2002-18 study period occurred in
high or very high susceptibility areas (SI = 4; Table 1).

3. Methods
a. CSGD-based error modeling framework

SMPPs exhibit three types of error: false alarms, in
which the SMPP reports precipitation but none actually
occurs; missed cases, in which precipitation occurs but
the SMPP does not “‘see’ it; and hits, in which the SMPP
correctly reports nonzero precipitation, but of the wrong
magnitude. The error modeling framework based on
censored shifted gamma distributions (CSGDs), de-
veloped by Scheuerer and Hamill (2015) for post-
processing ensemble numerical precipitation forecasts
and adapted by Wright et al. (2017) to model errors in
SMPPs, is capable of quantifying all three error types.
The CSGD is an adaptation of the two-parameter

gamma distribution (here written in terms of its mean
and standard deviation, but which can be reparame-
trized in terms of shape and scale parameters) with an
additional ““shift”” parameter 6 that shifts the probability
density function (PDF) leftward. The distribution is left-
censored at zero, replacing all negative values with zero.
The probability density left of zero thus represents the
probability of zero precipitation, while the density at any
value greater than zero represents the likelihood of that
amount of precipitation (Figs. 3a,b). The CSGD is thus
able to describe both precipitation occurrence and mag-
nitude. The cumulative distribution function (CDF;
Fig. 3a) is defined by

Flw(x =95), for x>0,

Fuos®) = { 0 for x=0. @

A ‘“‘climatological CSGD” with parameters u, o, and
o6 is fitted to the record of ground-truth precipitation
(Fig. 3a). A nonlinear regression system is then trained
based on contemporaneous collocated SMPP and ground-
truth observations to produce regression parameters oy,
o, a3, a4 and, at any time ¢, unique ‘‘conditional” CSGD
parameters wu(t), o(t), and 8(¢):

0 o R
;Ltza—llog[l-l-(e1—1)<a2+a3ﬁ’>:|, 3)

TABLE 1. Static susceptibility zone coverage and landslide occurrence in study region using 388 landslides reported during 2002-18
study period. A total of 214 landslides were used for LHASA model evaluation; the remainder either occurred outside of the 2002-18
study period or failed to meet other necessary reporting requirements.

Static susceptibility 1 (very low) 2 (low) 3 (moderate) 4 (high) 5 (very high)
Study area 8.0% 42.0% 29.0% 16.0% 5.0%
No. of landslides 0(0%) 5(1.3%) 68 (17.5%) 225 (58.0%) 90 (23.2%)
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where R is the mean of the satellite observations. The
terms u,, oy, and 8, define the distribution of possible
“true” precipitation at time ¢ based on the SMPP ob-
servation R, (Fig. 3b). The CSGD framework implicitly
downscales estimates if the spatial resolution of the sat-
ellite and ground-reference precipitation records differ,
as shown in Scheuerer and Hamill (2015). In this study,
we use the error model to downscale from IMERG’s 0.1°
resolution to the 1/24° (roughly 4 km) resolution of Stage
IV. The CSGD error model thus characterizes the rela-
tionship between 0.1° IMERG estimates of precipitation
and 1/24° Stage IV estimates. This relationship will differ
from what would be obtained if Stage IV were used at 0.1°
resolution, since some discrepancies between the two
datasets would be smoothed out at that coarser scale.
The CSGD error modeling framework could be ap-
plied to daily precipitation to generate an ensemble of
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daily precipitation time series for input to LHASA. Such an
approach would be complicated, however, since it would be
necessary to preserve temporal autocorrelation in daily
precipitation. Instead, we train the CSGD model on ARI
time series since ARI is a time-integrated precipitation
value [Eq. (1)]. Climatological CSGDs fit to ARI time series
show good agreement with empirical ARI CDFs (Fig. 3c),
while the probability of zero precipitation both in the cli-
matological CSGD of ARI and in the conditional CSGDs
of ARI (Fig. 3d) are unsurprisingly much lower than that
for daily precipitation. It has been previously shown that
IMERG error depends on the amount and source of
passive microwave and infrared data used (Tan et al.
2016). Since this data availability varies over rela-
tively short time scales (generally subhourly), it is not
feasible to consider it when modeling multiday ARI.

