
Constructing Clustering Transformations

Steffen Borgwardt∗ and Charles Viss†

Abstract. Clustering is one of the fundamental tasks in data analytics and machine learning. In many
situations, different clusterings of the same data set become relevant. For example, different
algorithms for the same clustering task may return dramatically different solutions. We are
interested in applications in which one clustering has to be transformed into another; e.g., when
a gradual transition from an old solution to a new one is required. In this paper, we devise
methods for constructing such a transition based on linear programming and network theory.
We use a so-called clustering-difference graph to model the desired transformation and provide
methods for decomposing the graph into a sequence of elementary moves that accomplishes the
transformation. These moves are equivalent to the edge directions, or circuits, of the underlying
partition polytopes. Therefore, in addition to a conceptually new metric for measuring the distance
between clusterings, we provide new bounds on the circuit diameter of these partition polytopes.

Key words. partitioning, clustering, polyhedra, circuits, diameter, linear programming

AMS subject classifications. 52B05, 90C05, 90C08, 90C27

1. Introduction and Preliminaries. Clusterings of large data sets play an important
role in data analytics, machine learning, and informed decision-making in general. In many
applications, there exists a desired clustering corresponding to an optimal solution to an
optimization problem. However, directly implementing such a solution can be challenging –
instead, a gradual sequence of transitions which transforms an initial, sub-optimal solution
into the improved clustering is desired.

Consider the example in land consolidation from [3, 4, 5]. In a Bavarian agricultural
region, 471 lots are cultivated by 7 different farmers. The initial distribution of the owner-
ship of the lots, depicted in Figure 1a, is quite problematic – the scattered, small lots result
in large transportation overhead and prohibit the use of heavy machinery. To address this,
the authors worked with the Bavarian State to facilitate a voluntary land exchange among
the farmers in which the boundaries of the lots would remain the same while the cultivation
rights for the lots would be redistributed.

The combinatorial redistribution of lots can be modeled as a clustering problem: a set
of data points (the lots) must be partitioned into clusters (the farmers) under the restriction
that each farmer stays close to his original total value of land. The original and desired
clustering of lots may differ slightly in cluster sizes: often, large farmers are willing to accept
a slight decrease in their total land value, if the redistribution results in a significantly more
efficient cultivation.

One of the main challenges is that lots differ in value (aggregated from properties like
size, quality of soil, and shape). The restriction on cluster sizes, in combination with the
different lot values, makes it provably hard to determine an optimal redistribution of the
lots. However, it is possible to compute an approximation of the global optimum based
on linear programming over projections of transportation polytopes [4]. Further, the small
regions exhibited a heavy repetition of lots of similar values. When there is a fixed bound
on the number of different values of lots, for example by rounding lot values to a fixed set
of numbers, the underlying clustering problems become tractable [9]. A computed solution
in which the lots form large, connected sections of land is depicted in Figure 1b.

However, such a radical redistribution of lots among the farmers (more than 70% of the
lots change ownership from Figure 1a to 1b) cannot realistically take place all at once. Crop
rotations, required machinery, and other processes for farming stability must be respected.

∗University of Colorado Denver (steffen.borgwardt@ucdenver.edu).
†University of Colorado Denver (charles.viss@ucdenver.edu).

1

mailto:steffen.borgwardt@ucdenver.edu
mailto:charles.viss@ucdenver.edu

(a) Original clustering of lots. (b) Desired clustering of lots.

Figure 1: Two clusterings of 471 agricultural lots among 7 farmers (images from [3, 4, 5]).

Therefore, the farmers requested a “best” way to gradually implement the proposed changes
over the course of several years.

This transition should take the form of a sequence of trades, each changing the ownership
on a small subset of lots, and staying between the original and target value of land for all
farmers throughout. As before, the differing values of lots make this restriction challenging.
However, the heavy repetition of lots of the same (rounded) values can be exploited for two
approaches to preprocess the data: first, a restriction to only lots of the same (rounded)
values is possible, and then only these lots are traded with each other. Second, instead of
trading individual lots, groups of lots of the same farmer that add up to a similar value
are traded; to this end, each farmer’s lots are partitioned into groups of lots of (or close
to) a prescribed total value. With both approaches, a restriction on the value of land of
each farmer becomes a restriction on the number of lots, or groups of lots, assigned to the
farmer. A good practical performance greatly depends on the repetition of the same lot
values.

The result is a representation of the current and target lot distribution as solutions
to a new (smaller, or contracted) clustering problem of unweighted items, and a gradual
transformation between the clusterings is desired. In this paper, we propose methods for
constructing such a transformation based on linear programming and network theory.

The need for the construction of an efficient gradual transition to a new, given clustering
also arises in many other applications. For example, an insurance company may want
to gradually transition their customers to a new clustering of premium classes. In other
situations, there are snapshots of the same data set at different times and the goal is to
devise a model that explains how the data gradually changed over time.

In general, we consider partitions of a data set X := {x1, ..., xn} into k labeled clusters
where each item xi is assigned to exactly one of the clusters. We call such a partition
C := (C1, ..., Ck) a k-clustering of X, or simply a clustering of X when k is clear from
context. As is the case in most clustering applications, we assume that the number of items
is significantly greater than the number of clusters; i.e., n� k.

We additionally consider situations in which upper and lower bounds are given for
the sizes of the clusters. Such bounds may arise directly from an application itself or
may be introduced to guide clustering algorithms to return sufficiently balanced solutions.
Specifically, let κ+, κ− ∈ Zk

+ with κ+ ≥ κ− be given. A bounded-size k-clustering of X with
respect to κ+ and κ− then satisfies κ−i ≤ |Ci| ≤ κ+i for i = 1, ..., k. This concept generalizes

2

the fixed-size k-clusterings from [2] in which each cluster contains a fixed number of items
(i.e., a bounded-size k-clustering with κ+ = κ−). The classical transportation problem
and the assignment problem, along with their related polytopes, are well-studied topics in
optimization corresponding to fixed-size clusterings [1, 14, 22].

For a data set X and cluster size bounds κ+, κ− ∈ Zk
+, the bounded-size partition

polytope BPP (κ+, κ−) models the set of all bounded-size k-clusterings of X with respect
to κ+ and κ− [12]. Specifically, for i = 1, ..., k and j = 1, ..., n, let yij indicate whether or
not cluster Ci receives item xj in a k-clustering C = (C1, ..., Ck) of X. Then BPP (κ+, κ−)
is given by the following system of constraints:

k∑
i=1

yij = 1 j = 1, ..., n

n∑
j=1

yij ≥ κ−i i = 1, ..., k

n∑
j=1

yij ≤ κ+i i = 1, ..., k

yij ≥ 0 i = 1, ..., k, j = 1, ..., n.

Since these constraints form a totally unimodular matrix, the right-hand side is integral,
and each yij is implicitly bounded between 0 and 1, BPP (κ+, κ−) is in fact a 0/1-polytope
whose vertices correspond to the feasible k-clusterings of X. For κ+ = κ−, this polytope
generalizes the fixed-size partition polytope from [2]. It is also an instance of the bounded-
shape partition polytope from [7] when X is the standard basis of Rn.

In the fixed-size partition polytope, the edges also have a combinatorial interpretation:
two vertices share an edge if and only if the corresponding clusterings differ by a single
cyclical move of items among the clusters, formally defined in Section 2. This fact can be
used to prove new bounds on the combinatorial diameter of the polytope – the maximum
length of a shortest edge walk between any pair of vertices – and provide practical methods
for constructing transformations between fixed-size clusterings [2]. In this paper, we gen-
eralize these methods to the bounded-size partition polytope BPP . Although the edges of
this polytope have a more technical characterization, its circuits correspond to a set of nat-
ural cyclical and sequential moves of items among the clusters [12]. However, constructing
transformations using these two types of moves is significantly more challenging than using
only cyclical moves due to their different effects on the sizes of the underlying clusters.

Circuits, introduced as the elementary vectors of a subspace by Rockafellar [25], play a
fundamental role in the theory of linear programming. For a general polyhedron P = {x ∈
Rn : Ax = b, Bx ≤ d}, the set of circuits of P consists of all g ∈ ker(A) \ {0} normalized to
coprime integer components for which Bg is support-minimal over {Bx : x ∈ ker(A)\{0}}.
Geometrically, circuits correspond to all potential edge directions of P as the right-hand
side vectors b and d vary. This implies that the set of circuits serves as a universal test set
for any linear program over P [16]. Hence, circuits are used as the step directions in several
augmentation algorithms for solving linear programs [11, 13, 17, 18].

Additionally, for polyhedra such as BPP defined by totally unimodular matrices, cir-
cuits have combinatorial interpretations in terms of the underlying problem. The support-
minimality of circuits implies that, in a sense, steps taken in circuit directions are as simple
as possible while maintaining feasibility. In combination with highly-structured problems
from combinatorial optimization, these steps become particularly intuitive and are guaran-
teed to only visit integral points [12].

Therefore, in this paper, we choose the circuits of BPP as the elementary moves for
transforming k-clusterings. In building such transformations using these circuits, we con-
struct circuit walks between the corresponding vertices in the polytope. As a generalization

3

of edge walks, circuit walks are of interest due to their relationship to the combinatorial di-
ameter of polyhedra [6, 8, 10]. The circuit distance between vertices refers to the minimum
number of steps needed to join the vertices by a circuit walk and hence provides a lower
bound on the combinatorial distance between the vertices. The related circuit diameter of
a polyhedron – the minimum number of steps needed to join any pair of vertices by a circuit
walk – then serves as a lower bound on its combinatorial diameter. In particular, circuit
diameters provide insight into the polynomial Hirsch Conjecture, one of the fundamental
open questions in linear programming. See [20] for a survey of this field of study.

