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Well-Posedness and Stability Analysis of Two Classes of Generalized Stochastic
Volatility Models\ast 

Ning Ning\dagger and Jing Wu\ddagger 

Abstract. In this paper, to cope with the shortage of sufficient theoretical support resulting from the fast-
growing quantitative financial modeling, we investigate two classes of generalized stochastic volatil-
ity models, establish their well-posedness of strong solutions, and conduct the stability analysis
with respect to small perturbations. In the first class, a multidimensional path-dependent process
is driven by another multidimensional path-dependent process. The second class is a generalized
one-dimensional stochastic volatility model with H\"older continuous coefficients. What greatly dif-
ferentiates these two classes of models is that both the process and its correlated driving process
have their own subdifferential operators, whose one special case is the general reflection operators
for multisided barriers. Hence, the models investigated fully cover various newly explored variants
of stochastic volatility models whose well-posedness is unknown, and naturally serve as the rigorous
mathematical foundation for new stochastic volatility model development in terms of multidimen-
sions, path dependence, and multisided barrier reflection.

Key words. stochastic volatility models, path dependent, reflection with multisided barriers, well-posedness,
perturbation
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1. Introduction. Stochastic volatility is one of the main concepts widely used in mathe-
matical finance to deal with the endemic time-varying volatility and codependence found in fi-
nancial markets. Stochastic volatility models since its invention have been widely used to eval-
uate derivative securities such as options, with the characteristic that the variance of a stochas-
tic process is itself randomly distributed. Various extensions of stochastic volatility models for
different purposes have been proposed in recent years with the fast-growing quantitative finan-
cial modeling of the past decade. However, a shortage of sufficient theoretical support in terms
of the existence and uniqueness of a (strong) solution of the proposed models comes along.

To cope with that, in this paper, we consider two classes of generalized stochastic volatil-
ity models, establish their well-posedness, and conduct stability analyses. The first class is
the multidimensional path-dependent system (2.1), where a d2-dimensional path-dependent
Y process is driven by a d1-dimensional path-dependent X process. The second class is a
generalized one-dimensional stochastic volatility model with H\"older continuous coefficients
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80 NING NING AND JING WU

(3.1). What greatly differentiates those two classes of models is that both the X and Y pro-
cesses have their own subdifferential operators, whose one special case is the general reflection
operators for multisided barriers, because of which the models under investigation are called
stochastic variational inequalities (SVI).

For illustrative purpose, we consider a simplified one-dimensional path-dependent version
of (2.1) without control as follows:

(1.1)

\left\{   
Xt \in x0 +

\int t
0 b(s,X(s))ds+

\int t
0 \sigma (s,X(s))d\widehat Ws  - 

\int t
0 \partial \psi 1(Xs)ds,

Yt \in y0 +
\int t
0 \alpha (s,X(s), Y (s))ds+

\int t
0 \beta (s,X(s), Y (s))dBs  - 

\int t
0 \partial \psi 2(Ys)ds,

where the path X(t) := Xt\wedge \cdot up to time t, \widehat W :=
\sqrt{} 

1 - \rho 2W + \rho B for W and B being two

independent one-dimensional Brownian motions with d\langle \widehat W,B\rangle t = \rho dt for | \rho | \leq 1. Apparently,
(1.1) covers all the classical types of stochastic volatility models and path-dependent models,
and it also covers the Heston-type stochastic path-dependent volatility model proposed in [8]
(as well as the local maximum stochastic volatility model proposed in [2]) whose well-posedness
is unknown:

dSt = \mu (t, St,Mt)Stdt+
\sqrt{} 
Vt\sigma (t, St,Mt)StdWt,

dVt = \kappa (\theta  - Vt)dt+ \xi 
\sqrt{} 
VtdW

V
t ,

where \sigma is a local volatility function depending on the running maximum Mt := sup0\leq u\leq t Su,
and d\langle W,W V \rangle t = \rho dt for | \rho | \leq 1.

Reflection factors on stochastic differential equations (SDEs) have wide application and a
long history in financial mathematics with great contributions from the pioneer works of El
Karoui since the 1970s; see [11]. For economic dynamics, reflected SDEs were used for the
target zone models of the currency exchange rate (see, for example, [15, 3]). In a regulated
financial market, government regulations lead the spot foreign exchange rate processes, the
domestic interest rate processes, and the goods or services (for instance, grain, water, gas,
electricity supply, and other important materials or services for a country), because of which
reflected SDEs can be applied realistically and appropriately (see, for example, [5, 6, 4]). (1.1)
not only extends all the classical reflected SDEs to handle multisided barriers, but also cov-
ers new models such as the reflected stochastic local volatility model in its generalized skew
stochastic local volatility model proposed in [9] (as well as the reflected stochastic volatil-
ity model proposed therein) whose well-posedness is unknown, by taking the special form
\psi 1(Xt) = (2p - 1)1\{ Xt\geq a\} ,

dSt = \gamma (St, Xt)dt+m(Xt)\gamma (St)dW
(1)
t ,

dXt = \mu (Xt)dt+ \sigma (Xt)dW
(2)
t + (2p - 1)dLX

t (a),

where d\langle W (1),W (2)\rangle t = \rho dt for | \rho | \leq 1, and LX
t (a) is the symmetric local time of X at the

point a, and p = 0 or 1 for the X process being the reflected diffusion at the value a.
Following the new trend in financial mathematics, a control process belonging to the set of

predictable processes and taking values in a compact separable metric space, is embedded into
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GENERALIZED STOCHASTIC VOLATILITY MODELS 81

both the drift function and the diffusion function of the Y process of both of the two classes
of models under investigation. This control process equips the proposed models with the ap-
plicability in stochastic control problems, such as the superreplicate valuation problem using
the uncertain volatility models with stochastic bounds in [12]. We further followed [12] in
conducting the stability analysis of the SVI systems (2.1) and (3.1) by perturbing the systems
with a small positive parameter \epsilon . Asymptotic analyses were conducted on the perturbed sys-
tems to explore their limiting behaviors as \epsilon goes to zero. In financial mathematics, stochastic
volatility models with a small parameter is a typical setup (see, for example, [13, 14]), which
may function on the driving volatility process (X process in the current setting) resulting in
slow-moving effects.

Well-posedness for the two classes of models has to be established by different methods
due to very different model setups. On proving the well-posedness of the multidimensional
SVI system (2.1), we used the method of the Euler scheme for any duration T . To handle the
path-dependent effects, we extensively applied the functional It\^o formula that was introduced
by [10]. When it comes to the one-dimensional model with H\"older continuous coefficients (3.1),
we established its well-posedness by means of the Moreau--Yosida regularization approximation
method which was used in [1] with Lipschitz continuous coefficients. Analogous techniques can
be used in handling other problems; see, for example, [17] on approximating continuity and
the support of reflected SDEs, [16] on reflected SDEs with jumps and their associated optimal
control problems, [19] on limit theorems and the support of SDEs with oblique reflections on
nonsmooth domains.

The rest of the paper is organized as follows. In section 2, we analyze the multidimensional
path-dependent SVI system (2.1), where the well-posedness of the X and Y processes is
established in sections 2.1.1 and 2.1.2, respectively. Next we considered a perturbed version
of (2.1) with a small positive parameter \epsilon , and showed that the perturbed X\epsilon and Y \epsilon processes
converge to the X and Y processes in sections 2.2.1 and 2.2.2, respectively. In section 3, we
investigate the one-dimensional model with H\"older continuous coefficients (3.1), whose well-
posedness is established in section 3.1 and whose stability analysis is conducted in section 3.2.
In the following, C stands for a constant which may change line by line.

2. Multidimensional path-dependent SVI system. In this section, our investigation is
based on the following general multidimensional path-dependent system of SVI:

(2.1)

\left\{             

Xt \in x0 +
\int t
0 b(s,X(s))ds+

\int t
0 \sigma 1(s,X(s))dWs +

\int t
0 \sigma 2(s,X(s))dBs

 - 
\int t
0 \partial \psi 1(Xs)ds,

Yt \in y0 +
\int t
0 \alpha (s,X(s), Y (s), qs)ds+

\int t
0 \beta (s,X(s), Y (s), qs)dBs

 - 
\int t
0 \partial \psi 2(Ys)ds.

Here, Xt \in Rd1 denotes the status of X at time t \in [0, T ]; b, \sigma 1, and \sigma 2 are measurable
functions on R+ \times \scrC (R+;Rd1) depending on the path X(t) := Xt\wedge \cdot up to time t, valued
in Rd1 , Rd1\times dW , and Rd1\times dB , respectively; W and B are two independent dW -dimensional
and dB-dimensional standard Brownian motions on a complete filtered probability space
(\Omega ,\scrF , \{ \scrF t; t \geq 0\} ,P). We call \nu := (\Omega ,\scrF , \{ \scrF t; t \geq 0\} ,P,W,B) a reference system, based
on which, we denote \scrA \nu as the set of admissible controls that is the set of (\scrF t)-predictable
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82 NING NING AND JING WU

and U-valued processes. Yt \in Rd2 denotes the status of Y at time t \in [0, T ]; q is the control
process belonging to the set of predictable processes and taking values in a compact separable
metric space U; \alpha and \beta are measurable functions on R+ \times \scrC (R+;Rd1) \times \scrC (R+;Rd2) \times U,
valued in Rd2 and Rd2\times dB , respectively, depending on both paths X(t) and Y (t) as well as the
control process q.

For i = 1, 2, \psi i is a proper, convex, and lower-semicontinuous function on Rdi , with its
effective domain

Di := \{ x \in Rdi : \psi i(x) <\infty \} ,

and its subdifferential operator

\partial \psi i(x) := \{ z \in Rdi ; \langle x\prime  - x, z\rangle \leq \psi i(x
\prime ) - \psi i(x), \forall x\prime \in Rdi\} ,

where \langle \cdot , \cdot \rangle denotes the inner product. Theories on subdifferential operators (see [18]) indicate
that \partial \psi i(x) is closed and convex for every x \in Rdi , satisfying that

\langle x - x\prime , z  - z\prime \rangle \geq 0

for any x, x\prime \in Rdi , z \in \partial \psi i(x), and z\prime \in \partial \psi i(x
\prime ); \partial \psi i is maximal monotone, that is, if

x, z \in Rdi satisfying

\langle x - x\prime , z  - z\prime \rangle \geq 0

for any x\prime \in Rdi and z\prime \in \partial \psi i(x
\prime ), then z \in \partial \psi i(x).

Condition 2.1. For the X process in the SVI system (2.1), we impose the following condi-
tions:

\bullet b(t, x) and \sigma i(t, x) are continuous in t, and satisfy

\langle b(t, x(t)) - b(t, x\prime (t)), xt  - x\prime t\rangle \leq 0 \forall x, x\prime \in \scrC (R+;Rd1),

| b(t, x(t)) - b(t, x\prime (t))| \leq l0(t)\| x - x\prime \| 
1
2
+\alpha 

t for some \alpha \in [0, 1/2],(2.2)

\| \sigma i(t, x(t)) - \sigma i(t, x
\prime (t))\| \leq li(t)\| x - x\prime \| t, i = 1, 2,

where li(\cdot ) \in L2([0, T ]) for i = 0, 1, 2 and \| z\| t := sups\leq t | zs| .
\bullet 0 \in Int(D1) and \psi 1 \geq \psi 1(0) \equiv 0.

