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Abstract
We study a decoupling iterative algorithm based on domain decomposition for the time-
dependent nonlinear Stokes–Darcy model, in which different time steps can be used in the
flow region and in the porous medium. The coupled system is formulated as a space-time
interface problem based on the interface condition for mass conservation. The nonlinear
interface problem is then solved by a nested iteration approach which involves, at each
Newton iteration, the solution of a linearized interface problem and, at each Krylov iteration,
parallel solution of time-dependent linearized Stokes and Darcy problems. Consequently,
local discretizations in time (and in space) can be used to efficiently handle multiphysics
systems of coupled equations evolving at different temporal scales. Numerical results with
nonconforming time grids are presented to illustrate the performance of the proposedmethod.

Keywords Stokes–Darcy coupling · Non-Newtonian fluids · Domain decomposition · Local
time-stepping · Space-time interface problem · Nested iteration

Mathematics Subject Classification 65N30 · 76D07 · 76S05 · 65M55

1 Introduction

Multiscale andmultiphysics processes are ubiquitous in many science and engineering appli-
cations. Mathematically, coupled partial differential equations are used to model various
processes possibly taking place on different regions of the problem domain and at different
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scales in space and time. One example of such a coupling is the coupled (Navier-)Stokes–
Darcy system arising in a number of applications: surface and subsurface flow interaction,
flow in vuggy porous media, industrial filtrations, biofluid-organ interaction, cardiovascu-
lar flows, and others. In these applications, the Stokes equations are used to model the free
flow and the Darcy equations are used to model the flow in a porous medium; the two flow
domains are coupled via suitable transmission conditions on the interface to enforce mass
conservation, balance of the normal forces and the Beavers–Joseph–Saffman law [4,47,61].

The development of numerical approximations and efficient solvers for the Stokes–Darcy
coupling has been an active research area and attracted great attention over the past two
decades. For the stationary case, the existence and uniqueness of the weak solution of the
coupled system are proved in [5,24,27,49]. Regarding a numerical solution of the mixed
Stokes–Darcy model, one can either solve the coupled system directly with some suitable
preconditioner, or use the domain decomposition (DD)-based approach [56,64] to decouple
the system into two local subsystems which are solved separately. Concerning the former or
monolithic approach, new finite element spaces were studied in [1,2,7,52] with mixed for-
mulations and in [57,58] with discontinuous approximations. Preconditioning techniques for
solving the sparse linear system of saddle point form resulted from finite element discretiza-
tion of the fully coupled Stokes–Darcy system were investigated in [10,19,53]. Concerning
the decoupled approach, several directions have been considered. Lagrange multiplier tech-
niques were proposed in [30,49] andmortar finite elements were studied in [5,31,36,37,39] in
which the meshes on the interface and subregions do not necessarily match. Heterogeneous
DDmethods were explored using either the classical Dirichlet–Neumann (Steklov–Poincaré)
type operator [24–26,38,46,66] or the Robin–Robin interface conditions [11,12,18,23,28].
Two-gridmethodswere applied to themixedStokes–Darcymodel in [8,54], andoptimization-
based approach was proposed in [29].

While quite extensive work has been devoted to the analysis and numerical solution
methods to the steady Stokes–Darcy system, only a few studies have been carried out for
the nonsteady case. Basically, there are two approaches that were proposed for the time-
dependent Stokes–Darcy coupling: the first one is based on implicit time discretization as
presented in [15,24],inwhich at each time step the system is solved directly or is uncoupled by
DD iteration. The second approach is a decoupled method obtained by lagging the interface
coupling terms, i.e. at each time level, one solves the Stokes and Darcy problems implicitly
using Neuman interface boundary conditions computed from the previous time level. Such a
methodwas first introduced in [55] using the backward Eulermethod in time. The conditional
stability of the method and a modified two-step method was analyzed in [50]. A similar
decoupled scheme with Robin interface conditions was studied in [13] in which higher
order time discretization (three-step backward differentiation method) was also considered.
It should be noted that in these works, the same time step is used in both regions. Decoupled
schemeswith different time step sizes were proposed and analyzed in [60,62]. These schemes
are extensions of the method in [55] in which the time step size in the Stokes region is an
integral multiple of the time step size in the Darcy region. The advancement in time is then
carried out sequentially; first the Stokes problem is solved with a small time step size using
the Darcy pressure (freezing from the previous coarse time step) as interface data, then
the Darcy problem is solved using the recently computed Stokes velocity as interface data.
These methods are non-iterative by using an explicit method for the coupling terms, and the
key issue is how to achieve desired accuracy and stability properties. A different approach
was proposed in [51] by formulating the coupled problem as a constrained optimal control
problem which is solved at each time step by a least square method (thus, the same time step
is used in both regions).
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As themodel concerns the flowof fluid, there are twopossible fluid types:Newtonianfluids
(e.g. water and air) and non-Newtonian fluids (e.g. honey and quicksand). The difference
between these two types of fluid lies in the viscosity which is a constant for Newtonian
fluids and a function of the magnitude of the deformation tensor for non-Newtonian fluids
(more discussion can be found in [30]). Mathematically, one deals with a linear or nonlinear
coupled flow problem; the nonlinear Stokes–Darcy coupling was considered in [29–31,51].
In addition, approximation methods for the nonlinear Navier–Stokes/Darcy system were
studied in [3,9,17,20,21,28,40], and for the coupling with transport in [16,59,65].

In this work, we aim to develop a parallel decoupling method for the time-dependent
nonlinear Stokes–Darcy system in which different time step sizes can be used in the free
flow domain and the porous medium. Differently from [60,62], we apply the so-called
global-in-time (or space-time) DD method in which the dynamic system is decoupled into
dynamic subsystems defined on the subdomains (resulting from a spatial decomposition),
then time-dependent problems are solved in each subdomain at each iteration and infor-
mation is exchanged over space-time interfaces between subdomains. Consequently, local
discretizations in both space and time can be enforced in different regions of the computa-
tional domain, which makes the method well-suited and efficient for multiscale multiphysics
problems. Though the space-time DD methods have been extensively studied for porous
medium flows (see [43,44] and the references therein), the application of these methods to
multiphysics problems is still limited; to the best of our knowledge, these methods haven’t
been considered for the Stokes–Darcy coupling in the literature. It is noteworthy that, unlike
the explicit-implicit method in [60,62], space-time DD is fully implicit in time, thus not only
different time steps can be used, but also considerably large time step sizes are possible with-
out affecting stability. This feature is strongly desired for applications in geosciences where
long time simulations are often required. In addition, an important class of global-in-time
DD methods is the so-called Optimized Schwarz Waveform Relaxation (OSWR) method
[32–34,41] in which, instead of using the physical transmission conditions, general (Robin
or Ventcell [108]) transmission operators are employed to enhance the information exchange
between subdomains. These new transmission conditions involve some coefficients that can
be optimized to improve the convergence rates of the iterations.

