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ABSTRACT
In this study, a least-squares (LS) finite element method with an adaptive
mesh approach is investigated for Giesekus viscoelastic flow problems. We
consider the weighted LS method on uniform and adaptive meshes for
the Newton linearized viscoelastic problem, where adaptive grids are auto-
matically generated by the least-squares solutions. We use a residual-type
a-posteriori error estimator to adjust weights in the LS functional and com-
pare the convergence behaviour of adaptive meshes generated using dif-
ferent grading functions. Numerical results demonstrate that the adaptive
LS method shows at least the first-order convergence rate when equal-
order linear interpolation functions are used for all variables, which agrees
with the theoretical estimate. In addition, adaptive grids generated using
the velocity outperform those based on the a-posteriori error estimator,
yielding better numerical results.
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1. Introduction

The objective of this study is to develop an adaptive least-squares (LS) !nite element method for
Giesekus viscoelastic "ow problems. The Giesekus model gained prominence because the model
reproduces numerous rheology characteristics of polymer solutions and other liquids [16]. There have
been many numerical algorithms proposed to simulate viscoelastic "ow problems [1,3–5,9,10,18].
However, the numerical approximation of viscoelastic "ows is still limited and known to be challeng-
ing with many issues such as improper boundary conditions, hyperbolic nature of the equations, loss
of convergence for high values of the Weissenberg number [5,8] and so on. The 4-to-1 contraction
"ow problem is a well-known benchmark problem for the study of viscoelastic "ow behaviour, where
the "ow path suddenly changes its geometry, especially in two-dimensional systems [17]. Additional
di#culties arise in solving such "ow problems; for example, geometric discontinuities cause corner
singularities, therefore, a re!ned mesh should be used near the reentrance corner.

To resolve these problems, LS methods with adaptive meshes have been extensively used as pow-
erful tools for more e#cient and accurate results [3,11–13]. For the formulation of weighted LS
methods, the extra-stress tensor for viscoelastic "uid is split into its elastic and viscous components
and the L2-norm of the residual of the continuity equation is multiplied by an appropriately adjusted
weight [5,9,10]. In our previous research [5,9], LS methods with nonlinear weights (NWLS) are used
for viscoelastic "uid "ows at lowWeissenberg number past a 4-to-1 contraction, and in [10,15] adap-
tive weights for mass conservation are considered based on an LS functional. In [6], an a-posteriori
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error estimate is provided by aweighted LS functional and used to guide adaptive re!nements. In [11],
an a-posteriori error estimator is presented for a linear problem in the general setting and used for
adaptive mesh re!nements in numerical tests. Cai and Westphal present an adaptive mixed LS !nite
element method in [3] to analyse steady Oldroyd-type viscoelastic "uids, where a nonlinear LS func-
tional is used for adaptivemesh re!nement. Their algorithms select elements to be re!ned for optimal
computational e#ciency, considering both error reduction and computational cost. The adaptive LS
approach in [12] uses a grading function of velocity magnitude to re!ne the mesh adaptively for Car-
reau generalized Newtonian "uid "ows. In [13], adaptive LS approaches generate optimally graded
grids to redistribute the mesh adaptively for the Stokes equation based on the stress and vorticity
formulation. The results indicate, using the hybrid adaptive mesh that combines graded and regu-
lar grids, optimal convergence rate in all variables is obtained and the grids e$ects can be reduced
[13]. In [10], the LS method with two stabilized weights is applied to a "ow through the slot chan-
nel. The a-posteriori error estimator serves as an indicator to adjust the weight for the continuity
equation in the LS functional. This approach improves mass conservation and yields convergence at
high Weissenberg numbers when low order basis functions are used.

On the basis of the aforementioned studies, in this study, we develop an adaptive LS (ALS)method
for viscoelastic "uid "ows governed by the Giesekus model. The LS approach in [10] is consid-
ered here instead of the NWLS method [5,9] due to its relative simplicity, with optimally chosen
weights by numerical tests.We consider the coercivity and continuity properties for the LS functional,
from which an error estimate for the Newton linearized problem follows by the similar argument in
[3,10]. The error estimate is veri!ed through convergence tests for a non-physical problem with a
known solution, using properly adjustedweights for the LS functional and grading functions formesh
re!nement. The proposed method is also applied to simulate the 4-to-1 contraction problem and to
investigate the physical parameter e$ects. Low order basis functions and adaptive grids in high gradi-
ent regions are considered to improve solution accuracy and reduce the size of the linearized system
of equations. We employ the adaptive mesh algorithm in [12] using grading functions generated by
the velocity and an a-posteriori error estimator, respectively, to capture high gradient regions in the
"ow domain and compare numerical results by two di$erent grading functions.

The organization of this paper is as follows. Section 2 introduces notation and themodel equations.
Section 3 presents the coercivity and continuity estimates of the LS functional. Section 4 provides the
error estimate of the LS approximations, and describes the adaptive mesh approach and numerical
implementation. Section 5 provides numerical results for numerical examples and !nally conclusions
follow in Section 6.

