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Abstract. In this paper, to cope with the shortage of sufficient theoretical support resulting from the fast-
growing quantitative financial modeling, we investigate two classes of generalized stochastic volatil-
ity models, establish their well-posedness of strong solutions, and conduct the stability analysis
with respect to small perturbations. In the first class, a multidimensional path-dependent process
is driven by another multidimensional path-dependent process. The second class is a generalized
one-dimensional stochastic volatility model with Holder continuous coefficients. What greatly dif-
ferentiates these two classes of models is that both the process and its correlated driving process
have their own subdifferential operators, whose one special case is the general reflection operators
for multisided barriers. Hence, the models investigated fully cover various newly explored variants
of stochastic volatility models whose well-posedness is unknown, and naturally serve as the rigorous
mathematical foundation for new stochastic volatility model development in terms of multidimen-
sions, path dependence, and multisided barrier reflection.
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1. Introduction. Stochastic volatility is one of the main concepts widely used in mathe-
matical finance to deal with the endemic time-varying volatility and codependence found in fi-
nancial markets. Stochastic volatility models since its invention have been widely used to eval-
uate derivative securities such as options, with the characteristic that the variance of a stochas-
tic process is itself randomly distributed. Various extensions of stochastic volatility models for
different purposes have been proposed in recent years with the fast-growing quantitative finan-
cial modeling of the past decade. However, a shortage of sufficient theoretical support in terms
of the existence and uniqueness of a (strong) solution of the proposed models comes along.

To cope with that, in this paper, we consider two classes of generalized stochastic volatil-
ity models, establish their well-posedness, and conduct stability analyses. The first class is
the multidimensional path-dependent system (2.1), where a da-dimensional path-dependent
Y process is driven by a d;-dimensional path-dependent X process. The second class is a
generalized one-dimensional stochastic volatility model with Holder continuous coefficients
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(3.1). What greatly differentiates those two classes of models is that both the X and Y pro-
cesses have their own subdifferential operators, whose one special case is the general reflection
operators for multisided barriers, because of which the models under investigation are called
stochastic variational inequalities (SVI).

For illustrative purpose, we consider a simplified one-dimensional path-dependent version
of (2.1) without control as follows:

- Xy € o+ [y b(s, X(s))ds + [J o(s, X (s))dW; — [} 01 (X,)ds,
1.1
Yy € yo+ [y a(s, X(s),Y(s))ds + [ B(s, X (5), Y (5))dBs — [ 0o (Ys)ds,

where the path X (t) := Xya. up to time ¢, W= 1- p2W + pB for W and B being two
independent one-dimensional Brownian motions with d(W, B)y = pdt for |p| < 1. Apparently,
(1.1) covers all the classical types of stochastic volatility models and path-dependent models,
and it also covers the Heston-type stochastic path-dependent volatility model proposed in [8]
(as well as the local maximum stochastic volatility model proposed in [2]) whose well-posedness
is unknown:

dSt = ,u(t, St, Mt)Stdt + WU(t, St, Mt)Stth,
AV, = (6 — Vy)dt + €/ VW,

where o is a local volatility function depending on the running maximum M; := Supg<y,<¢ Su,
and d(W, WV); = pdt for |p| < 1. o
Reflection factors on stochastic differential equations (SDEs) have wide application and a
long history in financial mathematics with great contributions from the pioneer works of El
Karoui since the 1970s; see [11]. For economic dynamics, reflected SDEs were used for the
target zone models of the currency exchange rate (see, for example, [15, 3]). In a regulated
financial market, government regulations lead the spot foreign exchange rate processes, the
domestic interest rate processes, and the goods or services (for instance, grain, water, gas,
electricity supply, and other important materials or services for a country), because of which
reflected SDEs can be applied realistically and appropriately (see, for example, [5, 6, 4]). (1.1)
not only extends all the classical reflected SDEs to handle multisided barriers, but also cov-
ers new models such as the reflected stochastic local volatility model in its generalized skew
stochastic local volatility model proposed in [9] (as well as the reflected stochastic volatil-
ity model proposed therein) whose well-posedness is unknown, by taking the special form

L (Xt) = (2]9 - 1)]1{Xt2a}7

dSy = V(Si, Xp)dt + m(Xe)y(Se)aw Y,

dX, = p(X})dt + o(X)dW, P + (2p — 1)dL¥ (a),
where d(W M W), = pdt for |p| < 1, and L¥X(a) is the symmetric local time of X at the
point a, and p = 0 or 1 for the X process being the reflected diffusion at the value a.

Following the new trend in financial mathematics, a control process belonging to the set of
predictable processes and taking values in a compact separable metric space, is embedded into
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both the drift function and the diffusion function of the Y process of both of the two classes
of models under investigation. This control process equips the proposed models with the ap-
plicability in stochastic control problems, such as the superreplicate valuation problem using
the uncertain volatility models with stochastic bounds in [12]. We further followed [12] in
conducting the stability analysis of the SVI systems (2.1) and (3.1) by perturbing the systems
with a small positive parameter €. Asymptotic analyses were conducted on the perturbed sys-
tems to explore their limiting behaviors as € goes to zero. In financial mathematics, stochastic
volatility models with a small parameter is a typical setup (see, for example, [13, 14]), which
may function on the driving volatility process (X process in the current setting) resulting in
slow-moving effects.

Well-posedness for the two classes of models has to be established by different methods
due to very different model setups. On proving the well-posedness of the multidimensional
SVI system (2.1), we used the method of the Euler scheme for any duration 7. To handle the
path-dependent effects, we extensively applied the functional It6 formula that was introduced
by [10]. When it comes to the one-dimensional model with Holder continuous coefficients (3.1),
we established its well-posedness by means of the Moreau—Yosida regularization approximation
method which was used in [1] with Lipschitz continuous coefficients. Analogous techniques can
be used in handling other problems; see, for example, [17] on approximating continuity and
the support of reflected SDEs, [16] on reflected SDEs with jumps and their associated optimal
control problems, [19] on limit theorems and the support of SDEs with oblique reflections on
nonsmooth domains.

The rest of the paper is organized as follows. In section 2, we analyze the multidimensional
path-dependent SVI system (2.1), where the well-posedness of the X and Y processes is
established in sections 2.1.1 and 2.1.2, respectively. Next we considered a perturbed version
of (2.1) with a small positive parameter €, and showed that the perturbed X¢ and Y processes
converge to the X and Y processes in sections 2.2.1 and 2.2.2, respectively. In section 3, we
investigate the one-dimensional model with Hélder continuous coefficients (3.1), whose well-
posedness is established in section 3.1 and whose stability analysis is conducted in section 3.2.
In the following, C' stands for a constant which may change line by line.

2. Multidimensional path-dependent SVI system. In this section, our investigation is
based on the following general multidimensional path-dependent system of SVI:

Xy € mo + [30(s, X (s))ds + [5 o1(s, X (5))dW,s + [ o2(s, X (s))dBs
— J5 91 (X,)ds,
(2.1)
Yy € yo + [y a(s, X (s),Y (), gs)ds + [y B(s, X (5), Y (s),qs)dBs
- fé 0o (Ys)ds.