Since both Stage IV and IMERG observations of ARI
are available over the entire study domain, we can
train a CSGD error model for any collocated set of
IMERG and Stage IV ARI time series. This training
method produces unique error model parameters for
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[b] Probabilistic LHASA
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FIG. 4. Decision trees of the (a) LHASA model (adapted from Kirschbaum and Stanley 2018) and (b) probabilistic LHASA model.

each of the 8640 four-kilometer pixels in the study area.
We henceforth referred to this as the “localized model.”
Since ground-based precipitation data are more limited in
many parts of the world, we also adopt a regional param-
eter estimation scheme that may better reflect data-limited
settings. The ARI time series of all pixels in the region are
concatenated into a single satellite and ground-truth time
series to use as input into the CSGD error model frame-
work, generating one set of error model parameters. This
regional training scheme neglects the heterogeneity in er-
ror characteristics across the region and provides a more
generalized model of IMERG error in the study area.
The result of this regional approach is henceforth re-
ferred to as the “‘regional model.”” We also explore the
possibility of training a regional model on data from
fewer pixels by using ten randomly selected locations
(instead of all study area pixels) in the regional pa-
rameter estimation scheme. This random regional
training, further detailed in section 4a, better reflects
operational conditions in data-limited regions where ex-
tensive precipitation records are likely unavailable.
Regional and localized CSGD error models for daily
ARI from IMERG are trained on the 5-yr period from
2002 to 2006. Both models are incorporated into the
probabilistic LHASA model [section 3b(3)]. We assess
the consequences of using these different training methods
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by comparing the probabilistic LHASA model perfor-
mance using each model (section 4b).

b. LHASA model

1) EXISTING “DETERMINISTIC LHASA”

The LHASA model characterizes rainfall-induced
landslide potential worldwide in near-real time using a
heuristic decision tree model (Fig. 4; Kirschbaum and
Stanley 2018). Its outputs are 1-km resolution nowcasts,
i.e., predictions that indicate either moderate hazard or
high hazard if the combination of static and dynamic
factors meet specific criteria.

The LHASA model decision tree assesses landslide
hazard in two steps. In step 1, satellite-estimated ARI
on day , or ARI,, is calculated and compared against
the 95th percentile of historical (e.g., climatological)
satellite-estimated ARI (ARlyes,) for that location.
Thresholds other than ARIy,..q, could be used; this is out-
side the scope of our study. IMERG-Early observations are
used for the current day due to their lower latency, while
IMERG-Late observations are used for the prior 6 days due
to their improved accuracy. If ARY, is below ARIjyeqh, NO
nowecasts are issued to any of the 1-km pixels covered by the
0.1° IMERG grid cell. If ARI, exceeds AR reqh, the 1-km
static susceptibility map (section 2c¢) is consulted in step 2.
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the study region.

One-kilometer pixels with moderate or high static suscep-
tibility (SI = 3 or 4) are issued a moderate hazard nowcast
and very high susceptibility pixels (SI = 5) are issued a high
hazard nowcast. All nowcasts are issued at a 1-km resolution
of the static susceptibility map.

This existing version of LHASA is referred to as
“deterministic LHASA” in recognition that only the
IMERG observation is used, without any estimate of
the potential uncertainty associated with it. In this study,
deterministic LHASA is run on a daily scale using
IMERG for the period 2002-18.

2) DETERMINISTIC LHASA USING STAGE IV
AND CSGD-MEDIAN

Deterministic LHASA is additionally run using
Stage IV precipitation as input for the period 2002-18.
Accordingly, the ARIesn Values used in this run of
deterministic LHASA are based on Stage IV data.
This simulation is conducted to compare satellite-
based LHASA predictions to those produced by
ground-reference rainfall. This helps to contextualize
how much of LHASA’s predictive power is associated
with precipitation uncertainty, as opposed to other
possible sources of prediction error.

We also evaluate a version of deterministic LHASA in
which the median of the conditional CSGD, rather than
the original IMERG observation, is used to calculate daily
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ARI,. Using the median or mean of the conditional CSGD
corrects for systematic bias in SMPPs, but does not address
random error. As will be shown in section 4, using this bias-
corrected value actually degrades LHASA’s predic-
tive capability, while considering the full conditional
CSGD improves prediction.

3) PROBABILISTIC LHASA wiTH IMERG
ERROR MODELING

We adapted the LHASA framework so that it is able
to incorporate probabilistic precipitation estimates
produced by the CSGD error model (section 3a). This
modified version is referred to as ““probabilistic LHASA”
and is shown schematically in Fig. 5. It should be empha-
sized that our purpose was not to develop a new model, but
rather to make as few modifications to the existing frame-
work as possible to allow it to ingest probabilistic precipi-
tation estimates. Key elements, therefore, including the
fixed 95th percentile threshold of ARI, remain in the
probabilistic version. Concepts such as probabilistic ARI
thresholds or a continuous scale of static susceptibility may
be useful, but are beyond the scope of this study.