2. Notation andmodel equations

The governing equations are solved on a square test domain and a 4-to-1 contraction domain, with
boundaries labelled as shown in Figure 1. Let!be a bounded and connected domain inRd withd = 2
andLipschitz boundary", where" = "in ∪ "wall ∪ "out ∪ "sym. The"in,"wall,"out and"sym are the
inlet, wall, outlet and symmetric boundaries, respectively. Consider the steady-state, incompressible
"ow governed by

ρ(u · ∇u) − ∇ · τ + ∇p = f in !, (1)

∇ · u = 0 in !, (2)

where ρ is the density, f is the body force vector, the unknowns u and τ are the velocity and the extra-
stress tensor, respectively, and p is the scalar pressure. We assume that the pressure p is !xed to p0 at
the point x0 on ", i.e. p(x0) = p0, in order to ensure the uniqueness of pressure. The extra-stress is
written as a superposition of the polymeric and viscous stresses [5], i.e.

τ = τ p + τ s.
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Figure 1. Computational domains: (a) square test domain, (b) 4-to-1 contraction domain.

The viscous stress is Newtonian, i.e.

τs = 2ηsD(u), (3)

where ηs is a constant viscosity and D(u) = 0.5(∇u + ∇uT) is the standard strain rate tensor. For
viscoelastic "ows represented by the Giesekus model, the polymer contribution to the stress obeys
the following constitutive equation [5]:

τ p + αλ

ηp
(τ p · τ p) + λ(u · ∇τ p − A(∇u, τ p)) = 2ηpD(u), (4)

where

A(∇u, τ p) := (∇u)T τ p + τ p∇u.

In (4), λ is a relaxation time which is a measure of the time taken for the stress to relax. ηp is the
polymeric contribution to the viscosity, and α is called the mobility factor. The Giesekus model
with α > 0 predicts a shear-thinning viscosity and non-vanishing !rst and second normal stress
di$erences in viscometric "ows, a !nite extensional viscosity for all values of the extensional rate,
and stress-overshoot in start-up "ows in [7]. With α > 0, shear-thinning is always observed. The
α ∈ [0, 1] factor is required as discussed in [7] and setting α = 0 reduces the model to the Oldroyd-B
model.

Collecting (1)–(4) and nondimensionalizing the equations, we have the Giesekus "ow model
written as

Re(u · ∇u) − ∇ · τ p − ∇ · τ s + ∇p = f in !, (5)

∇ · u = 0 in !, (6)

τ s − 2βD(u) = 0 in !, (7)

τ p + We(u · ∇τ p − A(∇u, τ p)) + αWe
(1 − β)

(τ p · τ p)

−2(1 − β)D(u) = 0 in !, (8)

where Re is the Reynolds number, Re ≡ LUρ/η0, in which η0 = ηs + ηp is the zero-shear-rate vis-
cosity, L and U are the characteristic length and velocity, respectively. β = ηs/η0 ∈ [0, 1] is the ratio
of solvent viscosity to the total zero-shear-rate viscosity. β is set to 1/9 in the present work as typically
used in the literature. TheWeissenberg numberWe> 0 is the concepts of elasticity,We ≡ λU/L, and
in the case ofWe = 0, the model reduces to the Newtonian model, the Navier–Stokes equations.
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To simplify the formulation of LS method and its presentation, a homogeneous boundary condi-
tion is assumed for u, u = 0 on " \ "sym. On the axis of symmetry "sym, we assume the standard
symmetric boundary conditions: u · n = 0 and π : n ⊗ t = 0, where n, t are outward unit normal
and tangential vectors, respectively, and π = τ − pI is the Cauchy stress tensor, where I is the iden-
titymatrix. Problems with nonhomogeneous boundary conditions on"in and"out will be considered
for numerical tests of 4-to-1 contraction "ows, which can be formulated in an analogous manner.

3. Least squares functional

Let Hs(!), s ≥ 0, be the Sobolev spaces with the standard associated inner products (·, ·)s and their
respective norms ‖ · ‖s. For s = 0, Hs(!) coincides with L2(!). The function spaces used in our
formulations are de!ned as

V : = {v | v ∈ (H1(!))2, v = 0 on " \ "sym, v · n = 0 on "sym},

Q : = H1 (!) ,

)s : = {σ | σ ∈ (H1(!))2×2, σT = σ }, )p := )s,

and let the product space * := V × Q × )s × )p.
To de!ne the least squares functional, we !rst consider Newton linearization of the nonlinear "ow

equations (5)–(8) about known approximationsu+, τ p+
of the velocity and the polymeric stress tensor,

respectively. Using the following notation:

f1 := Re(u+ · ∇u+) + f , (9)

B(u, τp) := We
(
u · ∇τ p+

− A(∇u+, τ p) − A(∇u, τ p+
)
)
, (10)

G(τp) := (αWe/(1 − β))
(
τ p+

· τ p + τ p · τ p+

)
, (11)

f2 := We
(
u+ · ∇τ p+

− A(∇u+, τ p+
)
)
+ (αWe/(1 − β))(τ p+

· τ p+
), (12)

the linearized system can be written as

Re(u+ · ∇u + u · ∇u+) − ∇ · τ p − ∇ · τ s + ∇p = f1 in !, (13)

