Constructing Clustering Transformations

Steffen Borgwardt* and Charles Viss'

Abstract. Clustering is one of the fundamental tasks in data analytics and machine learning. In many
situations, different clusterings of the same data set become relevant. For example, different
algorithms for the same clustering task may return dramatically different solutions. We are
interested in applications in which one clustering has to be transformed into another; e.g., when
a gradual transition from an old solution to a new one is required. In this paper, we devise
methods for constructing such a transition based on linear programming and network theory.
We use a so-called clustering-difference graph to model the desired transformation and provide
methods for decomposing the graph into a sequence of elementary moves that accomplishes the
transformation. These moves are equivalent to the edge directions, or circuits, of the underlying
partition polytopes. Therefore, in addition to a conceptually new metric for measuring the distance
between clusterings, we provide new bounds on the circuit diameter of these partition polytopes.

Key words. partitioning, clustering, polyhedra, circuits, diameter, linear programming

AMS subject classifications. 52B05, 90C05, 90C08, 90C27

1. Introduction and Preliminaries. Clusterings of large data sets play an important
role in data analytics, machine learning, and informed decision-making in general. In many
applications, there exists a desired clustering corresponding to an optimal solution to an
optimization problem. However, directly implementing such a solution can be challenging —
instead, a gradual sequence of transitions which transforms an initial, sub-optimal solution
into the improved clustering is desired.

Consider the example in land consolidation from [3, 4, 5|. In a Bavarian agricultural
region, 471 lots are cultivated by 7 different farmers. The initial distribution of the owner-
ship of the lots, depicted in Figure 1a, is quite problematic — the scattered, small lots result
in large transportation overhead and prohibit the use of heavy machinery. To address this,
the authors worked with the Bavarian State to facilitate a voluntary land exchange among
the farmers in which the boundaries of the lots would remain the same while the cultivation
rights for the lots would be redistributed.

The combinatorial redistribution of lots can be modeled as a clustering problem: a set
of data points (the lots) must be partitioned into clusters (the farmers) under the restriction
that each farmer stays close to his original total value of land. The original and desired
clustering of lots may differ slightly in cluster sizes: often, large farmers are willing to accept
a slight decrease in their total land value, if the redistribution results in a significantly more
efficient cultivation.

One of the main challenges is that lots differ in value (aggregated from properties like
size, quality of soil, and shape). The restriction on cluster sizes, in combination with the
different lot values, makes it provably hard to determine an optimal redistribution of the
lots. However, it is possible to compute an approximation of the global optimum based
on linear programming over projections of transportation polytopes [4]. Further, the small
regions exhibited a heavy repetition of lots of similar values. When there is a fixed bound
on the number of different values of lots, for example by rounding lot values to a fixed set
of numbers, the underlying clustering problems become tractable [9]. A computed solution
in which the lots form large, connected sections of land is depicted in Figure 1b.

However, such a radical redistribution of lots among the farmers (more than 70% of the
lots change ownership from Figure 1a to 1b) cannot realistically take place all at once. Crop
rotations, required machinery, and other processes for farming stability must be respected.

*University of Colorado Denver (steffen.borgwardt@ucdenver.edu).
TUniversity of Colorado Denver (charles.viss@ucdenver.edu).

1

mailto:steffen.borgwardt@ucdenver.edu
mailto:charles.viss@ucdenver.edu

(a) Original clustering of lots. (b) Desired clustering of lots.

Figure 1: Two clusterings of 471 agricultural lots among 7 farmers (images from [3, 4, 5]).

Therefore, the farmers requested a “best” way to gradually implement the proposed changes
over the course of several years.

This transition should take the form of a sequence of trades, each changing the ownership
on a small subset of lots, and staying between the original and target value of land for all
farmers throughout. As before, the differing values of lots make this restriction challenging.
However, the heavy repetition of lots of the same (rounded) values can be exploited for two
approaches to preprocess the data: first, a restriction to only lots of the same (rounded)
values is possible, and then only these lots are traded with each other. Second, instead of
trading individual lots, groups of lots of the same farmer that add up to a similar value
are traded; to this end, each farmer’s lots are partitioned into groups of lots of (or close
to) a prescribed total value. With both approaches, a restriction on the value of land of
each farmer becomes a restriction on the number of lots, or groups of lots, assigned to the
farmer. A good practical performance greatly depends on the repetition of the same lot
values.

The result is a representation of the current and target lot distribution as solutions
to a new (smaller, or contracted) clustering problem of unweighted items, and a gradual
transformation between the clusterings is desired. In this paper, we propose methods for
constructing such a transformation based on linear programming and network theory.

The need for the construction of an efficient gradual transition to a new, given clustering
also arises in many other applications. For example, an insurance company may want
to gradually transition their customers to a new clustering of premium classes. In other
situations, there are snapshots of the same data set at different times and the goal is to
devise a model that explains how the data gradually changed over time.

In general, we consider partitions of a data set X := {x1,...,x,} into k labeled clusters
where each item x; is assigned to exactly one of the clusters. We call such a partition
C = (C4,...,Ck) a k-clustering of X, or simply a clustering of X when k is clear from
context. As is the case in most clustering applications, we assume that the number of items
is significantly greater than the number of clusters; i.e., n > k.

We additionally consider situations in which upper and lower bounds are given for
the sizes of the clusters. Such bounds may arise directly from an application itself or
may be introduced to guide clustering algorithms to return sufficiently balanced solutions.
Specifically, let kT, k™ € Z’j_ with k™ > k™ be given. A bounded-size k-clustering of X with
respect to k1 and k™ then satisfies k. < |C;| < /«.;;r for i = 1,..., k. This concept generalizes

2

the fized-size k-clusterings from [2] in which each cluster contains a fixed number of items
(i.e., a bounded-size k-clustering with k™ = x7). The classical transportation problem
and the assignment problem, along with their related polytopes, are well-studied topics in
optimization corresponding to fixed-size clusterings [1, 14, 22].

For a data set X and cluster size bounds x*,x~ € Z¥, the bounded-size partition
polytope BPP(k™, k™) models the set of all bounded-size k-clusterings of X with respect
to k™ and £~ [12]. Specifically, for i = 1,...,k and j = 1,...,n, let y;; indicate whether or
not cluster Cj receives item z; in a k-clustering C = (Cy, ..., Cy) of X. Then BPP(x",r7)
is given by the following system of constraints:

k
dyy=1 j=1,..n
=1

n
Zyij
j=1

n
Zyijgli?— i:l,...,k
j=1

y” 20 Z:L,k’,]:1,,7’L

\Y]
BN
|
.
Il
l—‘
ol

Since these constraints form a totally unimodular matrix, the right-hand side is integral,
and each y;; is implicitly bounded between 0 and 1, BPP(x", ™) is in fact a 0/1-polytope
whose vertices correspond to the feasible k-clusterings of X. For k¥ = s, this polytope
generalizes the fized-size partition polytope from [2]. It is also an instance of the bounded-
shape partition polytope from [7] when X is the standard basis of R".

In the fixed-size partition polytope, the edges also have a combinatorial interpretation:
two vertices share an edge if and only if the corresponding clusterings differ by a single
cyclical move of items among the clusters, formally defined in Section 2. This fact can be
used to prove new bounds on the combinatorial diameter of the polytope — the maximum
length of a shortest edge walk between any pair of vertices — and provide practical methods
for constructing transformations between fixed-size clusterings [2]. In this paper, we gen-
eralize these methods to the bounded-size partition polytope BPP. Although the edges of
this polytope have a more technical characterization, its circuits correspond to a set of nat-
ural cyclical and sequential moves of items among the clusters [12]. However, constructing
transformations using these two types of moves is significantly more challenging than using
only cyclical moves due to their different effects on the sizes of the underlying clusters.

Circuits, introduced as the elementary vectors of a subspace by Rockafellar [25], play a
fundamental role in the theory of linear programming. For a general polyhedron P = {x €
R™: Ax = b, Bx < d}, the set of circuits of P consists of all g € ker(A) \ {0} normalized to
coprime integer components for which Bg is support-minimal over { Bx: x € ker(A4)\ {0}}.
Geometrically, circuits correspond to all potential edge directions of P as the right-hand
side vectors b and d vary. This implies that the set of circuits serves as a universal test set
for any linear program over P [16]. Hence, circuits are used as the step directions in several
augmentation algorithms for solving linear programs [11, 13, 17, 18].

Additionally, for polyhedra such as BPP defined by totally unimodular matrices, cir-
cuits have combinatorial interpretations in terms of the underlying problem. The support-
minimality of circuits implies that, in a sense, steps taken in circuit directions are as simple
as possible while maintaining feasibility. In combination with highly-structured problems
from combinatorial optimization, these steps become particularly intuitive and are guaran-
teed to only visit integral points [12].

