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Abstract. We present a posteriori error estimator strategies for the least-
squares finite element method (LS) to approximate the exponential Phan-

Thien-Tanner (PTT) viscoelastic fluid flows. The error estimator provides

adaptive mass weights and mesh refinement criteria for improving LS solutions
using lower-order basis functions and a small number of elements. We analyze

an a priori error estimate for the first-order linearized LS system and show that

the estimate is supported by numerical results. The LS approach is numerically
tested for a convergence study and then applied to the flow past a slot channel.

Numerical results verify that the proposed approach improves numerical solu-
tions and resolves computational difficulties related to the presence of corner

singularities and limitations arising from the exorbitant number of unknowns.

1. Introduction. The numerical simulation of viscoelastic fluid flows is challeng-
ing due to the strong coupling of governing equations and the large algebraic sys-
tem with multiple dependent variables. Viscoelastic behavior of the fluid is often
represented by a nonlinear constitutive model in the form of hyperbolic partial
differential equations, which requires a stabilization technique for finite element ap-
proximations such as the streamline upwinding Petrov–Galerkin (SUPG) method
and the discontinuous Galerkin method. In addition, finite element spaces for the
velocity, pressure, and stress should satisfy the inf-sup condition if the standard
mixed method is applied for numerical simulations. To overcome such difficulties,
least-squares (LS) methods are frequently used to simulate viscoelastic flow prob-
lems [4, 6, 9, 14] because they provide the flexibility of choosing finite element spaces
and no additional stabilization is needed. In this work we expand on the LS method
[14] by considering a nonlinear a posteriori error estimator of residual type for the
exponential Phan-Thien-Tanner (PTT) viscoelastic fluid.
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The PTT model is a popular viscoelastic model in polymeric fluid simulations
[17, 16], where the extra-stress is written as a superposition of the polymeric and
viscous stresses. The linear PTT model was proposed by Phan-Thien and Tanner
in 1977, and Phan-Thien subsequently proposed the exponential PTT model in
1978. Ferrás et al. [7] reported that the exponential PTT model could behave more
realistically in strong flows in which certain strain components grow exponentially
in time. They also reported that the exponential model provided a better fit to
experimental data.

A posteriori error estimators play an important role in measuring the accuracy
of numerical solutions and can be used to guide adaptive refinements. They are
also effective and reliable for error control [1, 4, 15]. Previous works on the Stokes
equations and the linear PTT model [11, 14] show that an a posteriori error estima-
tor serves as an indicator to adjust mass conservation weights on LS approaches to
solve flows past a transverse slot. However, the numerical computations have been
performed on uniform grids with more degrees of freedom. In [13], the results also
show that grid effects of the LS method can not be reduced on some uniform refined
grids, and geometric discontinuities cause corner singularities for flows in complex
geometries.

On the basis of these studies, we consider an a posteriori error estimator for the
exponential PTT model to adjust mass conservation weights and to develop mesh
refinement criteria on the LS approach. Furthermore, we estimate the coercivity
and continuity for the homogeneous LS functional, which involves the sum of the
linearized equation residuals measured in the L2-norm. The analysis of the lin-
earized viscoelastic fluid using the LS method is extended from the proof presented
in [14]. We propose an a posteriori error estimator of a residual type for the LS
method as per considerations in the literature [8, 11, 15]. The convergence of the
estimator is verified through convergence tests for a non-physical problem with a
known solution, using properly adjusted weights for the LS functional. We extend
the implementation to simulate the flow through a transverse slot using conforming
piecewise polynomial elements for all unknowns. To capture the flow region and
understand the flow feature, we modify the adaptive mesh algorithm in [10] using an
a posteriori error estimator to refine grid points, and we compare numerical results
by uniform and adaptive grids.