This work aims to develop and investigate the space-time DD method for the nonlinear
Stokes–Darcy system based on the physical transmission conditions. Specifically, we con-
struct a time-dependent Steklov–Poincaré type operator, and reduce the coupled problem
into a nonlinear time-dependent interface problem enforcing the continuity of the normal
velocity along the interface. Such an interface problem is then solved by a nested iteration
approach which involves, at each Newton iteration, the solution of a linearized interface
problem and, at each Krylov iteration, parallel solution of time-dependent linearized Stokes
and Darcy problems. As the local problems are solved globally and implicitly in time at
each iteration, it makes possible the use of different time discretization methods or dif-
ferent time grids in the Stokes and Darcy regions, and the time step sizes can be large
for long-term simulations. To exchange information at the interface with nonconforming
time grids, an L2 time projection between subdomains is performed by an optimal projec-
tion algorithm without any additional grid [35]. High order time stepping methods can be
applied straightforwardly, see [41]. The idea can be generalized to the case of multiple sub-
domains where interfaces of different types are introduced: Stokes–Darcy, Stokes–Stokes
and Darcy–Darcy as considered in [66] for the steady problems. However, in this work we
restrict ourselves to the case of two subdomains and conforming spatial meshes, and focus
on numerical performance - in terms of accuracy and efficiency - of the proposed method
with nonmatching time grids. The study of the Schwarz waveform relaxation method for the
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Stokes–Darcy coupling with Robin transmission conditions will be considered separately in
[45].

The rest of this paper is structured as follows. In Sect. 2, we present the model problem
which is the nonstationary nonlinear Stokes–Darcy system, and the interface coupling condi-
tions. The variational formulation of the continuous coupled system is derived in Sect. 3. The
coupled problem is formulated as a time-dependent nonlinear interface problem in Sect. 4,
and nonconforming time discretization is discussed in Sect. 5.Numerical results are presented
in Sect. 6 to study the performance of the proposed algorithm with nonmatching time grids,
and with large jumps in the coefficients and long time horizons. Finally, some concluding
remarks are given in Sect. 7.

2 Time-Dependent Nonlinear Stokes–Darcy System

We consider a free non-Newtonian fluid flow in Ω f coupled with a porous medium flow in
Ωp , where Ω f and Ωp are subsets of Rd for d = 2, 3. Denote by Γ the interface between
the two domains, and by Γ f = ∂Ω f \Γ and Γp = ∂Ωp\Γ the external boundaries of the
fluid domain and porous medium, respectively (see Fig. 1). Let nnn f and nnn p be the outward
unit normal vectors to Ω f and Ωp respectively, and {ttt j } j=1,...,d−1 be an orthogonal set of
unit tangent vectors on Γ . Let T > 0 be a finite time. The free flow in Ω f is described by
the nonlinear Stokes equations subject to no-slip boundary condition on Γ f :

∂uuu f

∂t
− ∇ · TTT (uuu f , p f ) = fff f in Ω f × (0, T ), (2.1a)

∇ · uuu f = 0 in Ω f × (0, T ), (2.1b)

uuu f = 000 on Γ f × (0, T ), (2.1c)

uuu f (·, 0) = uuu f 0 in Ω f , (2.1d)

whereuuu f is the fluid velocity, p f the fluid pressure,TTT (uuu f , p f ) = ν f (|DDD(uuu f )|)DDD(uuu f )− p f III

the stress tensor (with III the identity tensor), DDD(uuu f ) = 1
2

(
∇uuu f + ∇uuuTf

)
the rate of the strain

tensor, ν f (·) the fluid viscosity and fff f the body force. In this work we consider the Cross
model for the viscosity function:

ν f (|DDD(uuu f )|) = ν f ∞ + ν f 0 − ν f ∞
1+ K f |DDD(uuu f )|2−r f

, (2.2)

where r f > 1, ν f ∞, ν f 0 > 0 and K f > 0 are constants; ν f ∞ and ν f 0 denote the limit-
ing viscosity values at an infinite shear rate and at zero shear rate respectively, and satisfy
ν f ∞ ≤ ν f 0. Other nonlinear viscosity models such as Carreau model, power law model and
Ladyzhenskaya model can also be used [30].

The porous medium flow in Ωp is described by the nonlinear Darcy equations subject to
no-flux boundary condition on Γp:

νeff(|uuu p|) κ−1uuu p + ∇ pp = 0 in Ωp × (0, T ), (2.3a)

Sp
∂ pp
∂t

+ ∇ · uuu p = f p in Ωp × (0, T ), (2.3b)

uuu p · nnn p = 0 on Γp × (0, T ), (2.3c)

pp(·, 0) = pp0 in Ωp, (2.3d)
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Fig. 1 Example of a two
dimensional domain formed by a
fluid region and a porous medium

where uuu p and pp are the Darcy velocity and pressure respectively, Sp > 0 the storage coef-
ficient, νeff(·) the effective fluid viscosity, κ > 0 the permeability and f p is the source/sink.
The Cross model for νeff is defined as follows (see [30] for other models):

νeff(|uuu p|) = νp∞ + νp0 − νp∞
1+ Kp|uuu p|2−rp

, (2.4)

where rp > 1, νp0 ≥ νp∞ > 0 and Kp > 0 are constants.
The viscosity functions (2.2) and (2.4) have the following properties which will be used

in later analysis [30]:

(A1) ν f (·) and νeff(·) are stronglymonotone and bounded frombelow and above by positive
constants.

(A2) The nonlinear functions ν f (|uuu|)|uuu| and νeff(|uuu|)uuu are uniformly continuous with
respect to uuu ∈ Rd .