Here, X; € R% denotes the status of X at time ¢t € [0,T]; b, 01, and o9 are measurable
functions on R* x C(RT;R%) depending on the path X(t) := X;.. up to time ¢, valued
in R4, ROxdw and R4U*4s respectively; W and B are two independent dy-dimensional
and dp-dimensional standard Brownian motions on a complete filtered probability space
(QF, {Fi;t > 0},P). We call v := (Q,F,{F;t > 0},P, W, B) a reference system, based
on which, we denote A, as the set of admissible controls that is the set of (F;)-predictable
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and U-valued processes. Y; € R% denotes the status of Y at time ¢ € [0,T]; ¢ is the control
process belonging to the set of predictable processes and taking values in a compact separable
metric space U; @ and B are measurable functions on R* x C(RT;R%) x C(R*;R%) x U,
valued in R% and R%*?8  respectively, depending on both paths X (¢) and Y (¢) as well as the
control process q.

For i = 1,2, 1, is a proper, convex, and lower-semicontinuous function on R%, with its
effective domain

D; := {z € R% : (x) < oo},

and its subdifferential operator
Oy(x) = {z € RY; () — 2, 2) < y(a’) — ¥i(x),Va' € R%Y,

where (-, -) denotes the inner product. Theories on subdifferential operators (see [18]) indicate
that 0v;(x) is closed and convex for every x € R% satisfying that

(r—a',2-2")>0

for any =, 2/ € R%, 2 € 0y;(x), and 2/ € O;(z'); O¢; is maximal monotone, that is, if
z, z € R% satisfying

(r—a',2-2")>0
for any 2/ € R% and 2’ € 9y;(2'), then z € 9 ().

Condition 2.1. For the X process in the SVI system (2.1), we impose the following condi-
tions:
e b(t,x) and oi(t,x) are continuous in t, and satisfy

(b(t, = (1)
(2.2) b(t,z(t)) — b(t, 2’ (t))] < lo(t)||x — 2| for some a € [0,1/2],
loi(t, z(t)) — oi(t, 2’ ()| < Li)]lx — 2|, i=12,

—b(t,2'(t)),zy — a}) <0 Vr, 2’ € C(RT;RM),

~

s

where 1;(-) € L?([0,T)) fori=0,1,2 and ||z||; := sup,«; |2s|.
e 0 ¢ Int(Dy) and ¢y > 1(0) = N
Condition 2.2. For the Y process in the SVI system (2.1), we impose the following condi-
tions:
e A\ < gt < Ao
o For||z|: < R and Lg(t) being locally square integrable,

\atﬂﬂyﬁ t) —a(t,z(t),y'(t),q)| < Lr@®)lly — ¢,
18(t,z(t),y(t), q) — Bt x(t),y' (), )| < Lr®)|ly — ¥

o a(-,-n,-) and B(-,-,n,-) are continuous in RT x C(RT;R4) x U for n € C(RT;R%).
e 0 € Int(D2) and vy > 1p2(0) =0
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2.1. Well-posedness.

2.1.1. Well-posedness of the X -system. The following theorem gives the well-posedness
of the X process in the above system.

Theorem 2.1. Under Condition 2.1, there exists a unique strong solution (X, ¢(1)) to the
X process in the SVI system (2.1) in the following sense:
e For everyt >0, X; € Dy.
o For any o € C(RT;R%) and t > s >0,

t t t
(2.3) / (00 — Xu, dd) + / Du(Xo)du < / die)du,  ace,

where ¢ is a continuous process of locally bounded variation, qﬁ[()l) =0.
o Forte Ry,

(24) Xy=ux0+ /Ot b(s, X (s))ds + /Ot o1(s, X (s))dWs + /Ot o2(s, X (s))dBs — ¢,§1)

Remark 2.2. (i) Note that when ¢ =0 in (2.3), one has

/:<Xs,d¢§1>> > /: $1(Xo)du

(ii) 91 is locally bounded in D;. Set

d¢(1)
M := sup [1(z)], 0u= ;
lz|<a dW’ |0

where |¢(1|% stands for the total variation of ¢(!) defined on an interval [0,u]. Then
according to (2.3),

t
alpM; < / (X, doD) + M(t — s).

s

(i) If (X, ¢M) is also a solution, for any ¢t > s > 0,

t ~
/ (Xy — X, doV) — dpll)) > 0

We have the following lemma taken from [7].

Lemma 2.3. Suppose {kn;n > 1} is a sequence of continuous functions ky : [0,T] — R®%
satisfying sup,, |kn|d < oo and ||k, — k|7 — 0. Then k has finite variation on [0,T] and for
a sequence of continuous functions {fn;n > 1} satisfying || fn — fllr — 0 as n — oo, the
following holds:

/(fn( / ), as m— o0, Vs, tel0,T].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/04/21 to 35.7.39.63. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

84 NING NING AND JING WU

Proof of Theorem 2.1. Suppose for every T > 0 and every n we are given a division of
[0, T7:
0=T1Tg <17 <---<Tp =T
with the mesh
A, = T —-T17 4 — — 0.
ni= max [T =T q| =0 asn— o0

For t € (1} ,T}'], denote T}* :=1T}' ,. Consider the following equation:

25) dXp € b(t, X" (T{))dt + o1 (t, X" (T{) AW, + o2 (t, X™(T}))dBy — 0y (X])dt,
' X"(0) = X™(T) =z € Dy.

Note that for ¢ € [0,77"], according to [7], there exists a unique solution to (2.5), and we
denote it by (X", ¢()"). Applying Ité’s formula and Remark 2.2,

t t
X7 = !$o!2+2/0 <Xg7b(87Xn(T:))>d8+2/0 (X5 01(s, X(T5"))dWs)

t t
+2/ (X", 09(s, X" (T))dBs) —2/ (X7, dp(Dm)
0 0
2t
£ [ lots. xna s
i=1
t t
Swol2+/ yX§|2ds+/ b(s, X™(T!))|*ds
0 0
2t
£ [ ot X0@)IPds + 2011 2010
=170
t t
+2/ <Xg,0'1(t,X"(Tg))dWs>—|—2/ <X;L,0'2(t,Xn(T£Z))dBS>
0 0

t
e / (14 [X7?)ds
0

2

t 2
+ /0 [b2(s, 0)+> 035,00+ > l?(s)} (1 + | X™Fn)ds

j=1 i=0

t t
+2/ <X§,01(5,X"(T§))dWs)+2/ (X7, 09(s, X" (T2))dBs)
0 0

from which and by using the Burkholder—Davis—Gundy (BDG) inequality and Groénwall’s
lemma, we have