The organization of this paper is as follows. Section 2 presents the exponential
PTT flow model and the LS functional for the Newton linearized system. In Section
3 the least squares problem is defined and the coercivity and continuity properties
of the LS functional are proved. Section 4 presents an a priori error estimate for
the LS approximations and introduces an a posteriori error estimator. Section 5
provides numerical results for numerical examples, and finally conclusions follow in
Section 6.

2. Model problem. The PTT model is one of widely used viscoelastic models
in polymeric fluid simulations, where the extra-stress is written as a superposition
of the polymeric stress σ and viscous stress τ [2]. The viscous stress, which is
associated with a solvent in some applications, is Newtonian, i.e., τ = 2ηsD, where
ηs is a constant viscosity and D = 0.5(∇u+∇uT ) is the standard strain rate tensor
with the velocity u. In the linearized form of the exponential PTT model, the
polymer contribution to the stress obeys the following equation [2]

σe
ελ
ηp

tr(σ)
+ λ(u · ∇σ − (∇u)

T · σ − σ · ∇u) = 2ηpD. (1)
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In (1) λ is a relaxation time and ηp is the polymeric contribution to the viscosity,
ε is the extensibility parameter in the range of 0 < ε < 1. The exponential term

e
ελ
ηp

tr(σ)
can be expressed as

e
ελ
ηp

tr(σ)
= 1 +

ελ

ηp
tr(σ) +

1

2

(
ελ

ηp

)2

(tr(σ))
2

+O

((
ελ

ηp

)3
)
,

hence,

e
ελ
ηp

tr(σ) ≈ 1 +
ελ

ηp
tr(σ) +

a

2

(
ελ

ηp

)2

(tr(σ))
2
. (2)

The constitutive equation (1) with a = 1 is often referred to as the exponential
PTT model and the equation is reduces to the linear PTT model when a = 0 [7].

Consider an incompressible exponential PTT viscoelastic fluid flow in Ω ⊂ R2

with the boundary Γ. Define the differential operators Gi for i = 1, 2, 3, 4 to describe
the momentum equation, the mass conservation equation, the viscous constitutive
equation, and the polymeric constitutive equation, respectively:

G1U := Re(u · ∇u)−∇ · σ −∇ · τ +∇p, (3)

G2U := ∇ · u, (4)

G3U := τ − 2βD, (5)

G4U := We
(
u · ∇σ − (∇u)

T · σ − σ · (∇u)
)

+ σẽ(σ)− 2(1− β)D, (6)

where

ẽ(σ) := 1 +
εWe

1− β
tr(σ) +

a

2

(
εWe

1− β

)2

(tr(σ))
2
.

Collecting the constitutive equation (1) with the substitution (2) and by nondimen-
sionalizaing, we have governing equations of the viscoelastic flow represented by the
boundary value problem:

GU = F in Ω, (7)

u = 0 on Γ, (8)

where U := (u, p, τ ,σ), G := (G1,G2,G3,G4), F := (f , 0,0,0).
We assume that the scalar pressure p is fixed to p0 at the point x0 on Γ, i.e.,

p(x0) = p0, in order to ensure the uniqueness of pressure. Re > 0 is the Reynolds
number given by Re ≡ LcUcρ/η0, in which ηo = ηs + ηp is the zero-shear-rate vis-
cosity, Lc and Uc are characteristic length and velocity, respectively. The parameter
β = ηs/ηo ∈ [0, 1] is the ratio of solvent viscosity to the total zero-shear-rate viscos-
ity, which vanishes in the upper-convected Maxwell model. We is the Weissenberg
number defined by We ≡ λUc/Lc and f is the body force. In the case of We = 0,
the model is reduced to the Newtonian model, the Navier-Stokes equations. The
Oldroyd-B model is obtained if ε = 0 in (2). Different types of the fluid models are
summarized in Table 1.