Note that the standard linear Stokes–Darcy system can be recovered by setting r f = rp = 2.
The coupled Stokes–Darcy system is closed by the following coupling conditions on the

space-time interface:

uuu f · nnn f + uuu p · nnn p = 0 on Γ × (0, T ), (2.5a)

−nnn f · (ν f (|DDD(uuu f )|)DDD(uuu f ) − p f III ) · nnn f = pp on Γ × (0, T ), (2.5b)

−nnn f · (ν f (|DDD(uuu f )|)DDD(uuu f ) − p f III ) · ttt j = cBJ Suuu f · ttt j on Γ × (0, T ), j = 1, . . . , d − 1,
(2.5c)

where cBJ S is a positive constant. These coupling conditions have been studied extensively
in the literature (e.g. [14,24,49]). The first two conditions enforce the continuity of the
normal component of velocities and the continuity of the normal stress respectively. The third
condition is the Beavers–Joseph–Saffmann condition [47,61], stating the connection between
the slip velocity and the shear stress along the interface. It is a simplification of the Beavers–
Joseph condition [4] by neglecting the porous medium velocity tangent to the interface. Thus
(2.5c) is actually not a coupling condition as it only involves thefluid domain’s variables.Next,
we derive the weak formulation of the coupled system with the use of Lagrange multipliers.

3 Variational Formulation of the Fully Coupled System

In the following, we will use the convention that if V is a space of functions, then we write VVV
for a space of vector functions having each component in V . In order to write the variational
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formulation of the coupled problems, we first introduce the functional spaces:

uuu f ∈ XXX f := {vvv ∈ H1H1H1(Ω f ) : vvv = 000 on Γ f }, p f ∈ Q f := L2(Ω f ),

uuu p ∈ XXX p := {vvv ∈ L2L2L2(Ωp) : ∇ · vvv ∈ L2(Ωp), vvv · nnn p = 0 on Γp}, pp ∈ Qp := L2(Ωp).

Let Ω = Ω1 ∪ Ω2 ∪ Γ and define the spaces XXX and Q on Ω by XXX = XXX f × XXX p and
Q = Q f × Qp respectively. Denote by XXX∗

f the dual space of XXX f . For a domain Θ = Ω f

or Θ = Ωp , we denote by (·, ·)Θ the L2 inner product over Θ . As in the stationary case
[30,49], we introduce the Lagrange multiplier λ on the interface representing:

λ = −nnn f · (ν f (|DDD(uuu f )|)DDD(uuu f ) − p f III ) · nnn f = pp on Γ × (0, T ). (3.1)

The space for the Lagrange multiplier is Λ := H
1/2
00 (Γ ) (see [49]). We denote by Λ∗ :=(

H
1/2
00 (Γ )

)∗
the dual space of Λ and by 〈·, ·〉Γ the duality pairing between Λ∗ and Λ. Define

the bilinear forms a(·, ·) : XXX × XXX → R, b(·, ·) : XXX × Q → R and bI : XXX × Λ → R by:

a(uuu,vvv) = a f (uuu f ,vvv f )+ ap(uuu p,vvv p), b(vvv, q) = b f (vvv f , q f )+ bp(vvv p, qp),

bΓ (vvv, ζ ) = bΓ f (vvv f , ζ )+ bΓ p(vvv p, ζ ),

where

a f (uuu f ,vvv f ) =
(
ν f (|DDD(uuu f )|)DDD(uuu f ),DDD(vvv f )

)
Ω f

+
d−1∑

j=1

cBJ S(uuu f · ttt j ,vvv f · ttt j )Γ ,

ap(uuu p,vvv p) =
(
νeff(|uuu p|) κ−1uuu p,vvv p

)
Ωp

,

b f (vvv f , q f ) = (q f ,∇ · vvv f )Ω f , bp(vvv p, qp) = (qp,∇ · vvv p)Ωp ,

bΓ f (vvv f , ζ ) = 〈ζ,vvv f · nnn f 〉Γ , bΓ p(vvv p, ζ ) = 〈vvv p · nnn p, ζ 〉Γ .

The weak formulation of the coupled system (2.1)–(2.3)–(2.5) is then written as follows
(detailed derivation for the stationary problems can be found in [30]):
For a.e. t ∈ (0, T ), find (uuu(t), p(t), λ(t)) ∈ XXX × Q × Λ such that:

(∂tuuu f ,vvv f )Ω f + a(uuu,vvv) − b(vvv, p)+ bΓ (vvv, λ) = ( fff f ,vvv f )Ω f , ∀vvv ∈ XXX , (3.2)

b(uuu, q) − bΓ (uuu, ζ )+ (Sp∂t pp, qp)Ωp = ( f p, qp)Ωp , ∀(q, ζ ) ∈ Q × Λ, (3.3)

with the initial conditions

uuu f (·, 0) = uuu f 0 in Ω f , pp(·, 0) = pp0 in Ωp.

The existence and uniqueness of theweak solution to the non-stationary and linear Stokes–
Darcy system is proved in [14] using the Stokes–Laplace formulation, i.e. the velocity and
pressure are the unknowns in the fluid flowdomain and the pressure is the only unknown in the
porous media domain. In addition, no Lagrange multiplier is introduced and the physically
more accurate coupling condition - the Beavers–Joseph condition - is considered in [14].
The well-posedness of the stationary nonlinear Stokes–Darcy system in mixed form with a
Lagrange multiplier is proved in [30]. Here we assume the variational formulation (3.2)–
(3.3) is well-posed, and focus on the decoupled approach based on global-in-time domain
decomposition.
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4 Decoupled Problems and Nested Iteration Approach

We shall reformulate the Stokes–Darcy coupled problem as a space-time interface problem
with the interface unknown λ defined in (3.1). Assume that λ is given, the Stokes and Darcy
problems are then decoupled. We derive the weak formulations of the local problems using
(3.1) as boundary conditions on the interface, then formulate the interface problem which is
solved by a nested iteration approach.

4.1 Free Fluid Flow

We first consider the Stokes problem with Neumann boundary condition on the interface Γ :

− nnn f · (ν f (|DDD(uuu f )|)DDD(uuu f )) · nnn f + p f = λ, on Γ × (0, T ). (4.1)

Its variational formulation is given by:
For a.e. t ∈ (0, T ), find

(
uuu f (t), p f (t)

)
∈ XXX f × Q f such that:

(
∂tuuu f ,vvv f

)
+ a f (uuu f ,vvv f ) − b f (vvv f , p f ) = ( fff f ,vvv f )Ω f − bΓ f (vvv f , λ), ∀vvv f ∈ XXX f ,

(4.2)

b f (uuu f , q f ) = 0, ∀q f ∈ Q f ,

(4.3)

with the initial condition

uuu f (·, 0) = uuu f 0, in Ω f . (4.4)

For given fff f ∈ L2(0, T ; XXX∗
f ), λ ∈ L2(0, T ;Λ) and uuu f 0 ∈ XXX f , the existence and

uniqueness of the solution

(uuu f , p f ) ∈
(
H1(0, T ; L2L2L2(Ω f ) ∩ L2(0, T ; XXX f )

)
× L2(0, T ; Q f )

to (4.2)–(4.3) with the initial condition (4.4) are followed from the strong monotonicity of
the viscosity function (2.2), [31] and the classical result of wellposedness of evolutionary
(Navier-)Stokes equations [63, Chapter III].