Therefore, in this paper, we choose the circuits of BPP as the elementary moves for
transforming k-clusterings. In building such transformations using these circuits, we con-
struct circuit walks between the corresponding vertices in the polytope. As a generalization

3

of edge walks, circuit walks are of interest due to their relationship to the combinatorial di-
ameter of polyhedra [6, 8, 10]. The circuit distance between vertices refers to the minimum
number of steps needed to join the vertices by a circuit walk and hence provides a lower
bound on the combinatorial distance between the vertices. The related circuit diameter of
a polyhedron — the minimum number of steps needed to join any pair of vertices by a circuit
walk — then serves as a lower bound on its combinatorial diameter. In particular, circuit
diameters provide insight into the polynomial Hirsch Conjecture, one of the fundamental
open questions in linear programming. See [20] for a survey of this field of study.

To build transformations between clusterings, we use one of the main tools from [2]
for analyzing fixed-size clusterings. Given two k-clusterings C,C’ of the same data set, the
clustering-difference graph C DG(C,C') is a directed graph that models the transfers of items
required for transforming C into C’. In the context of fixed-size clusterings, such a graph
decomposes into directed cycles. Sets of cyclical moves can then be integrated together
in order to bound the combinatorial distance between vertices in the fixed-size partition
polytope [2].

We generalize this graph-theoretic approach for constructing transformations between
clusterings to the context of general and bounded-size k-clusterings. In these situations,
both cycles and paths in a clustering-difference graph correspond to circuits of the related
polytopes. Integrating these different types of moves becomes much more technically chal-
lenging than integrating only cyclical moves since sequential moves alter the sizes of the
underlying clusters. In Section 2, we show how this is possible for certain combinations
of cyclical and sequential moves, providing various double-moves which reduce the num-
ber of steps needed for transforming clusterings (Theorems 2.6 and 2.7). Next, we prove
in Section 3 how these double-moves lead to an upper bound (Theorem 3.4) on the so-
called transformation distance between k-clusterings: a relaxation of the circuit distance.
In Section 4 we then prove the implications of this bound on the circuit diameter of the
bounded-size partition polytope (Theorem 4.2). We end with a brief discussion on future
directions of research in Section 5.

2. Moves and Double-Moves for Transforming Clusterings. Let C,C’ be two given k-
clusterings of the same data set. We recall from [2] the definition of the clustering-difference
graph CDG(C,C’) from C to C', a graph-theoretic model for the difference between the two
clusterings.

Definition 2.1 (Clustering-difference Graph). For two k-clusterings C = (C1,...,Ck) and

C' = (C1,....,Cp) of a data set X = {x1,...,xp}, the clustering-difference graph CDG(C,C’)
from C to C' is a directed arc-labeled multigraph with vertex set V.= {c1,...,cx} and edge set
A, where an edge (c;, c;) with label xp belongs to A if and only if xy € C; and xp € C'J(for
1% 7.
Thus, the edges of CDG(C,(C’) describe all single-item transfers needed to transform C into
C’. The number of edges is equal to the number of items whose cluster assignment differs
from C to C' — if an edge (¢;, ¢;) with label z; belongs to A, item x; must be moved from
cluster ¢ to cluster j as a part of the transformation. Note that this allows for parallel edges
in CDG(C,C'), but all edges have different labels. We refer to a C DG consisting of a single
directed cycle — or alternatively to its corresponding set of transfers — as a cyclical move of
items among the clusters. Similarly, a directed path or its corresponding set of transfers is
referred to as a sequential move of items. See Figure 2 for examples of these two types of
moves.

Throughout the proofs in this paper, we will frequently construct cyclical and sequential
moves to perform the required clustering transformations. For readability, we introduce the
following language to be used when defining such constructions: We say that a move follows
or travels along edges, paths, or cycles of an underlying C DG when we use those parts of
the graph to define the transfers of the move, we say that the move uses an introduced edge

4

2

x 2
C1 C3
Ty 3
Cs Zq Cy
(a) The clustering-difference

graph CDG(C,C') when (' =
({CE5}, {.%'1}, {x2}7 {$3}, {x4}) The graph is
a directed cycle, representing a cyclical move
of items among the clusters.

2

C1 C3

Cs Zq Cy

(b) The clustering-difference
graph CDG(C,C') when (' =
(0,{z1}, {22}, {xs}, {z4,25}). The graph is
a directed path, representing a sequential
move of items among the clusters.

Figure 2: Given X = {x1,22,x3,24,25}, let C = ({x1}, {z2}, {z3}, {xa}, {x5}) be a k-
clustering of X. For two choices of a different k-clustering C’ of X, Figures 2a and 2b give
the corresponding clustering-difference graphs which represent a cyclical and sequential
move of items.

when the move contains a transfer that is not reflected by an edge in the underlying C DG,
and lastly we say that a move sends an item xy from clustering ¢ to clustering j if one of
its transfers is given by the edge (¢;, ¢;) with label z.

The clustering-difference graph and the associated cyclical and sequential moves play
important roles in the analysis of bounded-size and fixed-size partition polytopes. For the
fixed-size partition polytope, a C'DG decomposes into directed cycles since all vertices in
the graph must have equal indegree and outdegree. Two vertices in the polytope then share
an edge if and only if the corresponding C'DG consists of a single directed cycle. This
characterization has been used to construct edge walks between vertices of the polytope
using sequences of cyclical moves, resulting in upper bounds on the combinatorial diameter
[2].

Although the edges of the bounded-size partition polytope have a more complicated
characterization, its circuits analogously correspond to clustering-difference graphs consist-
ing of either a single directed cycle or a single directed path [12]. Hence, devising sequences
of cyclical and sequential moves for transforming C into C’ can be interpreted as construct-
ing a circuit walk between the corresponding vertices in the polytope. As we will show
in Sections 3 and 4, this allows us to bound the circuit distance between vertices and the
related circuit diameter of the bounded-size partition polytope.

Therefore, we are interested in constructing a transformation from C to C’ using as few
of these cyclical and sequential moves as possible. We call the minimum number of required
moves the transformation distance d(C,C") from C to C'.

Definition 2.2 (Transformation Distance). For k-clusterings C,C’ of the same data set, the
transformation distance d(C,C') is the minimum number of cyclical and sequential moves
needed to transform C into C'.

Hence, d(C,C’) is a relaxation of the circuit distance between the corresponding vertices
of the bounded-size partition polytope — as long as no cluster size constraints are violated
during a sequence of moves used to achieve d(C,C’), the two distances are equal.

A naive approach for bounding d(C,(’) is to decompose CDG(C,C’) into paths and
cycles and then simply apply the corresponding moves individually to perform the clustering
transformation. However, even when such a decomposition is optimal — i.e., uses as few
paths and cycles as possible — d(C,C’) can be significantly less than the number of parts in
the decomposition. For example, Figure 3a depicts a case in which CDG(C,(’) consists of

5

RO RGN

(a) The original clustering-difference graph CDG(C,(C’).

(b) The first cyclical move, given by the blue edges.

(¢) The resulting clustering-difference graph after the first cyclical move is ap-
plied (and hence, the second cyclical move in the double-move).

(d) A combined visualization of the double-move for transforming C into C’, with
the first move given by the blue edges and the second given by the red edges.

Figure 3: A case where CDG(C,C') consists of four disjoint cycles. The above double-move
from [2] can be used to transform C into C’ in only two cyclical moves, implying d(C,C") = 2.

four vertex-disjoint cycles, which trivially implies d(C,C") < 4. Nevertheless, due to the fact
that any permutation can be expressed as the product of two cyclic permutations [1], only
two cyclical moves are needed to transform C into C’, implying d(C,C’) = 2. For simplicity,
we will use the term disjoint in place of vertex-disjoint throughout the remainder of the
paper. Whenever two components of a CDG are not vertex-disjoint, we will say that they
intersect.

Proposition 2.3 ([1], Lemma 7 in [2]). Let C,C’" be k-clusterings for which CDG(C,C")
decomposes into disjoint cycles. Then d(C,C") < 2.

In [2], Proposition 2.3 is used to integrate disjoint cyclical moves into what we will call a
6

double-move: a sequence of two moves which results in the desired changes to the underlying
clustering-difference graph. See Figure 3 for a visualization of this double-move. In a first
cyclical move of items, depicted in Figure 3b, the transfers corresponding to all but one
edge from each cycle are correctly applied — the items corresponding to the remaining edges
are temporarily sent to incorrect destinations across the cycles. However, a second cyclical
move, depicted in Figure 3c, can then be used to send each of these misplaced items to its
correct destination, completing the clustering transformation.

In the following lemmas and the upcoming Theorems 2.6 and 2.7, we show how similar
double-moves can be used to integrate both cyclical and sequential moves when transforming
general k-clusterings. This becomes more technically challenging due to the different natures
of the two types of moves — cyclical moves do not alter the sizes of any underlying cluster
while sequential moves alter the sizes of exactly two clusters by one. First, generalizing
Proposition 2.3, we show how to integrate sets of disjoint cycles and paths from a CDG.
Note that the bound on d(C,C’) in the following lemma depends only on the number of
paths in the decomposition and not on the number of cycles.

Lemma 2.4. Let C,C" be k-clusterings for which CDG(C,C') decomposes into disjoint
cycles and paths. Then d(C,C") < max{2, t}, where t is the number of paths in the decom-
position.