To define the LS functional, we consider Newton linearization of the nonlinear
equations (7)-(8) about known approximation un, σn of the velocity and the poly-
meric stress tensor, respectively. The linearized system of the PTT model may now
be written as

LU = F in Ω, (9)

u = 0 on Γ, (10)
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Table 1. Viscoelastic fluid models for (a, We, β, ε)

Constitutive equation a We β ε
Newtonian 0 0 β 0
Upper Convected Maxwell 0 We 0 0
Oldroyd-B 0 We β 0
Linear PTT 0 We β ε
Exponential PTT 1 We β ε

where L := (L1,L2,L3,L4) and F := (f1, f2, f3, f4), in which

L1U := Re(un · ∇u + u · ∇un)−∇ · σ −∇ · τ +∇p, (11)

L2U := ∇ · u, (12)

L3U := τ − 2βD, (13)

L4U := L4,1U + L4,2U + L4,3U + L4,4U , (14)

and

A(∇u,σ) = (∇u)
T
σ + σ(∇u),

L4,1U := σ − 2(1− β)D,

L4,2U := We (u · ∇σn + un · ∇σ −A(∇un,σ)−A(∇u,σn)) ,

L4,3U :=

(
εWe

1− β

)
(tr(σn)σ + tr(σ)σn),

L4,4U :=
a

2

(
εWe

1− β

)2

[(tr(σn)tr(σn))σ + 2 (tr(σn)tr(σ))σn] ,

and

f1 := f +Re(un · ∇un),

f2 := 0

f3 := 0

f4 := We (un · ∇σn +A(∇un,σn)) +

(
εWe

1− β

)
(tr(σn)σn)

+
a

2

(
εWe

1− β

)2

(tr(σn)tr(σn))σn.

The LS functional for (9)-(10) is then defined by

J (U ; F) =

4∑
j=1

∫
Ω

Wj(LjU − fj)
2dΩ. (15)

The weights of positive constants W1 = 1, W2 = 10m for m = 1 to 10, W3 = 1, and
W4 = (1 +We+ ε)2 are chosen on the basis of numerical tests under a wide range
of parameters (0 ≤ We ≤ 1, 1 ≤ Re ≤ 10, 0 ≤ ε ≤ 1) in [14]. It is also shown in
the work that the number of Newton iterative steps in the LS method is reduced by
W4. Note that the choice of weights is not dependent on Re because inertial effects
in the viscoelastic fluid flows at low Re can be neglected.
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Remark 1. Since the system of governing equations (7)-(8) is nonlinear, the linear
functional (15) is minimized on each Newton iteration with un, σn replaced by the
solution of the previous Newton step.

3. Least squares problem. We consider the product space

Φ : = V ×Q×Σs ×Σ := H1 (Ω)
2 × L2 (Ω)× L2 (Ω)

2 × L2 (Ω)
2
.

The least-squares minimization problem for the solution of system (9)-(10) is to
choose U ∈ Φ such that

J (U ; F) ≤ J (V ; F) ∀V ∈ Φ, (16)

i.e., seek U such that J (U ; F) is minimized over Φ.
To prove the coercivity and continuity of J , we first define

J0 :=
3∑
j=1

Wi‖LjU‖20 +W4 ‖L4,1U + L4,2U + L4,3U‖20 . (17)

Here, the norm ‖ · ‖0 is associated with the inner products (·, ·)0, Ω. The functional
J0 can be used for the linear PTT, i.e., J0 = J (U ; 0) when a = 0 (or L4,4U = 0
in (14)), and the a priori estimate for J0 is presented in [14]. Based on the result
in [14] and (14), we establish an a priori estimate for the LS functional (15) in
Theorem 3.1.

Theorem 3.1. Suppose the known approximations un, σn are uniformly bounded
satisfying ∇ · un = 0, and

M := max{‖un‖∞, ‖∇un‖∞, ‖σn‖∞, ‖∇σn‖∞} <∞. (18)

Then, for any U = (u, p, τ ,σ) ∈ Φ, there are positive constants, c0 and c1, which
depend on Ω, β, We, α, and M , such that

c0

(
‖u‖21 + ‖p‖20 + ‖τ‖20 + ‖σ‖20

)
≤ J (U ; 0)

and

J (U ; 0) ≤ c1

(
Re2 ‖u‖21 + ‖p‖21 + ‖τ‖21 + ‖σ‖21

)
if M is sufficiently small.