4.2 Porous Medium Flow

We now consider the Darcy flow with Dirichlet boundary condition on the interface Γ :

pp = λ, on Γ × (0, T ). (4.5)

Its variational formulation is given by:
For a.e. t ∈ (0, T ), find

(
uuu p(t), pp(t)

)
∈ XXX p × Qp such that:

ap(uuu p,vvv p) − bp(vvv p, pp) = −bΓ p(vvv p, λ), ∀vvv p ∈ XXX p, (4.6)

bp(uuu p, qp)+
(
Sp∂t pp, qp

)
= ( f p, qp)Ωp , ∀qp ∈ Qp, (4.7)

with the initial condition

pp(·, 0) = pp0, in Ωp. (4.8)
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For given f p ∈ L2(0, T ; Qp)), λ ∈ L2(0, T ;Λ) and pp0 ∈ H1(Ωp), there exists a
unique solution

(uuu p, pp) ∈ L2(0, T ; XXX p) × H1(0, T ; Qp)

to (4.6)–(4.7)with the initial condition (4.8). This is obtainedbyusing the strongmonotonicity
of the viscosity function (2.4) and the Faedo–Galerkin method for mixed formulations of the
Darcy problem as in [43].

4.3 Nonlinear Space-Time Interface Problem

We first introduce the interface operators:

S f : L2(0, T ;Λ) −→ L2(0, T ;Λ∗), S f (λ) = uuu f (λ) · nnn f |Γ ,
Sp : L2(0, T ;Λ) −→ L2(0, T ;Λ∗), Sp(λ) = uuu p(λ) · nnn p|Γ ,

where
(
uuu f (λ), p f (λ)

)
and

(
uuu p(λ), pp(λ)

)
are the solutions to the Stokes problem (4.2)–(4.4)

and the Darcy problem (4.6)–(4.8) respectively.
As the continuity of the normal stress (2.5b) is imposed via λ in (4.1) and (4.5) (note

that the Beaver–Joseph–Saffmann condition is imposed naturally in (4.2)), there remains to
enforce the condition (2.5a), which leads to the interface problem:
Find λ ∈ L2(0, T ;Λ) such that:

∫ T

0

(〈
S f (λ), ζ

〉
Γ
+

〈
Sp(λ), ζ

〉
Γ

)
ds = 0, ∀ζ ∈ L2(0, T ;Λ). (4.9)

This is a time-dependent and nonlinear problem which will be solved by a nested iteration
approach. Toward that end, we define the operator:

Ψ (λ) := S f (λ)+ Sp(λ), (4.10)

and apply the Newton algorithm to (4.9) to obtain the following linear system at each iteration
k:

∫ T

0

〈
Ψ ′(λk)(λk+1 − λk), ζ

〉

Γ
ds =

∫ T

0

〈
−Ψ (λk), ζ

〉

Γ
ds, ∀ζ ∈ L2(0, T ;Λ), (4.11)

where Ψ ′(λ)(h) = Slinf ,λ(h)+ Slinp,λ(h), and

Slinf ,λ(h) = www f (h) · nnn f |Γ , Slinp,λ(h) = www p(h) · nnn p)|Γ ,

in which
(
www f (h), ξ f (h)

)
is the solution to the linearized Stokes problem [51]:

(
∂twww f ,vvv f

)
+

(
ν f (|DDD(uuu f )|)DDD(www f ),DDD(vvv f )

)

+
(

(r f − 2)(ν f 0 − ν f ∞)K f

(1+ K f |DDD(uuu f )|2−r f )2|DDD(uuu f )|r f
DDD(uuu f )(DDD(uuu f ) : DDD(www f )),DDD(vvv f )

)

− (ξ f ,∇ · vvv f )+
d−1∑

j=1

cBJ S(www f · ttt j ,vvv f · ttt j )Γ = −〈h,vvv f · nnn f 〉Γ , ∀vvv f ∈ XXX f , (4.12)

(q f ,∇ ·www f ) = 0, ∀q f ∈ Q f , (4.13)

and
(
www p(h), ξp(h)

)
is the solution to the linearized Darcy problem:

(
Sp∂tξp, qp

)
+ (qp,∇ ·www p) = 0, ∀qp ∈ Qp, (4.14)
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(
νeff(|uuu p|) κ−1www p,vvv p

)
+

(
(rp − 2)(νp0 − νp∞)Kp

(1+ Kp|uuu p|2−rp )2|uuu p|rp
uuu p(uuu p : www p),vvv p

)
− (ξp,∇ · vvv p)

= −〈h,vvv p · nnn p〉Γ , ∀vvv p ∈ XXX p, (4.15)

Note that uuu f = uuu f (λ) in (4.12) and uuu p = uuu p(λ) in (4.15). The nested iteration algorithm
for solving (4.9) is summarized in Algorithm 1.

Algorithm 1 - Nested Iteration Approach
Input: λ0 initial guess, ε tolerance and Niter maximum number of iterations.
Output: λk

k = 0, error = 0,
while k < Niter and error > ε, do:

1: Compute the RHS of (4.11) by solving the nonlinear Stokes problem (4.2)-(4.3) and the
nonlinear Darcy problem (4.6)-(4.7) with λ = λk :

Ψ (λk) = S f (λ
k)+ Sp(λ

k).

2: Solve the linearized interface problem with a Krylov-type method (e.g., GMRES):
∫ T

0

〈
Ψ ′(λk)(hk), ζ

〉

Γ
ds =

∫ T

0

〈
−Ψ (λk), ζ

〉

Γ
ds, ∀L2(0, T ;Λ),

where the left-hand side is given by

Ψ ′(λk)(hk) = Slinf ,λk (h
k)+ Slinp,λk (h

k).

That means each Krylov-iteration involves solution of linearized problems (4.12)-(4.15)
to compute the matrix-free vector product on the left-hand side.

3: Update λk+1 = λk + hk , k = k + 1, error = ‖hk‖.
The linearized interface problem (4.11) canbepreconditionedbyusing the inverse operator

of Slinf ,λ as proposed for the stationary case in [24]. That corresponds to solving the linearized
Stokes problem with given normal velocity on the interface as Dirichlet boundary condition,
and computing the normal stress on the interface.