Instep 1, a conditional CSGD for day ¢ is generated for
each pixel based on the satellite-observed ARI, and the
CSGD error model. The conditional CSGD is compared
to ARIjeqn Of the same pixel; P(ARI, > ARy ) is the
area of the conditional CSGD PDF that lies above
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ARIypesn (highlighted as the light blue area in Fig. 4b),
where ARI, is the true ARI at time ¢, which is unknown.
In the CSGD PDF in Fig. 4b, IMERG AR, is depicted
in red to illustrate how deterministic LHASA evaluates
rainfall hazard: whether or not AIA{L is above or below
ARIipresh; probabilistic LHASA, in contrast, utilizes the
probability that the actual ARI value, ARI,, is above this
threshold based on the SMPP observation.

After calculating P(ARI; > ARl en), probabilistic
LHASA factors in static susceptibility using the global
susceptibility map (section 2¢) in step 2. No nowcasts are
issued to pixels with very low or low susceptibility (SI <
2). P(ARI, > ARl eqpn) for pixels with moderate, high,
and very high susceptibility (SI = 3) are multiplied by
0.5, 0.75, and 1.0, respectively, to produce a landslide
hazard index (LHI). The 0.5 and 0.75 multipliers in
probabilistic LHASA were chosen to allow a category 4
(3) hazard nowcast to be issued in high (moderate)
susceptibility pixels provided that there is a near certain
probability that ARI; > ARIyyresn. Pixels with LHI less
than 0.1 are assigned as no nowcast. The resulting 0.1-
1.0 LHI scale is continuous and reflects a range of
moderate to very high landslide hazard that considers
precipitation uncertainty. We divide this continuous
scale into five equally spaced categories: category 1
LHI = (0.1, 0.28], category 2 LHI = (0.28, 0.46], and so
on up to category 5 (Fig. 4b). While these LHI category
ranges as well as the aforementioned 0.5 and 0.75
multipliers are assigned somewhat arbitrarily, land-
sliding events are too sparse in the study area to justify
calibration of these values. We show in section 4 that
this uncalibrated formulation nonetheless improves
prediction compared with deterministic LHASA.
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It should be noted that these nowcast categories 1-5 in
probabilistic LHASA are not the same as in determin-
istic LHASA, which instead issues moderate and high
hazard nowcasts. The continuous nature of the LHI
scale in probabilistic LHASA may lend itself to a vari-
ety of nowcast communication approaches that are not
available in deterministic LHASA.

c¢. LHASA evaluation metrics

To assess the performance of deterministic and prob-
abilistic LHASA, the true positive rate (TPR), false pos-
itive rate (FPR), and area-wide false alarm ratio (FAR)
are calculated. A nowcast is considered correct if it is
issued within 1km of a recorded landslide the day of or
the day before the date of occurrence. A correct nowcast
is said to “capture” a landslide. A “‘pixel-day” refers to a
1-km pixel on any given day in the study period, to which a
landslide may be reported or a nowcast may be issued.
TPR is the percentage of reported landslides that are
correctly detected by a landslide hazard nowcast. FPR is
the percentage of pixel-days when a nowcast was issued
but should not have been (i.e., no landslide was reported
within 1 km). Area-wide FAR is the percentage of pixel-
days in which a nowcast is issued but no landslide occurs
anywhere in the study area on the day of or the day after
the nowcast. Area-wide FAR allows for nowcasts to not
be considered false alarms as long as a landslide is re-
ported within the study area. This is relevant because the
static and dynamic conditions at a particular location can
indeed be hazardous even if no landslide actually occurs,
and thus a nowcast in such conditions should not neces-
sarily be considered erroneous. These three evaluation
metrics are provided in the form of equations below:

TPR 6

reported landslides ’ ©)

FPR — pixel-days when nowcast was issued and no landslide occurred )
all pixel-days in which no landslide occurred ’

pixel-days when nowcast was issued and no landslide occurred in study area (®)

FAR =

all pixel-days when nowcast was issued

4. Results
a. CSGD error model

To explore how SMPP error models may be applied to
areas without extensive ground-truth precipitation es-
timates, it is critical to evaluate the robustness of error
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model parameter estimation. Localized and regional
CSGD error models for IMERG observations of ARI were
trained over the 2002-06 period using data from all collo-
cated IMERG and Stage IV grid cells in the study region.