Condition 2.2. For the Y process in the SVI system (2.1), we impose the following condi-
tions:

\bullet \lambda 1 \leq qt \leq \lambda 2.
\bullet For \| x\| t \leq R and LR(t) being locally square integrable,\bigm| \bigm| \alpha (t, x(t), y(t), qt) - \alpha (t, x(t), y\prime (t), qt)

\bigm| \bigm| \leq LR(t)\| y  - y\prime \| t,\bigm\| \bigm\| \beta (t, x(t), y(t), qt) - \beta (t, x(t), y\prime (t), qt)
\bigm\| \bigm\| \leq LR(t)\| y  - y\prime \| t.

\bullet \alpha (\cdot , \cdot , \eta , \cdot ) and \beta (\cdot , \cdot , \eta , \cdot ) are continuous in R+ \times \scrC (R+;Rd1)\times U for \eta \in \scrC (R+;Rd2).
\bullet 0 \in Int(D2) and \psi 2 \geq \psi 2(0) \equiv 0.
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GENERALIZED STOCHASTIC VOLATILITY MODELS 83

2.1. Well-posedness.

2.1.1. Well-posedness of the \bfitX -system. The following theorem gives the well-posedness
of the X process in the above system.

Theorem 2.1. Under Condition 2.1, there exists a unique strong solution (X,\phi (1)) to the
X process in the SVI system (2.1) in the following sense:

\bullet For every t \geq 0, Xt \in \=D1.
\bullet For any \varrho \in \scrC (R+;Rd1) and t \geq s \geq 0,

(2.3)

\int t

s
\langle \varrho u  - Xu, d\phi 

(1)
u \rangle +

\int t

s
\psi 1(Xu)du \leq 

\int t

s
\psi 1(\varrho u)du, a.e.,

where \phi (1) is a continuous process of locally bounded variation, \phi 
(1)
0 = 0.

\bullet For t \in R+,

(2.4) Xt = x0 +

\int t

0
b(s,X(s))ds+

\int t

0
\sigma 1(s,X(s))dWs +

\int t

0
\sigma 2(s,X(s))dBs  - \phi 

(1)
t .

Remark 2.2. (i) Note that when \varrho = 0 in (2.3), one has\int t

s
\langle Xs, d\phi 

(1)
s \rangle \geq 

\int t

s
\psi 1(Xu)du.

(ii) \psi 1 is locally bounded in D1. Set

M := sup
| x| \leq a

| \psi 1(x)| , \varrho u = a
d\phi 

(1)
u

d| \phi (1)| 0u
,

where | \phi (1)| 0u stands for the total variation of \phi (1) defined on an interval [0, u]. Then
according to (2.3),

a| \phi (1)| st \leq 
\int t

s
\langle Xu, d\phi 

(1)
u \rangle +M(t - s).

(iii) If ( \~X, \~\phi (1)) is also a solution, for any t \geq s \geq 0,\int t

s
\langle Xu  - \~Xu, d\phi 

(1)
u  - d\~\phi (1)u \rangle \geq 0.

We have the following lemma taken from [7].

Lemma 2.3. Suppose \{ kn;n \geq 1\} is a sequence of continuous functions kn : [0, T ] \rightarrow Rd1

satisfying supn | kn| T0 < \infty and \| kn  - k\| T \rightarrow 0. Then k has finite variation on [0, T ] and for
a sequence of continuous functions \{ fn;n \geq 1\} satisfying \| fn  - f\| T \rightarrow 0 as n \rightarrow \infty , the
following holds:\int t

s
\langle fn(r), dkn(r)\rangle \rightarrow 

\int t

s
\langle f(r), dk(r)\rangle , as n\rightarrow \infty , \forall s, t \in [0, T ].
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84 NING NING AND JING WU

Proof of Theorem 2.1. Suppose for every T > 0 and every n we are given a division of
[0, T ]:

0 = Tn
0 < Tn

1 < \cdot \cdot \cdot < Tn
kn = T

with the mesh

\Delta n := max
1\leq k\leq kn

| Tn
k  - Tn

k - 1| \rightarrow 0 as n\rightarrow \infty .

For t \in (Tn
k - 1, T

n
k ], denote T

n
t := Tn

k - 1. Consider the following equation:

(2.5)

\biggl\{ 
dXn

t \in b(t,Xn(Tn
t ))dt+ \sigma 1(t,X

n(Tn
t ))dWt + \sigma 2(t,X

n(Tn
t ))dBt  - \partial \psi 1(X

n
t )dt,

Xn(0) = Xn(Tn
0 ) = x0 \in \=D1.

Note that for t \in [0, Tn
1 ], according to [7], there exists a unique solution to (2.5), and we

denote it by (Xn, \phi (1),n). Applying It\^o's formula and Remark 2.2,

| Xn
t | 2 = | x0| 2 + 2

\int t

0
\langle Xn

s , b(s,X
n(Tn

s ))\rangle ds+ 2

\int t

0
\langle Xn

s , \sigma 1(s,X
n(Tn

s ))dWs\rangle 

+ 2

\int t

0
\langle Xn

s , \sigma 2(s,X
n(Tn

s ))dBs\rangle  - 2

\int t

0
\langle Xn

s , d\phi 
(1),n
s \rangle 

+
2\sum 

i=1

\int t

0
\| \sigma i(s,Xn(Tn

s ))\| 2ds

\leq | x0| 2 +
\int t

0
| Xn

s | 2ds+
\int t

0
| b(s,Xn(Tn

s ))| 2ds

+
2\sum 

i=1

\int t

0
\| \sigma i(s,Xn(Tn

s ))\| 2ds+ 2Mt - 2a| \phi (1),n| 0t

+ 2

\int t

0
\langle Xn

s , \sigma 1(t,X
n(Tn

s ))dWs\rangle + 2

\int t

0
\langle Xn

s , \sigma 2(t,X
n(Tn

s ))dBs\rangle 

\leq | x0| 2 + C

\int t

0
(1 + | Xn

s | 2)ds

+

\int t

0

\biggl[ 
b2(s, 0) +

2\sum 
j=1

\sigma 2j (s, 0) +
2\sum 

i=0

l2i (s)

\biggr] 
(1 + \| Xn\| 2Tn

s
)ds

+ 2

\int t

0
\langle Xn

s , \sigma 1(s,X
n(Tn

s ))dWs\rangle + 2

\int t

0
\langle Xn

s , \sigma 2(s,X
n(Tn

s ))dBs\rangle 

from which and by using the Burkholder--Davis--Gundy (BDG) inequality and Gr\"onwall's
lemma, we have

E\| Xn\| 2t \leq C(1 + E| x0| 2)

\left(  \int T

0

\biggl[ 
b2(s, 0) +

2\sum 
j=1

\sigma 2j (s, 0) +

2\sum 
i=0

l2i (s)

\biggr] 
ds

\right)  D
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and

sup
n

E sup
t\leq Tn

1

| Xn
t | 4 \leq C(1 + E| x0| 2)2

\left(  \int T

0

\biggl[ 
b2(s, 0) +

2\sum 
j=1

\sigma 2j (s, 0) +

2\sum 
i=0

l2i (s)

\biggr] 
ds

\right)  2

.

Assuming

sup
n

E sup
t\leq Tn

k

| Xn
t | 4 <\infty ,

then with the same arguments as above, we have

sup
n

E sup
t\leq Tn

k+1

| Xn
t | 4

\leq C(1 + sup
n

E\| Xn\| 4Tn
k
)

\left(  \int T

0

\biggl[ 
b2(s, 0) +

2\sum 
j=1

\sigma 2j (s, 0) +

2\sum 
i=0

l2i (s)

\biggr] 
ds

\right)  2

<\infty .

Summing up,

(2.6) sup
n

E sup
t\leq T

| Xn
t | 4 <\infty .

Applying It\^o's formula again, for t \in (Tn
k - 1, T

n
k ], we have

| Xn
t  - Xn

Tn
t
| 2

= 2

\int t

Tn
t

\langle Xn
s  - Xn

Tn
t
, b(s,Xn(Tn

t ))\rangle ds+ 2

\int t

Tn
t

\langle Xn
s  - Xn

Tn
t
, \sigma 1(s,X

n(Tn
s ))dWs\rangle 

+ 2

\int t

Tn
t

\langle Xn
s  - Xn

Tn
t
, \sigma 2(s,X

n(Tn
t ))dBs\rangle  - 2

\int t

Tn
t

\langle Xn
s  - Xn

Tn
t
, d\phi (1),ns \rangle 

+
2\sum 

i=1

\int t

Tn
t

\| \sigma i(s,Xn(Tn
s ))\| 2ds

\leq 
\int t

Tn
t

| Xn
s  - Xn

Tn
t
| 2ds+

\int t

Tn
t

| b(s,Xn(Tn
t ))| 2ds+

2\sum 
i=1

\int t

Tn
t

\| \sigma i(s,Xn(Tn
t ))\| 2ds

+ 2

\int t

Tn
t

\langle Xn
s  - Xn

Tn
t
, \sigma 1(s,X

n(Tn
s ))dWs\rangle + 2

\int t

Tn
t

\langle Xn
s  - Xn

Tn
t
, \sigma 2(s,X

n(Tn
s ))dBs\rangle (2.7)

 - 2

\int t

Tn
t

\langle Xn
s  - Xn

Tn
t
, d\phi (1),ns \rangle .

For \epsilon > 0 and R > 0, set

A\epsilon ,R :=\{ x \in Rd1 : \forall x\prime /\in \=D1, | x - x\prime | \geq \epsilon and | x - a0| \leq R\} ,(2.8)
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86 NING NING AND JING WU

where a0 \in Int(D1) such that A\epsilon ,R \not = \emptyset for every R > 0 and \epsilon < \epsilon 0 for some \epsilon 0 > 0. Then
A\epsilon ,R is a convex compact subset of Int(D1). Set

fR(\epsilon ) := sup\{ | x\prime | : x\prime \in \partial \psi 1(x), x \in A\epsilon ,R\} ,

and according to the local boundedness of \partial \psi 1 on Int(D1), | fR(\epsilon )| < +\infty . Let

gR(\delta ) := inf\{ \epsilon \in (0, \epsilon 0) : fR(\epsilon ) \leq \delta  - 1/2\} , \delta > 0.

Let \delta R > 0 such that \delta R + gR(\delta R) < \epsilon 0. Fix R > 0 and \delta \in (0, \delta R \wedge 1]. Since

\delta R + gR(\delta R) < \epsilon 0, A\delta +gR(\delta ),R \not = \emptyset ,

we have

(2.9) fR(\delta + gR(\delta )) \leq \delta  - 1/2.

For 0 \leq t  - s \leq \delta , denote \xi n,\delta ,R as the projection of Xn
s on A\delta +gR(\delta ),R. Then on the set

\{ \| Xn\| T \leq R\} , we have

| Xn
Tn
t
 - \xi n,\delta ,R| \leq \delta + gR(\delta ),

which yields \int t

s
\langle Xn

s  - \xi n,\delta ,R, d\phi (1),nr \rangle \leq (\delta + gR(\delta ))| \phi (1),n| 0T

and \int t

s
\langle \xi n,\delta ,R  - Xn

r , d\phi 
(1),n
r \rangle \leq 

\int t

s
\langle \xi n,\delta ,R  - Xn

r , \eta 
n,\delta ,R\rangle dr

\leq 2R(t - s)fR(\delta + gR(\delta ))

\leq 2\delta 1/2R,

where the first inequality follows by (2.3) with \eta n,\delta ,R \in \partial \psi 1(\xi 
n,\delta ,R), the second inequality

follows by the boundedness of \xi n,\delta ,R and the definitions of \xi n,\delta ,R and fR(\delta + gR(\delta )), and the
third inequality follows by (2.9). Therefore, on the set \{ \| Xn\| T \leq R\} ,

 - 
\int t

s
\langle Xn

r  - Xn
s , d\phi 

(1),n
r \rangle =

\int t

s
\langle Xn

s  - \xi n,\delta ,R, d\phi (1),nr \rangle +
\int t

s
\langle \xi n,\delta ,R  - Xn

r , d\phi 
(1),n
r \rangle 

\leq (\delta + gR(\delta ))| \phi (1),n| 0T + 2\delta 1/2R.