∇ · u = 0 in !, (14)

τ s − 2βD(u) = 0 in !, (15)

τ p + We
(
u+ · ∇τp

)
+ B(u, τp) + G(τp) − 2(1 − β)D(u) = f2 in !. (16)

We now de!ne the least-squares (LS) functional for (13)–(16) by

J(U;F) =
∥∥Re(u+ · ∇u + u · ∇u+) − ∇ · τ s − ∇ · τ p + ∇p − f1

∥∥2
0

+ K ‖∇ · u‖20 + ‖τ s − 2βD(u)‖20
+ W

∥∥τ p + We
(
u+ · ∇τ p

)
+ B(u, τp) + G(τp) − 2(1 − β)D(u) − f2

∥∥2
0 (17)

∀U = (u, p, τ s, τ p) ∈ *, and the LS minimization problem for the solution of system is given by:
U ∈ * such that

J(U;F) = inf
V∈*

J(V;F). (18)

The weightW > 0 is introduced to stabilize the LS functional at a highWe and α in the constitutive
equation. We consider the weight given by

W = (1 + We + sα)2, (19)

where−1 ≤ s ≤ 1 forWe> 0 and 0 ≤ α ≤ 1 in theGiesekusmodel. In [4,5,9], appropriately designed
weights involving We are employed for the NWLS and Galerkin least squares methods to solve
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Oldroyd-B and Giesekus models at highWe. The weightW in (19), which is in a simpler form than
the nonlinear weight of the NWLS method [5], will be considered in the current study. The Giesekus
model with 0 ≤ α ≤ 1 is considered here because α > 0 always leads to shear-thinning. The α fac-
tor predicts a shear-thinning viscosity, which decreases with increasing shear rate. To appropriately
adjust constants s in the weight valueW for re"ecting α, we consider testing with various s = −1, 0,
and 1. In this work, we use convergence rates of the a-posteriori error estimate for the LS solutions as
an indicator to adjust the constant s. Several di$erent parameter values forWe and α in the Giesekus
model will be also considered for numerical tests in Section 5.

The positive constantK = 10m, wherem ranges from0 to 10, is chosen for the continuity equations
based on [9,12], where LS solutions are improved by the su#cientlyweightedmass conservation term.
In this work, we consider an a-posteriori error estimate for the !rst-order system as an indicator to
adjust the weight K, as in [12,15].

Denote two norms on * as

‖|U|‖ =
(
‖u‖21 +

∥∥p
∥∥2
0 + ‖τ s‖20 +

∥∥τ p
∥∥2
0

)1/2
(20)

and

‖|U|‖1 =
(
Re2 ‖u‖21 +

∥∥p
∥∥2
1 + ‖τ s‖21 +

∥∥τ p
∥∥2
1

)1/2
(21)

∀U = (u, p, τ s, τ p) ∈ *.
We derived coercivity and continuity estimates for a homogeneous functional designed for the

linear Phan–Thien–Tanner (PTT) viscoelastic "uid model in [10]. Replacing the second term of (4)
by αλ

ηp
tr(τ p)τ p is the linear PTT model. Coercivity and continuity of (17) can be shown by a similar

approach, therefore, we present the next theorem without proof. See [10] for details.

Theorem 3.1: Suppose the known approximations u+, τ p+
are uniformly bounded satisfying ∇ · u+ =

0 and

M := max{‖u+‖∞, ‖∇u+‖∞, ‖τ p+
‖∞, ‖∇τ p+

‖∞} < ∞. (22)

Then, for any U = (u, p, τ s, τ p) ∈ *, there are positive constants, c0 and c1, which depend on
!, β , We, α, and M, such that

c0 ‖|U|‖2 ≤ J(U; 0) ≤ c1 ‖|U|‖21 , (23)

if M is su!ciently small.

4. Adaptive finite element approximation

For the !nite element approximation, we assume that the domain ! is a polygon and that Th is a
collection of !nite elements such that ! =

⋃
T∈Th T with h = max{diam(T) : T ∈ Th}. Assume that

the triangulation Th is shape-regular and satis!es the assumption for inverse estimates [9]. The grid
size is de!ned as h = 2

√
A/

√
N, where A is the area of the domain and N is the number of elements

in Th. Let Pr(T) denote the space of polynomials of degree less than or equal to r on element T. De!ne
!nite element spaces for the approximate of (u, p, τs, τ p) by

