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Abstract

Linear programs (LPs) can be solved by polynomially many moves along the
circuit direction improving the objective the most, so-called deepest-descent
steps (dd-steps). Computing these steps is NP-hard (De Loera et al., arXiv,
2019), a consequence of the hardness of deciding the existence of an optimal
circuit-neighbor (OCNP) on LPs with non-unique optima.

We prove OCNP is easy under the promise of unique optima, but already
O(n1−ε)-approximating dd-steps remains hard even for totally unimodular n-
dimensional 0/1-LPs with a unique optimum. We provide a matching n-approxi-
mation.

Keywords: circuits, linear programming, deepest-descent steps, complexity
theory

1. Introduction

Linear programming is a fundamental tool in both the theory and applica-
tions of combinatorial optimization: We are given a system Ax = b, Bx ≤ d
with A ∈ RmA×n, B ∈ RmB×n,b ∈ RmA and d ∈ RmB and a cost vector c ∈ Rn.
We call an assignment x ∈ Rn to the variables feasible if it satisfies the system
of equalities and inequalities, and the set of these feasible assignments is a poly-
hedron, which will be denoted as P throughout. The goal is to find a feasible
assignment x ∈ Rn minimizing cTx.
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Linear programming has been known to be solvable in weakly-polynomial1

time since the groundbreaking work of Khachiyan on the ellipsoid method [1]
and Karmarkar on the interior point method [2]. The existence of a strongly
polynomial algorithm for linear programming, that is, an algorithm which makes
poly(n,mA,mB) arithmetic operations and finds an optimal solution, is a major
open problem. Exploring methods other than the ellipsoid and interior point
methods is a possible pathway for a resolution of this important open problem.

One such family of methods are iterative augmentation methods [3] using
the circuits of the matrix pair A,B, which are defined as follows:

Definition 1. Given matrices A,B, the set of circuits C(A,B) consists of all
g ∈ ker(A) \ {0} normalized to coprime integer components for which Bg is
support-minimal over {Bx | x ∈ ker(A) \ {0}}.

The set C(A,B) is, for instance, the set of all potential edge directions,
arising from any polyhedron having A and B as their constraint matrices over
the varying choices of the right-hand sides b and d. This set contains the set
of set of actual edge directions appearing on P with b and d fixed as a subset.
To be precise, by an edge direction, we mean any (normalized) vector in a one-
dimensional subspace spanned by the set of optimal points with respect to some
cost vector. This means that considering all circuits in each iteration gives a
potentially larger improvement than by only considering the edge directions, as
is the case in the Simplex method.

The set of circuits C(P) of the polyhedron P = {x ∈ Rn | Ax = b, Bx ≤ d}
satisfies C(P) = C(A,B). A generic iterative augmentation method for linear
programming over P starts from some initial feasible solution x0 ∈ P and then,
in the i-th iteration with i = 0, 1, . . . , finds a circuit gi ∈ C(A,B) and a step-
length λi ∈ R+ such that xi+1 = xi + λigi is feasible and cTgi < 0. The
specific choice of λi and gi distinguishes the individual methods. For example,
a steepest-descent step is one which minimizes cTgi/‖gi‖1, where ‖ · ‖1 is the
1-norm, and then chooses the largest feasible step-length λi with respect to gi.
A deepest-descent step is one which minimizes λicTgi.

This gives rise to the circuit diameter conjecture [4], which states that for
any d-dimensional polyhedron with f facets, the circuit diameter is bounded
above by f − d; the circuit diameter is the smallest number of feasible circuit
steps of maximal length between two points of a polyhedron. The significance
of studying the circuit-based iterative augmentation methods is also highlighted
by recent success of Graver bases in the design of integer programming algo-
rithms [5], since a Graver basis is essentially the integer programming analogue
of the set of circuits.