Proof. Let t denote the number of directed paths and s the number of directed cycles
in the decomposition of CDG(C,C’). When t = 0, the result follows from Proposition 2.3,
so we assume t > 1. We also assume s > 1, else the t sequential moves could simply be
applied individually.

First suppose t = 2. Let P;, P» denote the paths of CDG(C,C’) and let Y7, ..., Y denote
the cycles. For i = 1,..., s, we select any edge ¢e; := (u;,v;) from cycle Y;. In addition, let
p1 denote the tail of Pj, po the tail of P», and w the neighbor of p; on P;. See Figure 4a.
We will apply a double-move consisting of two sequential moves to transform clustering C
into C'.

The first sequential move is constructed as follows: First, an edge is introduced from pq
to v1, sending to vy the item from p; intended for w. After traveling along this edge, the
move follows Y7 — e1 from v; to uy. Next, if s > 1, it uses an introduced edge from u; to
vo whose label is that of e;, and then it travels along Y5 — es to us. This is repeated for
i =2,...,5 — 1 until uy is reached. The move terminates by using an introduced edge from
ug to pa whose label is that of e4, and then by traveling along path P,. See the blue edges
in Figure 4b for a visualization of this move.

Note that this first sequential move applies all transfers given by the cycles Y7, ..., Ys in
CDG(C,C") with the exception of those corresponding to the edges e; — the item from wu;
intended for v; is temporarily sent to the wrong cluster. The move also applies all transfers
given by P, but does not correctly apply any transfer from P;. However, all misplaced items
can be corrected and all remaining transfers can be applied via a single, second sequential
move as seen in Figure 4c. This sequential move first sends from ps to v, the item po received
from ug. Next, for 7 = s, ..., 2, it sends from v; to v;_1 the item v; received from u;_1. Once
v1 is reached, it sends from vy to w the item vq received from p;. The move terminates
by following the remaining edges of P;. After this second sequential move is applied, the
transformation from C to C" is complete — it follows that d(C,C’) = 2. See Figure 4d for a
visualization of these moves integrated together into a double-move

Next suppose t > 2. We can apply the double-move from the previous case to remove
all cycles and any two paths from CDG(C,C’). The remaining ¢t — 2 paths can then be
applied via individual sequential moves. Hence, d(C,C’) < t.

Lastly, suppose t = 1. Again let P; denote the single path of CDG(C,C’), let p; denote
the tail of Pj, and let w denote the neighbor of p; on P;. We choose an edge e; := (u;, v;)
from Y; for i = 1, ..., s and apply a sequential move followed by a cyclical move to transform
C into C’. See Figure 5 for a visualization of the double-move.

7

w L

b1 U1 uy V2 U2 b2

(a) The original clustering-difference graph CDG(C,C’).

ROROR

(b) The first sequential move.

(c¢) The resulting CDG after the first sequential move is applied. This directed
path corresponds to the second sequential move used to transform C into C’.

w D
4

b1 U1 ui (%) u2 b2

(d) A combined visualization of the double-move for transforming C into C’, with
the first move given by the blue edges and the second given by the red edges.

Figure 4: A case where CDG(C,(C’) consists of two paths and multiple cycles. Independent
of the number of cycles, only two sequential moves are needed to transform C into C’, so

d(C,c’) =2.

As in the previous case, the sequential move first uses an introduced edge from p; to
v1 and then travels along Y] — e from vy to uy. If s > 1, then for ¢ = 1,...,s — 1, it uses
an introduced edge from w; to v; and follows Y; — e; to u; until ug is reached. The move
terminates by using an introduced edge from us to w, and then by following the remaining
edges of P;.

The second cyclical move corrects all items sent to incorrect destinations by the first
move. Namely, it first follows the edge from w to vs, sending to vs the item w received
from ugs. Next, for ¢ = s, ..., 2, it follows the edges from v; to v;_1 until vy is reached. The
move terminates by following the edge from v to w, sending w the item wv; received from
p1. This completes the transformation from C to C’, so d(C,C’) < 2.

Therefore, in each case, d(C,C’") < max{2, t}. O

8

Figure 5: A visualization of the double-move for transforming C into C’ when CDG(C,(C")
consists of a single path and multiple cycles. The original CDG(C,C’) is given by the black
edges, the first sequential move is given by the blue edges, and the second cyclical move is
given by the red edges.

u1

U2 U3 u3

w1

Figure 6: A visualization of the double-move for transforming C into ¢’ when CDG(C,(’)
consists of multiple disjoint cycles and a path intersecting a single cycle.

Even when paths and cycles are not completely disjoint, the corresponding moves may
still be integrated together into a double-move. In the following lemma, we show that if a
path intersects at most one cycle out of a collection of disjoint cycles, only two moves are
required to apply all corresponding transfers.

Lemma 2.5. Let C,C’ be k-clusterings for which CDG(C,C") consists of s > 1 disjoint
cycles and a single path P, which intersects at most one of the cycles. Then d(C,C") < 2.

Proof. Let Y1, ..., Ys denote the cycles of CDG(C,C’). If P does not intersect any of the
cycles, we can apply Lemma 2.4, so we assume P intersects Y;. We also assume s > 2,
else the sequential and cyclical moves corresponding to P and Y7 could simply be applied
individually. Let wq,...,w; denote (in order) the vertices of P. We select an edge e; :=
(ui,v;) from each cycle Y;, where e; is chosen such that v; is the first vertex w; of P that
also belongs to Y;. (Note that it is possible to have j = 1 or j = ¢, but both of those
cases are still covered by the following construction.) We will apply two sequential moves
to transform C into C'. See Figure 6 for a visualization of CGD(C,C’) along with the
double-move.

The first sequential move starts at w; and follows P to w; = v1. It then follows the
path formed by joining Y7 — eq, ..., Ys — es with the introduced edges (u1,v2), ..., (us—1, vs),
terminating at us. Hence, the move reduces the size of the cluster corresponding to wi, as
desired, but it also increases the size of the cluster corresponding to us.

To correct this, we apply a second sequential move starting at us; and terminating at
wy. The move first follows the edges (us, vs), (Vs, Vs—1), ..., (v2, v1) to correct items misplaced
across cycles. Next, since v1 = wj, it terminates by following P along the vertices wj, ..., w;.
Since P only intersects Y7, no vertices are repeated in this second sequential move and it
indeed corresponds to a single directed path. All transfers corresponding to the original
edges of CDG(C,C’) have then been correctly applied. O

9

c1 s C1 C3

(b) The only double-move (apart from sym-

(a) The clustering-difference graph metry) that can be used to transform C into
CDG(C,C"). c

Figure 7: A clustering-difference graph CDG(C,C") for which the only way to transform C
into C’ in only two moves is to use the double-move from Lemma 2.5.

Note that in the double-move used for Lemma 2.5, the first sequential move temporarily
increases the size of the cluster corresponding to us. For general k-clusterings this is not an
issue, but for bounded-size k-clusterings this could potentially violate the upper bound on
the size of the cluster. Unfortunately, this increase in cluster size is unavoidable for certain
configurations of CDG(C,C’). Consider the example in Figure 7. If only two moves are to
be used to transform C into C’, ¢; must correctly send an item to ¢y in each move. Hence,
c1 may not temporarily receive an item from c3 or ¢4 in the first move, and the cluster
size corresponding to either c3 or ¢4 must be temporarily increased. Therefore, although
d(C,C") = 2, the circuit distance between the corresponding vertices in a related bounded-
size partition polytope may be 3 if the cluster sizes corresponding to c3 and c4 are already
at their upper bounds. We further address this issue in Section 4.

When a path intersects multiple cycles from a set of disjoint cycles, integrating the
corresponding moves as in the double-move from Lemma 2.5 becomes more challenging since
we can no longer guarantee that the second part of the move corresponds to a single directed
path in the underlying C DG. See for example Figure 8, in which all four vertices have either
indegree or outdegree at least two. In such a scenario, each cluster must either correctly
send or correctly receive two items to perform the clustering transformation, implying that
no item can be temporarily sent to an incorrect destination during a double-move. Thus at
least three moves are required. However, we can ensure that transfers corresponding to at
least the first and last edges of the path are applied in conjunction with the disjoint cycles.
We show in the upcoming theorem that given any path P = w;...w; and a set Y of disjoint
cycles, a double-move can be used to correctly apply all transfers from) while decreasing
the cluster size corresponding to w; and increasing the cluster size corresponding to w;.
Furthermore, such a double-move will then allow us to completely integrate P with) as
long as P does not intersect the cycles of)V more than three times.