T 2
E||X"|? < C(1+ E|zo|?) /0 [bQ(s,O)+Za§(s,0)+2z§(s)]ds

j=1 i=0
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and
2
T 2 2
supE sup | XP|* < C(1 + E|zo|?)? / [bz(s, 0) + 20]2-(5,0) + Z lf(s)} ds
n <17 0 j=1 i=0
Assuming

supE sup | X7|* < oo,
n t<Ty

then with the same arguments as above, we have

supE sup |X7|*

L

T 2
<O+ sw BT | [R50+ 26,00+ 30| as

j=1 i=0

< 00.
Summing up,

(2.6) sup Esup | X7'|* < oo.
n t<T

Applying It6’s formula again, for t € (T} ,T}'], we have

X7 — X
t ¢
= 2/ <X;L —X%gz,b(87Xn(Ttn))>dS+2/ <X;L _X%ﬁ701(37Xn(Tg))dWS>
T'fl T"l
t . T t
w2 [ 00— X, 0T 2 [ (X7~ Xy g
e "

2 t
23 [ ot xrazias
=1 t

t t 2 t
< / X2 — X 2ds + / lb(s, X" (TP)2ds + 3 / (s, X(TP))|2ds
s e i=1 7T
t t
27 +2 / (XT = X, 01 (5, X" ()W) +2 / (XD — X, 025, X"(T7))dB)
Ttn Ttn

t
9 / (XD — X, dgm),
Tt”

For e > 0 and R > 0, set

(2.8) Acr:={z € R4 :Vz' ¢ Dy, |z —2'| > € and |z — ag| < R},
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where ap € Int(D;) such that A p # 0 for every R > 0 and € < ¢ for some ¢y > 0. Then
A R is a convex compact subset of Int(D1). Set

fr(€) = sup{|2’| : 2" € O (x), 2 € AR},
and according to the local boundedness of 91 on Int(D1), |fr(€)| < +o00. Let
gr(d) :=inf{e € (0,e0) : frle) <072}, §>0.
Let 0 > 0 such that dr + gr(0r) < €. Fix R > 0 and § € (0,0 A 1]. Since
Or + 9r(OR) < €0,  Asign),r 7 s
we have
(2.9) fROO+ gr(0)) < 6712

For 0 < t — s < 4, denote £&™%® as the projection of X on Astgr(5),r- Then on the set
{||X™|lr < R}, we have

| X — €M) < 6+ gr(d),
which yields

t
/ <)(;Z — én,é,R7d¢£l),n> < (5 +gR(5))‘¢(l)’n’%

and

t t
[ e X dgny < [enit - s myar
< 2R(t - 5)fr(0 + gr(9))
< 26'2R,

where the first inequality follows by (2.3) with n™%% € ¢ (£™>1), the second inequality
follows by the boundedness of €% and the definitions of %% and fr(d + gr(4)), and the
third inequality follows by (2.9). Therefore, on the set {||X"||r < R},

t t t
or0) xR = [ e gy [ X gl

< (6 + gr(8)|pM™% + 26'/2R.

Define the stopping time
Tn(R) := inf{s; | X]'| > R}.
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For t < 1,(R) A T, plugging the result of (2.10) into (2.7), we have

X7 = Xl

t t 2 t

< / XD — XJ2ds + / b(s, X(T7)) Pds + / (s, X7 (1)) |2ds

iy iy = Jr
t

t
+ 2/ (X3 — Xﬁn, o1(s, X™(T1))dWs) + 2/ (X3 — Xﬁn, oa(s, X" (TY))dBs)
tn tn
+2(An + gr(An)) 0 + 4RA)?.
Taking supremum and then expectation, we have

E sup |XJ = Xfa? < CrAYZ(L+E|X"|F) + E[¢M"3(An + gr(An))

t<TA7n(R)
v 2 2
2 2 9
+CRr \ufrvl\angn /u r [b (s,0) 4+ ]zz:l 0;(s,0) + ; l; (s)} ds,

(2.11)

which together with (2.6) implies that

Esup | X{" — X7n|? <Esup|X{" — Xfn|*(Lizcr,(m)y + Liror,(0)})
t<T t<T

<E sup X[ — Xpal? + EIX"F 1 {75r, (r))
t<TA71n(R)

— 0, Dby letting n— o0 andthen R — oo.

Furthermore, by Condition 2.1 which implies that
/ (X7 — X b(s, X™(s)) — b(s, X™(s)))ds < 0,
and by Remark 2.2 which implies that

/ <Xn Xm (1),n o ¢g1),m)> > 0’
we have
X7 — X"

—2/ (X7 — X, b(s, X™(TT)) — b(s, X™(T7")) )ds
+2/0 (XD = X, 01 (s, X" (T7)) — 01 (s, X (T™)) YW,
+2 /Ot (X7 — X7, 09(s, X™(T7)) — oa(s, X™(T}"))dBs)

t
~2 / (X5 = X d((0" = p{tm)
0
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2 t
(s n(qm — o4(s, m(m 2 S
+§/0 Jori(s, X7(T2)) = (s, X" (7)) 2d
< 2/0 (XP — X7 b(s, X"(TT)) — b(s, X"(s)))ds
+2/0 (X~ X b(s, X™(TT) — b(s, X™(s)) )ds
+ 2/; (XD = X7 oy (s, X"(T)) — o4 (5, X (TI™)) )W,
+ 2/0t (X = X", 0a(s, X™(TT)) — o2(s, X™(T2™)) )dBs
2t
2 mgmy _ yn/gmny||2 s
+;/0 B(s)| X™(T™) — X"(T)|2d
<2 /O lo(s)| X — X (| X" (T2 — X" (5)| 27 + [ X™(TI") = X™(s)|2 ) ds
+ 2/(: (X = X" o1(s, X™M(T7)) — o1 (s, X™(T2™)) )dWs
+ 2/; (X7 — X, 0a(s, X"(T7)) — o2(s, X™(T2™)) )dBs
2t
+CZ/O F(s)(1X™(T™) = X2 + [ X™(T") — X™(-)|12)ds
=1

2 t
+ CZ/ 2(s)|X™ — X" |2ds.
i=1"0

Define the stopping time
Tm(R) := inf{s; | XI"| > R}.
On one hand, by the BDG inequality and (2.11), we get

Esup | X] = X[ PLir<r, (R)Am(R))
t<T

=E  swp |xXp- X
t<TATm(R)ATn(R)

2 t
< Op(hp(Bm) + hr(An) +CY / 2(s)E|X™ — X"|2ds,
i=1 70
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where hr(Ar) — 0 as k — oo. On the other hand, by Holder’s inequality and (2.6),

- 1

2

Esup | X[ — X{"*Lirsr, (Ryara ) < [Esup [ X7 = XY Bl irsr, (myar(r)}
t<T t<T

=

IN

2sup Esup | X7'[* - P(T > 7,0 (R) A 7 (R))
n t<T

2

IN

C-P (sup\X[”[ V sup | X" > R)
I t<T t<T

R? n t<T

_ 1
C 2
< | =5 supEsup |Xf|2]
C
< R
Hence,

Esup | X{ — X["> = E | sup | X} — X" (L <rm(m)amn(R)} + LTS (R)AT(R)})
t<T t<T

< Cr (hR(Am) + hR(An)) + %

—0, as m,n—>oo andthen R — oo,

and moreover by (2.4),
lim  E[¢M™ — ¢ — 0,
m,n—o00
Hence, {X,, gZ)(l)’”}n is a Cauchy sequence and by the completeness of the space of pro-
cesses with respect to the uniform convergence, there exists a pair of continuous processes
(X, M) satisfying that for any e > 0,

\2—>0.