Throughout this paper, we consider polyhedra in the general form P =
{x ∈ Rn | Ax = b, Bx ≤ d}, just as we already did up to this point. We

1From here on out, whenever we speak of a problem with instances containing numbers as
inputs as being solvable in polynomial time, we intend this to mean weakly-polynomial time,
unless explicitly stated otherwise.
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assume that P is pointed, i.e., it has a vertex. This is required for some of our
problem statements to be well-defined. A check whether P is pointed can be
done efficiently through elementary linear algebra.

Let us formally define a deepest-descent step:

Definition 2. Let P = {x ∈ Rn | Ax = b, Bx ≤ d}, let c ∈ Rn and x0 ∈ P ,
and consider the LP min{cTx : x ∈ P}. A c-deepest-descent step y from x0 is
a vector y = α · g for some circuit g ∈ C(A,B) that maximizes the objective
function improvement −cT (αg) among all circuits g ∈ C(A,B) and all α > 0
with x0 + αg ∈ P .

When the context is clear, we simply refer to a deepest-descent step y
(dd-step), dropping information about c, P , or x0. We call the term cy =
−cTy the deepest-descent improvement (dd-improvement). It is known that
repeatedly taking deepest-descent steps converges to an optimal solution in
O(n log(b, c,d)) iterations [3]. A k-approximate dd-step z is a circuit step whose
improvement is at least 1/k of the improvement of a dd-step, as measured by
the objective value cy of a dd-step versus cT z. It is known [6, 7] that iteratively
augmenting k-approximate dd-steps takes at most k-times more iterations to
converge to an optimum. Thus, we are interested in exact and approximate
computations of a deepest-descent step. We formally denote this search as fol-
lows.

Input: c ∈ Rn, polyhedron P ⊂ Rn, x0 ∈ P
Find: c-deepest-descent circuit step y in P from x0.

Deepest-Descent Step Problem (dd-SP)

The natural question leading to our results is then: How hard is it to compute
a dd-step?

1.1. Our Contribution

Our first positive result with respect to this question pertains to the efficient
approximability of dd-SP:

Theorem 1. dd-SP can be approximated within a factor of n in polynomial
time.

This follows by an averaging argument on well-behaved decompositions of
the difference of two solutions to an LP as a set of (scaled) circuits.

The obvious follow-up question is whether an n-approximation can be signif-
icantly improved. We answer this negatively, even for a fairly restricted family
of LPs:

Theorem 2. Even for LPs over 0/1-polytopes defined by a totally unimodular
matrix and with unique optima, dd-SP cannot be approximated within O(n1−ε)
for any ε > 0 in polynomial time, unless P = NP.
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In particular, this demonstrates that to obtain a better approximation ra-
tio or even polynomial tractability, one would need to consider an even more
restricted family of LPs.

Further, we turn to the complexity of computing dd-steps exactly. De Loera
et al. [7] have recently shown that dd-SP is NP-hard. However, a closer look at
their construction reveals that they in fact show hardness of detecting whether
it is possible to get to some optimum in one circuit step from a given initial
point x0. We call this problem OCNP:

Input: c ∈ Rn, polyhedron P ⊂ Rn, x0 ∈ P
Decide: Is there an optimum x∗ with respect to min{cTx : x ∈ P}

such that x∗ − x0 is a circuit direction?

Optimal Circuit-Neighbor Problem (OCNP)

Somewhat surprisingly, we show:

Theorem 3. OCNP is solvable in polynomial time for LPs with a unique opti-
mum.

The standard trick of slightly perturbing the objective c of an LP makes
some optimum unique, and the set of objectives with non-unique optima has
volume 0, so in a sense OCNP is easy “almost always.” This is contrasted by
De Loera et al. [7] showing the NP-hardness of general OCNP.

This raises the following question: What is the complexity of dd-SP for
LPs with a unique optimum, given that OCNP is easy? Despite the encourag-
ing polynomial-time solvability of OCNP for this special case, we obtain as a
byproduct of Theorem 2 that, unlike OCNP, dd-SP remains hard, even for the
same, restricted family of LPs:

Theorem 4. dd-SP is NP-hard, even for LPs over 0/1-polytopes defined by a
totally unimodular matrix and with unique optima.