Remark 1 Unlike the steady case [22], the time-dependent Steklov–Poincaré operators for the
Stokes–Darcy system are nonsymmetric. Thus a direct proof of the existence and uniqueness
of the solution of the space-time interface problem (4.9) does not follow in a standardway, and
remains an openproblem. In fact, this is also the case for homogeneous domain decomposition
(i.e. the same equation type is imposed in the subdomains) as pointed out in [43]; generally
there is no analysis on the convergence of the iterative method for solving the space-time
interface problem with the Steklov–Poincaré operator. In [48], convergence of a Richardson
iteration method for the heat equation was proved using detailed properties of the Green’s
function; however, generalization of such analysis to the case of heterogeneous media (i.e.
with discontinuous coefficients) is difficult.

5 Nonconforming Discretization in Time

As we solve the nonlinear interface problem (4.9) globally in time, different time discretiza-
tion schemes and/or different time step sizes can be used in the Stokes and Darcy regions. At
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Fig. 2 Nonconforming time grids for the Stokes and Darcy problems

the space-time interface, data is transferred from one space-time subdomain to a neighboring
subdomain by using a suitable projection.

We consider semi-discrete problems in time with nonconforming time grids. Let T f
and Tp be two possibly different partitions of the time interval (0, T ) into sub-intervals
(see Fig. 2):

T f = ∪M
m=1 J

m
f , with Jmf = (tm−1

f , tmf ], and Tp = ∪N
n=1 J

n
p , with Jnp = (tn−1

f , tnf ].

The time step sizes are ∆tmf = tm − tm−1, m = 1, . . . ,M , and ∆tnp = tn − tn−1, n =
1, . . . , N , in the Stokes and Darcy regions, respectively. To simplify the discussion, the same
temporal discretization scheme is considered for both subproblems; we use the backward
Eulermethod for the time discretization and obtain the following semi-discrete local problems
for the free flow

(
uuumf − uuum−1

f

∆tmf
,vvv f

)

Ω f

+ a f (uuumf ,vvv f ) − b f (vvv f , pmf )

= ( fff mf ,vvv f )Ω f − bΓ f (vvv f , λ
m), ∀vvv f ∈ XXX f , (5.1)

b f (uuumf , q f ) = 0, ∀q f ∈ Q f , (5.2)

and the Darcy flow

ap(uuunp,vvv p) − bp(vvv p, pnp) = −bΓ p(vvv p, λ
n), ∀vvv p ∈ XXX p, (5.3)

bp(uuunp, qp)+
(

Sp
pnp − pn−1

p

∆tnp
, qp

)

= ( f np , qp)Ωp , ∀qp ∈ Qp. (5.4)

The wellposedness of the decoupled semi-discrete Stokes and Darcy problems (5.1)–(5.4) is
followed from the strong monotonicity of the viscosity functions (2.2) and (2.4), and [29].
The same idea can be generalized to higher order methods [41].

For i = f or i = p, we denote by P0(Ti ,Λ) the space of piecewise constant functions in
time on grid Ti with values in Λ:

P0(T f ,Λ) =
{
φ : (0, T ) → Λ,φ is constant on Jmf , ∀m = 1, . . . ,M

}
,

P0(Tp,Λ) =
{
φ : (0, T ) → Λ,φ is constant on Jnp , ∀n = 1, . . . , N

}
.

(5.5)
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In order to exchange data on the space-time interface between different time grids, we define
the following L2 projection Πp, f from P0(T f ,Λ) onto P0(Tp,Λ) (see [33,41]) : for φ ∈
P0(T f ,Λ), Πp, f φ |Jnp is the average value of φ on Jnp , for n = 1, . . . , N :

Πp, f (φ) |Jnp=
1

| Jnp |
M∑

m=1

∫

Jnp∩Jmf

φ. (5.6)

The projection Π f ,p from P0(Tp,Λ) onto P0(T f ,Λ) can be defined similarly. We use the
algorithm described in [33] for effectively performing these projections.

Next, we weakly enforce the transmission conditions over the time intervals with noncon-
forming time grids.We still denote by (uuu f , p f ) and (uuu p, pp) the solution of the semi-discrete
in time problems. We choose λ piecewise constant in time on one grid, either T f or Tp . For
the Stokes–Darcy coupling, the flow is supposed to be faster in the fluid domain than that in
the porous medium, thus we choose λ ∈ P0(T f ,Λ) and impose

(
−nnn f · (ν f (|DDD(uuu f )|)DDD(uuu f )) · nnn f + p f

)
|Γ = Π f , f (λ) = λ.

The weak continuity of the normal stress in time across the interface is fulfilled by letting

pp|Γ = Πp, f (λ) ∈ P0(Tp,Λ).

The semi-discrete (nonconforming in time) counterpart of the normal velocity continu-
ity (2.5a) is weakly enforced by integrating it over each time interval Jmf of grid T f :
∀m = 1, ...,M ,

∫

Jmf

(〈
S f (λ), ζ

〉
Γ
+

〈
Π f ,p

(
Sp

(
Πp, f (λ)

) )
, ζ

〉
Γ

)
ds = 0, ∀ζ ∈ Λ. (5.7)

Similarly for the linearized interface problem:
∫

Jmf

(〈
Slinf ,λk (h

k), ζ
〉

Γ
+

〈
Π f ,p

(
Slinp,λk (Πp, f (hk)

)
, ζ

〉

Γ

)
ds

=
∫

Jmf

(〈
−S f (λ

k), ζ
〉

Γ
+

〈
−Π f ,p

(
Sp

(
Πp, f (λ

k)
) )

, ζ
〉

Γ

)
ds, ∀ζ ∈ Λ. (5.8)

In the next section, we shall investigate the numerical performance of the nonconforming
time grids in terms of accuracy, efficiency and long-term stability.