To assess the importance of record length in error
model parameter estimation, a regional CSGD model
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FIG. 6. Median of the conditional CSGD for ARI, = 10 mm generated by (a) the regional error model and (b) the
localized error model. Median of the conditional CSGD for ARI, = 50 mm generated by (c) the regional model and
(d) the localized model. The regional error model produces a nearly uniform median (i.e., expected values of ARI,)
for all pixels while the localized model’s characterization of error exhibits heterogeneity, including radar artifacts
indicative of beam blockage. A conditional CSGD median below AR, reflects IMERG’s positive systematic bias.

trained using the entire 2002-18 period was compared
against one trained using only the 2002-06 period (lines
in Fig. 5a). These two models are nearly indistinguish-
able. Additional models were fit using 5-yr subsets from
2003 to 2018 (i.e., 2003-07,2004-08, etc.; shaded areas of
Fig. 5a). Only modest differences from the 2002-06 and
the 2002-18 models are visible. These results suggest
that relatively short data records can produce satisfac-
tory parameter estimates.

One-hundred additional CSGD error models were
fitted that were intended to assess the model variability
that would result if spatially incomplete rainfall data
were available. Each error model was trained on ARI
data (for 2002-06) from 10 pixels randomly selected
from the study region. The spread of the uncertainty
estimates from these 100 models (shaded areas in
Fig. 5b) are very similar to those produced by the 2002—
06 regional model (lines in Fig. 5b), and nearly identical
for IMERG-observed ARI below 30mm. Thus, al-
though the regional CSGD model utilizes all 8640
collocated Stage IV and IMERG pixels in the study
region, such a model can be effectively approximated
using data from far fewer pixels. The 2002-06 regional
model with all pixels is used in the evaluation of
probabilistic LHASA (section 4b).

Localized CSGD models fitted for every single pixel
in the domain yielded uncertainty estimates (shaded
areas in Fig. 5c) that can vary widely from the regional
model (lines in Fig. 5¢). This highlights that substantial
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variation in IMERG-observed ARI error properties can
exist throughout the study region (Fig. 6) which is ig-
nored in the regional model. While radar beam patterns
and umbrellas are visible in the Localized model outputs
in Fig. 6, the regional model smooths out such artifacts
of radar estimation, demonstrating one benefit of a re-
gional approach. The regional approach also reduces
sampling error because it uses a larger sample of precipi-
tation estimates during model calibration. The implicit
downscaling of IMERG uncertainty in the CSGD model
training process results in localized models that reflect the
very specific relationships between precipitation in indi-
vidual Stage IV grid cells and the IMERG estimates cov-
ering those grid cells. For this reason, radar artifacts
indicating beam blockage are visible in the localized model
results in Fig. 6. Regardless, we show in section 4b that
once uncertainty estimates are integrated into the LHASA
framework, the lack of spatial variability in the regional
error model approach is of virtually no consequence.

b. LHASA model performance

Fifteen landslides were reported in the study region
on 5 May 2003. For this day, deterministic LHASA is-
sues nowcasts encompassing all landslides (Fig. 7a). The
same is true for probabilistic LHASA using the regional
CSGD error model (Fig. 7b). The spatial distributions
of nowcasts differ, however. Deterministic LHASA
issues high hazard nowcasts throughout the study area,
including a large part of the north where no landslides
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FIG. 7. (a) Deterministic LHASA model output and (b) probabilistic LHASA model (using
regional CSGD model) output on 5 May 2003. Locations 1 and 2 are also shown. Conditional
CSGD PDFs generated by probabilistic LHASA to describe uncertainty surrounding IMERG-
observed ARI on 5 May 2003 at (c) location 1 and (d) location 2.

were reported. Probabilistic LHASA, on the other
hand, issues category 3—5 nowcasts in the central part of
the study area where most landslides were reported;
nowcast categories were generally low (1-3) farther
away from reported landslides.

Conditional CSGDs for two 0.1° IMERG pixels dem-
onstrate how deterministic and probabilistic LHASA differ
in their evaluation of IMERG-observed ARI, (Figs. 7c,d;
locations shown in Figs. 7a,b). IMERG-observed ARI, for
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both locations is above ARIlesn. Deterministic
LHASA therefore issues moderate hazard (high haz-
ard) nowcasts for all areas within the two pixels that
have moderate to high (very high) static susceptibility, in
accordance with Fig. 4a. Probabilistic LHASA, on the
other hand, estimates the probability that the true ARI,
is above ARy, eqn by calculating P(ARI, > ARl eqn)- For
location 1, P(ARI, > ARlIyeq,) = 0.47, while for location 2,
P(ARI; > ARleqn) = 0.99 (Figs. 7c,d). For this reason,
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FI1G. 8. Evaluation statistics TPR, FPR, and FAR of (a),(c),(e) deterministic LHASA models and (b),(d),(f)
probabilistic LHASA models over 2002-18. The total number of landslides in the 2002-18 study period is 214.

probabilistic LHASA issues higher category nowcasts for
location 2, in accordance with Fig. 4b.

