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the Newton linearized viscoelastic problem, where adaptive grids are auto- KEYWORDS

matically generated by the least-squares solutions. We use a residual-type Least-squares; adaptive
a-posteriori error estimator to adjust weights in the LS functional and com- mesh; a-posteriori error;
pare the convergence behaviour of adaptive meshes generated using dif- viscoelastic fluid; 4-to-1

ferent grading functions. Numerical results demonstrate that the adaptive planar contraction

LS mthod §hows at !east the.flrst—order convergence rate when equal- 2010 MATHEMATICS
order linear interpolation functions are used for all variables, which agrees SUBJECT

with the theoretical estimate. In addition, adaptive grids generated using  ¢| AsSIFICATIONS
the velocity outperform those based on the a-posteriori error estimator, 65N50; 76M10; 65N30
yielding better numerical results.

1. Introduction

The objective of this study is to develop an adaptive least-squares (LS) finite element method for
Giesekus viscoelastic flow problems. The Giesekus model gained prominence because the model
reproduces numerous rheology characteristics of polymer solutions and other liquids [16]. There have
been many numerical algorithms proposed to simulate viscoelastic flow problems [1,3-5,9,10,18].
However, the numerical approximation of viscoelastic flows is still limited and known to be challeng-
ing with many issues such as improper boundary conditions, hyperbolic nature of the equations, loss
of convergence for high values of the Weissenberg number [5,8] and so on. The 4-to-1 contraction
flow problem is a well-known benchmark problem for the study of viscoelastic flow behaviour, where
the flow path suddenly changes its geometry, especially in two-dimensional systems [17]. Additional
difficulties arise in solving such flow problems; for example, geometric discontinuities cause corner
singularities, therefore, a refined mesh should be used near the reentrance corner.

To resolve these problems, LS methods with adaptive meshes have been extensively used as pow-
erful tools for more efficient and accurate results [3,11-13]. For the formulation of weighted LS
methods, the extra-stress tensor for viscoelastic fluid is split into its elastic and viscous components
and the L?-norm of the residual of the continuity equation is multiplied by an appropriately adjusted
weight [5,9,10]. In our previous research [5,9], LS methods with nonlinear weights (NWLS) are used
for viscoelastic fluid flows at low Weissenberg number past a 4-to-1 contraction, and in [10,15] adap-
tive weights for mass conservation are considered based on an LS functional. In [6], an a-posteriori
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error estimate is provided by a weighted LS functional and used to guide adaptive refinements. In [11],
an a-posteriori error estimator is presented for a linear problem in the general setting and used for
adaptive mesh refinements in numerical tests. Cai and Westphal present an adaptive mixed LS finite
element method in [3] to analyse steady Oldroyd-type viscoelastic fluids, where a nonlinear LS func-
tional is used for adaptive mesh refinement. Their algorithms select elements to be refined for optimal
computational efficiency, considering both error reduction and computational cost. The adaptive LS
approach in [12] uses a grading function of velocity magnitude to refine the mesh adaptively for Car-
reau generalized Newtonian fluid flows. In [13], adaptive LS approaches generate optimally graded
grids to redistribute the mesh adaptively for the Stokes equation based on the stress and vorticity
formulation. The results indicate, using the hybrid adaptive mesh that combines graded and regu-
lar grids, optimal convergence rate in all variables is obtained and the grids effects can be reduced
[13]. In [10], the LS method with two stabilized weights is applied to a flow through the slot chan-
nel. The a-posteriori error estimator serves as an indicator to adjust the weight for the continuity
equation in the LS functional. This approach improves mass conservation and yields convergence at
high Weissenberg numbers when low order basis functions are used.

On the basis of the aforementioned studies, in this study, we develop an adaptive LS (ALS) method
for viscoelastic fluid flows governed by the Giesekus model. The LS approach in [10] is consid-
ered here instead of the NWLS method [5,9] due to its relative simplicity, with optimally chosen
weights by numerical tests. We consider the coercivity and continuity properties for the LS functional,
from which an error estimate for the Newton linearized problem follows by the similar argument in
[3,10]. The error estimate is verified through convergence tests for a non-physical problem with a
known solution, using properly adjusted weights for the LS functional and grading functions for mesh
refinement. The proposed method is also applied to simulate the 4-to-1 contraction problem and to
investigate the physical parameter effects. Low order basis functions and adaptive grids in high gradi-
ent regions are considered to improve solution accuracy and reduce the size of the linearized system
of equations. We employ the adaptive mesh algorithm in [12] using grading functions generated by
the velocity and an a-posteriori error estimator, respectively, to capture high gradient regions in the
flow domain and compare numerical results by two different grading functions.