(2.10)

Define the stopping time

\tau n(R) := inf\{ s; | Xn
s | > R\} .
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GENERALIZED STOCHASTIC VOLATILITY MODELS 87

For t \leq \tau n(R) \wedge T , plugging the result of (2.10) into (2.7), we have

| Xn
t  - Xn

Tn
t
| 2

\leq 
\int t

Tn
t

| Xn
s  - Xn

Tn
t
| 2ds+

\int t

Tn
t

| b(s,Xn(Tn
t ))| 2ds+

2\sum 
i=1

\int t

Tn
t

\| \sigma i(s,Xn(Tn
t ))\| 2ds

+ 2

\int t

Tn
t

\langle Xn
s  - Xn

Tn
t
, \sigma 1(s,X

n(Tn
s ))dWs\rangle + 2

\int t

Tn
t

\langle Xn
s  - Xn

Tn
t
, \sigma 2(s,X

n(Tn
s ))dBs\rangle 

+ 2(\Delta n + gR(\Delta n))| \phi (1),n| 0T + 4R\Delta 1/2
n .

Taking supremum and then expectation, we have

E sup
t\leq T\wedge \tau n(R)

| Xn
t  - Xn

Tn
t
| 2 \leq CR\Delta 

1/2
n (1 + E\| Xn\| 2T ) + E| \phi (1),n| 0T (\Delta n + gR(\Delta n))

+ CR max
| u - v| \leq \Delta n

\int v

u
r

\biggl[ 
b2(s, 0) +

2\sum 
j=1

\sigma 2j (s, 0) +
2\sum 

i=0

l2i (s)

\biggr] 
ds,

(2.11)

which together with (2.6) implies that

E sup
t\leq T

| Xn
t  - Xn

Tn
t
| 2 \leq E sup

t\leq T
| Xn

t  - Xn
Tn
t
| 2(1\{ T<\tau n(R)\} + 1\{ T\geq \tau n(R)\} )

\leq E sup
t\leq T\wedge \tau n(R)

| Xn
t  - Xn

Tn
t
| 2 + E\| Xn\| 2T1\{ T\geq \tau n(R)\} 

\rightarrow 0, by letting n\rightarrow \infty and then R\rightarrow \infty .

Furthermore, by Condition 2.1 which implies that\int t

0

\bigl\langle 
Xn

s  - Xm
s , b(s,X

n(s)) - b(s,Xm(s))
\bigr\rangle 
ds \leq 0,

and by Remark 2.2 which implies that\int t

0

\bigl\langle 
Xn

s  - Xm
s , d(\phi 

(1),n
s  - \phi (1),ms )

\bigr\rangle 
\geq 0,

we have

| Xn
t  - Xm

t | 2

= 2

\int t

0

\bigl\langle 
Xn

s  - Xm
s , b(s,X

n(Tn
s )) - b(s,Xm(Tm

s ))
\bigr\rangle 
ds

+ 2

\int t

0

\bigl\langle 
Xn

s  - Xm
s , \sigma 1(s,X

n(Tn
s )) - \sigma 1(s,X

m(Tm
s ))

\bigr\rangle 
dWs

+ 2

\int t

0

\bigl\langle 
Xn

s  - Xm
s , \sigma 2(s,X

n(Tn
s )) - \sigma 2(s,X

m(Tm
s ))dBs

\bigr\rangle 
 - 2

\int t

0

\bigl\langle 
Xn

s  - Xm
s , d(\phi 

(1),n
s  - \phi (1),ms )

\bigr\rangle D
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88 NING NING AND JING WU

+
2\sum 

i=1

\int t

0
\| \sigma i(s,Xn(Tn

s )) - \sigma i(s,X
m(Tm

s ))\| 2ds

\leq 2

\int t

0

\bigl\langle 
Xn

s  - Xm
s , b(s,X

n(Tn
s )) - b(s,Xn(s))

\bigr\rangle 
ds

+ 2

\int t

0

\bigl\langle 
Xn

s  - Xm
s , b(s,X

m(Tm
s )) - b(s,Xm(s))

\bigr\rangle 
ds

+ 2

\int t

0

\bigl\langle 
Xn

s  - Xm
s , \sigma 1(s,X

n(Tn
s )) - \sigma 1(s,X

m(Tm
s ))

\bigr\rangle 
dWs

+ 2

\int t

0

\bigl\langle 
Xn

s  - Xm
s , \sigma 2(s,X

n(Tn
s )) - \sigma 2(s,X

m(Tm
s ))

\bigr\rangle 
dBs

+

2\sum 
i=1

\int t

0
l2i (s)\| Xm(Tm

\cdot ) - Xn(Tn
\cdot )\| 2sds

\leq 2

\int t

0
l0(s)| Xn

s  - Xm
s | 
\bigl( 
| Xn(Tn

s ) - Xn(s)| 
1
2
+\alpha + | Xm(Tm

s ) - Xm(s)| 
1
2
+\alpha 
\bigr) 
ds

+ 2

\int t

0

\bigl\langle 
Xn

s  - Xm
s , \sigma 1(s,X

n(Tn
s )) - \sigma 1(s,X

m(Tm
s ))

\bigr\rangle 
dWs

+ 2

\int t

0

\bigl\langle 
Xn

s  - Xm
s , \sigma 2(s,X

n(Tn
s )) - \sigma 2(s,X

m(Tm
s ))

\bigr\rangle 
dBs

+ C
2\sum 

i=1

\int t

0
l2i (s)

\bigl( 
\| Xm(Tm

\cdot ) - Xm(\cdot )\| 2s + \| Xn(Tn
\cdot ) - Xn(\cdot )\| 2s

\bigr) 
ds

+ C

2\sum 
i=1

\int t

0
l2i (s)\| Xm  - Xn\| 2sds.

Define the stopping time

\tau m(R) := inf\{ s; | Xm
s | > R\} .

On one hand, by the BDG inequality and (2.11), we get

E sup
t\leq T

| Xn
t  - Xm

t | 21\{ T<\tau m(R)\wedge \tau n(R)\} 

= E sup
t\leq T\wedge \tau m(R)\wedge \tau n(R)

| Xn
t  - Xm

t | 2

\leq CT

\bigl( 
hR(\Delta m) + hR(\Delta n)

\bigr) 
+ C

2\sum 
i=1

\int t

0
l2i (s)E\| Xm  - Xn\| 2sds,D
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GENERALIZED STOCHASTIC VOLATILITY MODELS 89

where hR(\Delta k) \rightarrow 0 as k \rightarrow \infty . On the other hand, by H\"older's inequality and (2.6),

E sup
t\leq T

| Xn
t  - Xm

t | 21\{ T\geq \tau m(R)\wedge \tau n(R)\} \leq 

\Biggl[ 
E sup

t\leq T
| Xn

t  - Xm
t | 4 \cdot E1\{ T\geq \tau m(R)\wedge \tau n(R)\} 

\Biggr] 1
2

\leq 

\Biggl[ 
2 sup

n
E sup

t\leq T
| Xn

t | 4 \cdot P(T \geq \tau m(R) \wedge \tau n(R))

\Biggr] 1
2

\leq 

\Biggl[ 
C \cdot P

\Biggl( 
sup
t\leq T

| Xn
t | \vee sup

t\leq T
| Xm

t | > R

\Biggr) \Biggr] 1
2

\leq 

\Biggl[ 
C

R2
sup
n

E sup
t\leq T

| Xn
t | 2
\Biggr] 1

2

\leq C

R2
.

Hence,

E sup
t\leq T

| Xn
t  - Xm

t | 2 = E
\biggl[ 
sup
t\leq T

| Xn
t  - Xm

t | 2(1\{ T<\tau m(R)\wedge \tau n(R)\} + 1\{ T\geq \tau m(R)\wedge \tau n(R)\} )

\biggr] 
\leq CT

\bigl( 
hR(\Delta m) + hR(\Delta n)

\bigr) 
+

C

R2

\rightarrow 0, as m,n\rightarrow \infty and then R\rightarrow \infty ,

and moreover by (2.4),
lim

m,n\rightarrow \infty 
E\| \phi (1),m  - \phi (1),n\| T \rightarrow 0.

Hence, \{ Xn, \phi 
(1),n\} n is a Cauchy sequence and by the completeness of the space of pro-

cesses with respect to the uniform convergence, there exists a pair of continuous processes
(X,\phi (1)) satisfying that for any \epsilon > 0,

E sup
t\leq T

| Xn
t  - Xt| 2 \rightarrow 0, E sup

t\leq T

\bigm| \bigm| \phi (1),nt  - \phi 
(1)
t

\bigm| \bigm| 2 \rightarrow 0.

Then by Lemma 2.3, we have that \phi (1) is of locally finite variations and (2.3) holds. Further-
more, by the continuity of b and \sigma , we have

E sup
t\leq T

\bigm| \bigm| \bigm| \bigm| \int t

0
\sigma 1(s,X

n(Tn
s ))dWs  - 

\int t

0
\sigma 1(s,X(s))dWs

\bigm| \bigm| \bigm| \bigm| 2 \rightarrow 0,

E sup
t\leq T

\bigm| \bigm| \bigm| \bigm| \int t

0
\sigma 2(s,X

n(Tn
s ))dBs  - 

\int t

0
\sigma 2(s,X(s))dBs

\bigm| \bigm| \bigm| \bigm| 2 \rightarrow 0,

E sup
t\leq T

\bigm| \bigm| \bigm| \bigm| \int t

0
b(s,Xn(Tn

s ))ds - 
\int t

0
b(s,X(s))ds

\bigm| \bigm| \bigm| \bigm| 2 \rightarrow 0.D
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Suppose ( \=X, \=\phi (1)) is also a solution. It\^o's formula with Remark 2.2 yields

| Xt  - \=Xt| 2

= 2

\int t

0

\bigl\langle 
Xs  - \=Xs, b(s,X(s)) - b(s, \=X(s))

\bigr\rangle 
ds

+ 2

\int t

0

\bigl\langle 
Xs  - \=Xs, \sigma 1(s,X(s)) - \sigma 1(s, \=X(s))

\bigr\rangle 
dWs

+ 2

\int t

0

\bigl\langle 
Xs  - \=Xs, \sigma 2(s,X(s)) - \sigma 2(s, \=X(s))

\bigr\rangle 
dBs

 - 2

\int t

0

\bigl\langle 
Xs  - \=Xs,

\bigl( 
d\phi (1)s  - d\=\phi 1s

\bigr) \bigr\rangle 
+

2\sum 
j=1

\int t

0
\| \sigma j(s,X(s)) - \sigma j(s, \=X(s))\| 2ds

\leq 2

\int t

0

\bigl\langle 
Xs  - \=Xs, \sigma 1(s,X(s)) - \sigma 1(s, \=X(s)

\bigr\rangle 
dWs

+ 2

\int t

0

\bigl\langle 
Xs  - \=Xs, \sigma 2(s,X(s)) - \sigma 2(s, \=X(s))

\bigr\rangle 
dBs +

2\sum 
j=1

\int t

0
l2j (s)\| X  - \=X\| 2sds

from which we could get

E\| X  - \=X\| 2T \leq C

2\sum 
j=1

\int T

0
l2j (s)E\| X  - \=X\| 2sds,

and the uniqueness follows by Gr\"onwall's inequality.