Over the 2002-18 study period deterministic (proba-
bilistic) LHASA using IMERG captures 150 (157) of
214 reported landslides (Figs. 8a,b). TPR is fairly evenly
dispersed for probabilistic LHASA among all nowcast
categories (Fig. 8b). FPR for category 5 nowcasts from
probabilistic LHASA is an order of magnitude lower
than the FPR for high hazard nowcasts in deterministic
LHASA (Figs. 8c,d). With the exception of category 1,
FAR for all probabilistic LHASA nowcast categories
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is less than 55%. This is lower than the FAR of both
moderate and high hazard nowcasts from deterministic
LHASA (both have FAR of 60% ), meaning that prob-
abilistic LHASA category = 2 nowcasts are less likely
to be issued than moderate or high hazard nowcasts
by deterministic LHASA when conditions do not ac-
tually produce landsliding in the region (Figs. 8e,f).
The relatively high FPR and FAR for category 1 now-
casts from probabilistic LHASA are expected since
these nowcasts are issued when there exists a nonzero
but low probability of ARI exceeding AR esh.
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Deterministic LHASA will never issue a nowcast
when the AﬁI, is less than ARl esn, Which is prob-
lematic given the prevalence of large random errors in
SMPPs, particularly during extreme rainfall events. In
contrast, probabilistic LHASA evaluates P(ARI, >
ARlypesn) to determine the probability of hazardous
ARI. Though P(ARI, > ARIesn) may not be high
when ARI, is below AR I eqp, probabilistic LHASA can
still generate a category 1 or 2 nowcast.

Differences between probabilistic LHASA using the
regional and localized CSGD models are negligible
(Figs. 8b,d,f). Probabilistic LHASA captures the same
number of landslides regardless of which CSGD error
model is used, while the localized CSGD error model
within probabilistic LHASA produces a slightly lower
total FPR (Fig. 8d). Even though the two models gen-
erate different P(ARI, > ARIy,esn) estimates, resulting
in slight differences in which nowcast category is issued,
each model is able to broadly identify cases when ARI,
is associated with greater uncertainty and when ARI,
has a nonnegligible probability of exceeding AR esh-

Deterministic LHASA using the CSGD median per-
forms poorly, capturing only 110 out of 214 reported
landslides (Fig. 8a). Recall from section 3b(2) that the
median or mean from the CSGD error model removes
systematic bias, but does not reflect random error. This
effectively eliminates any high values of ARI, resulting
in fewer nowcasts and fewer landslides captured.
Although FPR and FAR are low in this case relative
to other models (Figs. 8c,e), this is outweighed by an
unsatisfactory TPR.

Deterministic LHASA using Stage IV captures 193
out of 214 landslides, with lower FAR and FPR than
deterministic LHASA using IMERG. This represents
the maximum performance achievable when LHASA is
forced with the best available precipitation dataset. In
terms of TPR, probabilistic LHASA is closer to this
“optimal” performance than either of the IMERG-
based deterministic models. Because of the conceptual
differences in nowcast categories between the deter-
ministic and probabilistic versions of LHASA, it is dif-
ficult to directly compare FAR and FPR between the
two versions.

c. Spatial variation in nowcasts

Nowecast rates over the study region, calculated as the
percentage of days on which nowcasts are issued for
2002-18, are shown in Fig. 9. Nowcast rates for all
models are zero in areas of low or very low static sus-
ceptibility (see Fig. 2). The nowcast rate for determin-
istic LHASA using IMERG (Stage 1V) is 6%-8%
(4%—-6%) for most of the study region in pixels with
moderate or higher static susceptibility, which is logical since
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ARI, exceeds ARlgeq, On 5% of days. Probabilistic
LHASA using the regional CSGD model has higher now-
cast rates in the mountainous terrain in the center and
northeast of the study region and lower rates in the less-steep
northwest (Fig. 9c). Probabilistic LHASA using the local-
ized CSGD model increases nowcast rates along the edges
of the mountainous terrain and decreases nowcast rates
in the center, reflecting differing levels of uncertainty in
IMERG estimates in these two regions (Fig. 9d).

In both cases, nowcast rates from probabilistic LHASA
exhibit more spatial variability than deterministic
LHASA. While all moderate to very high suscepti-
bility areas within an 0.1° IMERG grid cell will have
the same nowcast rate in deterministic LHASA, the
nowcast rate in probabilistic LHASA will vary ac-
cording to static susceptibility (Fig. 9). For instance, if
IMERG-observed ARI, in a 0.1° pixel barely exceeds
ARIpresh, deterministic LHASA will issue nowcasts
for all areas in that pixel with moderate to very high
susceptibility, as per Fig. 4a. Probabilistic LHASA, on
the other hand, calculates P(ARI, > ARIesn) to
determine which static susceptibility level merits a
nowcast. A probability P(ARI, > ARIesn) = 0.2, for
example, would result in nowcasts being issued only
for high and very high static susceptibility pixels, as
per Fig. 4b.