The organization of this paper is as follows. Section 2 introduces notation and the model equations.
Section 3 presents the coercivity and continuity estimates of the LS functional. Section 4 provides the
error estimate of the LS approximations, and describes the adaptive mesh approach and numerical
implementation. Section 5 provides numerical results for numerical examples and finally conclusions
follow in Section 6.

2. Notation and model equations

The governing equations are solved on a square test domain and a 4-to-1 contraction domain, with
boundaries labelled as shown in Figure 1. Let 2 be a bounded and connected domain in R? with d = 2
and Lipschitzboundary I', where I' = TMjp U Ty U Toue U Csym. The Cin, Nyalls Tout and [sym are the
inlet, wall, outlet and symmetric boundaries, respectively. Consider the steady-state, incompressible
flow governed by

pu-Vu) - V.14 Vp=f inQ, (1)

V.-u=0 inQ, 2)

where p is the density, f is the body force vector, the unknowns u and 7 are the velocity and the extra-
stress tensor, respectively, and p is the scalar pressure. We assume that the pressure p is fixed to py at

the point xg on I, i.e. p(xg) = po, in order to ensure the uniqueness of pressure. The extra-stress is
written as a superposition of the polymeric and viscous stresses [5], i.e.

r:‘rp+rs.
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Figure 1. Computational domains: (a) square test domain, (b) 4-to-1 contraction domain.
The viscous stress is Newtonian, i.e.
75 = 21D (w), (3)

where 7; is a constant viscosity and D(u) = 0.5(Vu + Vu?) is the standard strain rate tensor. For
viscoelastic flows represented by the Giesekus model, the polymer contribution to the stress obeys
the following constitutive equation [5]:

oA
T+ E(TP ~Tp) + A(u- VT, — A(Vu, 7p)) = 2n,D(u), (4)

where
A(Vu,1p) = (Vo) 7, + 7,V

In (4), A is a relaxation time which is a measure of the time taken for the stress to relax. 5, is the
polymeric contribution to the viscosity, and « is called the mobility factor. The Giesekus model
with o > 0 predicts a shear-thinning viscosity and non-vanishing first and second normal stress
differences in viscometric flows, a finite extensional viscosity for all values of the extensional rate,
and stress-overshoot in start-up flows in [7]. With « > 0, shear-thinning is always observed. The
a € [0, 1] factor is required as discussed in [7] and setting o« = 0 reduces the model to the Oldroyd-B
model.

Collecting (1)-(4) and nondimensionalizing the equations, we have the Giesekus flow model
written as

Re(u-Vu) - V.1, -V.-1,+Vp=1f inQ, (5)
V.-u=0 ing, (6)
T3 —26D(u) =0 in €, (7)
o We
Ty + We(u-Vt, — A(Vu, 7)) + m(rl, “Tp)
—2(1—B)D(w) =0 inQ, 8)

where Re is the Reynolds number, Re = LUp/n9, in which g = s + 1, is the zero-shear-rate vis-
cosity, L and U are the characteristic length and velocity, respectively. 8 = n,/no € [0, 1] is the ratio
of solvent viscosity to the total zero-shear-rate viscosity. B is set to 1/9 in the present work as typically
used in the literature. The Weissenberg number We > 0 is the concepts of elasticity, We = AU/L, and
in the case of We = 0, the model reduces to the Newtonian model, the Navier-Stokes equations.
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To simplify the formulation of LS method and its presentation, a homogeneous boundary condi-
tion is assumed for u,u =0 on I' \ Coym- On the axis of symmetry [sym, we assume the standard
symmetric boundary conditions: u-n =0 and 7 : n ® t = 0, where n, t are outward unit normal
and tangential vectors, respectively, and w = 7 — pI is the Cauchy stress tensor, where I is the iden-
tity matrix. Problems with nonhomogeneous boundary conditions on I'i, and gy will be considered
for numerical tests of 4-to-1 contraction flows, which can be formulated in an analogous manner.

3. Least squares functional

Let H°(£2), s > 0, be the Sobolev spaces with the standard associated inner products (-, -)s and their
respective norms || - ||s. For s = 0, HS(R2) coincides with L2(£2). The function spaces used in our
formulations are defined as

Vi={v|ve (H(@),v=00nT\Tymv-n=0on gy
Q:=H"(Q),
Toi={olo e H' @)% ¢ =0}, T, =%,

and let the product space ® := V x Q x ¥ x ).