Esup |X;' — X¢|* = 0, Esup }Qﬁgl)’n - gl)
t<T t<T

Then by Lemma 2.3, we have that ¢(!) is of locally finite variations and (2.3) holds. Further-
more, by the continuity of b and o, we have

t t 2
E sup / Ul(s,X”(Tf))dWS—/ o1(s, X (s))dWs| — 0,
t<T |Jo 0
t t 2
E sup / ag(s,X”(TS”))st—/ o2(s, X (s))dBs| — 0,
t<T |Jo 0

2
— 0.

E sup /0 b(s,X"(TS"))ds—/O b(s, X(s))ds

t<T
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Suppose (X, ¢M) is also a solution. It&’s formula with Remark 2.2 yields
1 X; — Xif?
t
= 2/ (X5 — Xs,b(s, X (s)) — b(s, X(s)))ds
0

—|—2/0 (X5 — Xs,01(s, X (s)) — 01(s, X (5)) )dW,

+2/0 (X5 — X5, 09(s, X (s)) — 02(s, X (s)))dBs

' ) = [
X 1 Hl i\S S — O04lS X S 2 S
=2 [0 = Ko 062 = a8} + 3 [l X6 = (s XD

t
< 2/ (Xs — X5,01(5,X(s)) — o1(s, X (5))dW,
0
t B B 2 t B
+ 2/ (Xs — X5, 00(s, X (5)) — 02(s, X(5)) )dBs + Z/ B(9)IX — X|3ds
0 — Jo
7j=1
from which we could get
2 T
BIX - XIf <0 [ BBIX - X3
j=1""

and the uniqueness follows by Gronwall’s inequality. |
2.1.2. Well-posedness of the Y -system.

Remark 2.4. Analogously to Theorem 2.1 and Remark 2.4, one can show that
e for any o € C(RT;R%) and t > s > 0,

t t t
212 [ o= Yadd®)+ [ V< [va(edu. e

where ¢ is a continuous process of locally bounded variation satisfying that ¢((]2) = 0;
o if (V,¢?) and (Y, $?)) are two solutions, then for any t > s > 0,

t
/ (Y — Yy, dgp®) — dd{P) > 0.

Proposition 2.5. Under Conditions 2.1 and 2.2, there exists a unique strong solution (Y, qb(Q))
to the Y process in the SVI system (2.1).

Proof. Suppose Z is an adapted process satisfying

E|Z|% < oc.

Then according to the deterministic result (see [7]), there exists a unique solution (Y, ¢(?)) to
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the following SVTI:

t ¢ ¢
(213) Vi€ +/ o(s, X (), Z(5), gs)ds +/ B(s, X (s), Z(5), qs)dBs — / D (Y, ds.
0 0 0

Note that similarly to (2.6), we have
(2.14) E|| X% < co.

Denote

7§ = inf{s; | X4| V |Zs| > R}.

Then for all R > 0, 7'11% is a stopping time and T}% T oo as R 1 oo. By Ito’s formula and with
arguments similar to the previous section, for any t < 7'11%,

t t
Y2 g\yo|2+2/ <Y;,a<s,X(s),Z<s),qs)>ds—2/ (Ya, do)
0 0
t t
+ / 18(s, X (5), Z(s), q.)||ds + 2 / (Ya B(s, X (s), Z(s), 4)dBs)
0 0
t t
< lyof? + / Y, 2ds + / (L)1 212 + lals, X (s), 0, g5)[?) ds
0 0
t
428 [ (LRGNZIR + 1805, X(5),0.00) P)ds + 20t — 20l
0

+ 2/0 (Ys, B(s, X (5), Z(s), 45)dBs),

where in the last inequality we used (2.12) and the mean value theorem. Hence,
E sup |Y|*
tST/\‘r}%
TATE

4 R 4
< CE(1+ |yo|*) + CE |Ys|*ds
0

2
+CE

T/\T}% ) ) )
/0 (L2212 + s, X (), 0, 45)|?) ds
2
+ CEN;

T/\’rllz
/0 (L2R<s>|rzni+||ﬁ<s,X<s>7o,qs>||2)ds]
T/\T}%
4 CE /0 Va2 - (s, X (). Z(s). qu) | 2ds

T/\’T}a 1
< CE(1 + |yo|*) + CE / Yil'ds + 5B sup v
0

tST/\T}-i
4 T/\T}% 9
T OEHZHT[ /0 (LR<s>

2
s <\a<s,x,o,y>|ﬂ+||ﬁ<s,x,o,y>u2>)ds],
lz]|l7 <R A1 <||yl|[<A2
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and thus by Gronwall’s lemma

E sup [Vi|* < C(1+E|Z|[7).

t<TATE
Furthermore,

P([Y]r > M) =P(|Y|r > M,T < 7) + P(|Y |7 > M, T > 73)
< B(Y llppry, > M)+ B(T = 73)
4
(2.15) 3 EHYHT/\T}{
— 0, by letting M — oo and then R — oo.

+P(T > 7'11%)

Now we are going to show that the map Z — (Y,AT}%, gi)(/z\)Tl) is a contraction. Suppose Z
R

is also an adapted process such that
E||Z|i7 < oo,
and (Y, $®) is the unique solution to (2.13) with Z in place of Z. Define
7']1% = inf{s; | Xs| V| Zs| V | Zs| > R}.
Remark 2.4 implies that
t
/(n—n@@@—&?»zm
0
and then by It6 formula and Condition 2.2
’Y;/\T}lz - 2/\7’11%’2
t/\T}% _ 15/\7'1{2 _
<[ VPds [ (s X(6), 209, 00) ~ als X (), Z().0.) s
0 0
t/\T}% B 5
[ 18 X9 209,00 = B, X (6), Z(5) ) P
t/\‘r}% B B
2 [ = T, (365, X(9), 205), ) — B, X(5), 2(5),0))dB)
0

1&/\7’1{2 _ t/\’r}% _
< / Ve — Yal2ds + (1 4+ 2) / L3(s)|Z — Z|2ds
0 0

+2/0 T ((Ys = Y5), (B(s, X(s), Z(s), q5) — B(s, X (s), Z(s),4s))dBs).
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Set [y := fg L%(s)ds. Taking supremum and expectation of the above equation yields

B T/\T}% B
Bsup Y,y — iy < CORTIE [ L3(5)]1Z - 2 2ds
t< 0

T
< 0, T) ( / L2R<s>e”sds) - <sup e HE||Z — Z\%)
0 t<T

C(X, T _
= 7( 2 )erlT sup e_rltIEHZ — ZH%
r t<T

Taking r = 2C(\e, T') gives

_ 1 _
supe "ME|Y — Y||? < —supe "*E|Z — Z|2.
t<T 24<r

93

Let Y =y and for n > 1, denote (Y, $(*™) as the solution to (2.13) with Z replaced by

Y"1, Then for any 6 > 0,

PY" =YY" Yp > 0) <P([Y" =YY" Y1 > 6,T < 74) + P(T > 73)

eQT‘lT

el (1\"! 12 1
<5 (3) BV 4P
— 0, by letting n — oo and then R — oo,

YT Y, + BT > Th)

which, by the Y dynamic, yields
P(||¢(2)’” — ¢(2)’”_1||T >0) — 0, by letting n — oo.