When category 1 nowcasts, which imply relatively
modest landslide hazard, are excluded, the nowcast
rate of probabilistic LHASA drops by approximately
50% (Figs. 9¢,f). Results show that when probabilistic
LHASA issues nowcasts to an area but deterministic
LHASA does not, these nowcasts are moderate hazard
(category 1) and are issued because probabilistic LHASA
predicts a low but nonzero probability of landslide hazard
(see nowcasts issued in the north east of study region in
Figs. 7a,b).

5. Discussion
a. CSGD error models with limited ground-truth data

CSGD model training results (section 4a) demon-
strate that relatively little ground-reference data is
needed to approximate the regional SMPP error model
trained on abundant ground data. Specifically, 10 ran-
domly selected pixels in the study area are found to be
sufficient to approximate a regional CSGD error model
of ARI trained over all 8640 pixels (Fig. 5b). This ex-
tends the applicability of the regional CSGD error
model incorporated in probabilistic LHASA to data-
limited regions with few ground reference records,
and indicates that SMPP uncertainty can still be ac-
counted for in the LHASA model in data-limited re-
gions provided that at least some amount of ground
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FIG. 9. Nowcast rate (%), or percentage of days on which a nowcast is issued, over 200218 for (a) deterministic
LHASA using IMERG, (b) deterministic LHASA using Stage IV, (c) probabilistic LHASA using regional CSGD
error model, and (d) probabilistic LHASA using localized CSGD error model. Also shown is the nowcast rate
considering only category 2-5 nowcasts for (e) probabilistic LHASA with regional error model and (f) probabilistic
LHASA with localized error model. Note the significant decrease in nowcast rate for probabilistic LHASA when

category 1 nowcasts are excluded.

truth precipitation such as multiyear rain gauge rec-
ords are available.

Localized CSGD error models trained on individual
IMERG and Stage IV pixels reveal that there can be a
wide range of variation in the uncertainty around
IMERG-based ARI across the study region (Fig. 5c).
Such variation could imply that the regional approach
may not adequately characterize the uncertainties as-
sociated with IMERG-based ARI at any particular
location, but could also stem at least in part from
sampling error. True regional variability would argue
in favor of localized error modeling; regional variabil-
ity resulting from sampling error (e.g., insufficient re-
cord length to sample the extreme tail of the local
precipitation distribution) would argue in favor of a
regional approach. The consequence of differences
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between regional and localized CSGD error models is
not readily apparent in comparing the CSGD model
results (i.e., Fig. 5c¢), but is best evaluated through the
resulting performance of probabilistic LHASA, which
is discussed below. More work would be needed to
verify whether or not the conclusions regarding local-
ized versus regional error models of 7-day ARI would
pertain to error models of precipitation at shorter time
steps (e.g., daily, hourly, etc.).

Even though regional and localized error models
generate varying estimates of ARI uncertainty (Fig. 5¢),
their incorporation into the probabilistic LHASA model
produces nearly identical results: improved TPR rela-
tive to deterministic LHASA and lower FAR in all but
the lowest nowcast category (Fig. 8). This indicates that
the mere inclusion of IMERG uncertainty in LHASA is
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more critical than whether this uncertainty is estimated
based on broader regional error characteristics or lo-
calized error characteristics.

b. Deterministic and probabilistic LHASA model
performance

Probabilistic LHASA outperforms deterministic LHASA
and provides greater gradation in landslide hazard
using a continuous nowcast scale. Since probabilistic
LHASA models using localized and regional CSGD
error models perform similarly (section 5a), discussion
of probabilistic LHASA in this section refers to the
results using the regional error model.

The superior performance of deterministic LHASA
using Stage IV confirms that accurate precipitation
data can significantly improve LHASA'’s performance
(Figs. 8a,c,e). The Stage IV-based model only misses
10% (21 out of 214) landslides in the study period.
These missed landslides are attributable to some com-
bination of deficiencies in Stage IV, the LHASA model
structure, the susceptibility map, or the landslide in-
ventory. Deterministic LHASA using IMERG, in con-
trast misses 64 out of 214 (30%). This is improved
somewhat by incorporating the IMERG uncertainty
information via probabilistic LHASA (57 out of 214
landslides missed; 27%). This modest improvement in
TPR is accompanied by reductions in FAR and FPR
associated with higher hazard (category 2-5) nowcasts
and more realistic spatial distributions of nowcasts.