To build transformations between clusterings, we use one of the main tools from [2]
for analyzing fixed-size clusterings. Given two k-clusterings C, C′ of the same data set, the
clustering-difference graph CDG(C, C′) is a directed graph that models the transfers of items
required for transforming C into C′. In the context of fixed-size clusterings, such a graph
decomposes into directed cycles. Sets of cyclical moves can then be integrated together
in order to bound the combinatorial distance between vertices in the fixed-size partition
polytope [2].

We generalize this graph-theoretic approach for constructing transformations between
clusterings to the context of general and bounded-size k-clusterings. In these situations,
both cycles and paths in a clustering-difference graph correspond to circuits of the related
polytopes. Integrating these different types of moves becomes much more technically chal-
lenging than integrating only cyclical moves since sequential moves alter the sizes of the
underlying clusters. In Section 2, we show how this is possible for certain combinations
of cyclical and sequential moves, providing various double-moves which reduce the num-
ber of steps needed for transforming clusterings (Theorems 2.6 and 2.7). Next, we prove
in Section 3 how these double-moves lead to an upper bound (Theorem 3.4) on the so-
called transformation distance between k-clusterings: a relaxation of the circuit distance.
In Section 4 we then prove the implications of this bound on the circuit diameter of the
bounded-size partition polytope (Theorem 4.2). We end with a brief discussion on future
directions of research in Section 5.

2. Moves and Double-Moves for Transforming Clusterings. Let C, C′ be two given k-
clusterings of the same data set. We recall from [2] the definition of the clustering-difference
graph CDG(C, C′) from C to C′, a graph-theoretic model for the difference between the two
clusterings.

Definition 2.1 (Clustering-difference Graph). For two k-clusterings C = (C1, ..., Ck) and
C′ = (C ′1, ..., C

′
k) of a data set X = {x1, ..., xn}, the clustering-difference graph CDG(C, C′)

from C to C′ is a directed arc-labeled multigraph with vertex set V = {c1, ..., ck} and edge set
A, where an edge (ci, cj) with label x` belongs to A if and only if x` ∈ Ci and x` ∈ C ′j for
i 6= j.

Thus, the edges of CDG(C, C′) describe all single-item transfers needed to transform C into
C′. The number of edges is equal to the number of items whose cluster assignment differs
from C to C′ – if an edge (ci, cj) with label x` belongs to A, item x` must be moved from
cluster i to cluster j as a part of the transformation. Note that this allows for parallel edges
in CDG(C, C′), but all edges have different labels. We refer to a CDG consisting of a single
directed cycle – or alternatively to its corresponding set of transfers – as a cyclical move of
items among the clusters. Similarly, a directed path or its corresponding set of transfers is
referred to as a sequential move of items. See Figure 2 for examples of these two types of
moves.

Throughout the proofs in this paper, we will frequently construct cyclical and sequential
moves to perform the required clustering transformations. For readability, we introduce the
following language to be used when defining such constructions: We say that a move follows
or travels along edges, paths, or cycles of an underlying CDG when we use those parts of
the graph to define the transfers of the move, we say that the move uses an introduced edge

4

c1

c2

c3

c4c5

x1 x2

x3

x4

x5

(a) The clustering-difference
graph CDG(C, C′) when C′ =
({x5}, {x1}, {x2}, {x3}, {x4}). The graph is
a directed cycle, representing a cyclical move
of items among the clusters.

c1

c2

c3

c4c5

x1 x2

x3

x4

(b) The clustering-difference
graph CDG(C, C′) when C′ =
(∅, {x1}, {x2}, {x3}, {x4, x5}). The graph is
a directed path, representing a sequential
move of items among the clusters.

Figure 2: Given X = {x1, x2, x3, x4, x5}, let C = ({x1}, {x2}, {x3}, {x4}, {x5}) be a k-
clustering of X. For two choices of a different k-clustering C′ of X, Figures 2a and 2b give
the corresponding clustering-difference graphs which represent a cyclical and sequential
move of items.

when the move contains a transfer that is not reflected by an edge in the underlying CDG,
and lastly we say that a move sends an item x` from clustering i to clustering j if one of
its transfers is given by the edge (ci, cj) with label x`.

The clustering-difference graph and the associated cyclical and sequential moves play
important roles in the analysis of bounded-size and fixed-size partition polytopes. For the
fixed-size partition polytope, a CDG decomposes into directed cycles since all vertices in
the graph must have equal indegree and outdegree. Two vertices in the polytope then share
an edge if and only if the corresponding CDG consists of a single directed cycle. This
characterization has been used to construct edge walks between vertices of the polytope
using sequences of cyclical moves, resulting in upper bounds on the combinatorial diameter
[2].

Although the edges of the bounded-size partition polytope have a more complicated
characterization, its circuits analogously correspond to clustering-difference graphs consist-
ing of either a single directed cycle or a single directed path [12]. Hence, devising sequences
of cyclical and sequential moves for transforming C into C′ can be interpreted as construct-
ing a circuit walk between the corresponding vertices in the polytope. As we will show
in Sections 3 and 4, this allows us to bound the circuit distance between vertices and the
related circuit diameter of the bounded-size partition polytope.

Therefore, we are interested in constructing a transformation from C to C′ using as few
of these cyclical and sequential moves as possible. We call the minimum number of required
moves the transformation distance d(C, C′) from C to C′.

Definition 2.2 (Transformation Distance). For k-clusterings C, C′ of the same data set, the
transformation distance d(C, C′) is the minimum number of cyclical and sequential moves
needed to transform C into C′.

Hence, d(C, C′) is a relaxation of the circuit distance between the corresponding vertices
of the bounded-size partition polytope – as long as no cluster size constraints are violated
during a sequence of moves used to achieve d(C, C′), the two distances are equal.

A naive approach for bounding d(C, C′) is to decompose CDG(C, C′) into paths and
cycles and then simply apply the corresponding moves individually to perform the clustering
transformation. However, even when such a decomposition is optimal – i.e., uses as few
paths and cycles as possible – d(C, C′) can be significantly less than the number of parts in
the decomposition. For example, Figure 3a depicts a case in which CDG(C, C′) consists of

5

(a) The original clustering-difference graph CDG(C, C′).

(b) The first cyclical move, given by the blue edges.

(c) The resulting clustering-difference graph after the first cyclical move is ap-
plied (and hence, the second cyclical move in the double-move).

(d) A combined visualization of the double-move for transforming C into C′, with
the first move given by the blue edges and the second given by the red edges.

Figure 3: A case where CDG(C, C′) consists of four disjoint cycles. The above double-move
from [2] can be used to transform C into C′ in only two cyclical moves, implying d(C, C′) = 2.

four vertex-disjoint cycles, which trivially implies d(C, C′) ≤ 4. Nevertheless, due to the fact
that any permutation can be expressed as the product of two cyclic permutations [1], only
two cyclical moves are needed to transform C into C′, implying d(C, C′) = 2. For simplicity,
we will use the term disjoint in place of vertex-disjoint throughout the remainder of the
paper. Whenever two components of a CDG are not vertex-disjoint, we will say that they
intersect.

Proposition 2.3 ([1], Lemma 7 in [2]). Let C, C′ be k-clusterings for which CDG(C, C′)
decomposes into disjoint cycles. Then d(C, C′) ≤ 2.

In [2], Proposition 2.3 is used to integrate disjoint cyclical moves into what we will call a

6

double-move: a sequence of two moves which results in the desired changes to the underlying
clustering-difference graph. See Figure 3 for a visualization of this double-move. In a first
cyclical move of items, depicted in Figure 3b, the transfers corresponding to all but one
edge from each cycle are correctly applied – the items corresponding to the remaining edges
are temporarily sent to incorrect destinations across the cycles. However, a second cyclical
move, depicted in Figure 3c, can then be used to send each of these misplaced items to its
correct destination, completing the clustering transformation.

In the following lemmas and the upcoming Theorems 2.6 and 2.7, we show how similar
double-moves can be used to integrate both cyclical and sequential moves when transforming
general k-clusterings. This becomes more technically challenging due to the different natures
of the two types of moves – cyclical moves do not alter the sizes of any underlying cluster
while sequential moves alter the sizes of exactly two clusters by one. First, generalizing
Proposition 2.3, we show how to integrate sets of disjoint cycles and paths from a CDG.
Note that the bound on d(C, C′) in the following lemma depends only on the number of
paths in the decomposition and not on the number of cycles.

Lemma 2.4. Let C, C′ be k-clusterings for which CDG(C, C′) decomposes into disjoint
cycles and paths. Then d(C, C′) ≤ max{2, t}, where t is the number of paths in the decom-
position.

Proof. Let t denote the number of directed paths and s the number of directed cycles
in the decomposition of CDG(C, C′). When t = 0, the result follows from Proposition 2.3,
so we assume t ≥ 1. We also assume s ≥ 1, else the t sequential moves could simply be
applied individually.