Thus, by completeness there exists a unique pair of processes (Y, ¢(2)) such that

P(|Y" = Y|z > 8) =0, P(|pP" — 6@ |7 >48) =0, by letting n — oo.

By (2.15) we have that

P([Y"|lr > M) =0, P(¢P|r>M)—=0, asM — oo,
from which we get

P(|Y ||z > M) =0, P(|¢P3 > M) =0, as M — oco.

Applying Lemma 2.3, for any a € Dy and t > s > 7,

[a=¥ao + [ va¥yir < ¢ - (@), ac.

Hence we have proved that (Y, $(®) is a solution of the Y process in the SVI system (2.1).
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To prove the uniqueness, we first suppose (Y, gZ;(Q)) is also a solution. Denote
TR = inf{s; | X | V |Ys| V |Ys| > R}.

Applying [t6’s formula, for t < 7, yields

42 /0 (Y — Vo, [B(5, X(5), Y (5),00) — B(5, X (5), V(5), 4)] dBs)

Then taking expectations yields

_ TATR B TATR _
B s -TiP<cE [ -TldsecE [y - Vs
t<TATR 0 0

from which we have

E sup [V;—Y?=0

t<TATR
and, furthermore,
IP( sup |Y; — Y| >0> =0.
tST/\TR .

2.2. Asymptotic analysis. We now study the stability of the SVI system (2.1) by inves-
tigating its perturbed version with a small positive parameter e:

X;e wo+ [y05(s, X5(s),€)ds + [ o5 (s, X2(s),e)dWs + [5 05(s, X*(s),€)dBs

— [5 91 (XE)ds,
(2.16)
YE € yot fyals,X%(s),Y5(s),q5)ds + [y B(s, X°(5),Y*(s), qs)dBy
— [y Oa(Y$)ds,
where
(2.17) lim b°(t, x,e) = b(t,z), limoj(t,x,e)=o0i(t,z), i=1,2.
e—0 e—0

Condition 2.3. Suppose that b°(t,z,e) and a;?(t,x,e) for 7 = 1,2 are continuous in t uni-
formly in €, and satisfy

(b°(t,z(t),e) — b°(t, &' (t),€), z(t) — 2'(t)) <0 vz, 2’ € C(RT;RM),
|b5(t, z(t),e) — b5 (L, 2/ (1), )| < lo(t)||x — a:'Hi/QJra for some a € [0,1/2],
loF (¢, z(t),€) — o7 (t, 2" (1), )| < LBl — 2”1, i=1,2,

where 1;(t) for i =0,1,2 are functions of t satisfying that l;(-) € L*([0,T]).
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2.2.1. Asymptotic analysis of the X system. In the following, we give the convergence
result regarding the X7 process in the perturbed system (2.16) as e goes to 0.

Theorem 2.6. As e — 0, under Conditions 2.1 and 2.3, we have

(2.18) E sup |X{— X:|? — 0.
te[0,7

Proof. By applying It6’s formula,
t
X — X2 = 2/ (X2 — X, b5(5, X°(5), 2) — b(s, X (5)))ds
0
2t
+3° [ (s X5 (5),2) = ol X () s
i=170
t
b2 [ (X - X0 (05, X5(5),) — (s, X))
0
t
+ 2/ (X2 — X, (05(5, X°(s), €) — 0a(s, X(s)))dBy)
0
t
—2 [ (X7 — X oD aol?)
0
t
< c/ (14 2(s) + 13(s)) | X° — X |2ds
0
t
+ [ W, X(5).2) s X ()P
0
2t
+3° [ o6, X(5),9) = (s X () s
i=170
t
b2 [ (X - X0 (05 X5(5),) — (5, X))
0
t
+ 2/ (X5 — X, (05(s,X5(s),€) — 02(s, X (s)))dBs),
0
which implies that
T
E|lX® - X|F < CE/ (L+13(s) +15()) 1 X° — X || 2ds
0
T
+C’E/ 5 (s, X (5), €) — b(s, X (s))2ds
0

T
0

2
FDE [ 075, X(9)2) (s, X(5) P
=1
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Gronwall’s lemma yields that

T
E|X° — X|3 < CE /0 16 (s, X (s), 2) — b(s, X (s))[2ds
2 T
H —oi(s s))|I%ds.
+C;E/ﬁ 10 (5, X (), €) — 03(s, X (s))]1%d

Now it follows from (2.14) and (2.17) that

E||X¢ — X% — 0, as € — 0. |

2.2.2. Asymptotic analysis of the Y system. In the following, we give the convergence
result regarding the Y7 process in the perturbed system (2.16) as € goes to 0.

Theorem 2.7. Under Conditions 2.1, 2.2, and 2.3, as € — 0, for any n > 0, we have
(2.19) P ( sup Y7 —Yy > 77) — 0.
te[0,T
Proof. We first define stopping time 7 as
(2.20) T =inf{s: | X| > R}.
Then with an analysis analogous to Proposition 2.5, we have

E sup |, [
te[0,7]

TAT
< yol* + C/ (LR[S + |als, X(5), 0, g5) * + 1| 8(s, X(5), 0, g5) %) ds
0
< 0.
By the proof of Theorem 2.1 we have that Esup,c|o 7] [X{| < oo, and then

P sup |YF|>M | =P| sup |Y'|>M,T<7|+P| sup |[Y|>MT>r
te[0,7) te[0,7) te[0,7

§]P’< sup Y5, >M> +P(T > 1)

(2.21) tef0,7]

) E (supte[o,T] ’Yt%‘Q) 4P [ XE1> R
- sup >
M2 t€[0,7] t

M—o0 and then R—oo

0.