While probabilistic LHASA improves total TPR and
landslides captured relative to its deterministic coun-
terpart (Figs. 8a,b), comparing the distribution of TPR
across nowcasts is less straightforward since the two
model frameworks use different nowcast categories. For
deterministic LHASA, TPR for high hazard nowcasts is
higher than for moderate hazard nowcasts, and thus can
be said to have higher skill. On the other hand, TPR for
probabilistic LHASA is more evenly dispersed across
nowcast categories. Though this suggests equal skill in
all nowcast categories, the FAR and FPR indicate far
fewer instances of category 3—-5 nowcasts being issued in
error. While moderate hazard and high hazard nowcasts
from deterministic LHASA are equally likely to be a
false alarm (Fig. 8¢), the FAR for probabilistic LHASA
nowcasts decreases above category 1 such that higher
category nowcasts are less likely to be false alarms
(Fig. 8f). When category 1 nowcasts are excluded, the
total FPR of probabilistic LHASA is half that of
deterministic LHASA (Fig. 8d). Probabilistic LHASA
category 4 and 5 nowcasts have much lower FPRs and
FARs than high hazard nowcasts from deterministic
LHASA, which are important for stakeholders to estab-
lish how confident they can be in a nowcast. Probabilistic
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LHASA’s ability to issue low category nowcasts even
when ARI, < ARy could be particularly beneficial
in regions with high random error (such as mountainous
terrain with finescale heterogeneities) or where satellite
observations frequently underestimate heavy precipita-
tion events (Derin et al. 2019).

Eighty-six percent of reported landslides in the study
area occur in moderate and high static susceptibility
pixels (Table 1). This suggests that it would be reason-
able for moderate and high static susceptibility areas
(from SI = 3 to SI = 4) to merit high hazard nowcasts
under certain conditions, which is not possible in deter-
ministic LHASA (Fig. 4a). The deterministic LHASA
decision tree only permits high hazard nowcasts to be
issued in areas with SI = 5 (Fig. 4a). The deterministic
LHASA framework could be modified to allow issuance
of high hazard nowcasts in areas with SI = 4 by greatly
increasing the associated FPR and FAR, or by intro-
ducing some moderating factor to decide whether a High
susceptibility pixel is issued a moderate or high hazard
nowcast. Probabilistic LHASA allows the nowcast cate-
gory to vary based on the probability of hazardous ARI
(Fig. 4b). For example, a category 4 nowcast can be issued
to areas with SI = 4 under the circumstance that
P(ARI, > ARl is greater than 0.85. Thus, proba-
bilistic LHASA is able to differentiate between two lo-
cations with the same static susceptibility and for which
ARI, > ARy resh, but which have different probabilities
of experiencing hazardous precipitation (Figs. 7c,d).

The poor performance of deterministic LHASA using
the CSGD-median of IMERG reveals that removing
systematic bias in SMPPs can actually significantly worsen
model performance, if the potential for random error is
neglected. These results emphasize the importance of
considering the range of random error present in SMPP
observations in addition to systematic bias when ac-
counting for SMPP uncertainty, especially for models of
environmental processes driven by extreme precipitation
(such as floods and landslides).

c¢. Spatial nowcast variations

The largest differences in nowcast rates between de-
terministic and probabilistic LHASA occur in the steep-
est terrain (Fig. 9), where uncertainty-prone extreme
precipitation events occur most frequently. Probabilistic
LHASA'’s incorporation of the relatively wide range of
error surrounding extreme events results in more fre-
quent nowcasts. It is also noteworthy that probabilistic
LHASA does not uniformly increase the nowcast rate
across the entire study region, but actually decreases the
nowcast rate in the lower-elevation northwest, which ex-
periences positive systematic bias from IMERG (Fig. 6)
and receives less extreme rainfall. Even though the
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evaluation statistics for regional and localized CSGD
models are very similar (Fig. 8), the spatial patterns of
nowcast rate for these two models across the study area
are distinct (Figs. 9c,d). Although probabilistic LHASA is
issuing more nowcasts than deterministic LHASA
(Figs. 9a,c,d), the two models’ nearly identical overall
FAR implies that probabilistic nowcasts are more likely
to be issued on days when conditions actually produce
landsliding in the region. Further, if a user chose to only
consider category 2-5 nowcasts from probabilistic
LHASA, the nowcast rate and associated FAR and FPR
drop significantly (Figs. 8d,f, 9¢.f).