Recall that in a clustering-difference graph CDG(C,C’), the outdegree of a vertex is
equal to the number of items which must be moved from the corresponding cluster to
perform the clustering transformation. Note that in order for the outdegree to be reduced,
a correct item must be sent from the cluster to a new destination; however, this destination
cluster need not actually be the other endpoint of the corresponding edge in CDG(C,(C").
On the other hand, the indegree of a vertex gives the number of items which must be
moved to the corresponding cluster. For the indegree to be reduced, a correct item must
be received by the vertex, but it does not matter which cluster actually sends the item.
We call the minimum of the indegree and outdegree of a vertex the shared degree of that
vertex in the CDG. Hence, applying a set of disjoint cyclical moves reduces the shared
degree of all covered vertices by one. When integrating a path with these cyclical moves,
this reduction in shared degree should still occur in order to make all desired improvements

10

1 C3
C1 C3

2 Cq
C2 Cq

(a) The clustering-difference graph

(b) A triple-move for transforming C into C'.
CDG(C,C).

Figure 8: A clustering-difference graph CDG(C,C’) with a path intersecting multiple dis-
joint cycles such that three moves are required to perform the corresponding clustering
transformation.

to the underlying C'DG. In the following theorem, we provide four different double-moves
to accomplish this task. The type of double-move to use depends on the intersection points
of the path with the cycles.

Theorem 2.6. Let C,C’ be k-clusterings of the same data set with clustering-difference
graph D := CDG(C,C"), let Y = Y1,...,Ys be a set of disjoint cycles in D, and let P =
wy...w be a path in D that is edge-disjoint from Y. There exists a double-move which
accomplishes all of the following:

1. Correctly applies all transfers from Y

2. Reduces the cluster size corresponding to wi through sending a correct item

3. Increases the cluster size corresponding to w; through receiving a correct item

4. Decreases the shared degree of each vertex covered by Y by at least one.

Proof. If s =1 or if P is disjoint from), we can apply Lemma 2.5, so we assume s > 2.
Let w;, denote the first vertex of P covered by Y, and let w;,,w;, denote, respectively, the
second-to-last and last vertex of P covered by). Note that we have w;, = wj, when P
intersects) only twice. Similarly, if P intersects) only once, we let w;, = w;, = w;,. We
treat four exhaustive cases regarding the distribution of wj,, wj,, and wj, across the cycles

of V.

Case 1: wj;, and wj, belong to different cycles of J and w;, belongs to the same cycle
as wj,. We apply a cyclical move followed by a sequential move to perform all necessary
transfers in D. See Figure 9 for a visualization of the double-move.

Without loss of generality, we assume wj;, € Y; and wj,, w;, € Ys. We choose an edge
e; := (u,v;) from each cycle Y;, where e; and e, are chosen such that u; = w;, and v, = wj,.
The cyclical move first introduces an edge from wj, to wj, = vy whose label is the item
sent from wj, in P. (Note that we might have w;, = wj,—1, in which case the edge already
exists in CDG(C,C’).) Next, the move follows Y from vg to us. It then uses an introduced
edge from us to vs_1 whose label is that of ez, and travels along Ys_1 — es—1 until ugs_7 is
reached. This is repeated for the remaining cycles via introduced edges (u;,v;—1) and by
traveling along Y;_1 — e;—1 until u; = wj, is reached, completing the cyclical move.

Next, the sequential move starts at wi, following P to wj, = w1, and then follows the
edge (uy,v1). It then follows the edges (v;,viy1) for i =1,...,s — 1 until v, = wj, is reached,
correcting items misplaced across the cycles. The move terminates by following P from w,
to w;, and then to wy.

We now prove that the desired changes have been made to the underlying CDG. Clearly
the cluster size corresponding to w; is decreased and the cluster size corresponding to w; is
increased via the second sequential move. Furthermore, each item sent by w; or received by

11

Figure 9: The double-move for Case 1 of Theorem 2.6. The cycles of) are given by the solid
black edges, the first cyclical move is given by the blue edges, and the second sequential
move is given by the red edges. The dashed edges indicate the sections of P that exist
when wy # wj, or wy # wj,. Note that when wj, # wj,_1, the second sequential move will
include additional vertices of P between w;, and w;, which are not covered by).

U1

wy Te v3 Wiz Lo

Figure 10: The double-move for Case 2 of Theorem 2.6.

wy is correct. As in the double-move from Figure 3, all edges from) are applied through
the combination of the two moves. Thus, it suffices to show that the shared degree of each
vertex covered by) has been reduced by at least one. The only interesting cases are wj,,
wj,, and wj,. In the first cyclical move, w;, both receives and sends a correct item, reducing
its shared degree by one. In the following sequential move, either w;, only sends a correct
item (if wj; = w1) or wj, both sends and receives a correct item, so the net reduction in
shared degree of wj, is at least one. Similarly, w;, sends and receives a correct item in the
first move and then either receives a correct item or both receives and sends a correct item
in the second move.

Finally, consider wj,. The vertex receives a possibly incorrect item from w;, but also
sends a correct item to its neighbor on Y; via the first cyclical move, leaving its shared
degree, at worst, unchanged. In the second sequential move, wj, receives a correct item
originating from wus and then sends a correct item to the following vertex on P. Thus, the
shared degree of wj, is also reduced by at least one, as desired.

Case 2: wj, and wj, belong to different cycles of } and w;, does not belong to the
same cycle as wj,. (wj, may or may not belong to the same cycle as wj,, or we may
have wj, = wj,.) We apply a sequential move followed by a cyclical move to perform the
necessary transfers. See Figure 10 for a visualization of the double-move.

We assume without loss of generality that w;, € Y7 and wj, € Ys, and then choose an
edge e; := (u;,v;) from each Y; such that v; = wj,, us = wj,, and v; # wy, fori =2,...,s—1.
First, the sequential move travels along P from w; to wj,. Then for i =1,...,s—1, it travels
along Y; — e; and follows an introduced edge (u;, v;y+1). The move terminates by following
Y, — es from vg to us = wj, and then following P from wj, to w;.

The cyclical move starts at w;, = us by following the edge (us,vs). Then for i = s,...2,
it follows the edges (v;,v;—1) until v; = wj, is reached, correcting items misplaced across

12

PR Ed
Wiy p? -7
U3
A A g
U1
A
) Vo U9 W,
fu)]3 J2
~
\\\\
AIRN
\\\
‘O’wt

Figure 11: The double-move for Case 3 of Theorem 2.6.

the cycles. Next, the move follows an introduced (or possibly existing) edge from wj, to
wj, whose label is the item sent from w;, in P. It then terminates by following P from wj,
to wj,. Note that this is indeed a single cyclical move since wj, # v; for i = 2,...;s.

The first sequential move alters the cluster sizes corresponding to w; and w; through
correct transfers as desired, and again the edges of) are all applied through the combination
of the two moves. It suffices to show that the double-move reduces the shared degree of all
vertices covered by). However, this again follows from the argument used in the previous
case: although w;, may receive an incorrect item from wj,, it sends away two correct items
and its shared degree is reduced by at least one.

Case 3: wj, and wj, belong to the same cycle of)V but w;, belongs to a different
cycle. We assume wj,,w;, € Y7 and wj, € Y, and we apply a cyclical move followed by a
sequential move to perform the necessary transfers. See Figure 11 for a visualization of the
double-move.

We choose an edge e; := (u;,v;) from each cycle Y; such that v; = wj, and us; = wj,.
The cyclical move first travels along Y7 —e; from v1 = wj, to wy. Then for i =1,...,5 -1, it
uses an introduced edge (u;, vi4+1) and follows Y; 11 —e;q1 to uiy1. Once us = wj, is reached,
the move terminates by following P from wj, to wj;.

The sequential move starts by following P from w to wj,. Next, it follows an introduced
(or possibly existing) edge from wj, to wj, = us whose label is the item sent from wj, in
P, and then follows the edge (us,vs). Next, for i = s, ..., 2, it follows the edge (v;,v;—1) to
correct items misplaced among the cycles. Once v1 = wj, is reached, the move terminates
by following P from wj, to wy. All clusters are then changed as desired using the arguments
from Case 1.

Case 4: wj,, wj,, and wj, belong to the same cycle in) (allowing for either wj, = wj,
or wj, = wj, = wj;). We apply two sequential moves similar to those of Lemma 2.5 to
perform all necessary transfers. See Figure 12 for a visualization of the double-move.

We assume without loss of generality that w;, ,w;,,w;, € Y1, and we choose an edge
e; := (uj,v;) from each cycle Y;, where e; is chosen such that v; = wj,. The first sequential
move starts by following P from w; to wj, = v; and then travels along Y7 — e; to u;.
Then for ¢ = 1,...,s — 1, it uses an introduced edge (u;, v;1+1) and travels along Y; — ¢;. It
terminates once ug is reached.

The second sequential move begins at us by following the edge e5. Then fori = s, ..., 2, it
travels along the edge (v;, v;—1) to correct items misplaced among the cycles. Once v1 = wyj,
is reached, the move follows an introduced (or possibly existing) edge from wj;, to w;, whose
label is the item sent from w;, in P. It then terminates by following P from wj, to wj,
and then to ws. All clusters are then changed as desired by again using the arguments from
Case 1. O

13

- \

W .4' - -’Ujj3

Figure 12: The double-move for Case 4 of Theorem 2.6.

In the proof of Theorem 2.6, we observe an important implication: if a path intersects
a set of disjoint cycles at most three times, then all transfers corresponding to the cycles
and the path can be correctly applied using one of the double-moves from the theorem.