1.2. Connections to Previous Work

There are two papers in the literature with an especially strong connection
to ours. We detail this connection separately, and discuss other related work
hereafter.

Firstly, and most importantly, an inspiration for this note is the recent paper
of De Loera et al. [7]. Our polynomial-time algorithm for OCNP (Theorem 3)
stands in contrast to the results of De Loera et al. [7], where it is shown that
finding optimal circuit-neighbors is NP-hard in general. Hence, the hardness of
OCNP hinges on the existence of multiple optima. At this point, a flawed line
of reasoning might become appealing:

The reduction in [7] comes from the directed Hamiltonian path problem.
By introducing a negligible probability for one-sided error through the Isolation
Lemma [8], we may assume that the reduction source instance D = (N,F, s, t)
on n = |N | nodes, has a unique solution—that is, a unique Hamiltonian path
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from s to t. It is tempting to apply the reduction of [7], and use the above
algorithm for OCNP to solve the produced instance. This is an optimization
problem on the matching polytope PM (H) of some undirected bipartite graph
H on 2n + 1 vertices. We then have also solved the original instance of the
(unique) Hamiltonian path problem in polynomial time. This fails, however,
since the optima of the instance of OCNP are not in one-to-one correspondence
with Hamiltonian paths in the input instance. Namely, the set of optima in
the instance of OCNP is the set of matchings of size n − 1 in a graph H ′

obtained from H through the deletion of some edges. In particular, this set is
not necessarily a singleton if the original graph D had a unique Hamiltonian
path.

To save this approach, one might apply a perturbation to the cost vector of
the produced LP on PM (H), to ensure uniqueness of solutions nonetheless (as
remarked, uniqueness holds with probability 1). This perturbation, however,
would have to retain precisely all optimal circuit neighbors, and not one of the
other optima. Producing this perturbation would therefore require us to have
at hand an optimal circuit neighbor in the first place.

To avoid confusion, we stress that “uniqueness” refers not to the solutions of
OCNP itself, but to the LP that constitutes part of the input of OCNP (which
implies uniqueness of the solution for OCNP). In other words, there might be a
unique optimal circuit neighbor, while the LP has several optima.

Also note that while [7] discusses approximability, it does not concern dd-
SP but a different problem: deciding what is the shortest path between two
vertices of a polytope, either using the edges of the 1-skeleton, or using circuit
steps. It is not clear to us whether any inapproximability of dd-SP follows from
their construction.

Secondly, we make use of [9] for our positive results on OCNP and the n-
approximability of dd-SP. Most importantly, the set of circuit directions appear
as a subset of the extreme rays of a polyhedral cone constructed from the original
input [9, Theorem 3]. Recall that extreme rays are those not in the conic hull
of any other rays in the object at hand.

Proposition 1. Let P = {x ∈ Rn | Ax = b, Bx ≤ d} be a pointed polyhedron.
The pointed cone

CA,B = {(x,y+,y−) ∈ Rn+2mB | Ax = 0, Bx = y+ − y−, y+,y− ≥ 0}

is generated by the set of extreme rays S ∪ T ′, where:

1. The set S := {(g,y+,y−) | g ∈ C(A,B), y+i = max{(Bg)i, 0}, y−i =
max{−(Bg)i, 0}} gives the circuits of P .

2. The set T ′ ⊆ T := {(0,y+,y−) | y+i = y−i = 1 for some i ≤ mB , y
+
j =

y−j = 0 for j 6= i} has size at most mB.

Informally, all circuits of P can be found as extreme rays of CA,B : a projec-
tion of a vector in the set S onto its first n components gives the corresponding
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circuit g. The ‘non-circuits’ in the set T are trivial to identify, and the cor-
responding projection just returns 0. Note further that the length of a bit
encoding of CA,B is (in the order of) at most twice the bit encoding length of
P . This implies that one can efficiently optimize linear objective functions over
the set of (one-normed) circuits. Further, this allows the efficient computation
of a conformal sum.