Vh = {vh | vh ∈ V ∩ (C0(!))2, vh |T ∈ Pr+1(T)2 ∀T ∈ Th},

Qh = {qh | qh ∈ Q ∩ C0(!), qh |T ∈ Pr+1(T) ∀T ∈ Th},

)h
s = {σ h | σ h ∈ )s ∩ (C0(!))2×2, σ h |T ∈ Pr+1(T)2×2 ∀T ∈ Th},

)h
p = {σ h | σ h ∈ )p ∩ (C0(!))2×2, σ h |T ∈ Pr+1(T)2×2 ∀T ∈ Th}.
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Let *h := Vh × Qh × )h
s × )h

p be !nite element subspaces of * with the following approximation
properties. Let Sh = {u ∈ C0(!) : u|T ∈ Pr+1(T) ∀T ∈ Th} admit the property

inf
uh∈Sh

∥∥∥u − uh
∥∥∥
l
≤ Chm ‖u‖m+l ∀u ∈ Hm+l (!) , (24)

form ≤ r + 1 and l = 0, 1.
Then, the discrete least squares problem for the linearized Giesekus viscoelastic "uid is to choose

Uh ∈ *h such that

J(Uh;F) = inf
Vh∈*h

J(Vh;F), (25)

where Uh = (uh, ph, τ h
s , τ h

p) and Vh = (vh, qh, σ h
s , σ h

p).
Derivation of the following a-priori error estimate for the solution of (25) is standard and

straightforward using Theorem 3.1 and the approximation property (24).

Theorem 4.1: Consider approximating the solution to (13)–(16) through the discrete minimiza-
tion problem (25) under the assumptions in (22). Assume that U ∈ * ∩ (Hm+1(!))2 × Hm+1(!) ×
(Hm+1(!))2×2 × (Hm+1(!))2×2 is the solution to (18) and M is small, then the solution Uh ∈ *h to
(25) satis"es

∥∥∥
∣∣∣U − Uh

∣∣∣
∥∥∥ ≤ Chm

(
‖τ s‖m+1 +

∥∥τ p
∥∥
m+1 +

∥∥p
∥∥
m+1 + Re ‖u‖m+1

)
, (26)

for m ≤ r + 1.

Proof: The coercivity and continuity properties of (17) in Theorem 3.1 yield
∥∥∥
∣∣∣Uh − U

∣∣∣
∥∥∥ ≤ inf

Vh∈#h

c1
c0

∥∥∥
∣∣∣Vh − U

∣∣∣
∥∥∥
1
,

which implies the error estimate (26) using (24). !

Note that the use of continuous piecewise linear polynomials for all unknowns yields the error
estimates ∥∥∥

∣∣∣U − Uh
∣∣∣
∥∥∥ ≤ Ch

(
‖τ s‖2 +

∥∥τ p
∥∥
2 +

∥∥p
∥∥
2 + Re ‖u‖2

)
. (27)

The theoretical a-priori error bound is onlyO(h) in the linearized functional norm J1/2 in (17),O(h)
in the L2-norm for τ s, τ p, and p, and O(h) in the H1-norm for u.

The solution of the nonlinear systems in (5)–(8) is approximated by a sequence of the lin-
earized system (13)–(16). The LS approach to the linearized system (13)–(16) provides an iterative
procedure as follows: for a chosen initial approximation Uh

0 seek approximations Uh
++1 ∈ *h for

+ = 0, 1, 2, 3, . . . satisfying

J+(Uh
+ ;F) = inf

Vh∈*h
J+(Vh;F), (28)

where the LS functional J+(U;F) is de!ned as

J+(U;F) =
∥∥Re(u+ · ∇u + u · ∇u+) − ∇ · τ s − ∇ · τ p + ∇p − f1

∥∥2
0

+ K ‖∇ · u‖20 + ‖τ s − 2βD(u)‖20
+ W

∥∥τ p + We
(
u+ · ∇τ p

)
+ B(u, τp) + G(τp) − 2(1 − β)D(u) − f2

∥∥2
0 , (29)

and f1, B(u, τp), G(τp), and f2 are given as (9)–(12).
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We now consider the following nonlinear LS functional of the residual of the system (5)–(8):

g(Uh) = ‖Re(uh · ∇uh) − ∇ · τ h
p − ∇ · τ h

s + ∇ph − f‖20
+ ‖∇ · uh‖20 + ‖τ h

s − 2βD(uh)‖20

+ ‖τ h
p + We(uh · ∇τ h

p − A(∇uh, τ h
p)) + αWe

(1 − β)
(τ h

p · τ h
p) − 2(1 − β)D(uh)‖20. (30)

The nonlinear LS functional norm g1/2 is an a-posteriori error for the system of governing equations,
which will be used as an indicator to adjust the weight K in numerical tests. When the lower basis
functions are considered to approximate all unknowns, we expect that the error g1/2 is in the order of
O(h) if the stopping tolerance for the above iterative process is small enough, and this will be veri!ed
by numerical tests in Section 5. Also the a-posteriori error will be used in a re!nement process to
illustrate the convergence of the adaptive method.