To define the least squares functional, we first consider Newton linearization of the nonlinear flow
equations (5)-(8) about known approximations u, 7, of the velocity and the polymeric stress tensor,
respectively. Using the following notation:

f1 := Re(ug - Vuy) + f, 9)
B(u,7p) := We (u- V1, — A(Vug, 7)) — A(Vu, 7)) (10)
G(tp) :== (aWe/(1 — B)) (rpg Tyt T TPZ)’ (11)
fr:= We (u - V1, — A(Vug, 7p,)) + (@We/(1 — B))(Tp, - Tp,), (12)
the linearized system can be written as
Re(ug - Vu+u-Vu) = V-7, - V.7,+Vp=1f1in Q, (13)
V-u=0in £, (14)
T —2BD(u) =01in £, (15)
7y + We (ug - V1) + B(w, ) + G(1p) — 2(1 — B)D(u) = £ in Q. (16)

We now define the least-squares (LS) functional for (13)-(16) by
J(U;F) = |Re(ug - Vutu-Vug) = V-7~ V-7, + Vp — i |}
+ K|V -ulg+ llzs — 28DW)|3
+ W Ty + We (ug - Vop) + B(w, 1) + G(p) — 2(1 — ADW) — K[ (17)

VYU = (u,p, T:, Tp) € O, and the LS minimization problem for the solution of system is given by:
U € & such that

J(U; F) = inf J(V;F). (18)
Ved
The weight W > 0 is introduced to stabilize the LS functional at a high We and « in the constitutive
equation. We consider the weight given by
W= (14 We+ sa)z, (19)

where —1 < s < 1for We>0and0 < « < 1inthe Giesekus model. In [4,5,9], appropriately designed
weights involving We are employed for the NWLS and Galerkin least squares methods to solve
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Oldroyd-B and Giesekus models at high We. The weight W in (19), which is in a simpler form than
the nonlinear weight of the NWLS method [5], will be considered in the current study. The Giesekus
model with 0 < o <1 is considered here because & > 0 always leads to shear-thinning. The « fac-
tor predicts a shear-thinning viscosity, which decreases with increasing shear rate. To appropriately
adjust constants s in the weight value W for reflecting o, we consider testing with various s = —1, 0,
and 1. In this work, we use convergence rates of the a-posteriori error estimate for the LS solutions as
an indicator to adjust the constant s. Several different parameter values for We and « in the Giesekus
model will be also considered for numerical tests in Section 5.

The positive constant K = 10™, where m ranges from 0 to 10, is chosen for the continuity equations
based on [9,12], where LS solutions are improved by the sufficiently weighted mass conservation term.
In this work, we consider an a-posteriori error estimate for the first-order system as an indicator to
adjust the weight K, as in [12,15].

Denote two norms on ® as

1/2
101l = (il + o[ + 123 + [ 7513 20)
and
2 2 2 2 2\1/2
11011 = (R il + o[} + 12013 + 7] 21)

YU = (u,p, T, rp) [SEOR

We derived coercivity and continuity estimates for a homogeneous functional designed for the
linear Phan-Thien-Tanner (PTT) viscoelastic fluid model in [10]. Replacing the second term of (4)
by %t?‘(‘[p)‘[p is the linear PTT model. Coercivity and continuity of (17) can be shown by a similar

approach, therefore, we present the next theorem without proof. See [10] for details.

Theorem 3.1: Suppose the known approximations ug, T, are uniformly bounded satisfying V - u, =
0 and

M := max{lluglloe, [IVelloos 1Tpylloos IVTp,llec} < 00. (22)

Then, for any U= (u,p,Ts,Tp) € O, there are positive constants, co and ci, which depend on
Q, B, We, o, and M, such that

co 101117 < J(U;0) < ¢ I1U]1I3, (23)

if M is sufficiently small.

4. Adaptive finite element approximation

For the finite element approximation, we assume that the domain €2 is a polygon and that 7}, is a
collection of finite elements such that Q = UTeTh T with h = max{diam(T) : T € 7}. Assume that
the triangulation 7}, is shape-regular and satisfies the assumption for inverse estimates [9]. The grid
size is defined as h = 24/A / /N, where A is the area of the domain and N is the number of elements
in 7. Let P,(T) denote the space of polynomials of degree less than or equal to r on element T. Define
finite element spaces for the approximate of (u, p, 75, T,) by

V=" v e VN (CO @)% V! |1 € Pyt (T)? VT € T},
Q'=1{q"14"€Qn ), ¢" It € PL((T) VT € T},

Bl ={o" 0" € 2N (@) o" |1 € PLi(DP? VT € Ty},
2l ={o" |o" €3N (@) o" |1 € Pri(T)? VT € T).
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Let " := V! x Q" x I x E;} be finite element subspaces of ® with the following approximation
properties. Let Sh={ueCQ):ulr e P,11(T) VT € 7j} admit the property
inf Hu - uhH < " [[ull sy Yu € H™ (), (24)
uhesh 1

form<r+1landl=0, 1.
Then, the discrete least squares problem for the linearized Giesekus viscoelastic fluid is to choose
U" € &' such that