1.3. Related Work

Apart from the directly related papers mentioned in the previous subsection,
there is vast literature revolving around pivoting rules for circuit augmentation
algorithms, and circuits of linear programs in general. Without any pretense
of being comprehensive, let us point to a couple of seminal works (below) and
refer to [9] with respect to circuits, and to [7] for circuit augmentation and the
references therein for a more extensive treatment.

The idea of performing augmenting steps in the direction of circuits instead
of only edges during an execution of the simplex algorithm goes back at least to
Bland’s thesis [10] and is explored in detail in [3] and implemented, for example,
in [11]. The notion of a circuit itself in turn was conceived only slightly before
that by Rockafellar [12], and quite fruitfully [13, 14, 15] adapted to the integral
case by Graver [16].

1.4. Outline

Our main contribution is a proof of the inapproximability of the computation
of a dd-step within a factor of O(n1−ε), even when restricted to special classes
of polyhedra. We begin by connecting to and generalizing previous results in
the literature, in Sections 2 and 3. In Section 4, we prove our main result. In
Section 5, we conclude with some open questions.

2. Efficiency of OCNP for LPs with unique optima

We begin by discussing the OCNP problem. De Loera et al. [7] showed
that OCNP is NP-hard, and this implies that computing an optimal dd-step is
NP-hard. (We call an optimization problem NP-hard if a corresponding decision
version—is it possible to meet or exceed a given objective function value?—is
NP-hard.) Recall the discussion in Section 1.2.

The proof in [7] is based on the underlying LP having multiple optima.
While showing the claim under this assumption clearly is sufficient, note that
for a given polyhedron P , the set Cmulti ⊂ Rn of c for which there exist multiple
optima has volume 0 in Rn. Informally, it is enough to slightly perturb the
objective function to create a unique optimum. We now show that this hardness
does not hold if the underlying LP has a unique optimum.

Lemma 1. Let min{cTx : x ∈ P} be an LP over a polyhedron P with a unique
optimum x∗ (that may not be known), and let x0 ∈ P . In polynomial time, it
can be verified whether x∗ − x0 is a circuit direction.
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Proof. Generally, LPs are solvable in polynomial time. As the LP at hand has a
unique optimum x∗, this x∗ can be found in polynomial time. Let d = x∗−x0.
If d = 0, there is nothing to prove: x0 itself already is optimal and we were able
to verify so efficiently. Thus d 6= 0 in the following.

Recall that the circuit directions of a polyhedron P appear as a subset S
of the extreme rays of a polyhedral cone CA,B , as in Proposition 1 [9]. We
construct dS := (d,y+,y−), where y±i = max{±(Bd)i, 0} as in the definition
of S. The construction of dS is efficient: d is copied over and y± is derived from
a matrix-vector product on the original input and component-wise comparisons.

Note that dS ∈ CA,B , as x∗,x0 ∈ P , and that dS /∈ T (as d 6= 0). Thus,
if dS is an extreme ray of CA,B , it can only be a member of S, which would
imply that d is a circuit. A check whether a given dS ∈ CA,B is an extreme
ray is possible in polynomial time: first, identify the set of active constraints
of dS with respect to CA,B , i.e., check which constraints in the formulation
of CA,B given in Proposition 1 are satisfied with equality, and construct the
associated row submatrix of all active constraints; then perform a rank check
for this submatrix – if its rank is precisely (n + 2mB) − 1, then dS lies in a
one-dimensional face of CA,B , i.e., in an extreme ray. These steps are possible
in polynomial time because the bit encoding length of CA,B is at most twice the
bit encoding length of P .

Summing up, x∗ can be found efficiently, dS can be constructed efficiently,
and dS is an extreme ray of CA,B if and only if x∗ − x0 is a circuit direction,
and the required check is efficient, too. This proves the claim.

As an immediate consequence, we obtain the following theorem.

Theorem 3. OCNP is solvable in polynomial time for LPs with a unique opti-
mum.

Because the set of objective functions for which there exist multiple optima
for a given polyhedron has volume 0, Theorem 3 tells us that OCNP “almost
always” can be decided efficiently.

3. n-Approximability of dd-SP

Next, we show that an efficient approximation of dd-SP with an error equiv-
alent to the dimension of the underlying polyhedron is possible.