Theorem 2.7. Let C,C' be k-clusterings where CDG(C,C’) consists of a set Y of disjoint
cycles and a path P. If P intersects Y at most three times, then d(C,C') = 2.

Proof. Let P = wi...w. As in the proof of Theorem 2.6, consider wj,, wj,, and wj,:
the first, second-to-last, and last vertices of P which are covered by). If these are the
only vertices of P covered by), then all edges of P can be applied in any of the four
double-moves from Theorem 2.6. To see this, note that since no vertices on P between
wj, and w;, are covered by), we can follow all corresponding edges of P when sending
an item from wj, to wj,. As in the proof of the theorem, the same holds for all edges
between wj, and wj,. Hence, all transfers corresponding to the edges from both) and P
are correctly applied through the appropriate double-move, implying d(C,C’) < 2. Note
that since CDG(C,C’) either contains disjoint components or vertices with shared degree
greater than one, d(C,C’) > 1. Therefore, d(C,C’) = 2. O

Of course, since the number of times a path P intersects a set) of cycles is at most the
number of vertices in P, this implies that a path with at most three vertices can always be
integrated with) using one of the double-moves from Theorem 2.6.

Corollary 2.8. Let C,C’ be k-clusterings where CDG(C,C") consists of a set') of disjoint
cycles and a path P with at most three vertices. Then d(C,C") = 2.

3. Bounds on the Transformation Distance. In this section, we use the double-moves
from Section 2 to prove upper bounds on the transformation distance between clusterings
based on certain properties of the related CDG.

Given any two k-clusterings C,C’ with clustering-difference graph D := CDG(C,(’),
our goal is to transform C into C’ using as few cyclical and sequential moves as possible.
Recall the fundamental difference between these two types of moves: cyclical moves transfer
items among the clusters while preserving the original cluster sizes; on the other hand,
sequential moves transfer items while increasing the size of one cluster and decreasing the
size of another. This motivates a decomposition of D into two parts corresponding to these
different types of moves.

Definition 3.1 (Path-Cycle Decomposition). Let C,C’ be k-clusterings of the same data
set with clustering-difference graph D := CDG(C,C'). For i = 1,...,k, let 6; denote
|(|Ci| = |CI])|, the change in the size of cluster C; between C and C'. A path-cycle de-
composition (Dp, Dy) of D is a decomposition of D into two parts: a set Dp containing
%Zle 0; directed paths and a graph Dy which decomposes into directed cycles.

For any path-cycle decomposition (Dp, Dy) of D, the paths of Dp adjust the cluster
sizes of C to those of C' and the edges of Dy apply any remaining transfers. Such a
decomposition can be found easily: one greedily constructs directed paths in D which begin

14

at excess vertices, those vertices ¢; with outdegree greater than indegree (i.e., d*(¢;) >
d~(¢;)), and which terminate at deficit vertices, those satisfying d~(¢;) > d*(¢;). These
paths are added to Dp. Once there do not exist any excess or deficit vertices in D, the
remaining edges in the graph form Dy . Alternatively, one can greedily remove directed
cycles from D to build Dy and the leftover edges will decompose into Dp. Note that we
can store Dp either as a set of directed paths or as a graph which decomposes into paths.
Nevertheless, the fixed number of paths from excess to deficit vertices in Dp gives a lower
bound on the transformation distance between the clusterings.

Lemma 3.2. Let C,C’ be k-clusterings of the same data set. Then d(C,C") > %Zle i,
where 6 = (/i — |CI).

Proof. By definition, ¢; is the change in cluster size needed to transform C; into C].
Note that the sum Zle 0; is therefore even. Cyclical moves do not change the size of any
clusters while sequential moves change the size of exactly two clusters by one. Hence, at

least %Zle d; sequential moves are required in order to change the cluster sizes of C to
those of C’. O

Given a path-cycle decomposition (Dp, Dy) of D, a straightforward approach for trans-
forming C into C’ is to separately apply the paths of Dp followed by the cycles of Dy.
However, whereas a fixed number of sequential moves is required to apply all paths of Dp,
the number of cyclical moves required to apply all transfers in Dy is generally less than its
number of cycles. Using the double-move from Figure 3, we can integrate sets of disjoint
cycles from Dy to achieve a transformation distance bound which generalizes Corollary 7
in [2]. This serves as a starting point for our discussion on an improved upper bound for
d(C,C"). Recall that the shared degree n; of a vertex ¢; in D is the minimum of its indegree
and outdegree.

Lemma 3.3. Let C,C’ be k-clusterings of the same data set. Then

k
1
d(cvc/) < iy + Mig + 5 2;61)

where 6; = |(|C;| — |CI|)|, mi is the shared degree of ¢; in CDG(C,C'), iy = argmaxn;, and
’iQ = argmaX;-g, 1);-

Proof. Let (Dp, Dy) be any path-cycle decomposition of D := CDG(C,C’). Applying
the % Zle d; sequential moves given by the paths of Dp correctly adjusts all cluster sizes.

Next, we can use the method of Corollary 7 from [2] to apply the cycles in Dy. To do
so, note that for ¢ = 1, ..., k, the shared degree of ¢; in Dy is at most 7;. Hence, we may first
apply at most 7;, — n;, cyclical moves to reduce the maximum shared degree in Dy to at
most 7;,. Next, using the technique in Corollary 3 from [2], we can solve a maximum flow
problem to obtain a set of disjoint cycles in Dy covering all vertices of maximum shared
degree. All transfers from this cycle cover can be applied via at most two cyclical moves
using the double-move from Figure 3. Repeating until the maximum shared degree of Dy
is zero, all transfers from Dy are performed in at most (n;, — n;,) + 21;, = 1i, + M, cyclical
moves. Therefore, at most n;, + n;, + % Zle d; cyclical and sequential moves are required
to transform C into C'. O

This initial upper bound on d(C,C’) uses the double-move for integrating disjoint cyclical
moves from Figure 3 but does not yet take advantage of any of the double-moves from
Section 2 which integrate both cyclical and sequential moves. For instance, when applying
the cyclical moves from a disjoint cycle cover) of all vertices of maximum shared degree
in Dy, we could attempt to integrate a path P from Dp. If P is disjoint from), if P
intersects at most one cycle of), or if P intersects) at most three times, we could use
one of the double-moves from Lemma 2.4, Lemma 2.5, or Theorem 2.7 to integrate P at

15

H) Tt

T X
04——/0-\ = = /L:>»
ciipe——De=— Pe —e——beo---
w1 w9 Wt—-1 Wt w

1 w2 We—1 wt

(a) The first case for P’ and ep. (b) The second case for P’ and ep.

Figure 13: The sequential move P = wj...w;, given by the black edges, is equivalent to one
of two combinations of a short sequential move with a cyclical move. In the first case, the
path P’ := wyw;_ 1wy, given by the blue edges, is applied first. Next, the cycle Py, given
by the green edges, is applied and sends x2 to the correct destination wo via the introduced
edge ep := (w¢—1,w2). In the second case, the cycle Py is applied first, sending z; from
wy_1 to wo via ep. Then the path P’ := wywowy, given by the red edges, is applied and z;
is correctly sent from ws to wy. In both cases, all transfers corresponding to the original
path P are performed correctly via the path P’ and the cycle Py.

no extra cost, reducing the number of remaining sequential moves. However, we cannot
guarantee that such a path P exists in Dp.

Nevertheless, we can achieve an improved bound on the transformation distance by
considering each path in Dp as the combination of a (short) sequential move with a cyclical
move. To motivate this, suppose CDG(C,C’) consists of a set) of disjoint cycles and a path
P = w;...w; with t > 4, where w1, wy_1, and w; are all covered by). We can apply one of
the four double-moves from Theorem 2.6 to perform all transfers corresponding to the edges
in) while decreasing the excess of w; and the deficit of wy. However, the double-move does
not apply any edges of P between wy and w;_1. Additionally, w;_1 receives an incorrect
item from w; during the double-move which still needs to be sent to wy. Hence, a new
edge from wy_1 to wy is introduced and the resulting C'DG consists of the directed cycle
w... Wt_1W2.

In this manner, we can represent the sequential move corresponding to any path P =
wi...wy in Dp covering t > 4 vertices as the combination of such a cycle Py = ws...w—1wo
and a path P’ with three vertices. As depicted in Figure 13, there are two cases to consider
regarding the interior vertex of P’ and the item sent along the artificially introduced edge
ep = (wi—1,we2) in Py. These cases depend on the order in which the corresponding
transfers are applied. Let xo denote the item to be sent from w; to we in P, and let
x¢ denote the item to be sent from w;—1 to wy. If P’ is applied first (as in the previous
paragraph), let P’ := wjw;_qw; and let ep send x5 from wy_1 to the correct destination ws.
This case is depicted in Figure 13a. On the other hand, if ep is applied before P’, let ep
send z; from w;_1 to wo and let P’ := wywow; as depicted in Figure 13b. Either case has
the same effect on the underlying clusters as the original path P.