We further define another stopping time 7 as

(2.22) T=7Ainf{s: |Ys| > M}.
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Then by It6’s formula and Gronwall’s lemma, we have

E sup [¥7 Y
te[0,TNAT)

tAT
<CE / (s, X5, YE, 05) — als, Xy, Y, ,)[2 ds
0
AT
4+ CE / 18(s, X5, Y2, q5) — B(s, X, Yo, a5)|2 ds
0
tAT
< CE / (LA(5)|YE = Va2 + a(s, X5, Yo, as) — s, X, Yarqs) %) ds
0
tAT
L CE / 18(5, X2, Yarqs) — B(s, Xo, Yo gs) | 2ds
0
tAT
< CE/ ’a(37X§7}/;7QS> - 04(37X87Y57QS)’2d3
0

AT
| CE / 18(5, X5, Yoy ) — B(s, X, Yo 0s) [ 2ds. n
0

Then by the continuity of functions a and S enforced in Condition 2.2, as well as the conver-
gence result in Theorem 2.6, we have

E sup |YF—-Y? =0, as € — 0.
te[0,TAT]

By (2.21) and similarly to its derivation, we can obtain that for any n > 0,

ImP | sup |V —Y>n] =0
e—0 te[0,T7]

3. One-dimensional SVI system with Hdolder continuous coefficients. In this section,
we consider the following one-dimensional SVI system with Holder continuous coefficients:

Xy €z + [y b(s, Xs)ds + [ 01(s, Xs)dWy + [ (s, Xs)dBs
— [T 0 (X,)ds,
(3.1)
Yy € yo + [ as, X, Ys, gs)ds + [3 B(s, X5, Ys, 4s)dBs
— [T O (Yy)ds,

where b, 01, o9 are measurable functions mapping from R* x R to R, a and 3 are measurable
functions mapping from R™ x R x R x U to R, W and B are two independent standard
one-dimensional Brownian motions on a complete filtered probability space (2, F, F¢, P).
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Condition 3.1. For the X process in the SVI system (3.1), we impose the following condi-
tions: Assume that b(t,x), o1(t,x), oa2(t,x) are continuous in (t,z), and

(b(t,z) = b(t,2")) (z — 2') <0,

(b(t, ) — b(t,2'))* < lo(t)(z — o)1+ for some o € [0,1/2),
(oi(t,x) — 04(t, 2"))* < Li(t)(a — 2') 2, i=1,2,
1 > Y (0) =0, 0e Int(Dl),

where 1;(t) fori=0,1,2 are functions of t only and satisfy l;(-) € L'([0,T]).

Condition 3.2. For the Y process in the SVI system (3.1), we impose the following condi-
tions:
o A <q < .
e «, (3 are continuous in (t,x,y,q) satisfying

(y—y) (et z,y.9) — alt, 2.y, q) <0,
and for ~ € [0,1/2]

la(t,z,y,q) — alt, 2.y, q)|* V|B(t,z,y) — Bt 2, y)?
<c(t)(|lz — 2/ |"T 4+ |y — ¢/ |'T),

where c(t) is locally integrable for any t > 0.
e (€ Int(DQ), ¢2 > @/}2(0) =0.

3.1. Well-posedness. First of all we solve the well-posedness problem under the above
conditions. An estimate for the solution process is given in the following proposition.

Proposition 3.1. Suppose (X, qS(l)) is a solution of the X process in the SVI system (3.1);
under Condition 3.1, one has

T
E|X|3 +E / B (Xy)ds < C(1 + Jzol?)
0

and, then,
E[¢™D|F < C(1 + |ao|?).

Proof. Note that by Condition 3.1,

[b(t,2)[* < 2[b(t, x) — b(t, 0)[* + [b(2, 0)|* < lo(t)]2]* + [b(2, 0)[,

3.2
2 loi(t, @) < Li()]al® +loi(t, 0)%, i =1,2.

Then applying It6’s formula and by Remark 2.2, we have

¢ t ¢
|X,5|2 = |x0|2—|—2/ Xsb(s,XS)ds-i-Q/ Xsal(s,Xs)dW5+2/ Xs02(s, Xs)dBs
0 0 0

2 t t
+Z/O ]ai(s,Xs)\zds—Q/O X,doD
=1
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<ol [ (14 0(5) +16) + (o) X Pl

+/ (1b(s, 0)? + [o1(s, 0)[2 + |0 (5, 0)[2) ds
0

t t
+2/0 (Xs,ol(s,Xs))dI/Vs+2/0 (XS,O'Q(S,XS))dBS—2/O P1(Xs)ds.

By using the BDG inequality and Holder’s inequality,

E sup
t<T

T 1/2 T
< CE </ \XS|2\01(3,X8)]2ds> + CE (/ ]XS\2]02(S,XS)|2ds>
0 0

T T
< CEHXH%—}-C’E/ (1—|—l1(s)—|—l2(5))|X8|2ds+CE/ (]01(570)]2—}— \02(5,0)|2)d3.
0 0

t t
2/ Xsol(s,Xs)dWs—i—Q/ X,04(s, X;)dB,
0 0

1/2

Therefore, Gronwall’s lemma yields that

T
E|X|2 +E / B (X,)ds < C(1+ [z0]?).
0

Moreover, by using this estimate and Remark 2.2, we also have
ElpM[§ < O(L + |zol).- u
The well-posedness of the X process in the SVI system (3.1) is established in the following
proposition.

Proposition 3.2. Under Condition 3.1, there is a unique strong solution of the X process
in the SVI system (3.1).

Proof. We apply a regularization approximation method here. Define the Moreau—Yosida
regularization of 11 as

(3.3) Y1 (x) := inf {g| 'z ()2 € ]R} , n>1, VzekR

Then 97 is a Cl-convex function, and its gradient V7 is monotone and Lipschitz with
Lipschitz constant n which is due to the reason that Vi; has no gradient. Moreover, according
to [1], Vy7 has the following properties:

B -V - VU 2 - (24 ) V@V Yo €R
(35)  VUI() € 0ilar), $1(Jar) S U1 () < (),
(36) V1) = YL ne) + 5 VU

where Jyz =z — 1Vy7(z).
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It is known that the following SDE has a unique strong solution
(3.7)  dX[] =b(t, X])dt + o1(t, X;")dAW; + o2(t, X" )dB; — VY (X[)dt, X =g € Dy,

where V7 is the gradient of 7.
Moreover, with arguments similar to those in Proposition 3.1,

T 2
BIX" < CElaol? + CE( [ (1+10(s) +11(s) +1a(s) | X2 ds)
0

T
+CB( [ (W00 + o (.0 + s, 0)) )

T

+5( /f(xs,ol(s,xmdws + /0 (X7l X0,

1 T ?

< CE|zol* + 51[«:”)(””% +CE (/ (L4 1o(s) + 1 (s) + 12(s)) yxg|2ds)
0
T
+ CE(/ (16(s,0)[* + |o1(s,0)[* + ]02(3,0)\2)ds)2
0

1 T

< CE|zo|* + 5IEHX”H‘*T + CrE (/ (1+1lo(s) + Ui (s) + zg(s))2|X§|4ds>
0

g 2
+CE(/0 (Ib(s,0) + [ (5, 0)[2 + [ora(s,0) %) ds),

where in the last inequality we used the Cauchy—Schwarz inequality in integral form. Then
Gronwall’s lemma yields

(3.8) supE|| X" |4 < C(1 + E|zo|*),

and by the dynamic (3.7) we further have

2

(39) e [ [t < oo

Note that by Ito’s formula, the fact that V7 is Lipschitz with Lipschitz constant n, and
(3.6), we have