JU'E) = inf J(V5B), (25)
Vhedh
where U" = (uh,ph, rﬁ‘, rﬁ) and V# = (vh,qh,aﬁ‘,a;‘).
Derivation of the following a-priori error estimate for the solution of (25) is standard and
straightforward using Theorem 3.1 and the approximation property (24).
Theorem 4.1: Consider approximating the solution to (13)-(16) through the discrete minimiza-
tion problem (25) under the assumptions in (22). Assume that U € ® N (H™(Q))? x H™T(Q) x
(H™L(9))2%2 x (H™1(2))2%2 is the solution to (18) and M is small, then the solution U" € @ to
(25) satisfies
l[o=0*|| = n™ (el + 1% s + Dol s + Re i) (26)
form <r+1

Proof: The coercivity and continuity properties of (17) in Theorem 3.1 yield

c
|fo* = vl] = int, & []v* =],
Vhedh Co 1
which implies the error estimate (26) using (24). | |

Note that the use of continuous piecewise linear polynomials for all unknowns yields the error
estimates

[[o -0 < e (st + Jepll, + Il + Reuil) 27)

The theoretical a-priori error bound is only O(h) in the linearized functional norm J 1240 (17), O(h)
in the L?-norm for 74, T, and p, and O(h) in the H'-norm for u.

The solution of the nonlinear systems in (5)-(8) is approximated by a sequence of the lin-
earized system (13)-(16). The LS approach to the linearized system (13)-(16) provides an iterative
procedure as follows: for a chosen initial approximation Uf)‘ seek approximations UZ’ 11 € " for
£=0, 1, 2, 3, ...satisfying

Je(UlE) = inf Jo (V' F), (28)
Vhedh
where the LS functional J;(U; F) is defined as
Je(UsE) = |Re(ug - Vu+u-Vup) = V-7, — V-1, + Vp — i
+ K[V -ull§+ ts — 28D}

+ W Ty + We(ug - VT,) + B, ) + G(zp) — 2(1 — /D) — L[, (29)

and fy, B(u, 7p), G(1p), and f; are given as (9)-(12).
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We now consider the following nonlinear LS functional of the residual of the system (5)-(8):

g(U") = |[Re(u - Vu") = V- 7 — V. 7! 4+ Vp — £

+ IV -u" |2 + Iz - 28DW") |3

We
(la_ ;) (TZ : 1’;) —2(1- /D2 (30)

+lTh + We" - VT — A(VU", 7)) +

The nonlinear LS functional norm g'/2 is an a-posteriori error for the system of governing equations,
which will be used as an indicator to adjust the weight K in numerical tests. When the lower basis
functions are considered to approximate all unknowns, we expect that the error g'/? is in the order of
O(h) if the stopping tolerance for the above iterative process is small enough, and this will be verified
by numerical tests in Section 5. Also the a-posteriori error will be used in a refinement process to
illustrate the convergence of the adaptive method.

Next we consider an adaptive mesh approach for viscoelastic flow problems. In [12], we devel-
oped an adaptively refined algorithm for the generalized Newtonian fluid flows, which adds new
grids in the high gradient region, maintaining the solution accuracy in the low gradient region. This
approach uses a grading function of velocity magnitude to refine the mesh adaptively. The results in
[12] indicate that adaptive meshes generated by the grading function automatically refine local grids
for the generalized Newtonian fluid flows, and the refinement results for various parameter values
are satisfactory. However, in [13], the grid effects are observed in convergence of the LS solutions;
the convergence behaviour is mesh dependent. Multiple triangular grids are used in the LS method
to reduce the grid effects for planar contraction flows [9,13]. The results indicate that, when recir-
culating flows exist in the flow field, directional Delaunay triangular grids are unsuitable for the LS
method. By contrast, for planar flow problems, the longest edges of these triangular grids along the
same direction are more suitable for the LS method, as demonstrated in [13]. Therefore, to capture
the flow region of the Giesekus model in our study, we develop a multi-grid approach based on the
LS method. The mesh is initialized using the adaptive mesh algorithm in [12], by using the grading
function ¢ on elements T of a mesh 7" given by ¢ = | Vq|r, where the scalar function q s calculated

based in the LS solutions. The magnitudes of velocity [u| = ,/u? + u3 and a nonlinear LS functional

1/2

norm g'/? in (30) are considered as the function q (g = |u| and g = g'/?) for the mesh redistribution

function f(¢r) in [12], defined by

AlT|
F@1) = |Tlonas = (91 = 0130) -
where |T|max = max{|T|: VT € T}, A|T| = |TImax — |Tlmin and A¢7r = @71, — OTpin- £ T €T
satisfies f(¢1) < |T|, then T is subdivided.