6 Numerical Results

We investigate the numerical performance of the proposed global-in-time decoupling algo-
rithm on two test cases: Test case 1 with a known solution and Test case 2 where the flow
is driven by a pressure drop. For the latter, we consider both continuous and discontinuous
parameters. We shall verify the accuracy in space and in time, the efficiency of the proposed
method with nonconforming time grids over conforming time grids, and the long-time stabil-
ity of the proposed method. Note that the code to generate the results below is implemented
in FreeFem++ [42] in a sequential setting, and we do not investigate parallel performance
of the method in this work.
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6.1 Test Case 1:With a Known Analytical Solution

We consider a test case with a known exact solution. The fluid domain and porous medium
are Ω f = (0, 1) × (1, 2) and Ωp = (0, 1) × (0, 1) respectively, and the exact solution is
given by

uuu f =
[
(y − 1)2x3(1+ t2), − cos(y)e(1+ t2)

]
,

p f =
(
cos(x)ey + y2 − 2y + 1

) (
1+ t2

)
,

uuu p =
[
−x (sin(y)e + 2(y − 1))

(
1+ t2

)
,

(
− cos(y)e + (y − 1)2

) (
1+ t2

)]
,

pp =
(
− sin(y)e + cos(x)ey + y2 − 2y + 1

) (
1+ t2

)
,

for which the Beavers–Joseph–Saffman condition is satisfied with α = 1. We perform the
numerical experiments with the following parameters: κ = 1, Sp = 1, K f = Kp = 1,
ν f ∞ = νp∞ = 0.5 and ν f 0 = νp0 = 1.5. The boundary and initial conditions are imposed
using the exact solution. For finite element approximations, we consider structured meshes
and use either (i) the Taylor–Hood elements for both Stokes and Darcy problems or (ii) the
MINI elements for the Stokes problem and the Raviart-Thomas elements of order one and
P1 elements (RT1-P1) for the Darcy problem. In addition, a stability term η

(
∇ · uuu p,∇ · vvv p

)

was added to the Darcy equation with η = 10 as the exact Darcy velocity field is divergence
free.

We shall verify the convergence rates in space and in time of the proposed algorithm
with nonconforming time grids. For the iterative solvers, unless otherwise specified, only
one Newton iteration is performed (i.e., k = 1 in Algorithm 1) and GMRES stops when the
relative residual is smaller than the tolerance ε = 10−7 or when the maximum number of
iterations, itermax= 100, is reached.We first investigate the accuracy in space for both linear
viscosities with r f = rp = 2 and nonlinear viscosities with r f = rp = 1.5. Tables 1 and 2
show the errors at T = 0.01 with ∆t f = 0.002 and∆tp = 0.001 for the linear and nonlinear
problems using different finite element spaces. As this is a non-physical example, we have
chosen a large time step in the fluid domain and a small time step in the porous medium. In
the next test case, we will consider the choice where the time step size in the fluid domain is
smaller. We observe from Tables 1 and 2 that the orders of accuracy in space are preserved
with nonconforming time grids. In addition, concerning the convergence of GMRES to solve
the linearized interface problem, we show in Table 3 the number of GMRES iterations
needed to reach the tolerance ε = 10−10 for the case with no preconditioner and with the

preconditioner
(
Slinf ,λ

)−1
. First, we notice the number of iterations required is reasonable;

for the case without preconditioner, it is increasing slightly when the mesh size is decreasing
while for the preconditioned system, the number of iterations remain small when h is small.

For time errors, we analyze the accuracy in time when nonconforming time grids are used.
Toward this end, we fix h = 1/32 and denote by ∆tcoarse ∈ {0.2, 0.1, 0.05, 0.025} the coarse
time step sizes, and ∆tfine = ∆tcoarse/2 the fine time step size. We consider three types of
time grids as follows:

i) Coarse conforming time grids: ∆t f = ∆tp = ∆tcoarse.
ii) Fine conforming time grids: ∆t f = ∆tp = ∆tfine.
iii) Nonconforming time grids: ∆t f = ∆tcoarse and ∆tp = ∆tfine.

We first consider the approximations by Taylor–Hood elements. Figures 3 and 4 show
the errors for the linear and nonlinear viscosities respectively. We observe that first order
convergence is preserved with the nonconforming time grids. Moreover, the errors with
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Table 1 [Test case 1] Errors with Taylor–Hood elements for the Stokes and Darcy problems at T = 0.01 with
∆t f = 0.002 and ∆tp = 0.001

h 1/4 1/8 1/16 1/32

Linear viscosities

uuu f L2 error 9.07e-04 9.33e-05 [3.28] 1.19e-05 [2.97] 1.79e-06 [2.73]

H1 error 2.64e-02 5.55e-03 [2.25] 1.38e-03 [2.01] 3.72e-04 [1.89]

p f L2 error 2.91e-02 5.55e-03 [2.39] 1.36e-03 [2.03] 3.97e-04 [1.78]

uuu p L2 error 1.29e-03 1.71e-04 [2.92] 2.02e-05 [3.08] 4.58e-06 [2.14]

Hdiv error 2.24e-03 3.42e-04 [2.71] 8.19e-05 [2.06] 1.93e-05 [2.09]

pp L2 error 3.12e-02 5.07e-03 [2.62] 1.34e-03 [1.92] 3.24e-04 [2.05]

Nonlinear viscosities

uuu f L2 error 9.64e-04 1.03e-04 [3.23] 1.82e-05 [2.50] 1.26e-05

H1 error 2.77e-02 5.88e-03 [2.24] 1.47e-03 [2.00] 4.18e-04 [1.81]]

p f L2 error 2.84e-02 5.50e-03 [2.37] 1.50e-03 [1.88] 7.36e-04 [1.03]

uuu p L2 error 1.26e-03 1.72e-04 [2.87] 2.10e-05 [3.03] 7.44e-06

Hdiv error 2.18e-03 3.37e-04 [2.69] 8.00e-05 [2.08] 1.98e-05 [2.02]

pp L2 error 3.02e-02 4.91e-03 [2.62] 1.30e-03 [1.92] 3.15e-04 [2.05]

Table 2 [Test case 1] Errors with MINI elements for the Stokes problem and with RT1-P1 elements for the
Darcy problem at T = 0.01 with ∆t f = 0.002 and ∆tp = 0.001

h 1/4 1/8 1/16 1/32

Linear viscosities

uuu f L2 error 1.09e-02 2.63e-03 [2.05] 6.72e-04 [1.97] 1.82e-04 [1.89]

H1 error 2.24e-01 9.88e-02 [1.18] 5.02e-02 [0.98] 2.69e-02 [0.90]

p f L2 error 2.51e-01 6.65e-02 [1.92] 2.22e-02 [1.58] 1.06e-02 [1.07]

uuu p L2 error 2.11e-02 4.29e-03 [2.30] 1.10e-03 [1.96] 2.65e-04 [2.05]

Hdiv error 2.36e-02 5.03e-03 [2.23] 1.28e-03 [1.97] 3.12e-04 [2.04]

pp L2 error 3.04e-02 4.94e-03 [2.62] 1.31e-03 [1.92] 3.16e-04 [2.05]

Nonlinear viscosities

uuu f L2 error 1.09e-02 2.62e-03 [2.05] 6.70e-04 [1.97] 1.81e-04 [1.89]