Proof. For a lower bound of J (U ; 0) we first consider the following estimate for
L4,4U .

‖L4,4U‖0 =
a

2

(
εWe

1− β

)2

(‖ (tr(σn)tr(σn))σ‖0 + 2‖ (tr(σn)tr(σ))σn‖0)(19)

≤ 3a

(
εWe

1− β

)2

‖σn‖20 ‖σ‖0

≤ 3a

(
εWe

1− β

)2

M2 ‖σ‖0,

and using the inequality ‖a+ b‖20 ≥ (1/2) ‖a‖20 − ‖b‖
2
0, we have

J (U ; 0) ≥ 1

2
J0 −W4‖L4,4U‖20 (20)

≥ 1

2
J0 − 3aW4

(
εWe

1− β

)2

M2‖σ‖0.
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It was proved in [14] that there exists a constant C0 > 0 satisfying

J0 ≥ C0

(
‖u‖21 + ‖p‖20 + ‖τ‖20 + ‖σ‖20

)
if M is sufficiently small. Therefore, if M2 ≤ C0

12aW4

(
1−β
εWe

)2

,

J (U ; 0) ≥ C0

2

(
‖u‖21 + ‖p‖20 + ‖τ‖20

)
+

(
C0

2
− C0

4

)
‖σ‖20 (21)

≥ c0

(
‖u‖21 + ‖p‖20 + ‖τ‖20 + ‖σ‖20

)
,

where c0 = C0

4 . Finally, the upper bound follows naturally from the triangle in-
equality.

4. A posteriori error estimator. For the finite element approximation of (7)-
(8), we assume that the domain Ω is a polygon and that Th is a collection of finite
elements such that Ω =

⋃
e∈Th e with h = max{diam(e) : e ∈ Th}. Assume that the

triangulation Th is regular and satisfies the assumption of inverse estimates [12].

The grid size is defined as h = 2
√
A/
√
N , where A is the area of the domain and

N is the number of elements in Th. Let Pr(e) denote the space of polynomials of
degree less than or equal to r on element e. Define finite element spaces for the
approximate of (u, p, τ , σ) by

Vh = {vh | vh ∈ V ∩ (C0(Ω))2, vh |e ∈ Pr+1(e)2 ∀e ∈ Th},

Qh = {qh | qh ∈ Q ∩ C0(Ω), qh |e ∈ Pr+1(e) ∀e ∈ Th},

Σh
s = {ζh | ζh ∈ Σs ∩ (C0(Ω))2×2, ζh |e ∈ Pr+1(e)2×2 ∀e ∈ Th},

Σh = {ςh | ςh ∈ Σ ∩ (C0(Ω))2×2, ςh |e ∈ Pr+1(e)2×2 ∀e ∈ Th}.

Let Φh := Vh ×Qh ×Σh
s ×Σh be finite element subspaces of Φ with the following

approximation prosperities. Let Sh = {u ∈ C0(Ω) : u|e ∈ Pr+1(e) ∀e ∈ Th} admit
the property

inf
uh∈Sh

∥∥u− uh∥∥
l
≤ Chm ‖u‖m+l ∀u ∈ H

m+l (Ω) , (22)

for m ≤ r + 1 and l = 0, 1.