First suppose t = 2. Let P1, P2 denote the paths of CDG(C, C′) and let Y1, ..., Ys denote
the cycles. For i = 1, ..., s, we select any edge ei := (ui, vi) from cycle Yi. In addition, let
p1 denote the tail of P1, p2 the tail of P2, and w the neighbor of p1 on P1. See Figure 4a.
We will apply a double-move consisting of two sequential moves to transform clustering C
into C′.

The first sequential move is constructed as follows: First, an edge is introduced from p1
to v1, sending to v1 the item from p1 intended for w. After traveling along this edge, the
move follows Y1 − e1 from v1 to u1. Next, if s > 1, it uses an introduced edge from u1 to
v2 whose label is that of e1, and then it travels along Y2 − e2 to u2. This is repeated for
i = 2, ..., s− 1 until us is reached. The move terminates by using an introduced edge from
us to p2 whose label is that of es, and then by traveling along path P2. See the blue edges
in Figure 4b for a visualization of this move.

Note that this first sequential move applies all transfers given by the cycles Y1, ..., Ys in
CDG(C, C′) with the exception of those corresponding to the edges ei – the item from ui
intended for vi is temporarily sent to the wrong cluster. The move also applies all transfers
given by P2 but does not correctly apply any transfer from P1. However, all misplaced items
can be corrected and all remaining transfers can be applied via a single, second sequential
move as seen in Figure 4c. This sequential move first sends from p2 to vs the item p2 received
from us. Next, for i = s, ..., 2, it sends from vi to vi−1 the item vi received from ui−1. Once
v1 is reached, it sends from v1 to w the item v1 received from p1. The move terminates
by following the remaining edges of P1. After this second sequential move is applied, the
transformation from C to C′ is complete – it follows that d(C, C′) = 2. See Figure 4d for a
visualization of these moves integrated together into a double-move

Next suppose t > 2. We can apply the double-move from the previous case to remove
all cycles and any two paths from CDG(C, C′). The remaining t − 2 paths can then be
applied via individual sequential moves. Hence, d(C, C′) ≤ t.

Lastly, suppose t = 1. Again let P1 denote the single path of CDG(C, C′), let p1 denote
the tail of P1, and let w denote the neighbor of p1 on P1. We choose an edge ei := (ui, vi)
from Yi for i = 1, ..., s and apply a sequential move followed by a cyclical move to transform
C into C′. See Figure 5 for a visualization of the double-move.

7

p1

w

p2u1v1 u2v2

(a) The original clustering-difference graph CDG(C, C′).

p1

w

p2u1v1 u2v2

(b) The first sequential move.

p1

w

p2u1v1 u2v2

(c) The resulting CDG after the first sequential move is applied. This directed
path corresponds to the second sequential move used to transform C into C′.

p1

w

p2u1v1 u2v2

(d) A combined visualization of the double-move for transforming C into C′, with
the first move given by the blue edges and the second given by the red edges.

Figure 4: A case where CDG(C, C′) consists of two paths and multiple cycles. Independent
of the number of cycles, only two sequential moves are needed to transform C into C′, so
d(C, C′) = 2.

As in the previous case, the sequential move first uses an introduced edge from p1 to
v1 and then travels along Y1 − e1 from v1 to u1. If s > 1, then for i = 1, ..., s − 1, it uses
an introduced edge from ui to vi and follows Yi − ei to ui until us is reached. The move
terminates by using an introduced edge from us to w, and then by following the remaining
edges of P1.

The second cyclical move corrects all items sent to incorrect destinations by the first
move. Namely, it first follows the edge from w to vs, sending to vs the item w received
from us. Next, for i = s, ..., 2, it follows the edges from vi to vi−1 until v1 is reached. The
move terminates by following the edge from v1 to w, sending w the item v1 received from
p1. This completes the transformation from C to C′, so d(C, C′) ≤ 2.

Therefore, in each case, d(C, C′) ≤ max{2, t}. �

8

p1

w

u1v1 u2v2

Figure 5: A visualization of the double-move for transforming C into C′ when CDG(C, C′)
consists of a single path and multiple cycles. The original CDG(C, C′) is given by the black
edges, the first sequential move is given by the blue edges, and the second cyclical move is
given by the red edges.

w1

wj
wt

u1

v2 u2 v3 u3

Figure 6: A visualization of the double-move for transforming C into C′ when CDG(C, C′)
consists of multiple disjoint cycles and a path intersecting a single cycle.

Even when paths and cycles are not completely disjoint, the corresponding moves may
still be integrated together into a double-move. In the following lemma, we show that if a
path intersects at most one cycle out of a collection of disjoint cycles, only two moves are
required to apply all corresponding transfers.

Lemma 2.5. Let C, C′ be k-clusterings for which CDG(C, C′) consists of s ≥ 1 disjoint
cycles and a single path P , which intersects at most one of the cycles. Then d(C, C′) ≤ 2.

Proof. Let Y1, ..., Ys denote the cycles of CDG(C, C′). If P does not intersect any of the
cycles, we can apply Lemma 2.4, so we assume P intersects Y1. We also assume s ≥ 2,
else the sequential and cyclical moves corresponding to P and Y1 could simply be applied
individually. Let w1, ..., wt denote (in order) the vertices of P . We select an edge ei :=
(ui, vi) from each cycle Yi, where e1 is chosen such that v1 is the first vertex wj of P that
also belongs to Y1. (Note that it is possible to have j = 1 or j = t, but both of those
cases are still covered by the following construction.) We will apply two sequential moves
to transform C into C′. See Figure 6 for a visualization of CGD(C, C′) along with the
double-move.

The first sequential move starts at w1 and follows P to wj = v1. It then follows the
path formed by joining Y1 − e1, ..., Ys − es with the introduced edges (u1, v2), ..., (us−1, vs),
terminating at us. Hence, the move reduces the size of the cluster corresponding to w1, as
desired, but it also increases the size of the cluster corresponding to us.

To correct this, we apply a second sequential move starting at us and terminating at
wt. The move first follows the edges (us, vs), (vs, vs−1), ..., (v2, v1) to correct items misplaced
across cycles. Next, since v1 = wj , it terminates by following P along the vertices wj , ..., wt.
Since P only intersects Y1, no vertices are repeated in this second sequential move and it
indeed corresponds to a single directed path. All transfers corresponding to the original
edges of CDG(C, C′) have then been correctly applied. �

9

c2

c1

c4

c3

(a) The clustering-difference graph
CDG(C, C′).

c2

c1

c4

c3

(b) The only double-move (apart from sym-
metry) that can be used to transform C into
C′.

Figure 7: A clustering-difference graph CDG(C, C′) for which the only way to transform C
into C′ in only two moves is to use the double-move from Lemma 2.5.

Note that in the double-move used for Lemma 2.5, the first sequential move temporarily
increases the size of the cluster corresponding to us. For general k-clusterings this is not an
issue, but for bounded-size k-clusterings this could potentially violate the upper bound on
the size of the cluster. Unfortunately, this increase in cluster size is unavoidable for certain
configurations of CDG(C, C′). Consider the example in Figure 7. If only two moves are to
be used to transform C into C′, c1 must correctly send an item to c2 in each move. Hence,
c1 may not temporarily receive an item from c3 or c4 in the first move, and the cluster
size corresponding to either c3 or c4 must be temporarily increased. Therefore, although
d(C, C′) = 2, the circuit distance between the corresponding vertices in a related bounded-
size partition polytope may be 3 if the cluster sizes corresponding to c3 and c4 are already
at their upper bounds. We further address this issue in Section 4.

When a path intersects multiple cycles from a set of disjoint cycles, integrating the
corresponding moves as in the double-move from Lemma 2.5 becomes more challenging since
we can no longer guarantee that the second part of the move corresponds to a single directed
path in the underlying CDG. See for example Figure 8, in which all four vertices have either
indegree or outdegree at least two. In such a scenario, each cluster must either correctly
send or correctly receive two items to perform the clustering transformation, implying that
no item can be temporarily sent to an incorrect destination during a double-move. Thus at
least three moves are required. However, we can ensure that transfers corresponding to at
least the first and last edges of the path are applied in conjunction with the disjoint cycles.
We show in the upcoming theorem that given any path P = w1...wt and a set Y of disjoint
cycles, a double-move can be used to correctly apply all transfers from Y while decreasing
the cluster size corresponding to w1 and increasing the cluster size corresponding to wt.
Furthermore, such a double-move will then allow us to completely integrate P with Y as
long as P does not intersect the cycles of Y more than three times.

Recall that in a clustering-difference graph CDG(C, C′), the outdegree of a vertex is
equal to the number of items which must be moved from the corresponding cluster to
perform the clustering transformation. Note that in order for the outdegree to be reduced,
a correct item must be sent from the cluster to a new destination; however, this destination
cluster need not actually be the other endpoint of the corresponding edge in CDG(C, C′).
On the other hand, the indegree of a vertex gives the number of items which must be
moved to the corresponding cluster. For the indegree to be reduced, a correct item must
be received by the vertex, but it does not matter which cluster actually sends the item.
We call the minimum of the indegree and outdegree of a vertex the shared degree of that
vertex in the CDG. Hence, applying a set of disjoint cyclical moves reduces the shared
degree of all covered vertices by one. When integrating a path with these cyclical moves,
this reduction in shared degree should still occur in order to make all desired improvements

10

c2

c1

c4

c3

(a) The clustering-difference graph
CDG(C, C′).

c2

c1

c4

c3

(b) A triple-move for transforming C into C′.