Then, we modify triangular mesh of the downstream region by aligning the longest edges of these
triangular grids in the same direction downstream. In numerical experiments discussed in the next
section, multiple triangular grids are applied to Giesekus viscoelastic planar contraction flows by
using the LS method.

5. Numerical results

We consider two numerical examples. The first problem is chosen for convergence tests with the
known exact solution in the unit square domain, and the second is a 4-to-1 contraction flow problem.
Due to the symmetry along y = 0, two computation domains are reduced to half. All variables are
approximated by P; polynomials, and the initial u; and 7, for Newton linearization are set to zero
in all computations.
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Figure 2. (a) Initial Mesh D with 32 partitions per unit length. (b) Mesh A after two refinement steps from Mesh D using |u|. (c)
Mesh B after two refinement steps from Mesh D using g'/2.

5.1. Problem 1

Consider the flow in a planar channel on the domain [0, 1] x [0, 1] with the line of symmetry along
y = 0. Let u = (uy, uy) be specified along the boundary except on the axis of symmetry, and 7, be
specified on the inflow boundary where u - n < 0. The pressure p = —1 is set at the point (1, 0), and
upand T Py vanish on the axis of symmetry. The exact solution is chosen as

3141 2 8u1
A e -p) () a-p
u= Pl o p=—h 1= 4 ;
0 8141
a _5)7 0

where 7, represents the analytical solution for the Oldroyd-B model in steady-state shear flow [2].
The source terms in (5) and (8) are chosen appropriately for the exact solution, as shown in [5]. The
modelling parameters are selected as (Re, We, «, ) =(1, 0.2, 0.2, 1/9) and the weight parameter
s = —1is used for the W in (19).

The meshes considered are illustrated in Figure 2. The uniform triangular Mesh D in Figure 2(a) is
the mesh generated using Delaunay triangular grids with 32 partitions per unit length. The adaptive
Meshes A and B in Figures 2(b) and 2(c) are generated using the magnitude of velocity, |ul, and the
nonlinear LS functional norm g'/2, respectively. The stopping criterion for mesh convergence is given
by ||g1/2 1/2||/||N]_H = Njll < 1079, where N; is the number of elements at the jth refinement
step. Flrst, in order to approprlately adjust the weight K = 10 in (17), Mesh D is initially used. We
iterate m, where m ranges from 1 to 10, to investigate convergence of the functional gl/ 2 in (30), as

shown in [10]. The convergence of the iteration scheme with K = 10™ is declared when the relative
12 1/2
= ||gm+1 -

/1 gl/ 2 [, is less than 10~%. We observe that convergence is achieved at m = 6, therefore, the
mass conservation weight K = 10° is used in the LS formulation for all computations in the first
example.

To compare the performance of adaptive meshes, we compute errors of numerical solutions by
different meshes. The adaptive meshes are generated from Mesh D with 8, 16 or 32 partitions per
unit length as initial meshes. Errors by different meshes are presented in Figure 3, where we observe
all meshes result in the consistent rates with the error estimate in Section 4; the rate for the velocity
is optimal, O(h?), in the L?-norm, and the rates for viscous and polymeric stresses, and pressure are
suboptimal, O(h), in the L%-norm. However, the ALS method using Mesh A improves convergence
rates over other two meshes as shown in Figure 3.

norm of residual in the nonlinear functional between two consecutive iterations, §g;
1 /2
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Figure 3. [2 errors of (a) u, (b) 75, (c) 7p, and (d) p by different meshes, Mesh D (°), Mesh A (x), and Mesh B (CJ).

5.2. Problem 2

Consider the Giesekus model in a 4-to-1 contraction domain of an upstream channel that abruptly
narrows to a channel one quarter of the original width with x (the flow direction) for —5 < x < 5,and
the contraction occurring atx = 0. The width of upstream channel is 1; thus the downstream width is
1/4.Letu = (u;, up) and Tp be specified on the inflow boundaries, u = 0 on the wall boundaries, and
up = 0 on the outflow boundary. Pressure p is set to zero at the point where the outflow boundary
meets the symmetry boundary, and u, and 7, _, vanish on the symmetry boundary, which are the
same conditions used in [5,9]. The forcing function f in (5) is set to 0. The model equations (5)-(8)
are simulated with the fixed value for 8, 8 = 1/9, and various other parameter values in the range of
0.1 <Re <10,0.1 <« <1,and 0.1 < We < 1.5, respectively.