Next we consider an adaptive mesh approach for viscoelastic "ow problems. In [12], we devel-
oped an adaptively re!ned algorithm for the generalized Newtonian "uid "ows, which adds new
grids in the high gradient region, maintaining the solution accuracy in the low gradient region. This
approach uses a grading function of velocity magnitude to re!ne the mesh adaptively. The results in
[12] indicate that adaptive meshes generated by the grading function automatically re!ne local grids
for the generalized Newtonian "uid "ows, and the re!nement results for various parameter values
are satisfactory. However, in [13], the grid e$ects are observed in convergence of the LS solutions;
the convergence behaviour is mesh dependent. Multiple triangular grids are used in the LS method
to reduce the grid e$ects for planar contraction "ows [9,13]. The results indicate that, when recir-
culating "ows exist in the "ow !eld, directional Delaunay triangular grids are unsuitable for the LS
method. By contrast, for planar "ow problems, the longest edges of these triangular grids along the
same direction are more suitable for the LS method, as demonstrated in [13]. Therefore, to capture
the "ow region of the Giesekus model in our study, we develop a multi-grid approach based on the
LS method. The mesh is initialized using the adaptive mesh algorithm in [12], by using the grading
functionφT on elementsT of amesh T given byφT = |∇q|T , where the scalar function q is calculated
based in the LS solutions. The magnitudes of velocity |u| =

√
u21 + u22 and a nonlinear LS functional

norm g1/2 in (30) are considered as the function q (q = |u| and q = g1/2 ) for the mesh redistribution
function f (φT) in [12], de!ned by

f (φT) = |T|max −
(
φT − φTmin

) .|T|
.φT

,

where |T|max = max{|T| : ∀T ∈ T }, .|T| = |T|max − |T|min and .φT = φTmax − φTmin . If T ∈ T
satis!es f (φT) ≤ |T|, then T is subdivided.

Then, we modify triangular mesh of the downstream region by aligning the longest edges of these
triangular grids in the same direction downstream. In numerical experiments discussed in the next
section, multiple triangular grids are applied to Giesekus viscoelastic planar contraction "ows by
using the LS method.

5. Numerical results

We consider two numerical examples. The !rst problem is chosen for convergence tests with the
known exact solution in the unit square domain, and the second is a 4-to-1 contraction "ow problem.
Due to the symmetry along y = 0, two computation domains are reduced to half. All variables are
approximated by P1 polynomials, and the initial u+ and τ p+ for Newton linearization are set to zero
in all computations.
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Figure 2. (a) Initial Mesh D with 32 partitions per unit length. (b) Mesh A after two refinement steps from Mesh D using |u|. (c)
Mesh B after two refinement steps fromMesh D using g1/2.

5.1. Problem 1

Consider the "ow in a planar channel on the domain [0, 1] × [0, 1] with the line of symmetry along
y = 0. Let u = (u1, u2) be speci!ed along the boundary except on the axis of symmetry, and τ p be
speci!ed on the in"ow boundary where u · n < 0. The pressure p = −1 is set at the point (1, 0), and
u2 and τ pxy vanish on the axis of symmetry. The exact solution is chosen as

u =
[
1 − y4

0

]
, p = −x2, τ p =





2We(1 − β)

(
∂u1
∂y

)2
(1 − β)

∂u1
∂y

(1 − β)
∂u1
∂y

0




,

where τ p represents the analytical solution for the Oldroyd-B model in steady-state shear "ow [2].
The source terms in (5) and (8) are chosen appropriately for the exact solution, as shown in [5]. The
modelling parameters are selected as (Re, We, α, β)= (1, 0.2, 0.2, 1/9) and the weight parameter
s = −1 is used for theW in (19).

Themeshes considered are illustrated in Figure 2. The uniform triangularMeshD in Figure 2(a) is
the mesh generated using Delaunay triangular grids with 32 partitions per unit length. The adaptive
Meshes A and B in Figures 2(b) and 2(c) are generated using the magnitude of velocity, |u|, and the
nonlinear LS functional norm g1/2, respectively. The stopping criterion formesh convergence is given
by ‖g1/2j+1 − g1/2j ‖/‖Nj+1 − Nj‖ < 10−6, where Nj is the number of elements at the jth re!nement
step. First, in order to appropriately adjust the weight K = 10m in (17), Mesh D is initially used. We
iterate m, where m ranges from 1 to 10, to investigate convergence of the functional g1/2 in (30), as
shown in [10]. The convergence of the iteration scheme with K = 10m is declared when the relative
norm of residual in the nonlinear functional between two consecutive iterations, δg1/2m := ‖g1/2m+1 −
g1/2m ‖/‖g1/2m+1‖, is less than 10−4. We observe that convergence is achieved at m = 6, therefore, the
mass conservation weight K = 106 is used in the LS formulation for all computations in the !rst
example.

To compare the performance of adaptive meshes, we compute errors of numerical solutions by
di$erent meshes. The adaptive meshes are generated from Mesh D with 8, 16 or 32 partitions per
unit length as initial meshes. Errors by di$erent meshes are presented in Figure 3, where we observe
all meshes result in the consistent rates with the error estimate in Section 4; the rate for the velocity
is optimal, O(h2), in the L2-norm, and the rates for viscous and polymeric stresses, and pressure are
suboptimal, O(h), in the L2-norm. However, the ALS method using Mesh A improves convergence
rates over other two meshes as shown in Figure 3.
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Figure 3. L2 errors of (a) u, (b) τ s , (c) τ p , and (d) p by different meshes, Mesh D (°), Mesh A (∗), and Mesh B (!).