Therefore, we decompose each path P from Dp with more than three vertices in this
manner, adding the resulting cycle Py to Dy and replacing P with P’ in Dp. All paths
in Dp then have at most three vertices and Corollary 2.8 implies that we can completely
integrate any of these paths with a disjoint cycle cover from Dy in only two moves. Note
also that each vertex in a cycle Py is an interior vertex of the original path P. Hence, even
after introducing these additional cycles to Dy, the shared degree of each vertex in Dy
remains at most the shared degree of that vertex in the original clustering-difference graph.
This allows us to improve upon the distance bound given in Lemma 3.3.

The challenge in this approach lies in the fact that the interior vertex of P’ (either wy_;
or we) and the label of ep (either zo or ;) depend on the order in which the corresponding
transfers are applied. If a cycle cover) does not include ep, then integrating P’ with
Y is straightforward — one simply chooses the correct interior vertex for P’ depending on

16

whether or not ep has been applied yet. Once P’ is applied, then if ep remains in Dy, its
label is changed from z; to xo.

However, if ep is contained in), then we must make adjustments to the double-moves
from Theorem 2.6 in order to take into account the different possible cases for ep and P’.
Nevertheless, this approach allows us to integrate sequential moves from Dp with disjoint
cyclical moves from Dy at no extra cost, resulting in the following greatly improved distance
bound. The bound depends only on the larger of the second-largest shared degree and the
overall change in cluster sizes rather than on the sum of these values as in Lemma 3.3.

Theorem 3.4. Let C,C’ be k-clusterings of the same data set. Then

k
1
d(C,C’) < Miq +max{m2, 5 E 51},
i=1

where 6; = |(|Cs] — |CL)|, mi is the shared degree of ¢; in CDG(C,C'), i1 = argmaxn;, and
19 = argmax;;, 1);.

Proof. Let (Dp, Dy) be any path-cycle decomposition of D := CDG(C,C’). For each
path P = w;...w; of the %Zle d; paths in Dp, if t > 4, we decompose P into a cycle Py
and a short path P’ as depicted in the cases of Figure 13. Specifically, let P’ := wyw;_qw;
where the label of edge (w1, w;—1) is the item x5 to be sent from w; to wy in P, as depicted
by the blue edges in Figure 13a. Then P is replaced with P’ in Dp. In addition, the cycle
Py = ws...wy_jws is introduced to Dy, where the label of the artificial edge ep := (w;—1, w2)
in Py is the item x; to be sent from w;_; to w; in P, as depicted by the green edges in
Figure 13b. Note that each vertex in Py is an interior vertex of the original path P; hence,
in the resulting cycle graph Dy, the shared degree of each vertex ¢; remains at most 7;.

As in the proof of Lemma 3.3, we first apply at most n;, — 1;, cyclical moves to reduce
the maximum shared degree in Dy to at most 7;,. Whenever an artificial edge ep is applied
in such a move, we change the interior vertex of the corresponding path P’ in Dp so that
P’ = wywow; as in Figure 13b.

Now, again as in the proof of Lemma 3.3, we can reduce the maximum shared degree in
Dy by finding a disjoint cycle cover for the vertices of maximum shared degree and applying
a double-move. However, in each such double-move, we will also integrate a path from Dp.

Let YV be such a set of disjoint cycles in Dy, which can be found using the technique
from [2]. We choose any path from Dp. Since each path in Dp has at most three vertices,
if the selected path is an original path from CDG(C,(C’), integrating the path with) in a
double-move is straightforward via Corollary 2.8. Again, if an artificial edge ep is applied
through this double-move and the corresponding path P’ remains in Dp, we switch the
interior vertex of P’ from w;_1 to wo as in Figure 13b.

Hence, we assume the selected path from Dp is an introduced path of the form P’ with
corresponding artificial edge ep. If ep is not contained in the cycle cover), integrating P’
with Y is again straightforward via Corollary 2.8: the interior vertex of P’ is known and
we can simply apply one of the double-moves from Theorem 2.6. After the double-move
is applied, we make any necessary adjustments to the remaining paths in Dp as in the
previous paragraph. Additionally, if ep remains in Dy, we change its label from z; to x-
as in Figure 13a.

However, if the edge ep corresponding to P’ is contained in), then we must make
modifications to the double-moves of Theorem 2.6 to account for the two different cases for
ep and P’. Note that if this situation arises, ep has not yet been applied so P’ has the initial
form P’ = wyw;_1w;. We modify each of the four cases regarding the intersection points of
P’ with Y from Theorem 2.6 to perform the necessary transfers. Since ep is included in),
both wy_1 and wy are necessarily covered by), but w; and w; need not be covered. Several
of the case modifications depend on whether or not these two vertices are actually covered
by the cycles.

17

w1 Wt—1 w9

Wy

(a) Original double-move from Case 1 of Theorem 2.6.

Z2

T

we

(b) A modified double-move for Case 1.

Figure 14: The original and modified double-move for Case 1.

Case 1: All three vertices of P’ = wyw;_jw; are covered by), where wy and w; belong
to different cycles of) and wy—1 (and hence, also ep and ws) belongs to the same cycle as
wy. See the examples in Figure 14 — the artificial edge ep is given by the green edge from
wy—1 to wo and the other edges of) are given in black. Note that we cannot simply apply
the double-move from Case 1 in Theorem 2.6 as depicted for this scenario in Figure 14a
(compare to Figure 9). In the first cyclical move, the edge ep would be applied, sending
the item x; from w;_1 to we. Hence, w;_1 would then be unable to send z; to w; in the
second sequential move.

We can address this by making a slight modification to this first cyclical move: instead
of sending xo from w; to wy_1 and then following ep, the move simply sends zo directly
from wy to wy. Then z; remains at w;_1, and in the second sequential move, x; is correctly
sent from w;_1 to wy as seen in Figure 14b.

Note that in this modified double-move, the artificial edge ep from w;_1 to wsy is never
actually applied. However, its intended purpose is accomplished: item xzo is correctly re-
ceived by wo from wi, and x; is correctly sent from w;_1 to w;. Therefore, after the
double-move is applied, we can remove P’ from Dp and ep along with the other edges of
Y from Dy, as desired.

Case 2: Of the vertices of P’ = wyw;_jw; which are covered by Y, the first and last
belong to different cycles, and the second-to-last vertex covered by) belongs to a different
cycle than the last. There are three double-moves based on the double-move from Case 2
of Theorem 2.6 which can be used depending on whether or not wy, w;, or both w; and w;
are covered by). Depictions of these moves are given in Figure 15.

a) Vertices w; and wy are both covered by). In this situation, for Case 2 to apply,
wy and wy must belong to different cycles of) and wy_1 must not belong to the
same cycle as w;. See Figure 15a. Then when performing the double-move from
Case 2 of Theorem 2.6 as depicted in Figure 10, the edge ep is applied in the first
sequential move before any of the edges from P’, sending z; from w;_1 to ws. Hence,
if we switch the interior vertex of P’ from w;_1 to ws, we can apply this original

18

Wt—1 Tt w2 T4

T2

w1 Wt

(a) A double-move for Case 2 when both w; and w; are covered by V.

wq

W Wi w
Ty 2 t—1 z t

(b) A double-move for Case 2 when w; is not covered by V.

w1 L2 wo W1

(¢) A double-move for Case 2 when w; is not covered by V.

Figure 15: Modified double-moves for Case 2.

double-move without any further modifications, as depicted in Figure 15a.

b) Vertex w; is not covered by). Then for Case 2 to apply, w;—; and w; must belong
to different cycles of). See Figure 15b. As in Case 1, we cannot apply the original
double-move since then w;_; would be unable to send x; to w; in the second move.
We can address this in the same way as in the modified double-move from Case
1: the first sequential move sends x9 directly from w; to we, and then the second
cyclical move sends x; directly from w;_1 to wy, as depicted in Figure 15b. Although
ep is never actually applied, all desired transfers are accomplished as in Case 1.

c¢) Vertex wy is not covered by). Then for Case 2 to apply, w; and w;—; must belong
to different cycles of). See Figure 15c. We make a similar modification to that of
the previous case: the first sequential move correctly sends x; directly from w;_1 to
wy, and then the second cyclical move correctly sends xo directly from w; to wo, as
depicted in Figure 15c.

Case 3: Of the vertices of P = wjw;_jw; which are covered by), the first and last
belong to the same cycle in Y, while the second-to-last vertex belongs to a different cycle.
The only scenario in which this case applies is when w; and w; belong to the same cycle
of Y and w;_1 belongs to a different cycle. We make a modification similar to the third
double-move from the previous case. The first cyclical move sends z; directly from w;_1 to
wy, and the second sequential move sends x5 directly from w; to wo. See Figure 16.

Case 4: All vertices of P’ = wjw;_1w; which are covered by) belong to the same
cycle. There are two double-moves, depicted in Figure 17, which can be used depending on
whether or not wy is covered by).

19

w1 T

Tt

Figure 16: A modified double-move for Case 3.

w2

T, T9

w1 Tt

wy
(a) A double-move for Case 4 when w; is covered by Y.