2.1.2. Well-posedness of the \bfitY -system.

Remark 2.4. Analogously to Theorem 2.1 and Remark 2.4, one can show that
\bullet for any \varrho \in \scrC (R+;Rd2) and t \geq s \geq 0,

(2.12)

\int t

s

\bigl\langle 
\varrho u  - Yu, d\phi 

(2)
u

\bigr\rangle 
+

\int t

s
\psi 2(Yu)du \leq 

\int t

s
\psi 2(\varrho u)du, a.e.,

where \phi (2) is a continuous process of locally bounded variation satisfying that \phi 
(2)
0 = 0;

\bullet if (Y, \phi (2)) and ( \~Y , \~\phi (2)) are two solutions, then for any t \geq s \geq 0,\int t

s

\bigl\langle 
Yu  - \~Yu, d\phi 

(2)
u  - d\~\phi (2)u

\bigr\rangle 
\geq 0.

Proposition 2.5. Under Conditions 2.1 and 2.2, there exists a unique strong solution (Y, \phi (2))
to the Y process in the SVI system (2.1).

Proof. Suppose Z is an adapted process satisfying

E\| Z\| 4T <\infty .

Then according to the deterministic result (see [7]), there exists a unique solution (Y, \phi (2)) to
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GENERALIZED STOCHASTIC VOLATILITY MODELS 91

the following SVI:

(2.13) Yt \in y0 +

\int t

0
\alpha (s,X(s), Z(s), qs)ds+

\int t

0
\beta (s,X(s), Z(s), qs)dBs  - 

\int t

0
\partial \psi 2(Ys)ds.

Note that similarly to (2.6), we have

(2.14) E\| X\| 4T <\infty .

Denote
\tau 1R := inf\{ s; | Xs| \vee | Zs| > R\} .

Then for all R > 0, \tau 1R is a stopping time and \tau 1R \uparrow \infty as R \uparrow \infty . By It\^o's formula and with
arguments similar to the previous section, for any t < \tau 1R,

| Yt| 2 \leq | y0| 2 + 2

\int t

0

\bigl\langle 
Ys, \alpha (s,X(s), Z(s), qs)

\bigr\rangle 
ds - 2

\int t

0

\bigl\langle 
Ys, d\phi 

(2)
s

\bigr\rangle 
+

\int t

0
\| \beta (s,X(s), Z(s), qs)\| 2ds+ 2

\int t

0

\bigl\langle 
Ys, \beta (s,X(s), Z(s), qs)dBs

\bigr\rangle 
\leq | y0| 2 +

\int t

0
| Ys| 2ds+

\int t

0

\bigl( 
L2
R(s)\| Z\| 2s + | \alpha (s,X(s), 0, qs)| 2

\bigr) 
ds

+ \lambda 22

\int t

0
(L2

R(s)\| Z\| 2s + \| \beta (s,X(s), 0, qs)\| 2)ds+ 2Mt - 2a| \phi (2)| 0t

+ 2

\int t

0

\bigl\langle 
Ys, \beta (s,X(s), Z(s), qs)dBs

\bigr\rangle 
,

where in the last inequality we used (2.12) and the mean value theorem. Hence,

E sup
t\leq T\wedge \tau 1R

| Yt| 4

\leq CE(1 + | y0| 4) + CE
\int T\wedge \tau 1R

0
| Ys| 4ds

+ CE

\Biggl[ \int T\wedge \tau 1R

0

\bigl( 
L2
R(s)\| Z\| 2s + | \alpha (s,X(s), 0, qs)| 2

\bigr) 
ds

\Biggr] 2

+ CE\lambda 42

\Biggl[ \int T\wedge \tau 1R

0

\bigl( 
L2
R(s)\| Z\| 2s + \| \beta (s,X(s), 0, qs)\| 2

\bigr) 
ds

\Biggr] 2

+ CE
\int T\wedge \tau 1R

0
| Ys| 2 \cdot \| \beta (s,X(s), Z(s), qs)\| 2ds

\leq CE(1 + | y0| 4) + CE
\int T\wedge \tau 1R

0
| Ys| 4ds+

1

2
E sup

t\leq T\wedge \tau 1R
| Yt| 4

+ CE\| Z\| 4T
\biggl[ \int T\wedge \tau 1R

0

\biggl( 
L2
R(s)

+ sup
\| x\| T\leq R,\lambda 1\leq \| y\| \leq \lambda 2

(| \alpha (s, x, 0, y)| 2 + \| \beta (s, x, 0, y)\| 2)
\biggr) 
ds

\biggr] 2
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92 NING NING AND JING WU

and thus by Gr\"onwall's lemma

E sup
t\leq T\wedge \tau 1R

| Yt| 4 \leq C(1 + E\| Z\| 4T ).

Furthermore,

P(\| Y \| T > M) = P(\| Y \| T > M,T < \tau 1R) + P(\| Y \| T > M,T \geq \tau 1R)

\leq P(\| Y \| T\wedge \tau 1R
> M) + P(T \geq \tau 1R)

\leq 
E\| Y \| 4

T\wedge \tau 1R
M4

+ P(T \geq \tau 1R)

\rightarrow 0, by letting M \rightarrow \infty and then R\rightarrow \infty .

(2.15)

Now we are going to show that the map Z \rightarrow (Y\cdot \wedge \tau 1R
, \phi 

(2)

\cdot \wedge \tau 1R
) is a contraction. Suppose \=Z

is also an adapted process such that

E\| \=Z\| 4T <\infty ,

and ( \=Y , \=\phi (2)) is the unique solution to (2.13) with \=Z in place of Z. Define

\tau 1R := inf\{ s; | Xs| \vee | Zs| \vee | \=Zs| > R\} .

Remark 2.4 implies that \int t

0

\bigl\langle 
Ys  - \=Ys, d(\phi 

(2)
s  - \=\phi (2)s )

\bigr\rangle 
\geq 0,

and then by It\^o formula and Condition 2.2

| Yt\wedge \tau 1R  - \=Yt\wedge \tau 1R
| 2

\leq 
\int t\wedge \tau 1R

0
| Ys  - \=Ys| 2ds+

\int t\wedge \tau 1R

0
| \alpha (s,X(s), Z(s), qs) - \alpha (s,X(s), \=Z(s), qs)| 2ds

+

\int t\wedge \tau 1R

0
\| \beta (s,X(s), Z(s), qs) - \beta (s,X(s), \=Z(s), qs)\| 2ds

+ 2

\int t\wedge \tau 1R

0

\bigl\langle 
(Ys  - \=Ys),

\bigl( 
\beta (s,X(s), Z(s), qs) - \beta (s,X(s), \=Z(s), qs)

\bigr) 
dBs

\bigr\rangle 
\leq 
\int t\wedge \tau 1R

0
| Ys  - \=Ys| 2ds+ (1 + \lambda 22)

\int t\wedge \tau 1R

0
L2
R(s)\| Z  - \=Z\| 2sds

+ 2

\int t\wedge \tau 1R

0

\bigl\langle 
(Ys  - \=Ys),

\bigl( 
\beta (s,X(s), Z(s), qs) - \beta (s,X(s), \=Z(s), qs)

\bigr) 
dBs

\bigr\rangle 
.
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Set lt :=
\int t
0 L

2
R(s)ds. Taking supremum and expectation of the above equation yields

E sup
t\leq T

| Yt\wedge \tau 1R  - \=Yt\wedge \tau 1R
| 2 \leq C(\lambda 2, T )E

\int T\wedge \tau 1R

0
L2
R(s)\| Z  - \=Z\| 2sds

\leq C(\lambda 2, T )

\biggl( \int T

0
L2
R(s)e

rlsds

\biggr) 
\cdot 

\Biggl( 
sup
t\leq T

e - rltE\| Z  - \=Z\| 2t

\Biggr) 

=
C(\lambda 2, T )

r
erlT sup

t\leq T
e - rltE\| Z  - \=Z\| 2t .

Taking r = 2C(\lambda 2, T ) gives

sup
t\leq T

e - rltE\| Y  - \=Y \| 2t \leq 
1

2
sup
t\leq T

e - rltE\| Z  - \=Z\| 2t .

Let Y (0) \equiv y and for n \geq 1, denote (Y n, \phi (2),n) as the solution to (2.13) with Z replaced by
Y n - 1. Then for any \delta > 0,

P(\| Y n  - Y n - 1\| T > \delta ) \leq P(\| Y n  - Y n - 1\| T > \delta , T < \tau 1R) + P(T \geq \tau 1R)

\leq e2rlT

\delta 2
e - rlT \| Y n  - Y n - 1\| 2T\wedge \tau 1R

+ P(T \geq \tau 1R)

\leq e2rlT

\delta 2

\biggl( 
1

2

\biggr) n - 1

E\| Y 1\| 2T\wedge \tau 1R
+ P(T \geq \tau 1R)

\rightarrow 0, by letting n\rightarrow \infty and then R\rightarrow \infty ,

which, by the Y dynamic, yields

P(\| \phi (2),n  - \phi (2),n - 1\| T > \delta ) \rightarrow 0, by letting n\rightarrow \infty .

Thus, by completeness there exists a unique pair of processes (Y, \phi (2)) such that

P(\| Y n  - Y \| T > \delta ) \rightarrow 0, P(\| \phi (2),n  - \phi (2)\| T > \delta ) \rightarrow 0, by letting n\rightarrow \infty .

By (2.15) we have that

P(\| Y n\| T > M) \rightarrow 0, P(| \phi (2)| T > M) \rightarrow 0, as M \rightarrow \infty ,

from which we get

P(\| Y \| T > M) \rightarrow 0, P(| \phi (2)| 0T > M) \rightarrow 0, as M \rightarrow \infty .

Applying Lemma 2.3, for any a \in \=D2 and t \geq s \geq r,\int t

s
(a - Yr)d\phi 

(2)
r +

\int t

s
\psi 2(Yr)dr \leq (t - s)\psi 2(a), a.e.

Hence we have proved that (Y, \phi (2)) is a solution of the Y process in the SVI system (2.1).
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94 NING NING AND JING WU

To prove the uniqueness, we first suppose ( \~Y , \~\phi (2)) is also a solution. Denote

\tau R := inf\{ s; | Xs| \vee | Ys| \vee | \~Ys| > R\} .

Applying It\^o's formula, for t < \tau R, yields

| Yt  - \~Yt| 2 \leq 2

\int t

0

\bigl\langle 
Ys  - \~Ys,

\bigl[ 
\alpha (s,X(s), Y (s), qs) - \alpha (s,X(s), \~Y (s), qs)

\bigr] \bigr\rangle 
ds

+ 2

\int t

0

\bigl\langle 
Ys  - \~Ys,

\bigl[ 
\beta (s,X(s), Y (s), qs) - \beta (s,X(s), \~Y (s), qs)

\bigr] 
dBs

\bigr\rangle 
+

\int t

0
\| \beta (s,X(s), Y (s), qs) - \beta (s,X(s), \~Y (s), qs)\| 2ds.

Then taking expectations yields

E sup
t\leq T\wedge \tau R

| Yt  - \~Yt| 2 \leq CE
\int T\wedge \tau R

0
| Ys  - \~Ys| 2ds+ CE

\int T\wedge \tau R

0
\| Y  - \~Y \| 2sds

from which we have

E sup
t\leq T\wedge \tau R

| Yt  - \~Yt| 2 = 0

and, furthermore,

P

\Biggl( 
sup

t\leq T\wedge \tau R
| Yt  - \~Yt| > 0

\Biggr) 
= 0.