The discrete minimization problem for (16) is to choose Uh ∈ Φh such that

J (Uh; F) = inf
V h∈Φh

J (V h; F), (23)

where Uh = (uh, ph, τh,σh) and V h = (vh, qh, ζh, ςh). Since Φh is a finite element
subspace of Φ. Then the solution is equivalently to find Uh ∈ Φ such that

B(Uh,V h) = F(V h), ∀V h ∈ Φ, (24)

where

B(Uh,V h) := (LUh,LV h), (25)

F(V h) := (F,LV h). (26)

The following error estimate for the solution of (23) is obtained by the standard
way, using the coercivity and continuity properties of the functional J in Theorem
3.1.
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Theorem 4.1. Consider approximating the solution to (9)-(10), where the known
functions un, σn are sufficiently close to u, σ, respectively, and satisfy the con-

dition (18). Assume that U ∈ Φ ∩
(
Hm+1 (Ω)

)2 ×Hm+1 (Ω) ×
(
Hm+1 (Ω)

)2×2 ×(
Hm+1 (Ω)

)2×2
is the solution to (16) and Uh ∈ Φh is the unique approximation

solution to (23) for a small M . Then there is a positive constant C which is inde-
pendent of h such that

‖u− uh‖1 ≤ Chm
(
‖τ‖m+1 + ‖σ‖m+1 + ‖p‖m+1 +Re ‖u‖m+1

)
, (27)

‖p− ph‖0 ≤ Chm
(
‖τ‖m+1 + ‖σ‖m+1 + ‖p‖m+1 +Re ‖u‖m+1

)
, (28)

‖τ − τh‖0 ≤ Chm
(
‖τ‖m+1 + ‖σ‖m+1 + ‖p‖m+1 +Re ‖u‖m+1

)
, (29)

‖σ − σh‖0 ≤ Chm
(
‖τ‖m+1 + ‖σ‖m+1 + ‖p‖m+1 +Re ‖u‖m+1

)
, (30)

for m ≤ r + 1.

Proof. By Theorem 3.1 and the approximation properties in (22), we have

‖u− uh‖1 ≤
(
‖u− uh‖21 + ‖p− ph‖21 + ‖τ − τh‖21 + ‖σ − σh‖21

)1/2
≤ inf
V h∈Φh

c1
c0

(
Re2‖u− vh‖21 + ‖p− qh‖21 + ‖τ − ζh‖21 + ‖σ − ςh‖21

)1/2
≤Chm

(
‖τ‖m+1 + ‖σ‖m+1 + ‖p‖m+1 +Re ‖u‖m+1

)
. (31)

By the same approach, we can obtain the desired estimates for
∥∥p− ph∥∥

0
,∥∥τ − τh∥∥

0
, and

∥∥σ − σh∥∥
0
, respectively.

Note that we obtain the error bounds O(h) in the L2-norm for τ , σ, and p,
O(h) in the H1-norm for u if continuous piecewise linear polynomials are used to
approximate all unknowns functions. Hence, we have the optimal convergence rate
of the velocity in the H1-norm and suboptimal convergence rates of the stress and
pressure in the L2-norm.

For the residual of the first-order system (7)-(8), consider a nonlinear a posteriori
error estimator of the following form:

g =
∑
e∈Th

ge, where ge =

4∑
j=1

‖GjUh − F‖20,e (32)

and Uh = (uh, ph, τh,σh) is the finite element solution of (7)-(8) obtained by solv-
ing (24) iteratively by Newton’s method. In numerical experiments the a posteriori
error estimator g will be used to adjust the mass conservation weight W2 in the
LS functional (15). Also the convergence behavior of g1/2 with respect to h will be
numerically tested in the next section.

Theorems 3.1 and 4.1 require the small M condition, where M is a bound of the
velocity and the stress. A viscoelastic fluid flow with a small M is a low-velocity
flow, hence, we will consider low Re flows only for numerical tests.