Lemma 2. Let P = {x ∈ Rn | Ax = b, Bx ≤ d}, let c ∈ Rn and x0 ∈ P , and
consider the LP min{cTx : x ∈ P}. Then an (n− rank(A))-approximation of a
c-deepest-descent circuit step in P from x0 can be computed in polynomial time.

Proof. Let y be a c-deepest-descent step y in P from x0 and let x∗ be an
optimum of min{cTx : x ∈ P}. LPs generally are polynomial-time solvable, so
an optimal x∗ can be computed efficiently.

The vector x∗ − x0 can be written as a so-called conformal sum x∗ − x0 =∑n′

i=1 αigi, where n′ ≤ n, αi > 0 and gi is a circuit of P for all i ≤ n′, and all
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the circuits gi are sign-compatible with each other (and with x∗ − x0) [16, 17].
In fact, n′ ≤ n− rank(A), as a lifting of x∗ − x0 lies in a cone of dimension at
most n− rank(A) whose extreme rays correspond to sign-compatible circuits to
it [9, Theorem 6 and paragraphs after]. Such a conformal sum can be computed
in polynomial time, see, e.g., Algorithm 4 in [9].

Next, note that cTy ≥ cT (x∗ − x0) =
∑n′

i=1 cT (αigi). (Recall that cTy
is negative, as LP is a minimization problem.) Thus, at least one of the αigi
satisfies cT (αigi) ≤ 1

n′ c
T (x∗ − x0) ≤ 1

n′ c
Ty. For a given conformal sum, it is

efficient to find an αigi with smallest value cT (αigi).
By sign-compatibility of the gi, for any index set I ⊂ {1, . . . , n′}, x0 +∑
i∈I αigi lies in P . In particular, this holds for |I| = 1: each of the gi allows

for a (maximal-length) circuit step βigi from x0 that stays in P , and where
βi ≥ αi. Note cT (βigi) ≤ cT (αigi)

For a given gi, it is efficient to compute the maximal βi such that x0+βigi ∈
P : each facet of the polyhedron provides an upper bound on βi and one picks
the smallest from them. Thus a βigi with cT (βigi) ≤ 1

n′ c
Ty can be computed

in polynomial time. This proves the claim.

As an immediate consequence, we obtain the following corollary.

Theorem 1. dd-SP can be efficiently approximated within a factor of n.

4. O(n1−ε)-Inapproximability of dd-SP

The efficiency of OCNP for LPs with a unique optimum (Section 2) is one
of the reasons for our interest in a proof for the inapproximability (and implied
NP-hardness) of dd-SP that does not rely on this restriction. In Section 3, we
saw that there is an efficient n-approximation. In this section, we show that
this is essentially the best one can expect.

We will provide a proof for the claimed inapproximability of dd-SP that
holds even when restricted to special classes of polyhedra. We call a polyhedron
P = {x ∈ Rn | Ax = b, Bx ≤ d} with totally unimodular constraint matrices
A and B and integral right-hand sides a TU-polyhedron.

To this end, we will perform a reduction from the following problem.

Input: Directed graph G = (V,E, c) with arc costs c ∈ Q|E|
Find: Directed cycle of maximum cost

Directed Weighted Longest Cycle Problem (DWLCP)

DWLCP is a generalization of the Directed (Unweighted) Longest Cycle
Problem (DLCP), where the number of arcs of a cycle is counted, i.e., cij = 1
for all (i, j) ∈ E. Note that |V | is the largest possible cost of a simple cycle for
any instance of DLCP. For a graph G = (V,E, c), DLCP cannot be polynomial-
time approximated within |V |1−ε for any ε > 0, unless P = NP [18]. This
hardness transfers immediately to DWLCP: the cost cx = cTx of a longest
cycle x cannot be polynomial-time approximated within |cx|1−ε for any ε > 0.
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Through a reduction from DWLCP, we will prove that a dd-step y also
cannot be polynomial-time approximated within |cy|1−ε for any ε > 0. In our
construction, we will guarantee that the underlying LP has a unique solution
(and, even stronger, that this fact is known), which allows us to obtain inap-
proximability and hardness even for such LPs. To this end, we begin with the
polynomial construction of an instance of DWLCP from DWLP where all cycles
have different costs while retaining the original “hierarchy” of costs. We denote
the length of a bit encoding of a weighted graph G as IG.