5.2. Problem 2

Consider the Giesekus model in a 4-to-1 contraction domain of an upstream channel that abruptly
narrows to a channel one quarter of the original widthwith x (the "ow direction) for−5 ≤ x ≤ 5, and
the contraction occurring at x = 0. The width of upstream channel is 1; thus the downstreamwidth is
1/4. Let u = (u1, u2) and τ p be speci!ed on the in"ow boundaries, u = 0 on the wall boundaries, and
u2 = 0 on the out"ow boundary. Pressure p is set to zero at the point where the out"ow boundary
meets the symmetry boundary, and u2 and τ pxy vanish on the symmetry boundary, which are the
same conditions used in [5,9]. The forcing function f in (5) is set to 0. The model equations (5)–(8)
are simulated with the !xed value for β , β = 1/9, and various other parameter values in the range of
0.1 ≤ Re ≤ 10, 0.1 ≤ α ≤ 1, and 0.1 ≤ We ≤ 1.5, respectively.

The meshes considered are listed in Table 1 and illustrated in Figure 4. Uniform criss-crossed
Mesh X in Figure 4(a) is a mesh generated by using Delaunay triangular grids with 16 partitions per
unit length. Mesh H in Figure 4(b) is an initial mesh generated by aligning the longest edges of these
triangular grids of Mesh X along the same direction of downstream for x ∈ [0.065, 5]. Mesh U in
Figure 4(c) is a uniformly re!ned mesh of Mesh H. The adaptive mesh shown in Figure 4(d) is a
local re!nement of Mesh H, and the longest edges of its triangular grids are aligned in the diagonal
direction downstream of x ∈ [0.065, 5].

5.2.1. Parameter selection for weights on uniformmeshes
To study the performance of Newton LS iteration scheme (28), we start with a uniform mesh for
the model with (Re, We, α)= (1, 0.2, 0.2), and s = 0 for the weight W = (1 + We + sα)2 in (19).
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Table 1. Meshes considered for (Re, We, α) = (1, 0.2, 0.2).

Mesh Type Na DOF Sb

X Uniform criss-crossed mesh 6400 3377 –
H Uniformmesh 6400 3377 –
U Uniform refined mesh 25,600 116,556 2
A Adaptive mesh by |u| 9989 45,983 2
B Adaptive mesh by g1/2 12,932 59,550 2
aN represents the number of elements.
bDegrees of freedom (DOF) is at the final refinement step (S).

Figure 4. Description of mesh refinements. (a) Input Mesh X with 16 partitions per unit length is a uniform criss-crossed mesh. (b)
Uniform Mesh H is an initial mesh generated by Mesh X. (c) Mesh U is a uniformly refined mesh of Mesh H. (d) Adaptive mesh is a
locally refined mesh of Mesh H.

First, the weight K = 10m in (17) is chosen by the same way considered for Problem 1 using
Mesh H as the initial mesh. We investigate the convergence of the functional g1/2 in (30) by vary-
ing m. Figure 5 shows δg1/2m for di$erent m values ranging from 4 to 10 for the !xed parameters
(Re, We, α)= (1, We, 0.2) and various We, We = 0.2, 0.5, 1 and 1.5. Using the same criterion
described for Problem 1, we observe that convergence is achieved atm = 9, therefore, the mass con-
servation weight K = 109 is used in the LS formulation for all computations for Problem 2. Figure 5
also shows that the number of iteration steps increases with increasing We. This indicates that for
high We "ows, the convergence of the iteration is lost and the Jacobian matrix becomes singular, as
demonstrated in [8].



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 11

Figure 5. Nonlinear functional norm δg1/2m in nested iteration for various weights K = 10m (4 ≤ m ≤ 10) at
(Re, We, α) = (1, We, 0.2) with We = 0.2, 0.5, 1 and 1.5. Here No. of steps represents the number of Newton iterations
for convergence.

Figure 6. Convergence rates of the LS solutions with W = (1 + We + sα)2 for s = −1, 0, 1 when (Re, We, α) = (1, 0.2, α) for
0.1 ≤ α ≤ 1.

Next, we study a selection of s for the weightW = (1 + We + sα)2, where the parameter is in the
range of −1 ≤ s ≤ 1. In [10], the weight W with s = 1 is chosen to solve the PTT viscoelastic "uid
"ows past a transverse slot. Now, in order to select the optimal parameter, we investigate convergence
rates of the LS solutions with s = −1, 0 and 1 on uniformly re!ned meshes. Figure 6 presents con-
vergence rates of g1/2 at (Re, We, α)= (1, 0.2, α), where α ranges from 0.1 to 1. The !gure shows
that the functional g1/2 of the LS solution achieves the expected rate, O(h), at the lowest α, 0.1, and
convergence rates decrease with an increase in α. The weight W with s = −1 improves the rate of
convergence compared with W with s = 0 and 1. Therefore, we use the coe#cient s = −1 in the
weightW for the LS functional (17) in all following experiments.
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Figure 7. Comparison of horizontal velocities u1(x, 0) along y = 0 on Mesh U: (a) NWLS and (b) LS.