2.2. Asymptotic analysis. We now study the stability of the SVI system (2.1) by inves-
tigating its perturbed version with a small positive parameter \epsilon :

(2.16)

\left\{             

X\varepsilon 
t \in x0 +

\int t
0 b

\varepsilon (s,X\varepsilon (s), \varepsilon )ds+
\int t
0 \sigma 

\varepsilon 
1(s,X

\varepsilon (s), \varepsilon )dWs +
\int t
0 \sigma 

\varepsilon 
2(s,X

\varepsilon (s), \varepsilon )dBs

 - 
\int t
0 \partial \psi 1(X

\varepsilon 
s )ds,

Y \varepsilon 
t \in y0 +

\int t
0 \alpha (s,X

\varepsilon (s), Y \varepsilon (s), qs)ds+
\int t
0 \beta (s,X

\varepsilon (s), Y \varepsilon (s), qs)dBs

 - 
\int t
0 \partial \psi 2(Y

\varepsilon 
s )ds,

where

(2.17) lim
\varepsilon \rightarrow 0

b\varepsilon (t, x, \varepsilon ) = b(t, x), lim
\varepsilon \rightarrow 0

\sigma \varepsilon i (t, x, \varepsilon ) = \sigma i(t, x), i = 1, 2.

Condition 2.3. Suppose that b\varepsilon (t, x, \varepsilon ) and \sigma \varepsilon j (t, x, \varepsilon ) for j = 1, 2 are continuous in t uni-
formly in \varepsilon , and satisfy\bigl\langle 

b\varepsilon (t, x(t), \varepsilon ) - b\varepsilon (t, x\prime (t), \varepsilon ), x(t) - x\prime (t)
\bigr\rangle 
\leq 0 \forall x, x\prime \in \scrC (R+;Rd1),

| b\varepsilon (t, x(t), \varepsilon ) - b\varepsilon (t, x\prime (t), \varepsilon )| \leq l0(t)\| x - x\prime \| 1/2+\alpha 
t for some \alpha \in [0, 1/2],

\| \sigma \varepsilon i (t, x(t), \varepsilon ) - \sigma \varepsilon i (t, x
\prime (t), \varepsilon )\| \leq li(t)\| x - x\prime \| t, i = 1, 2,

where li(t) for i = 0, 1, 2 are functions of t satisfying that li(\cdot ) \in L2([0, T ]).
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2.2.1. Asymptotic analysis of the \bfitX system. In the following, we give the convergence
result regarding the X\varepsilon 

t process in the perturbed system (2.16) as \varepsilon goes to 0.

Theorem 2.6. As \varepsilon \rightarrow 0, under Conditions 2.1 and 2.3, we have

(2.18) E sup
t\in [0,T ]

| X\varepsilon 
t  - Xt| 2 \rightarrow 0.

Proof. By applying It\^o's formula,

| X\varepsilon 
t  - Xt| 2 = 2

\int t

0

\bigl\langle 
X\varepsilon 

s  - Xs, b
\varepsilon (s,X\varepsilon (s), \varepsilon ) - b(s,X(s))

\bigr\rangle 
ds

+

2\sum 
i=1

\int t

0
\| \sigma \varepsilon i (s,X\varepsilon (s), \varepsilon ) - \sigma i(s,X(s))\| 2ds

+ 2

\int t

0

\bigl\langle 
X\varepsilon 

s  - Xs,
\bigl( 
\sigma \varepsilon 1(s,X

\varepsilon (s), \varepsilon ) - \sigma 1(s,X(s))
\bigr) 
dWs

\bigr\rangle 
+ 2

\int t

0

\bigl\langle 
X\varepsilon 

s  - Xs,
\bigl( 
\sigma \varepsilon 2(s,X

\varepsilon (s), \varepsilon ) - \sigma 2(s,X(s))
\bigr) 
dBs

\bigr\rangle 
 - 2

\int t

0

\bigl\langle 
X\varepsilon 

s  - Xs, d\phi 
(1),\varepsilon 
s  - d\phi (1)s

\bigr\rangle 
\leq C

\int t

0

\bigl( 
1 + l21(s) + l22(s)

\bigr) 
\| X\varepsilon  - X\| 2sds

+

\int t

0
| b\varepsilon (s, \=X(s), \varepsilon ) - b(s,X(s))| 2ds

+
2\sum 

i=1

\int t

0
\| \sigma \varepsilon i (s,X(s), \varepsilon ) - \sigma i(s,X(s))\| 2ds

+ 2

\int t

0

\bigl\langle 
X\varepsilon 

s  - Xs,
\bigl( 
\sigma \varepsilon 1(s,X

\varepsilon (s), \varepsilon ) - \sigma 1(s,X(s))
\bigr) 
dWs

\bigr\rangle 
+ 2

\int t

0

\bigl\langle 
X\varepsilon 

s  - Xs,
\bigl( 
\sigma \varepsilon 2(s,X

\varepsilon (s), \varepsilon ) - \sigma 2(s,X(s))
\bigr) 
dBs

\bigr\rangle 
,

which implies that

E\| X\varepsilon  - X\| 2T \leq CE
\int T

0

\bigl( 
1 + l21(s) + l22(s)

\bigr) 
\| X\varepsilon  - X\| 2sds

+ CE
\int T

0
| b\varepsilon (s,X(s), \varepsilon ) - b(s,X(s))| 2ds

+

2\sum 
i=1

E
\int T

0
\| \sigma \varepsilon i (s,X(s), \varepsilon ) - \sigma i(s,X(s))\| 2ds.D
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96 NING NING AND JING WU

Gr\"onwall's lemma yields that

E\| X\varepsilon  - X\| 2T \leq CE
\int T

0
| b\varepsilon (s,X(s), \varepsilon ) - b(s,X(s))| 2ds

+ C
2\sum 

i=1

E
\int T

0
\| \sigma \varepsilon i (s,X(s), \varepsilon ) - \sigma i(s,X(s))\| 2ds.

Now it follows from (2.14) and (2.17) that

E\| X\varepsilon  - X\| 2T \rightarrow 0, as \varepsilon \rightarrow 0.

2.2.2. Asymptotic analysis of the \bfitY system. In the following, we give the convergence
result regarding the Y \varepsilon 

t process in the perturbed system (2.16) as \varepsilon goes to 0.

Theorem 2.7. Under Conditions 2.1, 2.2, and 2.3, as \varepsilon \rightarrow 0, for any \eta > 0, we have

(2.19) P

\Biggl( 
sup

t\in [0,T ]
| Y \varepsilon 

t  - Yt| > \eta 

\Biggr) 
\rightarrow 0.

Proof. We first define stopping time \tau as

(2.20) \tau = inf\{ s : | X\varepsilon 
s | > R\} .

Then with an analysis analogous to Proposition 2.5, we have

E sup
t\in [0,T ]

| Y \varepsilon 
t\wedge \tau | 2

\leq | y0| 2 + C

\int T\wedge \tau 

0

\bigl( 
L2
R(s)| Y \varepsilon 

s | 2 + | \alpha (s,X\epsilon (s), 0, qs)| 2 + \| \beta (s,X\epsilon (s), 0, qs)\| 2
\bigr) 
ds

<\infty .

By the proof of Theorem 2.1 we have that E supt\in [0,T ] | X\varepsilon 
t | <\infty , and then

P

\Biggl( 
sup

t\in [0,T ]
| Y \varepsilon 

t | > M

\Biggr) 
= P

\Biggl( 
sup

t\in [0,T ]
| Y \varepsilon 

t | > M,T \leq \tau 

\Biggr) 
+ P

\Biggl( 
sup

t\in [0,T ]
| Y \varepsilon 

t | > M,T > \tau 

\Biggr) 

\leq P

\Biggl( 
sup

t\in [0,T ]
| Y \varepsilon 

t\wedge \tau | > M

\Biggr) 
+ P(T > \tau )

\leq 
E
\Bigl( 
supt\in [0,T ] | Y \varepsilon 

t\wedge \tau | 2
\Bigr) 

M2
+ P

\Biggl( 
sup

t\in [0,T ]
| X\varepsilon 

t | > R

\Biggr) 
M\rightarrow \infty and then R\rightarrow \infty  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  - \rightarrow 0.

(2.21)

We further define another stopping time \=\tau as

(2.22) \=\tau = \tau \wedge inf\{ s : | Y \varepsilon 
s | > M\} .
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Then by It\^o's formula and Gr\"onwall's lemma, we have

E sup
t\in [0,T\wedge \=\tau ]

| Y \varepsilon 
t  - Yt| 2

\leq CE
\int t\wedge \=\tau 

0
| \alpha (s,X\varepsilon 

s , Y
\varepsilon 
s , qs) - \alpha (s,Xs, Ys, qs)| 2 ds

+ CE
\int t\wedge \=\tau 

0
\| \beta (s,X\varepsilon 

s , Y
\varepsilon 
s , qs) - \beta (s,Xs, Ys, qs)\| 2 ds

\leq CE
\int t\wedge \=\tau 

0

\bigl( 
L2
R(s)| Y \varepsilon 

s  - Ys| 2 + | \alpha (s,X\varepsilon 
s , Ys, qs) - \alpha (s,Xs, Ys, qs)| 2

\bigr) 
ds

+ CE
\int t\wedge \=\tau 

0
\| \beta (s,X\varepsilon 

s , Ys, qs) - \beta (s,Xs, Ys, qs)\| 2ds

\leq CE
\int t\wedge \=\tau 

0
| \alpha (s,X\varepsilon 

s , Ys, qs) - \alpha (s,Xs, Ys, qs)| 2ds

+ CE
\int t\wedge \=\tau 

0
\| \beta (s,X\varepsilon 

s , Ys, qs) - \beta (s,Xs, Ys, qs)\| 2ds.

Then by the continuity of functions \alpha and \beta enforced in Condition 2.2, as well as the conver-
gence result in Theorem 2.6, we have

E sup
t\in [0,T\wedge \=\tau ]

| Y \varepsilon 
t  - Yt| 2 \rightarrow 0, as \varepsilon \rightarrow 0.

By (2.21) and similarly to its derivation, we can obtain that for any \eta > 0,

lim
\varepsilon \rightarrow 0

P

\Biggl( 
sup

t\in [0,T ]
| Y \varepsilon 

t  - Yt| > \eta 

\Biggr) 
= 0.

3. One-dimensional SVI system with H\"older continuous coefficients. In this section,
we consider the following one-dimensional SVI system with H\"older continuous coefficients:

(3.1)

\left\{             

Xt \in x0 +
\int t
0 b(s,Xs)ds+

\int t
0 \sigma 1(s,Xs)dWs +

\int t
0 \sigma 2(s,Xs)dBs

 - 
\int t
0 \partial \psi 1(Xs)ds,

Yt \in y0 +
\int t
0 \alpha (s,Xs, Ys, qs)ds+

\int t
0 \beta (s,Xs, Ys, qs)dBs

 - 
\int t
0 \partial \psi 2(Ys)ds,

where b, \sigma 1, \sigma 2 are measurable functions mapping from R+\times R to R, \alpha and \beta are measurable
functions mapping from R+ \times R \times R \times U to R, W and B are two independent standard
one-dimensional Brownian motions on a complete filtered probability space (\Omega ,\scrF ,\scrF t,P).
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98 NING NING AND JING WU

Condition 3.1. For the X process in the SVI system (3.1), we impose the following condi-
tions: Assume that b(t, x), \sigma 1(t, x), \sigma 2(t, x) are continuous in (t, x), and\bigl( 

b(t, x) - b(t, x\prime )
\bigr) 
(x - x\prime ) \leq 0.\bigl( 

b(t, x) - b(t, x\prime )
\bigr) 2 \leq l0(t)(x - x\prime )1+2\alpha for some \alpha \in [0, 1/2],\bigl( 

\sigma i(t, x) - \sigma i(t, x
\prime )
\bigr) 2 \leq li(t)(x - x\prime )1+2\alpha , i = 1, 2,

\psi 1 \geq \psi 1(0) = 0, 0 \in Int(D1),

where li(t) for i = 0, 1, 2 are functions of t only and satisfy li(\cdot ) \in L1([0, T ]).