H1 error 2.24e-01 9.88e-02 [1.18] 5.02e-02 [0.98] 2.69e-02 [0.90]

p f L2 error 2.07e-01 5.40e-02 [1.94] 1.86e-02 [1.54] 8.79e-03 [1.08]

uuu p L2 error 2.12e-02 4.30e-03 [2.30] 1.10e-03 [1.97] 2.66e-04 [2.05]

Hdiv error 2.37e-02 5.02e-03 [2.24] 1.28e-03 [1.97] 3.12e-04 [2.04

pp L2 error 2.95e-02 4.79e-03 [2.63] 1.27e-03 [1.92] 3.08e-04 [2.04]

nonconforming time grids (in magenta) in the porous medium are close to those with fine
conforming time steps (in red), which is expected as a smaller time step is used in the porous
medium. Likewise, the errors with nonconforming time grids (inmagenta) in the fluid domain
are close to thosewith coarse conforming time steps (in blue). Thus the accuracy in time of the
solution is preserved with the nonconforming time grids. Moreover, in Table 4, we compare
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Table 3 [Test case 1] Number of GMRES iterations needed to reach the tolerance 10−10 usingMINI elements
for the Stokes problem and with RT1-P1 elements for the Darcy problem at T = 0.01 with ∆t f = 0.002 and
∆tp = 0.001

h Linear viscosities Nonlinear viscosities

1/4 1/8 1/16 1/32 1/4 1/8 1/16 1/32

With no preconditioner 17 24 32 46 16 23 30 44

With a preconditioner 21 22 17 21 23 25 18 18
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Fig. 3 [Test case 1] Errors for the linear Stokes and Darcy problems at T = 0.2 with Taylor–Hood elements

the computer running times when using conforming and nonconforming time grids, which
shows that using nonconforming time grids could significantly reduce the computational time
while still maintaining the desired accuracy.

We perform a similar test using MINI elements for the Stokes problem and RT1-P1
elements for theDarcy problem.Wefix h = 1/64, and consider∆tcoarse ∈ {0.8, 0.4, 0.2, 0.1}
and ∆tfine = ∆tcoarse/2. The final time is large, T = 0.8, thus we use two Newton iterations
for the nonlinear solvers (instead of only one iteration). Figure 5 shows the errors for the case
with nonlinear viscosities, which again confirms that the convergence order and accuracy
in time are preserved with nonconforming time grids. In addition, we report in Table 5 the
computer running times with conforming and nonconforming time grids on a fixed mesh

123



Journal of Scientific Computing (2021) 87 :22 Page 15 of 22 22

10-2 10-1 100

Time step sizes

10-6

10-5

10-4

10-3

E
rr

or
s

L2 errors of Stokes velocity

Conforming coarse grids
Conforming fine grids
Nonconforming grids
Slope 1

10-2 10-1 100

Time step sizes

10-4

10-3

10-2

10-1

E
rr

or
s

L2 errors of Stokes pressure

Conforming coarse grids
Conforming fine grids
Nonconforming grids
Slope 1

10-2 10-1 100

Time step sizes

10-5

10-4

10-3

10-2

E
rr

or
s

H-div errors of Darcy velocity

Conforming coarse grids
Conforming fine grids
Nonconforming grids
Slope 1

10-2 10-1 100

Time step sizes

10-4

10-3

10-2

10-1

E
rr

or
s

L2 errors of Darcy pressure

Conforming coarse grids
Conforming fine grids
Nonconforming grids
Slope 1

Fig. 4 [Test case 1] Errors for the nonlinear Stokes andDarcy problems at T = 0.2with Taylor–Hood elements

Table 4 Comparison of the computer running times (in seconds) of conforming and nonconforming time grids
with Taylor–Hood elements on a fixed mesh h = 1/32

∆t Linear viscosities Nonlinear viscosities

Conforming Nonconforming Conforming Nonconforming

0.2 87 122

143 178

0.1 209 287

285 348

0.05 432 578

578 710

0.025 893 1127

1176 1424

0.0125 1816 2175

h = 1/32. We see that the use of nonconforming time grids is efficient in terms of accuarcy
and computational cost.
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Fig. 5 [Test case 1] Errors for the nonlinear Stokes and Darcy problems at T = 0.8 with MINI elements for
the Stokes problem and RT1-P1 elements for the Darcy problem

Table 5 Comparison of the computer running times (in seconds) of conforming and nonconforming time
grids, with MINI elements for the Stokes problem and Raviart–Thomas elements for the Darcy problem on a
fixed mesh h = 1/32. Note that for the nonlinear viscosities, two Gauss–Newton iterations are performed

∆t Linear viscosities Nonlinear viscosities

Conforming Nonconforming Conforming Nonconforming

0.8 72 167

83 188

0.4 154 348

180 420

0.2 310 727

351 791

0.1 632 1447

697 1646

0.05 1262 2791

123



Journal of Scientific Computing (2021) 87 :22 Page 17 of 22 22

Fig. 6 [Test case 2] Velocity magnitude and velocity vector at T = 1

Table 6 [Test case 2] Errors for the nonlinear Stokes and Darcy problems at T = 1 with a fixed mesh size
h = 1/32

Time step uuu f p f uuu p pp

∆t f ∆tp H1 error L2 error Hdiv error L2 error

1/4 1/2 3.44e-04 2.80e-03 4.56e-03 2.17e-03

1/8 1/4 1.49e-04 [1.21] 1.37e-03 [1.03] 2.18e-03 [1.07] 1.12e-03 [0.95]

1/16 1/8 5.60e-05 [1.41] 6.51e-04 [1.07] 1.04e-03 [1.07] 5.48e-04 [1.03]

1/32 1/16 1.63e-05 [1.78] 2.95e-04 [1.14] 4.70e-04 [1.15] 2.53e-04 [1.12]

6.2 Test Case 2: Flow Driven by a Pressure Drop

In this test case, the flow is driven by a pressure drop: on the top boundary of Ω f we set
pin = 1 and on the bottom boundary of Ωp , pout = 0, which is also chosen as the initial
condition for the Darcy pressure. Along the left and right boundaries, we impose no-slip
boundary condition for the Stokes flow and no-flow boundary condition for the Darcy flow.
We also set zero velocity initial condition for the Stokes problem. The parameters are κ = 1,
K f = Kp = 1, ν f ,∞ = νp,∞ = 1, ν f ,0 = νp,0 = 10, r f = rp = 1.35 and α = 1. The
simulation time is T = 1. For this test case, we use cell conservative spatial discretization,
i.e. MINI elements for the Stokes flow and RT1-P1 elements for the Darcy flow. The velocity
magnitude and vector at the final time are shown Fig. 6.