Figure 8: A clustering-difference graph CDG(C, C′) with a path intersecting multiple dis-
joint cycles such that three moves are required to perform the corresponding clustering
transformation.

to the underlying CDG. In the following theorem, we provide four different double-moves
to accomplish this task. The type of double-move to use depends on the intersection points
of the path with the cycles.

Theorem 2.6. Let C, C′ be k-clusterings of the same data set with clustering-difference
graph D := CDG(C, C′), let Y = Y1, ..., Ys be a set of disjoint cycles in D, and let P =
w1...wt be a path in D that is edge-disjoint from Y. There exists a double-move which
accomplishes all of the following:

1. Correctly applies all transfers from Y
2. Reduces the cluster size corresponding to w1 through sending a correct item
3. Increases the cluster size corresponding to wt through receiving a correct item
4. Decreases the shared degree of each vertex covered by Y by at least one.

Proof. If s = 1 or if P is disjoint from Y, we can apply Lemma 2.5, so we assume s ≥ 2.
Let wj1 denote the first vertex of P covered by Y, and let wj2 , wj3 denote, respectively, the
second-to-last and last vertex of P covered by Y. Note that we have wj1 = wj2 when P
intersects Y only twice. Similarly, if P intersects Y only once, we let wj1 = wj2 = wj3 . We
treat four exhaustive cases regarding the distribution of wj1 , wj2 , and wj3 across the cycles
of Y.

Case 1: wj1 and wj3 belong to different cycles of Y and wj2 belongs to the same cycle
as wj3 . We apply a cyclical move followed by a sequential move to perform all necessary
transfers in D. See Figure 9 for a visualization of the double-move.

Without loss of generality, we assume wj1 ∈ Y1 and wj2 , wj3 ∈ Ys. We choose an edge
ei := (ui, vi) from each cycle Yi, where e1 and es are chosen such that u1 = wj1 and vs = wj2 .
The cyclical move first introduces an edge from wj1 to wj2 = vs whose label is the item
sent from wj1 in P . (Note that we might have wj1 = wj2−1, in which case the edge already
exists in CDG(C, C′).) Next, the move follows Ys from vs to us. It then uses an introduced
edge from us to vs−1 whose label is that of es, and travels along Ys−1 − es−1 until us−1 is
reached. This is repeated for the remaining cycles via introduced edges (ui, vi−1) and by
traveling along Yi−1 − ei−1 until u1 = wj1 is reached, completing the cyclical move.

Next, the sequential move starts at w1, following P to wj1 = u1, and then follows the
edge (u1, v1). It then follows the edges (vi, vi+1) for i = 1, ..., s−1 until vs = wj2 is reached,
correcting items misplaced across the cycles. The move terminates by following P from wj2

to wj3 and then to wt.
We now prove that the desired changes have been made to the underlying CDG. Clearly

the cluster size corresponding to w1 is decreased and the cluster size corresponding to wt is
increased via the second sequential move. Furthermore, each item sent by w1 or received by

11

w1

wt

u1 = wj1

v1

wj3

u3

u2 v2

v3 = wj2

Figure 9: The double-move for Case 1 of Theorem 2.6. The cycles of Y are given by the solid
black edges, the first cyclical move is given by the blue edges, and the second sequential
move is given by the red edges. The dashed edges indicate the sections of P that exist
when w1 6= wj1 or wt 6= wj3 . Note that when wj2 6= wj3−1, the second sequential move will
include additional vertices of P between wj2 and wj3 which are not covered by Y.

w1 wt
wj1

u1

wj3v3

u2v2

wj2

Figure 10: The double-move for Case 2 of Theorem 2.6.

wt is correct. As in the double-move from Figure 3, all edges from Y are applied through
the combination of the two moves. Thus, it suffices to show that the shared degree of each
vertex covered by Y has been reduced by at least one. The only interesting cases are wj1 ,
wj2 , and wj3 . In the first cyclical move, wj1 both receives and sends a correct item, reducing
its shared degree by one. In the following sequential move, either wj1 only sends a correct
item (if wj1 = w1) or wj1 both sends and receives a correct item, so the net reduction in
shared degree of wj1 is at least one. Similarly, wj3 sends and receives a correct item in the
first move and then either receives a correct item or both receives and sends a correct item
in the second move.

Finally, consider wj2 . The vertex receives a possibly incorrect item from wj1 but also
sends a correct item to its neighbor on Ys via the first cyclical move, leaving its shared
degree, at worst, unchanged. In the second sequential move, wj2 receives a correct item
originating from us and then sends a correct item to the following vertex on P . Thus, the
shared degree of wj2 is also reduced by at least one, as desired.

Case 2: wj1 and wj3 belong to different cycles of Y and wj2 does not belong to the
same cycle as wj3 . (wj2 may or may not belong to the same cycle as wj1 , or we may
have wj1 = wj2 .) We apply a sequential move followed by a cyclical move to perform the
necessary transfers. See Figure 10 for a visualization of the double-move.

We assume without loss of generality that wj1 ∈ Y1 and wj3 ∈ Ys, and then choose an
edge ei := (ui, vi) from each Yi such that v1 = wj1 , us = wj3 , and vi 6= wj2 for i = 2, ..., s−1.
First, the sequential move travels along P from w1 to wj1 . Then for i = 1, ..., s−1, it travels
along Yi − ei and follows an introduced edge (ui, vi+1). The move terminates by following
Ys − es from vs to us = wj3 and then following P from wj3 to wt.

The cyclical move starts at wj3 = us by following the edge (us, vs). Then for i = s, ...2,
it follows the edges (vi, vi−1) until v1 = wj1 is reached, correcting items misplaced across

12

w1

wt

wj1

u1

wj3
u2v2 wj2

v3

Figure 11: The double-move for Case 3 of Theorem 2.6.

the cycles. Next, the move follows an introduced (or possibly existing) edge from wj1 to
wj2 whose label is the item sent from wj1 in P . It then terminates by following P from wj2

to wj3 . Note that this is indeed a single cyclical move since wj2 6= vi for i = 2, ..., s.
The first sequential move alters the cluster sizes corresponding to w1 and wt through

correct transfers as desired, and again the edges of Y are all applied through the combination
of the two moves. It suffices to show that the double-move reduces the shared degree of all
vertices covered by Y. However, this again follows from the argument used in the previous
case: although wj2 may receive an incorrect item from wj1 , it sends away two correct items
and its shared degree is reduced by at least one.

Case 3: wj1 and wj3 belong to the same cycle of Y but wj2 belongs to a different
cycle. We assume wj1 , wj3 ∈ Y1 and wj2 ∈ Ys, and we apply a cyclical move followed by a
sequential move to perform the necessary transfers. See Figure 11 for a visualization of the
double-move.

We choose an edge ei := (ui, vi) from each cycle Yi such that v1 = wj3 and us = wj2 .
The cyclical move first travels along Y1− e1 from v1 = wj3 to u1. Then for i = 1, ..., s−1, it
uses an introduced edge (ui, vi+1) and follows Yi+1−ei+1 to ui+1. Once us = wj2 is reached,
the move terminates by following P from wj2 to wj3 .

The sequential move starts by following P from w1 to wj1 . Next, it follows an introduced
(or possibly existing) edge from wj1 to wj2 = us whose label is the item sent from wj1 in
P , and then follows the edge (us, vs). Next, for i = s, ..., 2, it follows the edge (vi, vi−1) to
correct items misplaced among the cycles. Once v1 = wj3 is reached, the move terminates
by following P from wj3 to wt. All clusters are then changed as desired using the arguments
from Case 1.

Case 4: wj1 , wj2 , and wj3 belong to the same cycle in Y (allowing for either wj1 = wj2

or wj1 = wj2 = wj3). We apply two sequential moves similar to those of Lemma 2.5 to
perform all necessary transfers. See Figure 12 for a visualization of the double-move.

We assume without loss of generality that wj1 , wj2 , wj3 ∈ Y1, and we choose an edge
ei := (ui, vi) from each cycle Yi, where e1 is chosen such that v1 = wj1 . The first sequential
move starts by following P from w1 to wj1 = v1 and then travels along Y1 − e1 to u1.
Then for i = 1, ..., s − 1, it uses an introduced edge (ui, vi+1) and travels along Yi − ei. It
terminates once us is reached.

The second sequential move begins at us by following the edge es. Then for i = s, ..., 2, it
travels along the edge (vi, vi−1) to correct items misplaced among the cycles. Once v1 = wj1

is reached, the move follows an introduced (or possibly existing) edge from wj1 to wj2 whose
label is the item sent from wj1 in P . It then terminates by following P from wj2 to wj3

and then to wt. All clusters are then changed as desired by again using the arguments from
Case 1. �

13

w1

wj1

wt

u1

v2 u2 v3 u3

wj3

wj2

Figure 12: The double-move for Case 4 of Theorem 2.6.

In the proof of Theorem 2.6, we observe an important implication: if a path intersects
a set of disjoint cycles at most three times, then all transfers corresponding to the cycles
and the path can be correctly applied using one of the double-moves from the theorem.

Theorem 2.7. Let C, C′ be k-clusterings where CDG(C, C′) consists of a set Y of disjoint
cycles and a path P . If P intersects Y at most three times, then d(C, C′) = 2.