Condition 3.2. For the Y process in the SVI system (3.1), we impose the following condi-
tions:

\bullet \lambda 1 \leq qt \leq \lambda 2.
\bullet \alpha , \beta are continuous in (t, x, y, q) satisfying

(y  - y\prime )
\bigl( 
\alpha (t, x, y, q) - \alpha (t, x, y\prime , q)

\bigr) 
\leq 0,

and for \gamma \in [0, 1/2]

| \alpha (t, x, y, q) - \alpha (t, x\prime , y\prime , q)| 2 \vee | \beta (t, x, y) - \beta (t, x\prime , y\prime )| 2

\leq c(t)(| x - x\prime | 1+2\gamma + | y  - y\prime | 1+2\gamma ),

where c(t) is locally integrable for any t \geq 0.
\bullet 0 \in Int(D2), \psi 2 \geq \psi 2(0) \equiv 0.

3.1. Well-posedness. First of all we solve the well-posedness problem under the above
conditions. An estimate for the solution process is given in the following proposition.

Proposition 3.1. Suppose (X,\phi (1)) is a solution of the X process in the SVI system (3.1);
under Condition 3.1, one has

E\| X\| 2T + E
\int T

0
\psi 1(Xs)ds \leq C(1 + | x0| 2)

and, then,
E| \phi (1)| 0T \leq C(1 + | x0| 2).

Proof. Note that by Condition 3.1,

| b(t, x)| 2 \leq 2| b(t, x) - b(t, 0)| 2 + | b(t, 0)| 2 \leq l0(t)| x| 2 + | b(t, 0)| 2,
| \sigma i(t, x)| 2 \leq li(t)| x| 2 + | \sigma i(t, 0)| 2, i = 1, 2.

(3.2)

Then applying It\^o's formula and by Remark 2.2, we have

| Xt| 2 = | x0| 2 + 2

\int t

0
Xsb(s,Xs)ds+ 2

\int t

0
Xs\sigma 1(s,Xs)dWs + 2

\int t

0
Xs\sigma 2(s,Xs)dBs

+
2\sum 

i=1

\int t

0
| \sigma i(s,Xs)| 2ds - 2

\int t

0
Xsd\phi 

(1)
s
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\leq | x0| 2 +
\int t

0

\bigl( 
1 + l0(s) + l1(s) + l2(s)

\bigr) 
| Xs| 2ds

+

\int t

0

\bigl( 
| b(s, 0)| 2 + | \sigma 1(s, 0)| 2 + | \sigma 2(s, 0)| 2

\bigr) 
ds

+ 2

\int t

0
(Xs, \sigma 1(s,Xs))dWs + 2

\int t

0
(Xs, \sigma 2(s,Xs))dBs  - 2

\int t

0
\psi 1(Xs)ds.

By using the BDG inequality and H\"older's inequality,

E sup
t\leq T

\bigm| \bigm| \bigm| \bigm| 2 \int t

0
Xs\sigma 1(s,Xs)dWs + 2

\int t

0
Xs\sigma 2(s,Xs)dBs

\bigm| \bigm| \bigm| \bigm| 
\leq CE

\biggl( \int T

0
| Xs| 2| \sigma 1(s,Xs)| 2ds

\biggr) 1/2

+ CE
\biggl( \int T

0
| Xs| 2| \sigma 2(s,Xs)| 2ds

\biggr) 1/2

\leq CE\| X\| 2T + CE
\int T

0

\bigl( 
1 + l1(s) + l2(s)

\bigr) 
| Xs| 2ds+ CE

\int T

0

\bigl( 
| \sigma 1(s, 0)| 2 + | \sigma 2(s, 0)| 2

\bigr) 
ds.

Therefore, Gr\"onwall's lemma yields that

E\| X\| 2T + E
\int T

0
\psi 1(Xs)ds \leq C(1 + | x0| 2).

Moreover, by using this estimate and Remark 2.2, we also have

E| \phi (1)| 0T \leq C(1 + | x0| 2).

The well-posedness of the X process in the SVI system (3.1) is established in the following
proposition.

Proposition 3.2. Under Condition 3.1, there is a unique strong solution of the X process
in the SVI system (3.1).

Proof. We apply a regularization approximation method here. Define the Moreau--Yosida
regularization of \psi 1 as

(3.3) \psi n
1 (x) := inf

\Bigl\{ n
2
| x\prime  - x| 2 + \psi 1(x

\prime );x\prime \in R
\Bigr\} 
, n \geq 1, \forall x \in R.

Then \psi n
1 is a \scrC 1-convex function, and its gradient \nabla \psi n

1 is monotone and Lipschitz with
Lipschitz constant n which is due to the reason that \nabla \psi 1 has no gradient. Moreover, according
to [1], \nabla \psi n

1 has the following properties:

(x - x\prime )(\nabla \psi n
1 (x) - \nabla \psi m

1 (x\prime )) \geq  - 
\biggl( 
1

n
+

1

m

\biggr) 
\nabla \psi n

1 (x)\nabla \psi m
1 (x\prime ) \forall x, x\prime \in R,(3.4)

\nabla \psi n
1 (x) \in \partial \psi 1(Jnx), \psi 1(Jnx) \leq \psi n

1 (x) \leq \psi 1(x),(3.5)

\psi n
1 (x) = \psi n

1 (Jnx) +
1

2n
| \nabla \psi n

1 (x)| 2,(3.6)

where Jnx := x - 1
n\nabla \psi 

n
1 (x).
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100 NING NING AND JING WU

It is known that the following SDE has a unique strong solution

(3.7) dXn
t = b(t,Xn

t )dt+ \sigma 1(t,X
n
t )dWt + \sigma 2(t,X

n
t )dBt  - \nabla \psi n

1 (X
n
t )dt, Xn

0 = x0 \in \=D1,

where \nabla \psi n
1 is the gradient of \psi n

1 .
Moreover, with arguments similar to those in Proposition 3.1,

E\| Xn\| 4T \leq CE| x0| 4 + CE
\Bigl( \int T

0

\bigl( 
1 + l0(s) + l1(s) + l2(s)

\bigr) 
| Xn

s | 2ds
\Bigr) 2

+ CE
\Bigl( \int T

0

\bigl( 
| b(s, 0)| 2 + | \sigma 1(s, 0)| 2 + | \sigma 2(s, 0)| 2

\bigr) 
ds
\Bigr) 2

+ E
\Bigl( \int T

0
(Xn

s , \sigma 1(s,X
n
s ))dWs +

\int T

0
(Xn

s , \sigma 2(s,X
n
s ))dBs

\Bigr) 2
\leq CE| x0| 4 +

1

2
E\| Xn\| 4T + CE

\biggl( \int T

0

\bigl( 
1 + l0(s) + l1(s) + l2(s)

\bigr) 
| Xn

s | 2ds
\biggr) 2

+ CE
\bigl( \int T

0

\bigl( 
| b(s, 0)| 2 + | \sigma 1(s, 0)| 2 + | \sigma 2(s, 0)| 2

\bigr) 
ds
\bigr) 2

\leq CE| x0| 4 +
1

2
E\| Xn\| 4T + CTE

\biggl( \int T

0

\bigl( 
1 + l0(s) + l1(s) + l2(s)

\bigr) 2| Xn
s | 4ds

\biggr) 
+ CE

\bigl( \int T

0

\bigl( 
| b(s, 0)| 2 + | \sigma 1(s, 0)| 2 + | \sigma 2(s, 0)| 2

\bigr) 
ds
\bigr) 2
,

where in the last inequality we used the Cauchy--Schwarz inequality in integral form. Then
Gr\"onwall's lemma yields

(3.8) sup
n

E\| Xn\| 4T \leq C(1 + E| x0| 4),

and by the dynamic (3.7) we further have

(3.9) sup
n

E
\biggl( \int T

0
| \nabla \psi n

1 (X
n
s )| ds

\biggr) 2

<\infty .

Note that by It\^o's formula, the fact that \nabla \psi n
1 is Lipschitz with Lipschitz constant n, and

(3.6), we have

| \psi n
1 (X

n
t )| 2

= | \psi n
1 (x0)| 2 + 2

\int t

0
\psi n
1 (X

n
s )\nabla \psi n

1 (X
n
s )b(s,X

n
s )ds - 2

\int t

0
\psi n
1 (X

n
s )| \nabla \psi n

1 (X
n
s )| 2ds

+
2\sum 

i=1

\int t

0
| \nabla \psi n

1 (X
n
s )| 2| \sigma i(s,Xn

s )| 2ds+ n
2\sum 

i=1

\int t

0
\psi n
1 (X

n
s )| \sigma i(s,Xn

s )| 2ds

+ 2

\int t

0
\psi n
1 (X

n
s )\nabla \psi n

1 (X
n
s )\sigma 1(s,X

n
s )dWs + 2

\int t

0
\psi n
1 (X

n
s )\nabla \psi n

2 (X
n
s )\sigma 2(s,X

n
s )dBs
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GENERALIZED STOCHASTIC VOLATILITY MODELS 101

\leq | \psi n
1 (x0)| 2 + 2n

\int t

0
\psi n
1 (X

n
s )| Xn

s b(s,X
n
s )| ds - 2

\int t

0
\psi n
1 (X

n
s )| \nabla \psi n

1 (X
n
s )| 2ds

+ 3n

2\sum 
i=1

\int t

0
\psi n
1 (X

n
s )| \sigma i(s,Xn

s )| 2ds+ 2

\int t

0
\psi n
1 (X

n
s )\nabla \psi n

1 (X
n
s )\sigma 1(s,X

n
s )dWs

+ 2

\int t

0
\psi n
1 (X

n
s )\nabla \psi n

1 (X
n
s )\sigma 2(s,X

n
s )dBs.

By the BDG's inequality, Condition 3.1, (3.6), and Young's inequality for products, we obtain

E sup
t\leq T

\bigm| \bigm| \bigm| \bigm| 2 \int t

0
\psi n
1 (X

n
s )\nabla \psi n

1 (X
n
s )\sigma 1(s,X

n
s )dWs + 2

\int t

0
\psi n
1 (X

n
s )\nabla \psi n

1 (X
n
s )\sigma 2(s,X

n
s )dBs

\bigm| \bigm| \bigm| \bigm| 
\leq CE

\Bigl( \int T

0
| \psi n

1 (X
n
s )\nabla \psi n

1 (X
n
s )\sigma 1(s,X

n
s )| 

2 ds
\Bigr) 1/2

+ CE
\Bigl( \int T

0
| \psi n

1 (X
n
s )\nabla \psi n

1 (X
n
s )\sigma 2(s,X

n
s )| 2ds

\Bigr) 1/2
\leq 1

2
E sup

t\leq T
| \psi n

1 (X
n
t )| 2 + CnE

\int T

0
| \psi n

1 (X
n
s )| \cdot 

\bigl( 
| \sigma 1(s,Xn

s )| 2 + | \sigma 2(s,Xn
s )| 2

\bigr) 
ds.