Next, using the !xed weights W, K chosen above, we compare horizontal velocities by the LS
method and NWLS [5] on uniform Mesh U, respectively. Figure 7(a) and (b) present the horizontal
velocity u1 pro!les along the axis of symmetry (y = 0) forWe = 0.2 and 1. For the value ofWe = 1,
we observe that the peak in the NWLS solution Figure 7(a) is higher than that of the LS solution
(Figure 7 b). We notice that the peak height of velocity increases for higher values ofWe, which could
attribute to the existence of corner singularity in a high We "uid. Though there seems to exist an
elasticity e$ect in the prediction of velocity pro!le, for a highWe "uid, the velocity near the reentrant
corner of the NWLS is more sensitive than that of the LS method. Our results show that using the LS
method, the peak height generated near the corner can be reduced from 0.434 (NWLS) to 0.395 (LS)
as shown in Figure 7(b). Therefore, the LS method reduces the in"uence of corner singularities in a
highWe "uid better than the NWLS method.

5.2.2. Computational grids
We now consider the LS method in (28) using the adaptive mesh approach described in Section 4
and name it the ALS method. Meshes A and B illustrated in Figure 8(a) and (b) are generated
using magnitudes of velocity |u| and the nonlinear LS functional norm g1/2, respectively, with
(Re, We, α)= (1, 0.2, 0.2). Using the same stopping criterion in Section 5.1, we obtain mesh conver-
gence after twomesh re!nement steps. These adaptivemeshes are highly re!ned near the downstream
boundary layers, exhibiting a re!ned region close to the corner. In contrast to the results in [3,12], sys-
tematic mesh re!nements near the reentrant corner are necessary for avoiding a substantial increase
in the number of unknown factors. Thus Meshes A and B match the expected mesh re!nements in
the corner region. In addition, as shown in Table 1, using Mesh A, the number of elements can be
reduced from 12932 (Mesh B) to 9989 (Mesh A). Thus adaptive Mesh A is more e#cient than other
meshes. Further, we present contours of |u| and g1/2 on Meshes A and B in Figure 8. Figure 8(c) and
(d) show similar contours of |u|, and as shown in Figure 8(e) and (f), the a-posteriori error g1/2 near
the corner can be decreased by using Mesh A. Thus the adaptive Mesh A can reduce the in"uence of
corner singularities.

We also investigate convergence rates of g1/2 by the LS method using Mesh U and by the ALS
method using Meshes A and B for variousWe values. Figure 9 presents convergence rates of g1/2 at
(Re, We, α)= (1, We, 0.2)withWe = 0.2, 0.5, 1 and 1.5. The !gure shows that the rates approach to
O(h) for Meshes A and B, but only O(h1/2) for Mesh U, and the expected optimal convergence rates
in g1/2 of O(h) can be restored with adaptive meshes. The ALS using Mesh A improves the rate of
convergence compared with the ALS using Mesh B and the LS using Mesh U. Moreover, the average
convergence rate of g1/2 for the ALS using Mesh A is close to 1.5, which is much higher than the
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Figure 8. Convergent adaptive meshes in two iterations, plots of velocity magnitude and g1/2 for (Re, We, α) = (1, 0.2, 0.2). (a)
Mesh A, (b) Mesh B, (c) Magnitude of velocity on Mesh A, (d) Magnitude of velocity on Mesh B, (e) Plot of g1/2 on Mesh A, (f ) Plot of
g1/2 on Mesh B.

Figure 9. Convergence rates of the LS solutions in g1/2 at (Re, We, α) = (1, We, 0.2)withWe = 0.2, 0.5, 1 and 1.5.

expected rateO(h). Figure 10 shows the horizontal velocity u1(5, y) pro!les atWe = 0.2 and 1 by the
ALS method on Meshes A and B, and by the LS method on Mesh U, respectively. The results seem
to be in agreement for both values of We. However, as shown in Table 1, using the ALS scheme, the
number of elements can be reduced from 25,600 (Mesh U) to 9989 (Mesh A) or to 12,932 (Mesh
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Figure 10. Horizontal velocity u1(5, y) along the outlet at (a) (Re, We, α) = (1, 0.2, 0.2) and (b) (Re, We, α) = (1, 1, 0.2).

Figure 11. Adaptive Mesh A and streamlines for (a)We = 0.5 and (b)We = 1.5 at (Re, We, α) = (1, We, 0.2).

Figure 12. Adaptive Mesh A and streamlines for (a) α = 0.1 and (b) α = 1 at (Re, We, α) = (1, 1, α).

B). Thus the ALS method on Mesh A is more e#cient than the LS method on Mush U or the ALS
method onMesh B. Hence, we use the velocitymagnitude gradient |u| as the grading re!ned function
to generate Mesh A for the ALS method in the next experiments.