Proof. Let P = w1...wt. As in the proof of Theorem 2.6, consider wj1 , wj2 , and wj3 :
the first, second-to-last, and last vertices of P which are covered by Y. If these are the
only vertices of P covered by Y, then all edges of P can be applied in any of the four
double-moves from Theorem 2.6. To see this, note that since no vertices on P between
wj1 and wj2 are covered by Y, we can follow all corresponding edges of P when sending
an item from wj1 to wj2 . As in the proof of the theorem, the same holds for all edges
between wj2 and wj3 . Hence, all transfers corresponding to the edges from both Y and P
are correctly applied through the appropriate double-move, implying d(C, C′) ≤ 2. Note
that since CDG(C, C′) either contains disjoint components or vertices with shared degree
greater than one, d(C, C′) > 1. Therefore, d(C, C′) = 2. �

Of course, since the number of times a path P intersects a set Y of cycles is at most the
number of vertices in P , this implies that a path with at most three vertices can always be
integrated with Y using one of the double-moves from Theorem 2.6.

Corollary 2.8. Let C, C′ be k-clusterings where CDG(C, C′) consists of a set Y of disjoint
cycles and a path P with at most three vertices. Then d(C, C′) = 2.

3. Bounds on the Transformation Distance. In this section, we use the double-moves
from Section 2 to prove upper bounds on the transformation distance between clusterings
based on certain properties of the related CDG.

Given any two k-clusterings C, C′ with clustering-difference graph D := CDG(C, C′),
our goal is to transform C into C′ using as few cyclical and sequential moves as possible.
Recall the fundamental difference between these two types of moves: cyclical moves transfer
items among the clusters while preserving the original cluster sizes; on the other hand,
sequential moves transfer items while increasing the size of one cluster and decreasing the
size of another. This motivates a decomposition of D into two parts corresponding to these
different types of moves.

Definition 3.1 (Path-Cycle Decomposition). Let C, C′ be k-clusterings of the same data
set with clustering-difference graph D := CDG(C, C′). For i = 1, ..., k, let δi denote
|(|Ci| − |C ′i|)|, the change in the size of cluster Ci between C and C′. A path-cycle de-
composition (DP , DY) of D is a decomposition of D into two parts: a set DP containing
1
2

∑k
i=1 δi directed paths and a graph DY which decomposes into directed cycles.

For any path-cycle decomposition (DP , DY) of D, the paths of DP adjust the cluster
sizes of C to those of C′ and the edges of DY apply any remaining transfers. Such a
decomposition can be found easily: one greedily constructs directed paths in D which begin

14

at excess vertices, those vertices ci with outdegree greater than indegree (i.e., d+(ci) >
d−(ci)), and which terminate at deficit vertices, those satisfying d−(ci) > d+(ci). These
paths are added to DP . Once there do not exist any excess or deficit vertices in D, the
remaining edges in the graph form DY . Alternatively, one can greedily remove directed
cycles from D to build DY and the leftover edges will decompose into DP . Note that we
can store DP either as a set of directed paths or as a graph which decomposes into paths.
Nevertheless, the fixed number of paths from excess to deficit vertices in DP gives a lower
bound on the transformation distance between the clusterings.

Lemma 3.2. Let C, C′ be k-clusterings of the same data set. Then d(C, C′) ≥ 1
2

∑k
i=1 δi,

where δi = |(|Ci| − |C ′i|)|.
Proof. By definition, δi is the change in cluster size needed to transform Ci into C ′i.

Note that the sum
∑k

i=1 δi is therefore even. Cyclical moves do not change the size of any
clusters while sequential moves change the size of exactly two clusters by one. Hence, at
least 1

2

∑k
i=1 δi sequential moves are required in order to change the cluster sizes of C to

those of C′. �

Given a path-cycle decomposition (DP , DY) of D, a straightforward approach for trans-
forming C into C′ is to separately apply the paths of DP followed by the cycles of DY .
However, whereas a fixed number of sequential moves is required to apply all paths of DP ,
the number of cyclical moves required to apply all transfers in DY is generally less than its
number of cycles. Using the double-move from Figure 3, we can integrate sets of disjoint
cycles from DY to achieve a transformation distance bound which generalizes Corollary 7
in [2]. This serves as a starting point for our discussion on an improved upper bound for
d(C, C′). Recall that the shared degree ηi of a vertex ci in D is the minimum of its indegree
and outdegree.

Lemma 3.3. Let C, C′ be k-clusterings of the same data set. Then

d(C, C′) ≤ ηi1 + ηi2 +
1

2

k∑
i=1

δi,

where δi = |(|Ci| − |C ′i|)|, ηi is the shared degree of ci in CDG(C, C′), i1 = arg max ηi, and
i2 = arg maxi 6=i1 ηi.

Proof. Let (DP , DY) be any path-cycle decomposition of D := CDG(C, C′). Applying
the 1

2

∑k
i=1 δi sequential moves given by the paths of DP correctly adjusts all cluster sizes.

Next, we can use the method of Corollary 7 from [2] to apply the cycles in DY . To do
so, note that for i = 1, ..., k, the shared degree of ci in DY is at most ηi. Hence, we may first
apply at most ηi1 − ηi2 cyclical moves to reduce the maximum shared degree in DY to at
most ηi2 . Next, using the technique in Corollary 3 from [2], we can solve a maximum flow
problem to obtain a set of disjoint cycles in DY covering all vertices of maximum shared
degree. All transfers from this cycle cover can be applied via at most two cyclical moves
using the double-move from Figure 3. Repeating until the maximum shared degree of DY

is zero, all transfers from DY are performed in at most (ηi1 − ηi2) + 2ηi2 = ηi1 + ηi2 cyclical
moves. Therefore, at most ηi1 + ηi2 + 1

2

∑k
i=1 δi cyclical and sequential moves are required

to transform C into C′. �

This initial upper bound on d(C, C′) uses the double-move for integrating disjoint cyclical
moves from Figure 3 but does not yet take advantage of any of the double-moves from
Section 2 which integrate both cyclical and sequential moves. For instance, when applying
the cyclical moves from a disjoint cycle cover Y of all vertices of maximum shared degree
in DY , we could attempt to integrate a path P from DP . If P is disjoint from Y, if P
intersects at most one cycle of Y, or if P intersects Y at most three times, we could use
one of the double-moves from Lemma 2.4, Lemma 2.5, or Theorem 2.7 to integrate P at

15

w1 w2 wt−1 wt

x2 xt

x2

(a) The first case for P ′ and eP .

w1 w2 wt−1 wt

x2
xt

xt

(b) The second case for P ′ and eP .

Figure 13: The sequential move P = w1...wt, given by the black edges, is equivalent to one
of two combinations of a short sequential move with a cyclical move. In the first case, the
path P ′ := w1wt−1wt, given by the blue edges, is applied first. Next, the cycle PY , given
by the green edges, is applied and sends x2 to the correct destination w2 via the introduced
edge eP := (wt−1, w2). In the second case, the cycle PY is applied first, sending xt from
wt−1 to w2 via eP . Then the path P ′ := w1w2wt, given by the red edges, is applied and xt
is correctly sent from w2 to wt. In both cases, all transfers corresponding to the original
path P are performed correctly via the path P ′ and the cycle PY .

no extra cost, reducing the number of remaining sequential moves. However, we cannot
guarantee that such a path P exists in DP .

Nevertheless, we can achieve an improved bound on the transformation distance by
considering each path in DP as the combination of a (short) sequential move with a cyclical
move. To motivate this, suppose CDG(C, C′) consists of a set Y of disjoint cycles and a path
P = w1...wt with t ≥ 4, where w1, wt−1, and wt are all covered by Y. We can apply one of
the four double-moves from Theorem 2.6 to perform all transfers corresponding to the edges
in Y while decreasing the excess of w1 and the deficit of wt. However, the double-move does
not apply any edges of P between w2 and wt−1. Additionally, wt−1 receives an incorrect
item from w1 during the double-move which still needs to be sent to w2. Hence, a new
edge from wt−1 to w2 is introduced and the resulting CDG consists of the directed cycle
w2...wt−1w2.

In this manner, we can represent the sequential move corresponding to any path P =
w1...wt in DP covering t ≥ 4 vertices as the combination of such a cycle PY = w2...wt−1w2

and a path P ′ with three vertices. As depicted in Figure 13, there are two cases to consider
regarding the interior vertex of P ′ and the item sent along the artificially introduced edge
eP := (wt−1, w2) in PY . These cases depend on the order in which the corresponding
transfers are applied. Let x2 denote the item to be sent from w1 to w2 in P , and let
xt denote the item to be sent from wt−1 to wt. If P ′ is applied first (as in the previous
paragraph), let P ′ := w1wt−1wt and let eP send x2 from wt−1 to the correct destination w2.
This case is depicted in Figure 13a. On the other hand, if eP is applied before P ′, let eP
send xt from wt−1 to w2 and let P ′ := w1w2wt as depicted in Figure 13b. Either case has
the same effect on the underlying clusters as the original path P .

Therefore, we decompose each path P from DP with more than three vertices in this
manner, adding the resulting cycle PY to DY and replacing P with P ′ in DP . All paths
in DP then have at most three vertices and Corollary 2.8 implies that we can completely
integrate any of these paths with a disjoint cycle cover from DY in only two moves. Note
also that each vertex in a cycle PY is an interior vertex of the original path P . Hence, even
after introducing these additional cycles to DY , the shared degree of each vertex in DY

remains at most the shared degree of that vertex in the original clustering-difference graph.
This allows us to improve upon the distance bound given in Lemma 3.3.