[or (X2

t t
— [ (o) + 2 /0 SRR (XT)b(s, XP)ds — 2 /0 SR VR (XD 2ds
2 t 2 t
3 / Iy (X) loi(s, X2)Pds + 1Y / (XD o3(s, X7 2ds
i=1 0 i=1 "0

t t
1o /0 GHXT)TPR (X D)y (5, X2)dW, + 2 /0 GEXD) V(X oa(s, X7)dB,
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t ¢
< [0f(ao)P+ 2 [ OTOC)IXIN X ds — 2 [ 01T Pds
0 0
2 t t
tan Y [ los, XDPds +2 [ GV (s, XDV,
i=1"0 0
t
b2 [ VX a(s, XD)B.
0
By the BDG’s inequality, Condition 3.1, (3.6), and Young’s inequality for products, we obtain
E sup

t<T

T
< CB( [ W)V () (s X2 ds)

t t
2 /0 B XDV (X (5, X)W, + 2 /0 B (XT)VE (XM )oo(s, XT)dB,

/2

T
+0E(/0 |1/}’11(X§)Vw1”(xg)02(87Xg)’2d5>1/2

1 T
< §E§E¥I¢?(X?)I2 + C’?’LE/O W1 (XD (lon(s, X + loz(s, X2) ) ds.

By the fact that
1 (X < [Vor (X)) - | XY

since 9] is a convex function, and by Young’s inequality for products, we have
1 n ny|2 r n n n ny|2
S Esup [uf (X)P + 28 [ o (X0 |V (X]) Pds
t<T 0
T
< CEyf (o) + Cn [ (X7 <|X2||b<s,xs>| T loas, X + |ag<s,X2>|2>ds
0
T
< CElT (@) + CnE [ [T e[ vur e e
0
. <|X:r|b<s,xs>| Floas, XI)P + |az<s,Xs>|2)ds
T
< CE ()P + B [ [} (XD)IVe (X) s
T 2
+CndE [1x1] (rxm? + S U()| X + 1b(s, 0)2 + [on (s, 0)? + |oz<s,o>|2> ds
0 i=0
T
< CE[(x0)? + E /0 (X [T (X7 2ds

T 2
+Cn3/2IE/ (1+]X7h <1+Zli(s)+]b(s,0)\2+\01(8,0)\2+\02(3,0)|2> ds,
0 i=0
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which together with (3.8) yields that

(3.10) Esup |7 (XM)]? < Cn/2.
t<T

By (3.6), we further have

(3.11) Esup [V (XM)|* < 4n2Esup [ (XM))? < Con/2.
t<T

Now take any 6 € (0,1), any h > 0, and set

9s.n(z //féh )d~ydy,

where f55, > 0 and vanishes outside [hd, h], and

fonla) < — 2, / Fin(x)dz = 1.

Then we have

(3.12) 2| < gsp(|z]) + R
and
2
(3.13) 0<gsn<1, gsu(la]) < o g1 Llalelnsn):

By applying (3.12) and then It6’s formula,

| X" = X{| <gsn(IX{" = X{)) + R

! m n Xsm_X? m n
S/ gsn(1X" — X, ’)m[b(sa)(s ) —b(s, X7)]ds

N —

4

2 t
iy / gL (X — X7)) [os(s, XI) — os(s, X)) ds
=

xXm _Xn
/ X’m X’n S X Xn B
+ [ diad e (15 X2 = o1 XD
t xm _Xn
(X - X)) A X" XM |dBg
[ a1 = X i ol X2 — (o X))
! m n Xs 7X;l m m n n
= [ X = X (VOO0 = V(X ds b
0 | s s|

Then by Condition 3.1, (3.4), and (3.13),

(X" = X{ < I(8) + M(E) + J(E) + b,
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where

2 t
1 m n|lztx
1) =g O ) WX = X3P L xorepann s
=1
t

X - X7
M) = [ a3 = X0 = [ (5. X2) = (5. X2
¢ / m n X;TL_X;L m n
[ a1 = X i el X2 — (e XD B,

¢ 1 1 _
50 = [ ahax = 32D (5 ) X = XU U O s,

Clearly we have

t h2a
E I < E ’ <O0——
Sup‘ (t)| — 1n5_1 . /0\ ZZ(S) — Cln5_1

and
1/2

2 T
Esup |[M(t)] <C) E </ Li(s)| XM — Xg|1+2ad5>
0

t<T i1

2 T
1
< C’ZE/O Li(s)| X™ — X™>*ds + 51@?35 X7 — X7
=1 =

By (3.9), (3.11), and (3.13),

1 Tr1 1
<7 - 7 m m n n
E§21T)|J(t)| < sE i <n + m) VY (X)) VT (X )ds

111 oo 1/2 T N 2\ 1/2
< a5 |x (Bswiveraxr) " (e( [ iveraeia) )

1 , 1/2 T 2\ 1/2
+ o (msprveroane) - (e( [ verami) )]

L8 —1/8
< (C— .
_Ché(n +m=/%)

Summing up these estimates, by Gronwall’s lemma, we have

2«

m n 1 71/8 71/8 h
— < - .

Considering « € [0,1/2], we further have

2

h
Esup | X" — XP| < C(hé)2*(n~* + m~*/*) 4+ C—— + h.
t<T Ind—1
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Taking § = £ and h = min{m, n}~'¢ yields

Esup | X™ — X7 < Cmin{m,n} "5 =0, as n — oco.
t<T

Moreover, by setting
t
o = [ unaas

we have

E sup \gbgl)’m — gbgl)’n\ —0, as n — oo.
t<T

Hence (X", (1) is Cauchy in the complete metric space
LY(Q;C([0, T);R)) x LN (:C([0, T} R))
and thus there exists (X, ¢(1)) in the space satisfying that
(3.14) Esup |X{' — X¢] -0 and Esup |¢)§1)’n - ¢§1)| — 0, as n — oo.
t<T t<T
Now it remains to prove that (X, (1) is a solution. Since by (3.9) we have
sup E[| ¢ < oo,
n

it then yields
El¢Wlr < oc.

Recall that 7 is convex and that

Y1(Jnx) < Yf(x) < ¢1(z)
given in (3.5), for any ¢ € C([0,T];R) and any t € [0,7],

t t
/ (0s — XT)dg{m = / (0s — XP)VUP(XT)ds
0 0
t t
< /0 W (0s)ds — /0 PR(XT)ds

t t
S/() wl(gs)ds—/o 1 (Jp X2)ds.

By (3.14) and the fact that a monotone increasing sequence of random variables that converge
in probability implies convergence almost surely, sending n — oo gives

t t t
_ (1) _
/0 (Qs Xs)d(bs < A ¢1(Qs)d8 [J 1/11(X5)d8.

Hence (X, ¢() is a solution. [ |

With analogous arguments, we can obtain that there exists a unique strong solution for
the Y process in the SVI system (3.1) and the proof is omitted.
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3.2. Asymptotic analysis. In this section, we perform asymptotic analysis on the per-
turbed one-dimensional SVI system (3.15) with Holder continuous coefficients described in
Condition 3.3, regarding its limiting system (3.1) satisfying Condition 3.1.