5.2.3. Effects of physical parameters
We investigate the e$ects of model parameters, We, α and Re on Mesh A by varying each param-
eter while the other two are !xed. Streamlines of the "ow at (Re, We, α)= (1, We, 0.2) and
(Re, We, α)= (1, 1, α) are presented in Figures 11 and 12, respectively, for We = 0.5, 1.5, and
α = 0.1, 1. To study the e$ect of inertia, we use Re = 0.1 and 10 in the model with (We, α) set
to (1, 0.2). Streamlines are shown in Figure 13 for this case. Figures show that the adaptive meshes
are dependent on the physical behaviours and re!ned along the large variation area of the "ow. In
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Figure 13. Adaptive Mesh A and streamlines for (a) Re = 0.1 and (b) Re = 10 at (Re, We, α) = (Re, 1, 0.2).

Figure 14. Horizontal velocity u1(5, y) onMesh A at (a) (Re, We, α) = (1, We, 0.2) forWe = 0.5, 1, 1.5, (b) (Re, We, α) = (1, 1, α)
for α = 0.1, 0.5, 1 and (c) (Re, We, α) = (Re, 1, 0.2) for Re = 0.1, 1, 10.

addition, we observe the presence of a larger recirculation region near the top corner for the higher
We, α and lower Re values.

Figure 14 presents the e$ects of physical parameters on the horizontal velocity component, u1 at
the outlet (x = 5). Figure 14(a) displays u1(5, y) forWe = 0.5, 1 and 1.5 when (Re, α)= (1, 0.2). We
observe that whenWe = 0.5, the horizontal velocity of the "uid near the wall is higher than those of
other values ofWe, resulting in a similar parabolic velocity pro!le at the outlet. Because the low We
"uid near the wall has a low polymeric viscosity as shown in [9], the growth rate of the velocity away
from the wall is higher than that of the high We "uid. When We increases, its e$ects become more
dominant, and the pro!les at the outlet exhibit shapes of sharper parabola (We = 0.5).
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Moreover, the pro!les by the ALS method are similar to those by the NWLS [9] for the
Oldroyd-B model. To evaluate the e$ect of mobility factor α, we consider α = 0.1, 0.5 and 1 with
(Re, We)= (1, 1) for plots in Figure 14(b). The results indicate that when α = 1, the "uid veloc-
ity near the wall is higher than those of other values of α, thus a "at velocity pro!le at the outlet is
observed. Because the mobility factor α controls the shear-thinning behaviour of the "uid [7], the
high α "uid near the wall has a low viscosity; the growth rate of the velocity away from the wall of the
high α "uid is greater than that of the low α "uid. The e$ect of α on the velocity !eld is very similar to
that of the Carreau time constant illustrated by the NWLS [14] for the shear-thinning Carreau "uid.
For Re = 0.1, 1 and 10 with !xed (We, α)= (1, 0.2) we obtain almost identical pro!les of u1 at the
outlet as shown in Figure 14(c).

6. Conclusion

We proposed an adaptive LS (ALS) method for the Giesekus model, where a grading function of
the LS solution is used for adaptive mesh re!nement. We considered two stabilized weights for the
ALS method to prevent loss of mass conservation and improve convergence of a solution at high
We and α. The weight on mass conservation term is adjusted based on a residual-type a-posteriori
error estimator g1/2 for the LS functional, while a weighting function involvingWe and α is used for
the constitutive equation. Coe#cients of the weighting function are adjusted to re"ect the physical
behaviour of the "uid and improve the convergence rate of the ALS method. We provided an error
estimate for the linearized viscoelastic system and presented numerical results supporting the esti-
mate. We demonstrated that the results of the ALS method are consistent with those of the NWLS
method presented in [5], and in the presence of corner singularity, the e$ect of high Weissenberg
number can be reduced by using the ALS method. For the ALS approach the magnitudes of velocity
and a nonlinear LS functional norm g1/2 were used to calculate the grading function to adaptively
re!ne a mesh and capture the "ow region. Using continuous piecewise linear !nite element spaces
for all variables and appropriately weighting the continuity and constitutive equations, we obtained
the !rst-order convergence rate for g1/2 by the ALS method, which is higher than the rates by the
LS method on uniform meshes. In the study of model parameters by the proposed method, it was
observed that the e$ect ofWe ismore dominant for a highWe, and the shear-thinning behaviour of the
"uid increases with an increasing α. In addition, the e$ects of inertia can be neglected in viscoelastic
"uid "ows at low Re.

The method developed in this study is an original combination of novel and existing tech-
niques that aims to address shortcomings of the LS method for the 4-to-1 planar contraction "ow
problem. The proposed method resolves the di#culties related to the presence of corner singu-
larities in this speci!c numerical example and computational limitations arising from the exorbi-
tant number of unknowns. Moreover, when compared to the LS method on a uniform mesh, the
ALS approach with adaptive mesh re!nements improves the convergence rate as well as compu-
tational e#ciency by the use of less elements. Future studies can extend our approach to more
physically realistic domains, including more complex geometries and unsteady "ows, and com-
pare our results with experimental !ndings. A combination of grading functions will be imple-
mented to model "ows in various physical settings. These capabilities will be added to the pro-
posed method to address more complex tests. These issues will be investigated further in future
implementations.
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