Lemma 3. Let G = (V,E) be a directed graph. It is possible to construct a set
of arc costs c ∈ Q|E| in polynomial time such that: all cycles in G′ = (V,E, c)
have different cost, the cost of a cycle is at least its number of arcs, and the cost
of a cycle exceeds the number of arcs by strictly less than one. Further, the bit
encoding length of G′ is polynomial in the bit encoding length of G.

Proof. Let G = (V,E) be an unweighted directed graph. Let n = |V | and
m = |E|. First, we endow G with weights to obtain the weighted graph G′ =
(V,E, c′), where c′ij = 1 for all (i, j) ∈ E. In this graph, the cost of a cycle is
measured through the number of arcs. Cycles with the same number of arcs
have the same cost. To simplify notation, we will refer to a cycle interchangeably
either as a subset of E or as a 0/1-vector x with components 1 precisely for
the arcs on the cycle (a unit flow along the cycle); in particular, for two cycles
C1, C2 ⊆ E represented by vectors x1,x2, by x1\x2 we mean the arc set C1\C2.
Note that IG′ is polynomial in IG: for each arc, only a (constant-size/single-bit)
encoding of the number 1 is needed.

We will prove the claim through a simple perturbation on c′ to resolve any
ties between cycles. The new, perturbed costs are called c. We are going to
show that the perturbation is efficient and changes IG′ only polynomially.

Let c = c′ + δ, where δ = (δ1, . . . , δm)T and δi = 2−i. Informally δ1 = 1
2 ,

δ2 = 1
4 , δ3 = 1

8 , and so on. Each δi can be encoded in at most m + 1 bits, due
to being the inverses of powers of 2. Thus, each ci = c′i + δi can be encoded in
at most m+ 2 digits and IG′ ≤ (m+ 2)IG. As IG ≥ m, the change in encoding
length is polynomial. Further, c can be constructed in polynomial time.

It remains to prove that all cycles in G′ are of different cost with respect
to c and that the cost of cycles has increased by less than one. The latter is
immediately clear from

∑m
i=1 δi < 1. Note that the number of arcs of a cycle

is c′Tx and the cost with respect to c is cTx. Let x1, x2 be two cycles and
assume c′Tx1 > c′Tx2, which in particular implies c′Tx1 ≥ c′Tx2 + 1. As
cTx2 < c′Tx2 +

∑m
i=1 δi and

∑m
i=1 δi < 1, we have cTx1 ≥ c′Tx1 > cTx2.

Finally, consider two cycles x1 6= x2 with c′Tx1 = c′Tx2. The cycles have
the same number of arcs, so x1\x2 6= ∅ and x2\x1 6= ∅. Let index k be smallest
among all arcs in x1\x2, and let l be smallest among all arcs used in x2\x1.
Without loss of generality, assume k < l. Note δk >

∑m
i=k+1 δi. Thus cTx1 −

cTx2 ≥ δk − (
∑m
i=k+1 δi) > 0, i.e., cTx1 > cTx2. This proves the claim.

Remark 1. It is natural to ask whether it is necessary to introduce numbers of
exponential size into c in the Lemma above. In other words, does every integer
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vector c which preserves exactly one optimum of c′ and does not introduce any
new optima have some entry of order 2n? This is open, but observe that if we
require something stronger, the answer is “yes.”

We show that every integer c which breaks all ties between cycles of the same
length must have exponential entries. Clearly the number of cycles of length
n can be Ω(2n). Denote cmax = ‖c‖∞. In order to get a distinct value cTx
for every cycle x of length n, cmax ∈ Ω(2n), as otherwise there are not enough
distinct values cTx since clearly 0 ≤ cTx ≤ n · cmax.