The perturbed version of the one-dimensional SVI system (3.1) with a small positive
parameter € is given by

X: e x0+f0 b2 (s, X<, €)ds + [} o5 (s, XZ,€)dW; + [i 05(s, X<, €)dBy
— Jy 01 (X3)ds,

(3.15)
YE €yot fyals, X5, YE q)ds + [ B(s, X5, YE, q.)dB;
— Jo 0a(Y$)ds,
where
(3.16) lim b°(t, z,e) = b(t,z), limoi(t,x,e) =o0i(t,z), i=1,2.
e—0 e—0

Condition 3.3. Assume that b°(t,z,¢), oi(t,x,€), o5(t,x, &) are continuous in (t,z), uni-
formly in €, and

(bg(t,x,s) — bs(t,x’,a)) (x —2') <0,
2

(b°(t,2,e) — b°(¢t,2',€))” < lo(t)(z — 2')1 T2 for some a € [0,1/2],
(o5 (t, x,e) — Uf(t,m’,e)) < Li(t)(xz — 2/) T2, i=1,2,
1/J1 > @/11(0) =0, 0e Int(Dl),

where 1;(t) for i =0,1,2 are functions of t only and satisfy l;(-) € L([0,T]).

With arguments similar to those of Proposition 3.1, one can obtain the following propo-
sition.

Proposition 3.3. Under Conditions 3.1 and 3.3, one has

(3.17) E sup |Xi> <oco and supE sup |X{|? < oo.
t€[0,T] € t€[0,T)

In the following, we give the convergence result regarding the X; process as € goes to 0.

Proposition 3.4. Under Conditions 3.1 and 3.3, as € — 0, we have

E sup |X;— Xi| — 0.
(3.18) te[0.T] ¢

Proof. By (3.12) and It6’s formula, one has

X7 — Xo| < gspn(| X7 —Xe]) + 1

! € XE - X € €
:A%W&‘&WW|M“X> bs, X.)]ds
Lt € : € 2
+ 3/, g5 n (X5 — ;:1 (s,X5,e) —oi(s, Xs)] ds
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X — X,

|X§ *Xs|

! Xe-X

[ b1 = X 03 XE.) = a(s, X)) dBa +
0 |Xs _XS|

Note that by Condition 3.3 and that g5, € [0, 1],

t
(3.19) +/ gsn(1X5 — X) [07(s, X5,e) — o1(s, Xs) | dW,
0

t Xe— X
/ € _ S S (4 € _
| a1 = X R (5. X5 2) = (s, X

f X¢ - X,
:/ 950 (1 X5 — Xs\)‘XiiX‘ [b°(s, X5, €) = (s, X5, 8) + b7 (s, X, ) — (s, X5) ] ds
0 s s

(3.20) , e x
S S

< | g5n(XE— X)) 2% (s, X, €) — b(s, Xs)|ds
| a1 = X = s X)X

t

S/ |6 (s, Xs,€) — b(s, Xy)|ds,

0

and by Condition 3.1 and Proposition 3.1 one has
T 2
sup® ([ 1075, 5 2) = (s, Xl
€ 0

T T
< CsupE/ |b€(s,X§,5)|2ds+CsupE/ b(s, X,)|*ds
e 0 € 0

T
< C’supIE/ (lo(s)]X§|1+2a + |6°(s, 075)|2 + |b(s, O)]z)ds
€ 0
< Q.

Hence, by (3.16), as ¢ — 0,

¢ X:—-X
E En(1XE — X)) 2—2 b (s, X5, 6) — b(s, X4)|d 0.
/O gé,h(‘ S S|) ’Xg _ Xs‘ [ (57 375) (37 8)] s —

Similarly, by Propositions 3.1 and 3.3 as well as the regularity conditions for ¢¢ and o, re-
spectively, one has

T
up [ [0F(s. X,u) = il X ds
e 0
T T )
< C’supE/ [0(s, X5, ) — 05(5,0,€))%ds + CsupE/ [05(5,0,¢) — 0i(s,0)] “ds
5 0 € 0

T
+ CsupE/ [0i(s, Xs) — 0i(s,0)] ds
€ 0
< 00.

Then, by (3.16), as € — 0,

T
(3.21) IE/ (05 (s, Xs,€) — O‘i(S,Xs)]2d8 =0, i=1,2,
0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/04/21 to 35.7.39.63. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

GENERALIZED STOCHASTIC VOLATILITY MODELS 107
and for sufficiently small ¢ satisfying that
r 2
IE/ [05(s, Xs,€) — 0i(s, X)] "ds < Sh' T2,
0

by (3.13) one has

t
E/Q&WW—XHWﬁ@X?@—m@JHF%
0

t Li(s)
< CE 7 XE _ Xs 1+2a]1 . d
B /0 Ind—1X¢ —X5|’ s | {1Xs—X;|€[hs,n]} 45
t
1 2
+ CE/ o 1X: — X, [Uf(SXs@) —0i(s, Xs)] " L{xs - x.|efno.n)y ds

li(s) ;o
< o _
_CE/O Iné— g1 @ +OE/ (5hln6 1[ i (5, Xs,8) — 0i(s, X)] ds

Ch* C t
= Ing—! * (Sh]n(s—lE/O [Uf(S,XS,E) —O'i(S,XS)] ds
ChQa
< T e -
~ Ind!

Plugging the above results into (3.19), one gets

Ch2a
BIX} — Xi| < oy + .

Taking supremum and then expectation of (3.19), we obtain

E sup |X7 - X,
te[0,T

< Ch2a +h—{—CZE /T [U‘.S(t X¢ 5)—0'-(5 X )]2d8
_l 5 1 0 7 9 Rl K3 9 S

=1

1/2

2a 1/2

< ch +h+CZIE /Tz-(s)p(f—x |1+2e s
“Ind— Ing-1 0 ! s B

+C’ZE (/ £(t, Xy, €) — Z-(s,XS)]2ds> .

ChQa 2 T )
< + h+ Esup X - X+ C ]E/ Li(s)| X5 — Xs|*%ds
i s X7 X 03 E [ -

+C’ZE </ St Xs,8) — i(s,Xs)}2d8> 1/2,

where we used the Hélder’s inequality in the last equality to reduce the order of | X& — X;| on
the right-hand side. By reorganizing the terms and noticing that 2o < 1, Gronwall’s lemma
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yields
Ch2a
E sup [Xf—X¢| < = +h
t€[0,7 In¢
Taking h = 4, we have
C6
t€[0,7) In ¢
For the reason that § can take any small value, we conclude the proof as desired. |

With arguments analogous to Theorem 2.7, we also have the following convergence result
for the Y-system whose proof is omitted.

Theorem 3.5. Under Conditions 3.2 and 3.3, one has

Esup Y7 — Y2 =0, as € —0.
t<T
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