The challenge in this approach lies in the fact that the interior vertex of P ′ (either wt−1
or w2) and the label of eP (either x2 or xt) depend on the order in which the corresponding
transfers are applied. If a cycle cover Y does not include eP , then integrating P ′ with
Y is straightforward – one simply chooses the correct interior vertex for P ′ depending on

16

whether or not eP has been applied yet. Once P ′ is applied, then if eP remains in DY , its
label is changed from xt to x2.

However, if eP is contained in Y, then we must make adjustments to the double-moves
from Theorem 2.6 in order to take into account the different possible cases for eP and P ′.
Nevertheless, this approach allows us to integrate sequential moves from DP with disjoint
cyclical moves from DY at no extra cost, resulting in the following greatly improved distance
bound. The bound depends only on the larger of the second-largest shared degree and the
overall change in cluster sizes rather than on the sum of these values as in Lemma 3.3.

Theorem 3.4. Let C, C′ be k-clusterings of the same data set. Then

d(C, C′) ≤ ηi1 + max

{
ηi2 ,

1

2

k∑
i=1

δi

}
,

where δi = |(|Ci| − |C ′i|)|, ηi is the shared degree of ci in CDG(C, C′), i1 = arg max ηi, and
i2 = arg maxi 6=i1 ηi.

Proof. Let (DP , DY) be any path-cycle decomposition of D := CDG(C, C′). For each
path P = w1...wt of the 1

2

∑k
i=1 δi paths in DP , if t ≥ 4, we decompose P into a cycle PY

and a short path P ′ as depicted in the cases of Figure 13. Specifically, let P ′ := w1wt−1wt

where the label of edge (w1, wt−1) is the item x2 to be sent from w1 to w2 in P , as depicted
by the blue edges in Figure 13a. Then P is replaced with P ′ in DP . In addition, the cycle
PY = w2...wt−1w2 is introduced to DY , where the label of the artificial edge eP := (wt−1, w2)
in PY is the item xt to be sent from wt−1 to wt in P , as depicted by the green edges in
Figure 13b. Note that each vertex in PY is an interior vertex of the original path P ; hence,
in the resulting cycle graph DY , the shared degree of each vertex ci remains at most ηi.

As in the proof of Lemma 3.3, we first apply at most ηi1 − ηi2 cyclical moves to reduce
the maximum shared degree in DY to at most ηi2 . Whenever an artificial edge eP is applied
in such a move, we change the interior vertex of the corresponding path P ′ in DP so that
P ′ = w1w2wt as in Figure 13b.

Now, again as in the proof of Lemma 3.3, we can reduce the maximum shared degree in
DY by finding a disjoint cycle cover for the vertices of maximum shared degree and applying
a double-move. However, in each such double-move, we will also integrate a path from DP .

Let Y be such a set of disjoint cycles in DY , which can be found using the technique
from [2]. We choose any path from DP . Since each path in DP has at most three vertices,
if the selected path is an original path from CDG(C, C′), integrating the path with Y in a
double-move is straightforward via Corollary 2.8. Again, if an artificial edge eP is applied
through this double-move and the corresponding path P ′ remains in DP , we switch the
interior vertex of P ′ from wt−1 to w2 as in Figure 13b.

Hence, we assume the selected path from DP is an introduced path of the form P ′ with
corresponding artificial edge eP . If eP is not contained in the cycle cover Y, integrating P ′

with Y is again straightforward via Corollary 2.8: the interior vertex of P ′ is known and
we can simply apply one of the double-moves from Theorem 2.6. After the double-move
is applied, we make any necessary adjustments to the remaining paths in DP as in the
previous paragraph. Additionally, if eP remains in DY , we change its label from xt to x2
as in Figure 13a.

However, if the edge eP corresponding to P ′ is contained in Y, then we must make
modifications to the double-moves of Theorem 2.6 to account for the two different cases for
eP and P ′. Note that if this situation arises, eP has not yet been applied so P ′ has the initial
form P ′ = w1wt−1wt. We modify each of the four cases regarding the intersection points of
P ′ with Y from Theorem 2.6 to perform the necessary transfers. Since eP is included in Y,
both wt−1 and w2 are necessarily covered by Y, but w1 and wt need not be covered. Several
of the case modifications depend on whether or not these two vertices are actually covered
by the cycles.

17

w1

wt

wt−1 w2

(a) Original double-move from Case 1 of Theorem 2.6.

x2

xt

w1

wt

wt−1 w2

(b) A modified double-move for Case 1.

Figure 14: The original and modified double-move for Case 1.

Case 1: All three vertices of P ′ = w1wt−1wt are covered by Y, where w1 and wt belong
to different cycles of Y and wt−1 (and hence, also eP and w2) belongs to the same cycle as
wt. See the examples in Figure 14 – the artificial edge eP is given by the green edge from
wt−1 to w2 and the other edges of Y are given in black. Note that we cannot simply apply
the double-move from Case 1 in Theorem 2.6 as depicted for this scenario in Figure 14a
(compare to Figure 9). In the first cyclical move, the edge eP would be applied, sending
the item xt from wt−1 to w2. Hence, wt−1 would then be unable to send xt to wt in the
second sequential move.

We can address this by making a slight modification to this first cyclical move: instead
of sending x2 from w1 to wt−1 and then following eP , the move simply sends x2 directly
from w1 to w2. Then xt remains at wt−1, and in the second sequential move, xt is correctly
sent from wt−1 to wt as seen in Figure 14b.

Note that in this modified double-move, the artificial edge eP from wt−1 to w2 is never
actually applied. However, its intended purpose is accomplished: item x2 is correctly re-
ceived by w2 from w1, and xt is correctly sent from wt−1 to wt. Therefore, after the
double-move is applied, we can remove P ′ from DP and eP along with the other edges of
Y from DY , as desired.

Case 2: Of the vertices of P ′ = w1wt−1wt which are covered by Y, the first and last
belong to different cycles, and the second-to-last vertex covered by Y belongs to a different
cycle than the last. There are three double-moves based on the double-move from Case 2
of Theorem 2.6 which can be used depending on whether or not w1, wt, or both w1 and wt

are covered by Y. Depictions of these moves are given in Figure 15.
a) Vertices w1 and wt are both covered by Y. In this situation, for Case 2 to apply,

w1 and wt must belong to different cycles of Y and wt−1 must not belong to the
same cycle as wt. See Figure 15a. Then when performing the double-move from
Case 2 of Theorem 2.6 as depicted in Figure 10, the edge eP is applied in the first
sequential move before any of the edges from P ′, sending xt from wt−1 to w2. Hence,
if we switch the interior vertex of P ′ from wt−1 to w2, we can apply this original

18

xt xt

x2

w1 wt

w2wt−1

(a) A double-move for Case 2 when both w1 and wt are covered by Y.

x2 xt

w1
wt−1w2 wt

(b) A double-move for Case 2 when w1 is not covered by Y.

wt
w1 wt−1w2

x2
xt

(c) A double-move for Case 2 when wt is not covered by Y.

Figure 15: Modified double-moves for Case 2.

double-move without any further modifications, as depicted in Figure 15a.
b) Vertex w1 is not covered by Y. Then for Case 2 to apply, wt−1 and wt must belong

to different cycles of Y. See Figure 15b. As in Case 1, we cannot apply the original
double-move since then wt−1 would be unable to send xt to wt in the second move.
We can address this in the same way as in the modified double-move from Case
1: the first sequential move sends x2 directly from w1 to w2, and then the second
cyclical move sends xt directly from wt−1 to wt, as depicted in Figure 15b. Although
eP is never actually applied, all desired transfers are accomplished as in Case 1.

c) Vertex wt is not covered by Y. Then for Case 2 to apply, w1 and wt−1 must belong
to different cycles of Y. See Figure 15c. We make a similar modification to that of
the previous case: the first sequential move correctly sends xt directly from wt−1 to
wt, and then the second cyclical move correctly sends x2 directly from w1 to w2, as
depicted in Figure 15c.

Case 3: Of the vertices of P = w1wt−1wt which are covered by Y, the first and last
belong to the same cycle in Y, while the second-to-last vertex belongs to a different cycle.
The only scenario in which this case applies is when w1 and wt belong to the same cycle
of Y and wt−1 belongs to a different cycle. We make a modification similar to the third
double-move from the previous case. The first cyclical move sends xt directly from wt−1 to
wt, and the second sequential move sends x2 directly from w1 to w2. See Figure 16.

Case 4: All vertices of P ′ = w1wt−1wt which are covered by Y belong to the same
cycle. There are two double-moves, depicted in Figure 17, which can be used depending on
whether or not w1 is covered by Y.

19

x2

xt

w1

wt
w2 wt−1

Figure 16: A modified double-move for Case 3.

w1

wt

w2

wt−1

xt x2

xt

(a) A double-move for Case 4 when w1 is covered by Y.

x2

xt

w1

wt−1

w2

wt

(b) A double-move for Case 4 when w1 is not covered by Y.