We are now ready to prove our main claim.

Theorem 2. Let P = {x ∈ Rn | Ax = b, Bx ≤ d} with A,B ∈ Rm×n, let
c ∈ Rn and x0 ∈ P , and consider the LP min{cTx : x ∈ P}. A deepest-descent
circuit step y in P from x0 cannot be approximated within O(n1−ε) for any
ε > 0 in polynomial time, unless P = NP. The hardness holds for LPs with
unique optima, over 0/1-polytopes, TU-polyhedra, or any combination thereof.

Proof. We will prove the claim through a reduction from the Directed Longest
Cycle Problem (DLCP), for which it was shown in [18] that no |V |1−ε-approximation
can be computed for any ε > 0 in polynomial time, unless P = NP, even in
graphs of constant maximum out-degree ∆+. By Lemma 3, for a given graph
G = (V,E) it is possible to efficiently construct a weighted graph G′ = (V,E, c)
in which all cycles have a different cost and their cost lies strictly between the
number of arcs of the cycle and that number plus one. The graph G′ can be
used as input for a Directed Weighted Longest Cycle Problem (DWLCP) and
also has constant maximum out-degree ∆+. If there was an efficient |V |1−ε-
approximation for DWLCP on G′, then there would be an efficient |V |1−ε-
approximation for DLCP on G. We will show that if there exists an algo-
rithm to efficiently O(n1−ε)-approximate dd-SP, then there exists an efficient
|V |1−ε-approximation for DWLCP, and in turn DLCP – a contradiction unless
P = NP . Further, the move from G to G′ will allow us to show that we retain
this hardness even for LPs with unique optima.

Let G = (V,E) be a directed graph underlying an instance of DLCP and
G′ = (V,E, c) the corresponding weighted directed graph with perturbed costs
constructed as in Lemma 3, in turn an instance of DWLCP. Next, specify ca-
pacities uij = 1 for each (i, j) ∈ E to obtain a network G′′ = (V,E, c,u). The
costs cij remain unchanged for all (i, j) ∈ E, i.e., they are the same as in G′.

This input can be used to specify a circulation problem. Recall that a
circulation problem is a special case of a minimum-cost-flow problem and has
a natural representation as an LP. Using the negative costs −cij (recall the cij
are positive), we obtain

min − cTx

s.t. Ax = 0

0 ≤ x ≤ 1,

(LP)

where A is the node-arc incidence matrix of G′, and 0 and 1 are vectors of all-
zeros and all-ones of appropriate dimensions, respectively. The all-ones vector
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gives the capacity constraints. Let P refer to the polyhedron forming the feasible
region of (LP). As node-arc incidence matrices are totally unimodular, and as
the right-hand side vectors are the integral 0 and 1, P is a 0/1-polytope in Rn,
with n = |E|. There always exists an optimal vertex to an LP on a bounded
polytope, so an optimal objective function value for (LP) is defined through
a selection of arcs forming a circulation in G′. By the same argument as in
Lemma 3, any subset of arcs sums up to a different total cost. Thus (LP) has
a unique optimal solution.

Next, consider a trivial feasible flow x0 defined by x0ij = 0 for each (i, j) ∈ E.
We are going to show that an efficient approximation of the dd-step in P from
x0 would imply an efficient approximation of DLCP.

Recall that the set of circuits of a node-arc incidence matrix A corresponds
precisely to the simple undirected cycles underlying the network; a corresponding
vector g ∈ {−1, 0, 1} would have entry 1 for each directed arc used in the
‘correct’ direction and −1 for each directed arc used in the ‘wrong’, opposite
direction [19, 20, 21]. The same holds for the circuits of P = {x ∈ Rn | Ax =
0,0 ≤ x ≤ 1}, as the inequality constraints 0 ≤ x ≤ 1 are represented through
a constraint matrix B =

(
I
−I
)
, where I is an identity matrix; recall Definition 1.