By the fact that

| \psi n
1 (X

n
s )| \leq | \nabla \psi n

1 (X
n
s )| \cdot | Xn

s | 

since \psi n
1 is a convex function, and by Young's inequality for products, we have

1

2
E sup

t\leq T
| \psi n

1 (X
n
t )| 2 + 2E

\int T

0
\psi n
1 (X

n
s )| \nabla \psi n

1 (X
n
s )| 2ds

\leq CE| \psi n
1 (x0)| 2 + CnE

\int T

0
| \psi n

1 (X
n
s )| 
\biggl( 
| Xn

s | | b(s,Xn
s )| + | \sigma 1(s,Xn

s )| 2 + | \sigma 2(s,Xn
s )| 2

\biggr) 
ds

\leq CE| \psi n
1 (x0)| 2 + CnE

\int T

0
| \psi n

1 (X
n
s )| 1/3| \nabla \psi n

1 (X
n
s )| 2/3| Xn

s | 2/3

\times 
\biggl( 
| Xn

s | | b(s,Xn
s )| + | \sigma 1(s,Xn

s )| 2 + | \sigma 2(s,Xn
s )| 2

\biggr) 
ds

\leq CE| \psi n
1 (x0)| 2 + E

\int T

0
| \psi n

1 (X
n
s )| | \nabla \psi n

1 (X
n
s )| 2ds

+ Cn3/2E
\int T

0
| Xn

s | 

\Biggl( 
| Xn

s | 2 +
2\sum 

i=0

li(s)| Xn
s | 2 + | b(s, 0)| 2 + | \sigma 1(s, 0)| 2 + | \sigma 2(s, 0)| 2

\Biggr) 
ds

\leq CE| \psi n
1 (x0)| 2 + E

\int T

0
| \psi n

1 (X
n
s )| | \nabla \psi n

1 (X
n
s )| 2ds

+ Cn3/2E
\int T

0
(1 + | Xn

s | 4)

\Biggl( 
1 +

2\sum 
i=0

li(s) + | b(s, 0)| 2 + | \sigma 1(s, 0)| 2 + | \sigma 2(s, 0)| 2
\Biggr) 
ds,D
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102 NING NING AND JING WU

which together with (3.8) yields that

(3.10) E sup
t\leq T

| \psi n
1 (X

n
t )| 2 \leq Cn3/2.

By (3.6), we further have

(3.11) E sup
t\leq T

| \nabla \psi n
1 (X

n
t )| 4 \leq 4n2E sup

t\leq T
| \psi n

1 (X
n
t )| 2 \leq Cn7/2.

Now take any \delta \in (0, 1), any h > 0, and set

g\delta ,h(x) =

\int x

0

\int y

0
f\delta ,h(\gamma )d\gamma dy,

where f\delta ,h \geq 0 and vanishes outside [h\delta , h], and

f\delta ,h(x) \leq 
2

x ln \delta  - 1
,

\int 
f\delta ,h(x)dx = 1.

Then we have

(3.12) | x| \leq g\delta ,h(| x| ) + h

and

(3.13) 0 \leq g\prime \delta ,h \leq 1, g\prime \prime \delta ,h(| x| ) \leq 
2

x ln \delta  - 1
1(| x| \in [h\delta ,h]).

By applying (3.12) and then It\^o's formula,

| Xm
t  - Xn

t | \leq g\delta ,h(| Xm
t  - Xn

t | ) + h

\leq 
\int t

0
g\prime \delta ,h(| Xm

s  - Xn
s | )

Xm
s  - Xn

s

| Xm
s  - Xn

s | 
\bigl[ 
b(s,Xm

s ) - b(s,Xn
s )
\bigr] 
ds

+
1

2

2\sum 
i=1

\int t

0
g\prime \prime \delta ,h(| Xm

s  - Xn
s | )
\bigl[ 
\sigma i(s,X

m
s ) - \sigma i(s,X

n
s )
\bigr] 2
ds

+

\int t

0
g\prime \delta ,h(| Xm

s  - Xn
s | )

Xm
s  - Xn

s

| Xm
s  - Xn

s | 
\bigl[ 
\sigma 1(s,X

m
s ) - \sigma 1(s,X

n
s )
\bigr] 
dWs

+

\int t

0
g\prime \delta ,h(| Xm

s  - Xn
s | )

Xm
s  - Xn

s

| Xm
s  - Xn

s | 
\bigl[ 
\sigma 2(s,X

m
s ) - \sigma 2(s,X

n
s )
\bigr] 
dBs

 - 
\int t

0
g\prime \delta ,h(| Xm

s  - Xn
s | )

Xm
s  - Xn

s

| Xm
s  - Xn

s | 
\bigl[ 
\nabla \psi m

1 (Xm
s ) - \nabla \psi n

1 (X
n
s )
\bigr] 
ds+ h.

Then by Condition 3.1, (3.4), and (3.13),

| Xm
t  - Xn

t | \leq I(t) +M(t) + J(t) + h,
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GENERALIZED STOCHASTIC VOLATILITY MODELS 103

where

I(t) :=
1

ln \delta  - 1

2\sum 
i=1

\int t

0
li(s)| Xm

s  - Xn
s | 2\alpha 1\{ | Xm

s  - Xn
s | \in [h\delta ,h]\} ds,

M(t) :=

\int t

0
g\prime \delta ,h(| Xm

s  - Xn
s | )

Xm
s  - Xn

s

| Xm
s  - Xn

s | 
\bigl[ 
\sigma 1(s,X

m
s ) - \sigma 1(s,X

n
s )
\bigr] 
dWs

+

\int t

0
g\prime \delta ,h(| Xm

s  - Xn
s | )

Xm
s  - Xn

s

| Xm
s  - Xn

s | 
\bigl[ 
\sigma 2(s,X

m
s ) - \sigma 2(s,X

n
s )
\bigr] 
dBs,

J(t) :=

\int t

0
g\prime \delta ,h(| Xm

s  - Xn
s | )
\biggl( 
1

n
+

1

m

\biggr) 
| Xm

s  - Xn
s |  - 1\nabla \psi m

1 (Xm
s )\nabla \psi n

1 (X
n
s )ds.

Clearly we have

E sup
t\leq T

| I(t)| \leq 2h2\alpha 

ln \delta  - 1

2\sum 
i=1

\int t

0
li(s) \leq C

h2\alpha 

ln \delta  - 1

and

E sup
t\leq T

| M(t)| \leq C

2\sum 
i=1

E
\biggl( \int T

0
li(s)| Xm

s  - Xn
s | 1+2\alpha ds

\biggr) 1/2

\leq C
2\sum 

i=1

E
\int T

0
li(s)| Xm

s  - Xn
s | 2\alpha ds+

1

2
E sup

t\leq T
| Xm

t  - Xn
t | .

By (3.9), (3.11), and (3.13),

E sup
t\leq T

| J(t)| \leq 1

h\delta 
E
\int T

0

\biggl( 
1

n
+

1

m

\biggr) 
\nabla \psi m

1 (Xm
s )\nabla \psi n

1 (X
n
s )ds

\leq 1

h\delta 

\biggl[ 
1

n

\biggl( 
E sup

t\leq T
| \nabla \psi n

1 (X
n
t )| 2

\biggr) 1/2\biggl( 
E
\biggl( \int T

0
| \nabla \psi m

1 (Xm
t )| dt

\biggr) 2\biggr) 1/2

+
1

m

\biggl( 
E sup

t\leq T
| \nabla \psi m

1 (Xm
t )| 2

\biggr) 1/2\biggl( 
E
\biggl( \int T

0
| \nabla \psi n

1 (X
n
t )| dt

\biggr) 2\biggr) 1/2\biggr] 
\leq C

1

h\delta 
(n - 1/8 +m - 1/8).

Summing up these estimates, by Gr\"onwall's lemma, we have

E sup
t\leq T

| Xm
t  - Xn

t | \leq C
1

h\delta 
(n - 1/8 +m - 1/8) + C

h2\alpha 

ln \delta  - 1
+ h.

Considering \alpha \in [0, 1/2], we further have

E sup
t\leq T

| Xm
t  - Xn

t | \leq C(h\delta ) - 2\alpha (n - \alpha /4 +m - \alpha /4) + C
h2\alpha 

ln \delta  - 1
+ h.D

ow
nl

oa
de

d 
05

/0
4/

21
 to

 3
5.

7.
39

.6
3.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

104 NING NING AND JING WU

Taking \delta = 1
2 and h = min\{ m,n\}  - 16 yields

E sup
t\leq T

| Xm
t  - Xn

t | \leq Cmin\{ m,n\}  - 
\alpha 
8 \rightarrow 0, as n\rightarrow \infty .

Moreover, by setting

\phi 
(1),n
t :=

\int t

0
\nabla \psi n

1 (X
n
s )ds,

we have

E sup
t\leq T

| \phi (1),mt  - \phi 
(1),n
t | \rightarrow 0, as n\rightarrow \infty .

Hence (Xn, \phi (1),n) is Cauchy in the complete metric space

L1(\Omega ; \scrC ([0, T ];R))\times L1(\Omega ; \scrC ([0, T ];R))

and thus there exists (X,\phi (1)) in the space satisfying that

(3.14) E sup
t\leq T

| Xn
t  - Xt| \rightarrow 0 and E sup

t\leq T
| \phi (1),nt  - \phi 

(1)
t | \rightarrow 0, as n\rightarrow \infty .

Now it remains to prove that (X,\phi (1)) is a solution. Since by (3.9) we have

sup
n

E\| \phi (1),n\| T <\infty ,

it then yields
E\| \phi (1)\| T <\infty .

Recall that \psi n
1 is convex and that

\psi 1(Jnx) \leq \psi n
1 (x) \leq \psi 1(x)

given in (3.5), for any \varrho \in \scrC ([0, T ];R) and any t \in [0, T ],\int t

0
(\varrho s  - Xn

s )d\phi 
(1),n
s =

\int t

0
(\varrho s  - Xn

s )\nabla \psi n
1 (X

n
s )ds

\leq 
\int t

0
\psi n
1 (\varrho s)ds - 

\int t

0
\psi n
1 (X

n
s )ds

\leq 
\int t

0
\psi n
1 (\varrho s)ds - 

\int t

0
\psi 1(JnX

n
s )ds.

By (3.14) and the fact that a monotone increasing sequence of random variables that converge
in probability implies convergence almost surely, sending n\rightarrow \infty gives\int t

0
(\varrho s  - Xs)d\phi 

(1)
s \leq 

\int t

0
\psi 1(\varrho s)ds - 

\int t

0
\psi 1(Xs)ds.

Hence (X,\phi (1)) is a solution.

With analogous arguments, we can obtain that there exists a unique strong solution for
the Y process in the SVI system (3.1) and the proof is omitted.
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GENERALIZED STOCHASTIC VOLATILITY MODELS 105

3.2. Asymptotic analysis. In this section, we perform asymptotic analysis on the per-
turbed one-dimensional SVI system (3.15) with H\"older continuous coefficients described in
Condition 3.3, regarding its limiting system (3.1) satisfying Condition 3.1.