W i
Wt Tt

X
w9 2 w1

(b) A double-move for Case 4 when w; is not covered by).

Figure 17: Modified double-moves for Case 4.

a) Vertex w; is covered by). As in the first double-move for Case 2, in the original
double-move for Case 4 of Theorem 2.6 the edge ep is applied before any of the
edges from P’. Hence, if we switch the interior vertex of P’ from w;_1 to wy, we can
apply the double-move without any further modifications, as depicted in Figure 17a.
Note that w; may or may not be covered by the cycle containing w; and ep.

b) Vertex wy is not covered by). We make a modification similar to that of the second
double-move for Case 2: the first sequential move directly sends zo from wi to ws,
and the second sequential move directly sends x; from w;_1 to ws. See Figure 17hb.
Note again that wy may or may not be covered by the cycle containing ep.

In each case, we are able to integrate P’ with) and apply all necessary transfers in only
two moves. Therefore, at most 7;, double-moves are needed to reduce the shared degree of
Dy to zero, and through each of these double-moves, we remove one of the % Zle d; paths
from Dp. Afterwards, we may simply apply the remaining paths in Dp, if any, individually.
The total number of moves used to transform C into C’ is thus at most

k k
1 1
(Miy — Mip) + 214y +max{22;5i — Nigs 0} = Niy +max{77i2, 22;51} .
1= 1=
O

4. Circuit Diameter of Partition Polytopes. A fundamental open question in linear
programming is whether or not there exists a polynomial pivot rule for the simplex method.
The existence of such a pivot rule would require that the polynomial Hirsch congjecture [20]

20

holds; i.e., that the combinatorial diameter of a polyhedron can be polynomially bounded.
A recent effort to better understand the combinatorial diameter of polyhedra has been the
study of the related circuit diameter [6, 8, 10, 19]. Whereas the original Hirsch conjecture
is false in general [21, 26], the related Circuit Diameter Conjecture [6] remains open.

Recall that the circuits of the bounded-size partition polytope BPP correspond to
cyclical and sequential moves of items among clusters. Therefore, as long as no cluster
size constraints are violated during a clustering transformation, any resulting bounds on
the transformation distance between clusterings have implications on the circuit distance
between vertices in BPP. As a 0/1-polytope, the combinatorial diameter (and hence,
also the circuit diameter) of BPP satisfies the Hirsch conjecture [24] — specifically, the
combinatorial diameter is at most the number of items n. In this section, we will use the
results from Section 3 to achieve much better upper bounds on the circuit diameter.

For the fixed-size partition polytope, Proposition 2.3 can be used to show that the
combinatorial diameter is at most k1 + ko, where k1, ko are the two largest fixed cluster
sizes [2]. We begin by generalizing this bound to the circuit diameter of the bounded-
size partition polytope by also taking into account the largest possible change in cluster
sizes. Although we do not yet utilize any double-moves which integrate sequential and
cyclical moves (see the upcoming Theorem 4.2), the bound of the following lemma is already
better than the naive bound achieved by simply counting the sequential and cyclical moves
separately — we can relate the shared degree of a vertex in a C DG to the change in size of
the corresponding cluster.

Lemma 4.1. For a bounded-size partition polytope BPP (k™ , k™), assume the correspond-
ing clusters are indexed so that /-sf > > m; and let i1,io denote the two indices mini-
mizing Kk — k; . Then the circuit diameter of BPP(k, k™) is at most

1 _
Ky D (6 - ap).

i1 g

Proof. Let C,C’" be k-clusterings corresponding to vertices y,y’ of BPP(k,xk™). We
can transform C into C’ by separately applying sequential moves followed by cyclical double-
moves in the manner of Lemma 3.3. All intermediate clusterings in this transformation
satisfy the cluster size bounds of BPP(k*, k™), so the process indeed corresponds to a
circuit walk from y to ¢’ in BPP(k™, k7).

Let 7; denote the shared degree of vertex ¢; in CDG(C,C"), and let ¢; := |(|C;| — |C])|.
Lemma 3.3 then implies that the circuit distance from y to v/ in BPP(k*, k™) is at most

k
1
(4.1) M+ + 5 > 6,

i=1

where j1, jo maximize 1; over all ¢ = 1,...; k. Trivially, for ¢ = 1, ...k, it holds that n; < H;r
and J; < /1? — k; . Hence, we obtain the following upper bound on the circuit diameter of
BPP(k*, k™) as a natural implication of Lemma 3.3:

k
1
+ + + -
K+ K+ 3 Z(I{l —K;).
i=1

Note however that this bound can be immediately improved. For i = 1,..., k, we must
have n; +0; < /@j since 1; + §; is equal to the maximum of the indegree and outdegree of ¢;.
Rearranging this inequality yields n; + %52- < kK — %51. Substituting into (4.1), we obtain

21

the following upper bound on the circuit distance from y to y/:

1< 1 1 &
77j1+77j2+§z(5i: Z <77i+25z‘>+2 Z 0

i=1 i=j1,j2 i#51,52
1 1 &
< Z </€j_ - 251) +3 Z 0;.-
1=j1,J2 i#£71,52

Note that Zi:jl s (nj — %(51) < /i; —|—/£j4; < /ﬁ%—m; Similarly, it holds that %Zgﬁjhh 5 <

3 Zf#l’jz (ki — k) < %Zf;éil,iz (k" — ;). Thus, we obtain the stated bound. O

As in Theorem 3.4, we can significantly improve upon this diameter bound by using the
double-moves from Theorem 2.6 to integrate sequential moves with sets of disjoint cyclical
moves. Note that we must take care when applying these double-moves to bounded-size
clusterings — certain moves require the existence of a vertex whose cluster size can be
temporarily increased as demonstrated in Figure 7. Nevertheless, under a mild assumption
on the slack in the cluster size constraints, we can ensure the existence of such a vertex
through a simple pre-processing of the clusters. This assumption takes the form Z;C:l H;r >
n+ k — 2, i.e., the sum of upper cluster size bounds exceeds the number n of items in the
data set by at least k—1. Since in most clustering applications, the number of items is much
larger than the number of clusters (n > k), we see this assumption as quite natural and not
particularly restrictive. For example, it is satisfied as long as there is at least some slack
in the size constraints for all but at most one cluster. A counterexample to this condition
would, in particular, require that there are always at least two clusters whose sizes are at
their upper bounds regardless of how the items are distributed.

Hence, we obtain the following improved diameter bound as an implication of the trans-
formation distance bound from Theorem 3.4, which depends on the maximum of the second-
largest cluster size and the largest possible change in cluster sizes.

Theorem 4.2. For a bounded-size partition polytope BPP(k™,k™), assume the corre-
sponding clusters are indexed so that /if > > Iiz and let i1 denote the index minimizing
ki — k; . If Zle R?_ >n+k—2 and if R?_ > k; for i # iy, the circuit diameter of
BPP(k",k7) is at most

k] +max ¢ K7, % z:(,ﬁr —k;) ¢ +2(k—2).
i

Proof. Let C,C’ be k-clusterings corresponding to vertices y, 4’ of BPP(k*,x™). We can
transform C into C’ in the manner of Theorem 3.4. However, in order for all intermediate
clusterings to satisfy the bounds of BPP(x™, k™), we must make sure that when applying
any version of the double-move from Case 4 of Theorem 2.6, there exists a suitable choice
for us whose corresponding cluster size is strictly less than its upper bound and can be
temporarily increased.

To ensure that this is always the case, we pre-process C and C’ in the following manner.
If there exists more than one cluster C; (or C/ in the case of C') such that |C;| = k], we
choose such an index j with |C}| = /i;_ > £, which is possible since at most one index
j = k; . We then transfer any item from C; to a different cluster C, which
satisfies |Cy| < r — 1. Such an index ¢ must exist, else it would hold that

7 satisfies &

k k
Z|Ci\ZQ—i—Z(/@f—l)>2—|—(n+k;—2)—k::n.
i=1 i=1

This process is repeated at most k — 2 times until the sizes of all clusters are less than their
upper bounds — with the exception of at most one cluster.
22

After pre-processing both C and €’ in this manner, let C denote the clustering obtained
after processing C, let C’ denote the corresponding clustering for C’, let j; denote the index
whose cluster size is potentially at its upper bound in C, and let js denote the corresponding
index for C’. We now transform C into C’ via the procedure in the proof of Theorem 3.4;
however, if j; # jo, we choose the first double-move that integrates a path P’ from the
path-cycle decomposition of CDG(C,C’) (in other words, the first double-move that alters
any cluster sizes) such that the head of P’ is ¢;;. This double-move then reduces the
size of cluster ji, and the only cluster whose size is potentially at its upper bound at any
point throughout the remainder of the procedure is cluster jo. This is due to the fact that
although a cluster’s size may change throughout the application of the double-moves, it
remains between its size in C and its size in C’.