The meshes considered are listed in Table 1 and illustrated in Figure 4. Uniform criss-crossed
Mesh X in Figure 4(a) is a mesh generated by using Delaunay triangular grids with 16 partitions per
unit length. Mesh H in Figure 4(b) is an initial mesh generated by aligning the longest edges of these
triangular grids of Mesh X along the same direction of downstream for x € [0.065, 5]. Mesh U in
Figure 4(c) is a uniformly refined mesh of Mesh H. The adaptive mesh shown in Figure 4(d) is a
local refinement of Mesh H, and the longest edges of its triangular grids are aligned in the diagonal
direction downstream of x € [0.065, 5].

5.2.1. Parameter selection for weights on uniform meshes
To study the performance of Newton LS iteration scheme (28), we start with a uniform mesh for
the model with (Re, We, @) =(1, 0.2, 0.2), and s = 0 for the weight W = (1 + We + sa)? in (19).
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Table 1. Meshes considered for (Re, We, «) = (1, 0.2, 0.2).

Mesh Type Na DOF sb
X Uniform criss-crossed mesh 6400 3377 -
H Uniform mesh 6400 3377 -
U Uniform refined mesh 25,600 116,556 2
A Adaptive mesh by |u| 9989 45,983 2
B Adaptive mesh by g'/2 12,932 59,550 2
9N represents the number of elements.
bDegrees of freedom (DOF) is at the final refinement step (S).
0.5 0.5
045 045
04 04F
035F 035 F
> 0.3 > 0.3
0.25 0.25
0.2 0.2
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01 BENA ! ! 4 4T » >
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Figure 4. Description of mesh refinements. (a) Input Mesh X with 16 partitions per unit length is a uniform criss-crossed mesh. (b)
Uniform Mesh H is an initial mesh generated by Mesh X. (c) Mesh U is a uniformly refined mesh of Mesh H. (d) Adaptive mesh is a
locally refined mesh of Mesh H.

First, the weight K = 10" in (17) is chosen by the same way considered for Problem 1 using
Mesh H as the initial mesh. We investigate the convergence of the functional g'/2 in (30) by vary-
ing m. Figure 5 shows Bg,l,,/ ? for different m values ranging from 4 to 10 for the fixed parameters
(Re, We, a)=(1, We, 0.2) and various We, We = 0.2, 0.5, 1 and 1.5. Using the same criterion
described for Problem 1, we observe that convergence is achieved at m = 9, therefore, the mass con-
servation weight K = 10 is used in the LS formulation for all computations for Problem 2. Figure 5
also shows that the number of iteration steps increases with increasing We. This indicates that for
high We flows, the convergence of the iteration is lost and the Jacobian matrix becomes singular, as
demonstrated in [8].
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Figure 5. Nonlinear functional norm 89,1,,/2 in nested iteration for various weights K=10" (4 <m <10) at
(Re, We, o)=(1, We, 0.2) with We = 0.2, 0.5, 1 and 1.5. Here No. of steps represents the number of Newton iterations
for convergence.
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Figure 6. Convergence rates of the LS solutions with W = (1 + We + sa)? fors = —1,0, 1 when (Re, We, a) = (1, 0.2, «) for
01 <a<l.

Next, we study a selection of s for the weight W = (1 + We + sa)?, where the parameter is in the
range of —1 < s < 1. In [10], the weight W with s = 1 is chosen to solve the PTT viscoelastic fluid
flows past a transverse slot. Now, in order to select the optimal parameter, we investigate convergence
rates of the LS solutions with s = —1, 0 and 1 on uniformly refined meshes. Figure 6 presents con-
vergence rates of gl/ 2 at (Re, We, @) =(1, 0.2, o), where & ranges from 0.1 to 1. The figure shows
that the functional gl/ 2 of the LS solution achieves the expected rate, O(h), at the lowest «, 0.1, and
convergence rates decrease with an increase in . The weight W with s = —1 improves the rate of
convergence compared with W with s = 0 and 1. Therefore, we use the coefficient s = —1 in the
weight W for the LS functional (17) in all following experiments.
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Re=1, a=0.2 Re=1, a=0.2

We=0.2 using NWLS We=0.2 using LS
— — ~We=1.0 using NWLS | | 04l ~—— We=1.0usingLs| |

Figure 7. Comparison of horizontal velocities uj (x, 0) alongy = 0 on Mesh U: (a) NWLS and (b) LS.