Since we have x0ij = 0 and uij = 1 for each (i, j) ∈ E, the step length α
can always be set to 1 for any valid circuit, i.e., if there exists α > 0 with
x0 + αg ∈ P for a circuit g, then x0 + g ∈ P and x0 + βg 6∈ P for any β > 1.
Further, any circuit g with x0 + g ∈ P can only have 0, 1 entries, as x0ij = 0 for
each (i, j) ∈ E. This means that edges can only be used in the correct direction.
Therefore, an exact dd-step y for (LP) from x0 is in one-to-one correspondence
to a simple directed cycle of maximum length (as (LP) minimizes over negative
arc costs).

Recall that by the hardness result in [18], we may assume that the maxi-
mum out-degree of G′ is some fixed constant ∆+, so in particular |E| ≤ ∆+|V |.
Assume we had an algorithm that for a given ε > 0 finds an (n/∆+)1−ε-
approximate dd-step yε; let y refer to an exact dd-step, and let the associated
dd-improvements be denoted as cyε and cy, respectively. Then we have that
cy
cyε
≤ (n/∆+)1−ε = (|E|/∆+)1−ε ≤ |V |1−ε. We know that cy = −cTy = −cTg

and cyε = −cTyε = −cT (αgε) for some α ∈ (0, 1] and some circuits g and
gε. By the above, we may assume that α = 1, so cyε = −cT (gε). Since
−cT g
−cT gε

=
cy
cyε
≤ |V |1−ε, gε corresponds to a cycle in G′′ that approximates the

longest cycle within a factor of |V |1−ε (since by construction of the cost vector
c, a cycle has maximum cost if and only if it has maximum length). This would
imply a polynomial-time |V |1−ε-approximation algorithm for general DLCP.

The polytope we used in this construction is a 0/1-polytope with a TU-
matrix, and the LP at hand has a unique optimum and this fact is known
apriori; see above. This shows that the hardness of approximation holds even
for LPs adhering to all these restrictions. This proves the claim.

As an immediate consequence, we obtain NP-hardness of dd-SP from this
inapproximability result.
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Theorem 4. dd-SP is NP-hard, even for LPs over 0/1-polytopes defined by a
TU matrix and with a unique optimum.

A direct proof of the NP-hardness of dd-SP would be possible through a
reduction from Hamiltonian cycle instead of DWLCP, following a similar line of
arguments as in the proof of Theorem 2. A perturbation of the arc costs would
not be necessary, and neither would be the careful connection of |V | and |E|
through the inapproximability of DWLCP for graphs with fixed maximum out-
degree. However, to obtain the final part of Theorem 4 – that hardness persists
even for LPs with unique optima – one would have to reduce from a variant of
Hamiltonian cycle where the underlying graph has a unique circulation with a
maximal number of arcs and one has the apriori information that there exists
such a circulation. (This property is what would guarantee the existence of a
unique optimum in (LP), and apriori knowledge thereof.) To the best of the
authors’ knowledge, hardness of this variant has not been studied yet in the
literature.

5. Open Problems

We conclude with two open problems related to our results. First, Theo-
rem 1 shows how to n-approximate dd-SP. However, for the purposes of solv-
ing an LP using dd-steps, this is irrelevant, as the first step of the algorithm
is to completely solve the LP itself. Is there a combinatorial n-approximation
of dd-SP, i.e., an algorithm, which does not use the polynomial solvability of
an LP as a black-box? Actually, this would yield a new algorithm for linear
programming, so to make the question well-posed, we ask whether there is a
combinatorial n-approximation of dd-SP for some non-trivial class of constraint
matrices? Secondly, we have shown strong inapproximability of dd-SP. What
are (natural) classes of LP instances for which dd-SP admits, e.g., log(n)- or
even c-approximation, for some constant c ∈ R+? Potential candidate classes
include uni– or bimodular LPs, and more generally, LPs with minors of bounded
absolute value. Also, structurally restricted classes of LPs might be of interest.
In particular, for n-fold LPs, which have a special block-structure, an approxi-
mation ratio for dd-SP polynomially depending only on the parameters (that
is, block size) would be desirable, and would break below the barrier proved in
this paper.
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