6. Summary and conclusions

Satellite multisensor precipitation products (SMPPs) of-
fer promise for environmental modeling in regions that lack
ground-based sources of precipitation information. This
promise has gone largely unfulfilled, however, mainly due
to the high uncertainty of satellite-based precipitation
estimates. This study demonstrates how accounting for
SMPP uncertainty can improve predictions from a land-
slide hazard model over the mountainous southeastern
United States. Historical records of Integrated Multisatellite
Retrievals for GPM (IMERG) and ground-based precipi-
tation are used to train an error model that characterizes
uncertainty in current and antecedent rainfall. A probabi-
listic version of NASA'’s Landslide Hazard Assessment for
Situational Awareness (LHASA) model is developed
that can translate this rainfall uncertainty into near-real-
time landslide nowcasts. The hazard nowcast scale is
continuous, though we transform it into a simple five-
category scale. Run retrospectively using IMERG, the
probabilistic version of LHASA performs well in the
study region, capturing more landslides than the existing
deterministic version with lower false positive rates and
false alarm ratios in high hazard nowcast categories.
Using the error model to generate only the ‘‘best guess”
(e.g., median) antecedent rainfall as input for the de-
terministic LHASA model leads to worse model per-
formance, highlighting that removal of systematic bias is
not sufficient for addressing SMPP uncertainty in mod-
eling. Instead, results demonstrate the need to account
for the range of SMPP random error.

Data-limited regions have few available ground records
on which to train SMPP error models. We show that while
ground truth precipitation data are indeed necessary for
error model training, such data need not be ubiquitous
and a few ground truth records can go a long way. Nearly
identical improvements in landslide hazard model perfor-
mance can be obtained by using a regionalized parameter
training scheme instead of a data-intensive localized
training scheme, and this regionalized scheme can be
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robust with relatively few training data. These findings
suggest accounting for SMPP uncertainty within a land-
slide hazard model is viable even in data-limited regions.

Though the probabilistic LHASA model framework
was developed over a limited region in the United
States, its performance is promising for application to
other regions. The probabilistic nowcast scale, which can
be subdivided into discrete categories indicating varied
levels of landslide hazard based on factors such as
number of desired categories or a desired trade-off
between true positive rate and false positive rate,
provides a flexible way to adapt landslide hazard
nowcast categories to stakeholder requirements. Though
the nowcast categories in probabilistic LHASA are pre-
sented here as equally subdivided portions of a continu-
ous scale (Fig. 4b), this scale could be divided in any
number of ways. This flexibility could be used to optimize
specific performance metrics such as TPR or FPR. A
stakeholder could, for example, use four categories in-
stead of five, and specify that the highest category have a
minimum TPR of 0.25 or a maximum FPR of 0.001. This
is consistent with the original goal of the LHASA
framework—to provide a flexible model for providing
situational awareness of landslide hazard that can be
fine-tuned as required (Kirschbaum et al. 2015b;
Kirschbaum and Stanley 2018).

Accounting for SMPP uncertainty would allow the
LHASA model to better utilize SMPPs globally and in
data-limited regions. Since precipitation forecasts such
as those from the Global Forecasting System (Saha et al.
2006) are generally produced as ensembles, this method-
ology could be used to incorporate probabilistic precipi-
tation forecasts as inputs into the probabilistic LHASA
model to generate landslide hazard forecasts. We antici-
pate that other environmental prediction models such as
the Global Flood Monitoring System (Wu et al. 2012) and
the Global Land Data Assimilation System (GLDAS;
Fang et al. 2009) could likely benefit from deeper con-
sideration of SMPP uncertainty and error—both system-
atic and random.

In this study, we found it necessary to modify (albeit
modestly) the operational LHASA framework to ac-
commodate IMERG uncertainty estimates, as opposed
to inserting those estimates directly into the existing ver-
sion. Probabilistic precipitation estimates are likely to be-
come more common in the near future. To realize the full
benefits of probabilistic representations of precipitation,
we believe that it will be necessary to seriously consider
how existing environmental models can be adapted to
accommodate such estimates, or how new models
could be developed that are explicitly designed around
such estimates. We acknowledge that this may be very
challenging for more complex physically based models.
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Given the centrality of precipitation (and thus, pre-
cipitation errors) to so many phenomena, however,
relatively simple models that make effective use of
precipitation uncertainty could prove useful. In addi-
tion, as our experience with LHASA has shown, it may
be necessary to rethink how outputs from such models
would be produced and interpreted. This study shows
that quantifying satellite precipitation uncertainty and
converting SMPPs from an unknown to a known source
of uncertainty can significantly improve model perfor-
mance, even if it remains impossible to derive the true
precipitation from SMPP observations.
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