Figure 17: Modified double-moves for Case 4.

a) Vertex w1 is covered by Y. As in the first double-move for Case 2, in the original
double-move for Case 4 of Theorem 2.6 the edge eP is applied before any of the
edges from P ′. Hence, if we switch the interior vertex of P ′ from wt−1 to w2, we can
apply the double-move without any further modifications, as depicted in Figure 17a.
Note that wt may or may not be covered by the cycle containing w1 and eP .

b) Vertex w1 is not covered by Y. We make a modification similar to that of the second
double-move for Case 2: the first sequential move directly sends x2 from w1 to w2,
and the second sequential move directly sends xt from wt−1 to wt. See Figure 17b.
Note again that wt may or may not be covered by the cycle containing eP .

In each case, we are able to integrate P ′ with Y and apply all necessary transfers in only
two moves. Therefore, at most ηi2 double-moves are needed to reduce the shared degree of
DY to zero, and through each of these double-moves, we remove one of the 1

2

∑k
i=1 δi paths

from DP . Afterwards, we may simply apply the remaining paths in DP , if any, individually.
The total number of moves used to transform C into C′ is thus at most

(ηi1 − ηi2) + 2ηi2 + max

{
1

2

k∑
i=1

δi − ηi2 , 0

}
= ηi1 + max

{
ηi2 ,

1

2

k∑
i=1

δi

}
.

�

4. Circuit Diameter of Partition Polytopes. A fundamental open question in linear
programming is whether or not there exists a polynomial pivot rule for the simplex method.
The existence of such a pivot rule would require that the polynomial Hirsch conjecture [20]

20

holds; i.e., that the combinatorial diameter of a polyhedron can be polynomially bounded.
A recent effort to better understand the combinatorial diameter of polyhedra has been the
study of the related circuit diameter [6, 8, 10, 19]. Whereas the original Hirsch conjecture
is false in general [21, 26], the related Circuit Diameter Conjecture [6] remains open.

Recall that the circuits of the bounded-size partition polytope BPP correspond to
cyclical and sequential moves of items among clusters. Therefore, as long as no cluster
size constraints are violated during a clustering transformation, any resulting bounds on
the transformation distance between clusterings have implications on the circuit distance
between vertices in BPP . As a 0/1-polytope, the combinatorial diameter (and hence,
also the circuit diameter) of BPP satisfies the Hirsch conjecture [24] – specifically, the
combinatorial diameter is at most the number of items n. In this section, we will use the
results from Section 3 to achieve much better upper bounds on the circuit diameter.

For the fixed-size partition polytope, Proposition 2.3 can be used to show that the
combinatorial diameter is at most κ1 + κ2, where κ1, κ2 are the two largest fixed cluster
sizes [2]. We begin by generalizing this bound to the circuit diameter of the bounded-
size partition polytope by also taking into account the largest possible change in cluster
sizes. Although we do not yet utilize any double-moves which integrate sequential and
cyclical moves (see the upcoming Theorem 4.2), the bound of the following lemma is already
better than the naive bound achieved by simply counting the sequential and cyclical moves
separately – we can relate the shared degree of a vertex in a CDG to the change in size of
the corresponding cluster.

Lemma 4.1. For a bounded-size partition polytope BPP (κ+, κ−), assume the correspond-
ing clusters are indexed so that κ+1 ≥ · · · ≥ κ+k and let i1, i2 denote the two indices mini-
mizing κ+i − κ

−
i . Then the circuit diameter of BPP (κ+, κ−) is at most

κ+1 + κ+2 +
1

2

k∑
i 6=i1,i2

(κ+i − κ
−
i).

Proof. Let C, C′ be k-clusterings corresponding to vertices y, y′ of BPP (κ+, κ−). We
can transform C into C′ by separately applying sequential moves followed by cyclical double-
moves in the manner of Lemma 3.3. All intermediate clusterings in this transformation
satisfy the cluster size bounds of BPP (κ+, κ−), so the process indeed corresponds to a
circuit walk from y to y′ in BPP (κ+, κ−).

Let ηi denote the shared degree of vertex ci in CDG(C,C ′), and let δi := |(|Ci| − |C ′i|)|.
Lemma 3.3 then implies that the circuit distance from y to y′ in BPP (κ+, κ−) is at most

ηj1 + ηj2 +
1

2

k∑
i=1

δi,(4.1)

where j1, j2 maximize ηi over all i = 1, ..., k. Trivially, for i = 1, ...k, it holds that ηi ≤ κ+i
and δi ≤ κ+i − κ

−
i . Hence, we obtain the following upper bound on the circuit diameter of

BPP (κ+, κ−) as a natural implication of Lemma 3.3:

κ+j1 + κ+j2 +
1

2

k∑
i=1

(κ+i − κ
−
i).

Note however that this bound can be immediately improved. For i = 1, ..., k, we must
have ηi + δi ≤ κ+i since ηi + δi is equal to the maximum of the indegree and outdegree of ci.
Rearranging this inequality yields ηi + 1

2δi ≤ κ+i −
1
2δi. Substituting into (4.1), we obtain

21

the following upper bound on the circuit distance from y to y′:

ηj1 + ηj2 +
1

2

k∑
i=1

δi =
∑

i=j1,j2

(
ηi +

1

2
δi

)
+

1

2

k∑
i 6=j1,j2

δi

≤
∑

i=j1,j2

(
κ+i −

1

2
δi

)
+

1

2

k∑
i 6=j1,j2

δi.

Note that
∑

i=j1,j2

(
κ+i −

1
2δi
)
≤ κ+j1 +κ+j2 ≤ κ

+
1 +κ+2 . Similarly, it holds that 1

2

∑k
i 6=j1,j2

δi ≤
1
2

∑k
i 6=j1,j2

(κ+i − κ
−
i) ≤ 1

2

∑k
i 6=i1,i2

(κ+i − κ
−
i). Thus, we obtain the stated bound. �

As in Theorem 3.4, we can significantly improve upon this diameter bound by using the
double-moves from Theorem 2.6 to integrate sequential moves with sets of disjoint cyclical
moves. Note that we must take care when applying these double-moves to bounded-size
clusterings – certain moves require the existence of a vertex whose cluster size can be
temporarily increased as demonstrated in Figure 7. Nevertheless, under a mild assumption
on the slack in the cluster size constraints, we can ensure the existence of such a vertex
through a simple pre-processing of the clusters. This assumption takes the form

∑k
i=1 κ

+
i >

n + k − 2, i.e., the sum of upper cluster size bounds exceeds the number n of items in the
data set by at least k−1. Since in most clustering applications, the number of items is much
larger than the number of clusters (n� k), we see this assumption as quite natural and not
particularly restrictive. For example, it is satisfied as long as there is at least some slack
in the size constraints for all but at most one cluster. A counterexample to this condition
would, in particular, require that there are always at least two clusters whose sizes are at
their upper bounds regardless of how the items are distributed.

Hence, we obtain the following improved diameter bound as an implication of the trans-
formation distance bound from Theorem 3.4, which depends on the maximum of the second-
largest cluster size and the largest possible change in cluster sizes.

Theorem 4.2. For a bounded-size partition polytope BPP (κ+, κ−), assume the corre-
sponding clusters are indexed so that κ+1 ≥ · · · ≥ κ

+
k and let i1 denote the index minimizing

κ+i − κ−i . If
∑k

i=1 κ
+
i > n + k − 2 and if κ+i > κ−i for i 6= i1, the circuit diameter of

BPP (κ+, κ−) is at most

κ+1 + max

κ+2 , 1

2

k∑
i 6=i1

(κ+i − κ
−
i)

+ 2(k − 2).

Proof. Let C, C′ be k-clusterings corresponding to vertices y, y′ of BPP (κ+, κ−). We can
transform C into C′ in the manner of Theorem 3.4. However, in order for all intermediate
clusterings to satisfy the bounds of BPP (κ+, κ−), we must make sure that when applying
any version of the double-move from Case 4 of Theorem 2.6, there exists a suitable choice
for us whose corresponding cluster size is strictly less than its upper bound and can be
temporarily increased.

To ensure that this is always the case, we pre-process C and C′ in the following manner.
If there exists more than one cluster Ci (or C ′i in the case of C′) such that |Ci| = κ+i , we
choose such an index j with |Cj | = κ+j > κ−j , which is possible since at most one index

i satisfies κ+i = κ−i . We then transfer any item from Cj to a different cluster C` which
satisfies |C`| < κ+` − 1. Such an index ` must exist, else it would hold that

k∑
i=1

|Ci| ≥ 2 +

k∑
i=1

(κ+i − 1) > 2 + (n+ k − 2)− k = n.

This process is repeated at most k− 2 times until the sizes of all clusters are less than their
upper bounds – with the exception of at most one cluster.

22

After pre-processing both C and C′ in this manner, let C denote the clustering obtained
after processing C, let C′ denote the corresponding clustering for C′, let j1 denote the index
whose cluster size is potentially at its upper bound in C, and let j2 denote the corresponding
index for C′. We now transform C into C′ via the procedure in the proof of Theorem 3.4;
however, if j1 6= j2, we choose the first double-move that integrates a path P ′ from the
path-cycle decomposition of CDG(C, C′) (in other words, the first double-move that alters
any cluster sizes) such that the head of P ′ is cj1 . This double-move then reduces the
size of cluster j1, and the only cluster whose size is potentially at its upper bound at any
point throughout the remainder of the procedure is cluster j2. This is due to the fact that
although a cluster’s size may change throughout the application of the double-moves, it
remains between its size in C and its size in C′.