Next, using the fixed weights W, K chosen above, we compare horizontal velocities by the LS
method and NWLS [5] on uniform Mesh U, respectively. Figure 7(a) and (b) present the horizontal
velocity u; profiles along the axis of symmetry (y = 0) for We = 0.2 and 1. For the value of We = 1,
we observe that the peak in the NWLS solution Figure 7(a) is higher than that of the LS solution
(Figure 7 b). We notice that the peak height of velocity increases for higher values of We, which could
attribute to the existence of corner singularity in a high We fluid. Though there seems to exist an
elasticity effect in the prediction of velocity profile, for a high We fluid, the velocity near the reentrant
corner of the NWLS is more sensitive than that of the LS method. Our results show that using the LS
method, the peak height generated near the corner can be reduced from 0.434 (NWLS) to 0.395 (LS)
as shown in Figure 7(b). Therefore, the LS method reduces the influence of corner singularities in a
high We fluid better than the NWLS method.

5.2.2. Computational grids

We now consider the LS method in (28) using the adaptive mesh approach described in Section 4
and name it the ALS method. Meshes A and B illustrated in Figure 8(a) and (b) are generated
using magnitudes of velocity |u| and the nonlinear LS functional norm g'/2, respectively, with
(Re, We, @) =(1, 0.2, 0.2). Using the same stopping criterion in Section 5.1, we obtain mesh conver-
gence after two mesh refinement steps. These adaptive meshes are highly refined near the downstream
boundary layers, exhibiting a refined region close to the corner. In contrast to the results in [3,12], sys-
tematic mesh refinements near the reentrant corner are necessary for avoiding a substantial increase
in the number of unknown factors. Thus Meshes A and B match the expected mesh refinements in
the corner region. In addition, as shown in Table 1, using Mesh A, the number of elements can be
reduced from 12932 (Mesh B) to 9989 (Mesh A). Thus adaptive Mesh A is more efficient than other
meshes. Further, we present contours of |u| and g'/? on Meshes A and B in Figure 8. Figure 8(c) and
(d) show similar contours of |u|, and as shown in Figure 8(e) and (f), the a-posteriori error gl/ 2 near
the corner can be decreased by using Mesh A. Thus the adaptive Mesh A can reduce the influence of
corner singularities.

We also investigate convergence rates of g/ by the LS method using Mesh U and by the ALS
method using Meshes A and B for various We values. Figure 9 presents convergence rates of g'/2 at
(Re, We, o) = (1, We, 0.2) with We = 0.2, 0.5, 1 and 1.5. The figure shows that the rates approach to
O(h) for Meshes A and B, but only O(h'/?) for Mesh U, and the expected optimal convergence rates
in g'/2 of O(h) can be restored with adaptive meshes. The ALS using Mesh A improves the rate of
convergence compared with the ALS using Mesh B and the LS using Mesh U. Moreover, the average
convergence rate of g'/2 for the ALS using Mesh A is close to 1.5, which is much higher than the
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() (f)

Figure 8. Convergent adaptive meshes in two iterations, plots of velocity magnitude and g'/2 for (Re, We, &) = (1, 0.2, 0.2). (a)

Me;sh A, (b) Mesh B, (c) Magnitude of velocity on Mesh A, (d) Magnitude of velocity on Mesh B, (e) Plot of g'/2 on Mesh A, () Plot of
12

g'/¢ on Mesh B.
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Figure 9. Convergence rates of the LS solutions in g”2 at (Re, We, a) = (1, We, 0.2) with We = 0.2,0.5,1and 1.5.

expected rate O(h). Figure 10 shows the horizontal velocity u; (5, y) profiles at We = 0.2 and 1 by the
ALS method on Meshes A and B, and by the LS method on Mesh U, respectively. The results seem
to be in agreement for both values of We. However, as shown in Table 1, using the ALS scheme, the
number of elements can be reduced from 25,600 (Mesh U) to 9989 (Mesh A) or to 12,932 (Mesh
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Figure 10. Horizontal velocity uq (5, y) along the outlet at (a) (Re, We, «) = (1, 0.2, 0.2) and (b) (Re, We, «) = (1, 1, 0.2).
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Figure 12. Adaptive Mesh A and streamlines for (a) « = 0.1and (b) @ = 1at (Re, We, @) = (1, 1, @).

B). Thus the ALS method on Mesh A is more efficient than the LS method on Mush U or the ALS
method on Mesh B. Hence, we use the velocity magnitude gradient |u| as the grading refined function
to generate Mesh A for the ALS method in the next experiments.