Therefore, when transforming C to C’, it will always possible to choose ug in Case 4 of
Theorem 2.6 such that the corresponding cluster size can be temporarily increased when
performing the double-move. To see this, note that the cycle from which us is chosen
covers at least two vertices, and at least one of these vertices must have a corresponding
cluster size less than its upper bound. This holds since in the first double-move which alters
cluster sizes as discussed above, ¢;, must not be contained in the cycle, and in the remaining
double-moves, only the size of cluster jo could possibly be at its upper bound. Lastly, note
that the choice of the vertex us is unaffected by the modifications in Case 4 of Theorem 3.4.

By Theorem 3.4, the total number of moves needed to transform C into C’ is at most

k
1
Nj + max {773‘2, 3 Z&} ;
=1

where j1, j2 denote the two indices maximizing the shared degree n; in CDG(C,C’). As in
the proof of Lemma 4.1, since 7;, + %53'1 < m;rl - %5j1, this bound is at most

k k
1 1 1 1
max q 1, + Mja, <"7j1 + 25]-1) + 3 E 0; ¢ <maxq nj, + N, (/ij—l - 25j1> + 3 g i
i1 i#j1

k
1
+ 4t et +_ -
S max | K5 G, K5 o E (ki —K;)

1#J1
T
<k} +max < k7, 3 Z(m:r —K;)
11

Since all intermediate clusterings in this transformation satisfy the cluster size constraints
of BPP(k™, k™), the transformation indeed corresponds to a circuit walk in BPP(k*,x7).
Taking into account the at most 2(k—2) additional circuit steps needed for the pre-processing
of C and C’, we obtain the stated improved bound. O

5. Conclusions and Future Directions. In this work, we provide methods based on
linear programming and network theory for transforming k-clusterings using sequences of
cyclical and sequential moves of items among clusters. This leads to upper bounds on the
transformation distance between two general k-clusterings as well as the circuit diameter of
the bounded-size partition polytope. There are several natural directions for future research
in this area.

First, we note that although we can bound the transformation distance between clus-
terings based on properties of their C DG, computing the exact transformation distance
appears to be quite challenging. A first step toward better understanding this open prob-
lem would be to determine its computational complexity.

Next, we prove in Theorem 4.2 an upper bound on the circuit diameter of the bounded-
size partition polytope using the transformation distance bound from Theorem 3.4 and

23

modified double-moves from Theorem 2.6 which integrate sequential moves of items with
cyclical moves. A subsequent research question is whether or not we can also bound the
combinatorial diameter of the polytope in such a manner. The edges of BPP have a more
technical characterization than its circuits — only certain cyclical and sequential moves ac-
tually correspond to edges between vertices [12]. However, through a careful ordering of
cyclical and sequential moves and double-moves, we believe new bounds on the combinato-
rial distance between vertices in the polytope could be achievable.

Additionally, in Theorem 3.4, we use an arbitrary path-cycle decomposition (Dp, Dy)
of the clustering-difference graph D := CDG(C,C’) to bound the transformation distance
between the clusterings. It is possible to instead construct a decomposition exhibiting
potentially useful properties. For instance, solving a minimum-cost circulation problem
over D yields a decomposition in which Dy has a maximum number of edges. Modifying
this circulation problem can yield a decomposition in which the maximum shared degree
in Dp is minimized. Through further analysis, these extremal choices for the path-cycle
decomposition might lead to better upper bounds on the transformation distance.

Finally, we note that the transformation distance d(C,C’) is formally a metric. Hence,
if we are able to compute d(C,C’), we can interpret it as a measure of the distance be-
tween given k-clusterings of the same data set. There is significant interest in comparing
clusterings in the literature [15, 23]. However, most measures typically do not take into
account the potential labels of the clusters and are instead based on pairwise relationships
among the items. Our new metric takes a fundamentally different approach to measuring
the difference between clusterings, motivating a comparative study.

Acknowledgements. Borgwardt gratefully acknowledges support of this work through
NSF award 2006183 Circuit Walks in Optimization, Algorithmic Foundations, CCF, Divi-
sion of Computing and Communication Foundations, and through Simons Collaboration
Grant 524210 Polyhedral Theory in Data Analytics before.

REFERENCES

[1] M. BALINSKI AND A. RUSSAKOFF, On the assignment polytope, STAM Review, 16 (1974), pp. 516-525.
[2] S. BORGWARDT, On the diameter of partition polytopes and vertez-disjoint cycle cover, Mathematical
Programming, Ser. A, 141 (2013), pp. 1-20.
[3] S. BORGWARDT, A. BRIEDEN, AND P. GRITZMANN, Mathematics in agriculture and forestry: Geomet-
ric clustering for land consolidation, IFORMS news, Dec. issue (2013).
[4] S. BORGWARDT, A. BRIEDEN, AND P. GRITZMANN, Geometric clustering for the consolidation of
farmland and woodland, The Mathematical Intelligencer, 36 (2014), pp. 37-44.
[5] S. BORGWARDT, A. BRIEDEN, AND P. GRITZMANN, Geometrisches Clustering: Mathematik fir die
Flurverbesserung (Geometric clustering: Mathematics for land improvement), Mitteilungen der
DMV, 23 (2015), pp. 82-90.
[6] S. BORGWARDT, E. FINHOLD, AND R. HEMMECKE, On the circuit diameter of dual transportation
polyhedra, SIAM Journal on Discrete Mathematics, 29 (2016), pp. 113-121.
[7] S. BORGWARDT AND F. HAPPACH, Good Clusterings Have Large Volume, Operations Research, 67
(2019), pp. 215-231.
[8] S. BORGWARDT, J. A. D. LOERA, AND E. FINHOLD, Edges vs circuits: a hierarchy of diameters in
polyhedra, Advances in Geometry, 16 (2016), pp. 511-530.
[9] S. BORGWARDT AND S. ONN, Efficient solutions for weight-balanced partitioning problems, Discrete
Optimization, 21(C) (2016), pp. 71-84.
[10] S. BORGWARDT, T. STEPHEN, AND T. YUSUN, On the circuit diameter conjecture, Discrete & Com-
putational Geometry, 60 (2018), pp. 558-587.
[11] S. BORGWARDT AND C. VIss, A polyhedral model for enumeration and optimization over the set of
circuits, Discrete Applied Mathematics, (in press, 2019).
[12] S. BORGWARDT AND C. Viss, Circuit Walks in Integral Polyhedra, Discrete Optimization, (in press,
2020).
[13] J. A. DE LOERA, R. HEMMECKE, AND J. LEE, On augmentation algorithms for linear and integer-
linear programming: from Edmonds-Karp to Bland and beyond, SIAM Journal on Optimization,
25 (2015), pp. 2494-2511.
[14] J. A. DE LoERA, E. D. KM, S. ONN, AND F. SANTOS, Graphs of transportation polytopes, Journal

24

[15]
[16]
17]
18]
[19]
[20]
[21]
[22]
23]
[24]
[25]

[26]

A.

J.

R.

R.

of Combinatorial Theory, Ser. A, 116 (2009), pp. 1306-1325.
J. Gates, I. B. Woob, W. P. HETRICK, AND Y. AHN, Element-centric clustering comparison
unifies overlaps and hierarchy, Scientific Reports, 9 (2019), p. 1.
E. GRAVER, On the foundation of linear and integer programming I, Mathematical Programming,
9 (1975), pp. 207-226.
HEMMECKE, S. ONN, AND L. ROMANCHUK, N-fold integer programming in cubic time, Mathemat-
ical Programming, Ser. A, 137 (2013), pp. 325-341.
HEMMECKE, S. ONN, AND R. WEISMANTEL, A polynomial oracle-time algorithm for convex integer
minimization, Mathematical Programming, Ser. A, 126 (2011), pp. 97-117.

. KAFER, K. PASHKOVICH, AND L. SANITA, On the circuit diameter of some combinatorial polytopes,

SIAM Journal on Discrete Mathematics, 33 (2017).

. D. Kim AND F. SANTOS, An update on the Hirsch conjecture, Jahresbericht der Deutschen

Mathematiker-Vereinigung, 112 (2010), pp. 73-98.

. KLEE AND D. W. WALKUP, The d-step conjecture for polyhedra of dimension d < 6, Acta Mathe-

matica, 133 (1967), pp. 53-78.

. KLEE AND C. WITZGALL, Facets and vertices of transportation polyhedra, in Mathematics of the

decision sciences, vol. 1, American Mathematical Society, 1968, pp. 257—282.

. MEILA, Comparing clusterings—an information based distance, Journal of Multivariate Analysis,

98 (2007), pp. 873 — 895.

. NADDEF, The Hirsch Conjecture is true for (0,1)-polytopes, Mathematical Programming, 45 (1989),

pp. 109-110.

. T. ROCKAFELLAR, The elementary vectors of a subspace of RY , in Combinatorial Mathematics and

its Applications, 1969, pp. 104-127.

. SANTOS, A counterexample to the Hirsch conjecture., Annals of Mathematics, 176 (2011), pp. 383—

412.

25

	Introduction and Preliminaries
	Moves and Double-Moves for Transforming Clusterings
	Bounds on the Transformation Distance
	Circuit Diameter of Partition Polytopes
	Conclusions and Future Directions