The perturbed version of the one-dimensional SVI system (3.1) with a small positive
parameter \epsilon is given by

(3.15)

\left\{             

X\varepsilon 
t \in x0 +

\int t
0 b

\varepsilon (s,X\varepsilon 
s , \varepsilon )ds+

\int t
0 \sigma 

\varepsilon 
1(s,X

\varepsilon 
s , \varepsilon )dWs +

\int t
0 \sigma 

\varepsilon 
2(s,X

\varepsilon 
s , \varepsilon )dBs

 - 
\int t
0 \partial \psi 1(X

\varepsilon 
s )ds,

Y \varepsilon 
t \in y0 +

\int t
0 \alpha (s,X

\varepsilon 
s , Y

\varepsilon 
s , qs)ds+

\int t
0 \beta (s,X

\varepsilon 
s , Y

\varepsilon 
s , qs)dBs

 - 
\int t
0 \partial \psi 2(Y

\varepsilon 
s )ds,

where

lim
\varepsilon \rightarrow 0

b\varepsilon (t, x, \varepsilon ) = b(t, x), lim
\varepsilon \rightarrow 0

\sigma \varepsilon i (t, x, \varepsilon ) = \sigma i(t, x), i = 1, 2.(3.16)

Condition 3.3. Assume that b\varepsilon (t, x, \varepsilon ), \sigma \varepsilon 1(t, x, \varepsilon ), \sigma 
\varepsilon 
2(t, x, \varepsilon ) are continuous in (t, x), uni-

formly in \varepsilon , and\bigl( 
b\varepsilon (t, x, \varepsilon ) - b\varepsilon (t, x\prime , \varepsilon )

\bigr) 
(x - x\prime ) \leq 0,\bigl( 

b\varepsilon (t, x, \varepsilon ) - b\varepsilon (t, x\prime , \varepsilon )
\bigr) 2 \leq l0(t)(x - x\prime )1+2\alpha for some \alpha \in [0, 1/2],\bigl( 

\sigma \varepsilon i (t, x, \varepsilon ) - \sigma \varepsilon i (t, x
\prime , \varepsilon )
\bigr) 2 \leq li(t)(x - x\prime )1+2\alpha , i = 1, 2,

\psi 1 \geq \psi 1(0) = 0, 0 \in Int(D1),

where li(t) for i = 0, 1, 2 are functions of t only and satisfy li(\cdot ) \in L1([0, T ]).

With arguments similar to those of Proposition 3.1, one can obtain the following propo-
sition.

Proposition 3.3. Under Conditions 3.1 and 3.3, one has

(3.17) E sup
t\in [0,T ]

| Xt| 2 <\infty and sup
\varepsilon 

E sup
t\in [0,T ]

| X\varepsilon 
t | 2 <\infty .

In the following, we give the convergence result regarding the X\varepsilon 
t process as \varepsilon goes to 0.

Proposition 3.4. Under Conditions 3.1 and 3.3, as \varepsilon \rightarrow 0, we have

E sup
t\in [0,T ]

| X\varepsilon 
t  - Xt| \rightarrow 0.(3.18)

Proof. By (3.12) and It\^o's formula, one has

| X\varepsilon 
t  - Xt| \leq g\delta ,h(| X\varepsilon 

t  - Xt| ) + h

=

\int t

0
g\prime \delta ,h(| X\varepsilon 

s  - Xs| )
X\varepsilon 

s  - Xs

| X\varepsilon 
s  - Xs| 

\bigl[ 
b\varepsilon (s,X\varepsilon 

s , \varepsilon ) - b(s,Xs)
\bigr] 
ds

+
1

2

\int t

0
g\prime \prime \delta ,h(| X\varepsilon 

s  - Xs| )
2\sum 

i=1

\bigl[ 
\sigma \varepsilon i (s,X

\varepsilon 
s , \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
dsD
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+

\int t

0
g\prime \delta ,h(| X\varepsilon 

s  - Xs| )
X\varepsilon 

s  - Xs

| X\varepsilon 
s  - Xs| 

\bigl[ 
\sigma \varepsilon 1(s,X

\varepsilon 
s , \varepsilon ) - \sigma 1(s,Xs)

\bigr] 
dWs(3.19)

+

\int t

0
g\prime \delta ,h(| X\varepsilon 

s  - Xs| )
X\varepsilon 

s  - Xt

| X\varepsilon 
s  - Xs| 

\bigl[ 
\sigma \varepsilon 2(s,X

\varepsilon 
s , \varepsilon ) - \sigma 2(s,Xs)

\bigr] 
dBs + h.

Note that by Condition 3.3 and that g\prime \delta ,h \in [0, 1],\int t

0
g\prime \delta ,h(| X\varepsilon 

s  - Xs| )
X\varepsilon 

s  - Xs

| X\varepsilon 
s  - Xs| 

\bigl[ 
b\varepsilon (s,X\varepsilon 

s , \varepsilon ) - b(s,Xs)
\bigr] 
ds

=

\int t

0
g\prime \delta ,h(| X\varepsilon 

s  - Xs| )
X\varepsilon 

s  - Xs

| X\varepsilon 
s  - Xs| 

\bigl[ 
b\varepsilon (s,X\varepsilon 

s , \varepsilon ) - b\varepsilon (s,Xs, \varepsilon ) + b\varepsilon (s,Xs, \varepsilon ) - b(s,Xs)
\bigr] 
ds

\leq 
\int t

0
g\prime \delta ,h(| X\varepsilon 

s  - Xs| )
X\varepsilon 

s  - Xs

| X\varepsilon 
s  - Xs| 

| b\varepsilon (s,Xs, \varepsilon ) - b(s,Xs)| ds

\leq 
\int t

0
| b\varepsilon (s,Xs, \varepsilon ) - b(s,Xs)| ds,

(3.20)

and by Condition 3.1 and Proposition 3.1 one has

sup
\varepsilon 

E
\biggl( \int T

0
| b\varepsilon (s,X\varepsilon 

s , \varepsilon ) - b(s,Xs)| ds
\biggr) 2

\leq C sup
\varepsilon 

E
\int T

0
| b\varepsilon (s,X\varepsilon 

s , \varepsilon )| 2ds+ C sup
\varepsilon 

E
\int T

0
| b(s,Xs)| 2ds

\leq C sup
\varepsilon 

E
\int T

0

\bigl( 
l0(s)| X\varepsilon 

s | 1+2\alpha + | b\varepsilon (s, 0, \varepsilon )| 2 + | b(s, 0)| 2
\bigr) 
ds

<\infty .

Hence, by (3.16), as \varepsilon \rightarrow 0,

E
\int t

0
g\prime \delta ,h(| X\varepsilon 

s  - Xs| )
X\varepsilon 

s  - Xs

| X\varepsilon 
s  - Xs| 

\bigl[ 
b\varepsilon (s,X\varepsilon 

s , \varepsilon ) - b(s,Xs)
\bigr] 
ds\rightarrow 0.

Similarly, by Propositions 3.1 and 3.3 as well as the regularity conditions for \sigma \epsilon and \sigma , re-
spectively, one has

sup
\varepsilon 

E
\int T

0

\bigl[ 
\sigma \varepsilon i (s,Xs, \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
ds

\leq C sup
\varepsilon 

E
\int T

0

\bigl[ 
\sigma \varepsilon i (s,Xs, \varepsilon ) - \sigma \varepsilon i (s, 0, \varepsilon )]

2ds+ C sup
\varepsilon 

E
\int T

0
[\sigma \varepsilon i (s, 0, \varepsilon ) - \sigma i(s, 0)

\bigr] 2
ds

+ C sup
\varepsilon 

E
\int T

0

\bigl[ 
\sigma i(s,Xs) - \sigma i(s, 0)

\bigr] 2
ds

<\infty .

Then, by (3.16), as \varepsilon \rightarrow 0,

(3.21) E
\int T

0

\bigl[ 
\sigma \varepsilon i (s,Xs, \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
ds\rightarrow 0, i = 1, 2,
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and for sufficiently small \varepsilon satisfying that

E
\int T

0

\bigl[ 
\sigma \varepsilon i (s,Xs, \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
ds < \delta h1+2\alpha ,

by (3.13) one has

E
\int t

0
g\prime \prime \delta ,h(| X\varepsilon 

s  - Xs| )
\bigl[ 
\sigma \varepsilon i (s,X

\varepsilon 
s , \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
ds

\leq CE
\int t

0

li(s)

ln \delta  - 1| X\varepsilon 
s  - Xs| 

| X\varepsilon 
s  - Xs| 1+2\alpha 

1\{ | X\varepsilon 
s - Xs| \in [h\delta ,h]\} ds

+ CE
\int t

0

1

ln \delta  - 1| X\varepsilon 
s  - Xs| 

\bigl[ 
\sigma \varepsilon i (sXs, \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
1\{ | X\varepsilon 

s - Xs| \in [h\delta ,h]\} ds

\leq CE
\int t

0

li(s)

ln \delta  - 1
h2\alpha ds+ CE

\int t

0

1

\delta h ln \delta  - 1

\bigl[ 
\sigma \varepsilon i (s,Xs, \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
ds

\leq Ch2\alpha 

ln \delta  - 1
+

C

\delta h ln \delta  - 1
E
\int t

0

\bigl[ 
\sigma \varepsilon i (s,Xs, \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
ds

\leq Ch2\alpha 

ln \delta  - 1
.

Plugging the above results into (3.19), one gets

E| X\varepsilon 
t  - Xt| \leq 

Ch2\alpha 

ln \delta  - 1
+ h.

Taking supremum and then expectation of (3.19), we obtain

E sup
t\in [0,T ]

| X\varepsilon 
t  - Xt| 

\leq Ch2\alpha 

ln \delta  - 1
+ h+ C

2\sum 
i=1

E
\biggl( \int T

0

\bigl[ 
\sigma \varepsilon i (t,X

\varepsilon 
s , \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
ds

\biggr) 1/2

\leq Ch2\alpha 

ln \delta  - 1
+ h+ C

2\sum 
i=1

E
\biggl( \int T

0
li(s)| X\varepsilon 

s  - Xs| 1+2\alpha ds

\biggr) 1/2

+ C
2\sum 

i=1

E
\biggl( \int T

0

\bigl[ 
\sigma \varepsilon i (t,Xs, \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
ds

\biggr) 1/2

\leq Ch2\alpha 

ln \delta  - 1
+ h+

1

2
E sup

t\in [0,T ]
| X\varepsilon 

t  - Xt| + C

2\sum 
i=1

E
\int T

0
li(s)| X\varepsilon 

s  - Xs| 2\alpha ds

+ C
2\sum 

i=1

E
\biggl( \int T

0

\bigl[ 
\sigma \varepsilon i (t,Xs, \varepsilon ) - \sigma i(s,Xs)

\bigr] 2
ds

\biggr) 1/2

,

where we used the H\"older's inequality in the last equality to reduce the order of | X\varepsilon 
s  - Xs| on

the right-hand side. By reorganizing the terms and noticing that 2\alpha < 1, Gr\"onwall's lemma
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yields

E sup
t\in [0,T ]

| X\varepsilon 
t  - Xt| \leq 

Ch2\alpha 

ln \delta  - 1
+ h.

Taking h = \delta , we have

E sup
t\in [0,T ]

| X\varepsilon 
t  - Xt| \leq 

C\delta 2\alpha 

ln \delta  - 1
+ \delta .

For the reason that \delta can take any small value, we conclude the proof as desired.

With arguments analogous to Theorem 2.7, we also have the following convergence result
for the Y -system whose proof is omitted.

Theorem 3.5. Under Conditions 3.2 and 3.3, one has

E sup
t\leq T

| Y \varepsilon 
t  - Yt| 2 \rightarrow 0, as \varepsilon \rightarrow 0.
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