Therefore, when transforming C to C′, it will always possible to choose us in Case 4 of
Theorem 2.6 such that the corresponding cluster size can be temporarily increased when
performing the double-move. To see this, note that the cycle from which us is chosen
covers at least two vertices, and at least one of these vertices must have a corresponding
cluster size less than its upper bound. This holds since in the first double-move which alters
cluster sizes as discussed above, cj1 must not be contained in the cycle, and in the remaining
double-moves, only the size of cluster j2 could possibly be at its upper bound. Lastly, note
that the choice of the vertex us is unaffected by the modifications in Case 4 of Theorem 3.4.

By Theorem 3.4, the total number of moves needed to transform C into C′ is at most

ηj1 + max

{
ηj2 ,

1

2

k∑
i=1

δi

}
,

where j1, j2 denote the two indices maximizing the shared degree ηi in CDG(C, C′). As in
the proof of Lemma 4.1, since ηj1 + 1

2δj1 ≤ κ
+
j1
− 1

2δj1 , this bound is at most

max

ηj1 + ηj2 ,

(
ηj1 +

1

2
δj1

)
+

1

2

k∑
i 6=j1

δi

 ≤ max

ηj1 + ηj2 ,

(
κ+j1 −

1

2
δj1

)
+

1

2

k∑
i 6=j1

δi


≤ max

κ+j1 + κ+j2 , κ
+
j1

+
1

2

k∑
i 6=j1

(κ+i − κ
−
i)


≤ κ+1 + max

κ+2 , 1

2

k∑
i 6=i1

(κ+i − κ
−
i)

 .

Since all intermediate clusterings in this transformation satisfy the cluster size constraints
of BPP (κ+, κ−), the transformation indeed corresponds to a circuit walk in BPP (κ+, κ−).
Taking into account the at most 2(k−2) additional circuit steps needed for the pre-processing
of C and C′, we obtain the stated improved bound. �

5. Conclusions and Future Directions. In this work, we provide methods based on
linear programming and network theory for transforming k-clusterings using sequences of
cyclical and sequential moves of items among clusters. This leads to upper bounds on the
transformation distance between two general k-clusterings as well as the circuit diameter of
the bounded-size partition polytope. There are several natural directions for future research
in this area.

First, we note that although we can bound the transformation distance between clus-
terings based on properties of their CDG, computing the exact transformation distance
appears to be quite challenging. A first step toward better understanding this open prob-
lem would be to determine its computational complexity.

Next, we prove in Theorem 4.2 an upper bound on the circuit diameter of the bounded-
size partition polytope using the transformation distance bound from Theorem 3.4 and

23

modified double-moves from Theorem 2.6 which integrate sequential moves of items with
cyclical moves. A subsequent research question is whether or not we can also bound the
combinatorial diameter of the polytope in such a manner. The edges of BPP have a more
technical characterization than its circuits – only certain cyclical and sequential moves ac-
tually correspond to edges between vertices [12]. However, through a careful ordering of
cyclical and sequential moves and double-moves, we believe new bounds on the combinato-
rial distance between vertices in the polytope could be achievable.

Additionally, in Theorem 3.4, we use an arbitrary path-cycle decomposition (DP , DY)
of the clustering-difference graph D := CDG(C, C′) to bound the transformation distance
between the clusterings. It is possible to instead construct a decomposition exhibiting
potentially useful properties. For instance, solving a minimum-cost circulation problem
over D yields a decomposition in which DY has a maximum number of edges. Modifying
this circulation problem can yield a decomposition in which the maximum shared degree
in DP is minimized. Through further analysis, these extremal choices for the path-cycle
decomposition might lead to better upper bounds on the transformation distance.

Finally, we note that the transformation distance d(C, C′) is formally a metric. Hence,
if we are able to compute d(C, C′), we can interpret it as a measure of the distance be-
tween given k-clusterings of the same data set. There is significant interest in comparing
clusterings in the literature [15, 23]. However, most measures typically do not take into
account the potential labels of the clusters and are instead based on pairwise relationships
among the items. Our new metric takes a fundamentally different approach to measuring
the difference between clusterings, motivating a comparative study.

Acknowledgements. Borgwardt gratefully acknowledges support of this work through
NSF award 2006183 Circuit Walks in Optimization, Algorithmic Foundations, CCF, Divi-
sion of Computing and Communication Foundations, and through Simons Collaboration
Grant 524210 Polyhedral Theory in Data Analytics before.

REFERENCES

[1] M. Balinski and A. Russakoff, On the assignment polytope, SIAM Review, 16 (1974), pp. 516–525.
[2] S. Borgwardt, On the diameter of partition polytopes and vertex-disjoint cycle cover, Mathematical

Programming, Ser. A, 141 (2013), pp. 1–20.
[3] S. Borgwardt, A. Brieden, and P. Gritzmann, Mathematics in agriculture and forestry: Geomet-

ric clustering for land consolidation, IFORMS news, Dec. issue (2013).
[4] S. Borgwardt, A. Brieden, and P. Gritzmann, Geometric clustering for the consolidation of

farmland and woodland, The Mathematical Intelligencer, 36 (2014), pp. 37–44.
[5] S. Borgwardt, A. Brieden, and P. Gritzmann, Geometrisches Clustering: Mathematik für die

Flurverbesserung (Geometric clustering: Mathematics for land improvement), Mitteilungen der
DMV, 23 (2015), pp. 82–90.

[6] S. Borgwardt, E. Finhold, and R. Hemmecke, On the circuit diameter of dual transportation
polyhedra, SIAM Journal on Discrete Mathematics, 29 (2016), pp. 113–121.

[7] S. Borgwardt and F. Happach, Good Clusterings Have Large Volume, Operations Research, 67
(2019), pp. 215–231.

[8] S. Borgwardt, J. A. D. Loera, and E. Finhold, Edges vs circuits: a hierarchy of diameters in
polyhedra, Advances in Geometry, 16 (2016), pp. 511–530.

[9] S. Borgwardt and S. Onn, Efficient solutions for weight-balanced partitioning problems, Discrete
Optimization, 21(C) (2016), pp. 71–84.

[10] S. Borgwardt, T. Stephen, and T. Yusun, On the circuit diameter conjecture, Discrete & Com-
putational Geometry, 60 (2018), pp. 558–587.

[11] S. Borgwardt and C. Viss, A polyhedral model for enumeration and optimization over the set of
circuits, Discrete Applied Mathematics, (in press, 2019).

[12] S. Borgwardt and C. Viss, Circuit Walks in Integral Polyhedra, Discrete Optimization, (in press,
2020).

[13] J. A. De Loera, R. Hemmecke, and J. Lee, On augmentation algorithms for linear and integer-
linear programming: from Edmonds-Karp to Bland and beyond, SIAM Journal on Optimization,
25 (2015), pp. 2494–2511.

[14] J. A. De Loera, E. D. Kim, S. Onn, and F. Santos, Graphs of transportation polytopes, Journal

24

of Combinatorial Theory, Ser. A, 116 (2009), pp. 1306–1325.
[15] A. J. Gates, I. B. Wood, W. P. Hetrick, and Y. Ahn, Element-centric clustering comparison

unifies overlaps and hierarchy, Scientific Reports, 9 (2019), p. 1.
[16] J. E. Graver, On the foundation of linear and integer programming I, Mathematical Programming,

9 (1975), pp. 207–226.
[17] R. Hemmecke, S. Onn, and L. Romanchuk, N-fold integer programming in cubic time, Mathemat-

ical Programming, Ser. A, 137 (2013), pp. 325–341.
[18] R. Hemmecke, S. Onn, and R. Weismantel, A polynomial oracle-time algorithm for convex integer

minimization, Mathematical Programming, Ser. A, 126 (2011), pp. 97–117.
[19] S. Kafer, K. Pashkovich, and L. Sanità, On the circuit diameter of some combinatorial polytopes,

SIAM Journal on Discrete Mathematics, 33 (2017).
[20] E. D. Kim and F. Santos, An update on the Hirsch conjecture, Jahresbericht der Deutschen

Mathematiker-Vereinigung, 112 (2010), pp. 73–98.
[21] V. Klee and D. W. Walkup, The d-step conjecture for polyhedra of dimension d < 6, Acta Mathe-

matica, 133 (1967), pp. 53–78.
[22] V. Klee and C. Witzgall, Facets and vertices of transportation polyhedra, in Mathematics of the

decision sciences, vol. 1, American Mathematical Society, 1968, pp. 257–282.
[23] M. Meilă, Comparing clusterings—an information based distance, Journal of Multivariate Analysis,

98 (2007), pp. 873 – 895.
[24] D. Naddef, The Hirsch Conjecture is true for (0, 1)-polytopes, Mathematical Programming, 45 (1989),

pp. 109–110.
[25] R. T. Rockafellar, The elementary vectors of a subspace of RN , in Combinatorial Mathematics and

its Applications, 1969, pp. 104–127.
[26] F. Santos, A counterexample to the Hirsch conjecture., Annals of Mathematics, 176 (2011), pp. 383–

412.

25

	Introduction and Preliminaries
	Moves and Double-Moves for Transforming Clusterings
	Bounds on the Transformation Distance
	Circuit Diameter of Partition Polytopes
	Conclusions and Future Directions