We compute the reference solution on a mesh size h = 1/32 and ∆tref = 0.01. We want
to verify the convergence in time of the global-in-time domain decomposition method with
nonconforming time grids: ∆t f = ∆tp/2. Table 6 shows the errors of the nonlinear Stokes
and Darcy problems at T = 1 with a fixed mesh size h = 1/32, first order convergence in
time is observed. In Tables 7 and 8, we compare the accuracy in time of the conforming and
nonconforming time grids. In particular, the errors (with nonconforming time grids) in the
fluid domain are close to those with fine conforming time steps, while those in the porous
medium are close to those with coarse conforming time steps.

Next, we consider the case with discontinuous parameters. For the Stokes problem, we
set K f = 1, ν f ,∞ = 0.5, ν f ,0 = 1, and for the Darcy problem, Kp = 0.001, νp,∞ =
1, νp,0 = 10. As before, we impose smaller time step in the fluid region and larger time step
in the porous medium: ∆t f = ∆tp/2 = 0.125. The velocity magnitude at T = 1 is depicted
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Table 7 [Test case 2] Errors for the nonlinear Stokes problem at T = 1 with a fixed mesh size h = 1/32

Time grids ∆t f ∆tp uuu f p f

L2 error H1 error L2 error

Conforming coarse 1/8 1/8 3.01e-05 1.03e-04 6.71e-04

Nonconforming 1/16 1/8 1.64e-05 5.60e-05 6.51e-04

Conforming fine 1/16 1/16 1.38e-05 4.68e-05 3.08e-04

Table 8 [Test case 2] Errors for the nonlinear Darcy problem at T = 1 with a fixed mesh size h = 1/32

Time grids ∆t f ∆tp uuu p pp

L2 error Hdiv error L2 error

Conforming coarse 1/8 1/8 2.11e-04 1.05e-03 5.56e-04

Nonconforming 1/16 1/8 2.08e-04 1.04e-03 5.48e-04

Conforming fine 1/16 1/16 9.71-05 4.78e-04 2.59e-04

Fig. 7 [Test case 2 with discontinuous paramters] Velocity magnitude at T = 1

in Fig. 7 and the errors are reported in Table 9, which again shows that the accuracy in time
is well-preserved with nonconforming time grids.

Finally,we consider large jumps in the coefficients and long-time simulations. In particular,
we lower the values of the storativity and permeability in the Darcy region while keeping all
other parameters fixed: K f = 1, ν f ,∞ = 0.5, ν f ,0 = 1, Kp = 10−6, νp,∞ = 1, νp,0 =
1.5. Three cases are considered: i) Sp = 0.1, κ = 10−4, ii) Sp = 0.1, κ = 10−5, and iii)
Sp = 0.01, κ = 10−5. The mesh size is h = 1/100 and the time step size in the Darcy region
is four times larger than the one in the Stokes region: ∆tp = 4∆t f = 0.5. The final time is
T = 100, thuswe partition [0, T ] into sub-intervals of smaller sizes, called timewindows (see
[41,43]); notice that successive time windows do not overlap in time. We perform the nested
iteration on each time window sequentially in which the solution from the previous time
window is used as the initial guess for the next time window. Figure 8 shows the magnitude
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Table 9 [Test case 2 with discontinuous parameters] L2−errors for the nonlinear Stokes and Darcy problems
at T = 1 with h = 1/32

Time grids ∆t f ∆tp u f p f u p pp

Conforming coarse 1/4 1/4 1.48e-03 2.02e-02 5.41e-03 1.45e-02

Nonconforming 1/8 1/4 2.33e-04 1.69e-02 4.70e-03 1.32e-02

Conforming fine 1/8 1/8 2.27e-04 1.00e-02 2.77e-03 7.63e-03

Fig. 8 [Test case 2] Velocity magnitude at T = 100 with Sp = 0.1, κ = 10−4 (left), Sp = 0.1, κ = 10−5

(middle) and Sp = 0.01, κ = 10−5(right). Note that the color scale is different for each plot

of the velocity at T = 100 for the different values of the parameters; note that the color scale
is different for each plot. It is observed that the proposed space-time DDmethod is stable for
long time simulations, and the velocity magnitude is much smaller for low permeability and
storativity.

7 Conclusion

We have introduced a decoupling scheme for the nonlinear Stokes–Darcy system, based on
the time-dependent interface operators. The scheme is an implicit type that requires itera-
tions between subdomains; the subproblems, time-dependent Stokes andDarcy equations, are
solved using local time-stepping algorithms, respectively. The space-time domain decompo-
sition method allows us to independently solve each subproblem using existing local solvers
and enables the use of nonconforming time grids as well as different time-stepping algo-
rithms for local problems. For numerical tests of the proposed algorithm two numerical
examples were considered; the first is a non-physical problem with the known exact solution
and the second is a flow problem driven by a pressure drop. Numerical results confirm that
the algorithm simulates the model problem at the optimal order of accuracy and its efficiency
is improved with the use of nonconforming time grids and the preconditioner for GMRES
iterations. Although the model system is nonlinear, only one or two Newton iterations were
needed within the given tolerance range, yielding the optimal accuracy in our test cases.

Some future directions for this work include extending the approach to more complex
coupled problems such as the coupled Stokes–Darcy system with transport and a fluid flow
coupled with a quasi-static poroelastic medium. In particular, because of the use of local time
stepping, we expect that this approach is efficiently applicable to multiphysics problems,
where local problems are in different time scales, e.g., fluid flows interacting with clays or

123



22 Page 20 of 22 Journal of Scientific Computing (2021) 87 :22

soils. Many such examples are found in applications of geomechanics and the quasi-static
Biot’s consolidation model [6] is often considered for a deformable porous medium. In the
Biot model, the fluid motion in the porous medium is described by Darcy’s law, while the
deformation of the medium is governed by the linear elasticity. Interface conditions for
the (Navier-)Stokes–Biot system are more complex than those of the Stokes–Darcy system,
however, we expect that a similar approach can be considered for the large multiphysics
problem to be turned into a time dependent Steklov–Poincaré operator equation. We are also
currently investigating an optimized Schwartz waveform relaxation (OSWR) method using
Robin transmission conditions for the Stokes–Darcy model considered in this work. Details
concerning the development, analysis and numerical implementation of space-time domain
decomposition based on OSWR is a subject of a forthcoming paper.
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