5.2.3. Effects of physical parameters

We investigate the effects of model parameters, We, « and Re on Mesh A by varying each param-
eter while the other two are fixed. Streamlines of the flow at (Re, We, a)=(1, We, 0.2) and
(Re, We, @)=(1, 1, o) are presented in Figures 11 and 12, respectively, for We = 0.5, 1.5, and
a = 0.1, 1. To study the effect of inertia, we use Re = 0.1 and 10 in the model with (We, «) set
to (1, 0.2). Streamlines are shown in Figure 13 for this case. Figures show that the adaptive meshes
are dependent on the physical behaviours and refined along the large variation area of the flow. In
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Figure 13. Adaptive Mesh A and streamlines for (a) Re = 0.1and (b) Re = 10 at (Re, We, o) = (Re, 1,0.2).
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Figure 14. Horizontal velocity u (5,y) on Mesh A at (a) (Re, We, o) = (1, We, 0.2) for We = 0.5,1,1.5, (b) (Re, We, o) = (1, 1, @)
fora = 0.1,0.5, 1and (c) (Re, We, o) = (Re, 1, 0.2) forRe = 0.1, 1, 10.

addition, we observe the presence of a larger recirculation region near the top corner for the higher
We, a and lower Re values.

Figure 14 presents the effects of physical parameters on the horizontal velocity component, u; at
the outlet (x = 5). Figure 14(a) displays u; (5, y) for We = 0.5, 1 and 1.5 when (Re, ) = (1, 0.2). We
observe that when We = 0.5, the horizontal velocity of the fluid near the wall is higher than those of
other values of We, resulting in a similar parabolic velocity profile at the outlet. Because the low We
fluid near the wall has a low polymeric viscosity as shown in [9], the growth rate of the velocity away
from the wall is higher than that of the high We fluid. When We increases, its effects become more
dominant, and the profiles at the outlet exhibit shapes of sharper parabola (We = 0.5).
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Moreover, the profiles by the ALS method are similar to those by the NWLS [9] for the
Oldroyd-B model. To evaluate the effect of mobility factor o, we consider o = 0.1, 0.5 and 1 with
(Re, We)=(1, 1) for plots in Figure 14(b). The results indicate that when o = 1, the fluid veloc-
ity near the wall is higher than those of other values of «, thus a flat velocity profile at the outlet is
observed. Because the mobility factor « controls the shear-thinning behaviour of the fluid [7], the
high « fluid near the wall has a low viscosity; the growth rate of the velocity away from the wall of the
high o fluid is greater than that of the low « fluid. The effect of « on the velocity field is very similar to
that of the Carreau time constant illustrated by the NWLS [14] for the shear-thinning Carreau fluid.
For Re = 0.1, 1 and 10 with fixed (We, o) =(1, 0.2) we obtain almost identical profiles of u; at the
outlet as shown in Figure 14(c).

6. Conclusion

We proposed an adaptive LS (ALS) method for the Giesekus model, where a grading function of
the LS solution is used for adaptive mesh refinement. We considered two stabilized weights for the
ALS method to prevent loss of mass conservation and improve convergence of a solution at high
We and «. The weight on mass conservation term is adjusted based on a residual-type a-posteriori
error estimator g/2 for the LS functional, while a weighting function involving We and « is used for
the constitutive equation. Coefficients of the weighting function are adjusted to reflect the physical
behaviour of the fluid and improve the convergence rate of the ALS method. We provided an error
estimate for the linearized viscoelastic system and presented numerical results supporting the esti-
mate. We demonstrated that the results of the ALS method are consistent with those of the NWLS
method presented in [5], and in the presence of corner singularity, the effect of high Weissenberg
number can be reduced by using the ALS method. For the ALS approach the magnitudes of velocity
and a nonlinear LS functional norm g'/? were used to calculate the grading function to adaptively
refine a mesh and capture the flow region. Using continuous piecewise linear finite element spaces
for all variables and appropriately weighting the continuity and constitutive equations, we obtained
the first-order convergence rate for g'/2 by the ALS method, which is higher than the rates by the
LS method on uniform meshes. In the study of model parameters by the proposed method, it was
observed that the effect of We is more dominant for a high We, and the shear-thinning behaviour of the
fluid increases with an increasing «. In addition, the effects of inertia can be neglected in viscoelastic
fluid flows at low Re.

The method developed in this study is an original combination of novel and existing tech-
niques that aims to address shortcomings of the LS method for the 4-to-1 planar contraction flow
problem. The proposed method resolves the difficulties related to the presence of corner singu-
larities in this specific numerical example and computational limitations arising from the exorbi-
tant number of unknowns. Moreover, when compared to the LS method on a uniform mesh, the
ALS approach with adaptive mesh refinements improves the convergence rate as well as compu-
tational efficiency by the use of less elements. Future studies can extend our approach to more
physically realistic domains, including more complex geometries and unsteady flows, and com-
pare our results with experimental findings. A combination of grading functions will be imple-
mented to model flows in various physical settings. These capabilities will be added to the pro-
posed method to address more complex tests. These issues will be investigated further in future
implementations.
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