5. Numerical experiments. We consider two numerical examples. The first
problem is chosen for convergence tests with the known exact solution in the unit
square domain, and the second is a slot flow problem. All variables are approxi-
mated by P1 polynomials, and the initial un and σn for Newton linearization are
set to zero in all computations.
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5.1. Convergence tests. Consider the flow in a planar channel on the domain
[0, 1] × [0, 1] with the line of symmetry along y = 0. Let u = (u, v) be specified
along the boundary except on the axis of symmetry, and σ be specified on the inflow
boundary where u ·n < 0. The pressure p = −1 is set at the point (1, 0), and v and
σxy vanish on the axis of symmetry. The exact solution is chosen as u = (1−y4, 0)T ,
p = −x2, σxx = 2We(1−β)γ̇2, σxy = (1−β)γ̇, and σyy = 0, where σ represents the
analytical solution for the linear PTT model of a steady-state shear flow [3]. The
source terms in (7) are chosen appropriately for the exact solution. The modeling
parameters are selected as (a, We, ε, Re, β)=(1, 0.2, 0.5, 1, 1/9).

First, in order to appropriately adjust the weightW2 = 10m in (15), three uniform
directional triangular meshes with 512, 2048, and 8192 elements are initially used.
We iterate over m for m = 2, 3, . . . , 10, to investigate convergence of the functional
g1/2 in (32). Convergence of the iteration scheme with W2 = 10m is declared when
the relative norm of residual in the nonlinear functional between two consecutive
iterations, δg

1/2
m := ‖g1/2

m+1 − g
1/2
m ‖/‖g1/2

m+1‖, is less than 10−4. See Figure 1 for

δg
1/2
m by different m values. We observe that convergence is achieved at m = 6,

therefore, the mass conservation weight W2 = 106 is used in the LS formulation for
all computations in the first example.

Figure 2 shows the errors of LS solutions with W2 = 102 and W2 = 106, where
for the case of W2 = 106 we observe the consistent rates with the error estimate
in Section 4; the rate for the velocity is optimal, O(h) in the H1-norm, and the
rates for viscous and polymeric stresses, and pressure are suboptimal, O(h) in the
L2-norm. Figure 2 shows that the convergent rates of LS solutions are higher for
the larger W2(= 106). These results also show the optimal convergence of g1/2 at
O(h).

5.2. Application: Flows past a transverse slot. Consider the PTT flow past
a slot in a channel for −2.5 ≤ x ≤ 2.5 with the contraction occurring at x = 0. See
Figure 3. Let u = (u, v) and σ be specified on the inflow boundaries, and u = 0
on the wall boundaries. Pressure p and v are set to zero at the outflow boundary.
The forcing function f in (15) is set to 0. The system of model equations (7)-(8) is
simulated with the parameter values (a, We, ε, Re, β)=(1, 0.1, 0.5, 1, 1/9).

5.2.1. Mesh refinement criteria. We consider the LS method (15) with the adap-
tively refined algorithms, which we name it the ALS method. This refinement
technique is similar to the approach used for the Carreau model in [10]. For the
mesh refinement strategy, we apply the grading function φe on elements e of a Mesh
T given by φe = ‖∇q‖e, where the scalar function q is calculated based on the a

posteriori error estimator of LS solutions, i.e, q = g
1/2
e . Then, as in [10], the mesh

redistribution function f(φe) is defined by

f(φe) = |e|max − (φe − φemin)
∆|e|
∆φe

,

where |e|max = max{|e| : ∀e ∈ T}, ∆|e| = |e|max−|e|min and ∆φe = φemax−φemin .
If e ∈ T satisfies f(φe) ≤ |e|, then e is subdivided. We employ the a posteriori error

estimator for mesh refinement criteria: ∆g
1/2
(k) /∆Nk = |g1/2

(k) − g
1/2
(k−1)|/|Nk −Nk−1|

where Nk represents the number of elements at the k-th refinement step and g
1/2
(k)

denotes the functional value by Mesh Tk. Figure 4 shows that a mesh convergence

for Nk is confirmed when ∆g
1/2
(k) /∆Nk < 2×10−5, which yields convergence of Mesh



AN A POSTERIORI ERROR ESTIMATOR 9
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W2

10-5

10-4

10-3

10-2

10-1

g
1/

2

Re=1, We=0.2, =0.5

No. of elements=512
No. of elements=2048
No. of elements=8192

Figure 1. Reduction of the functional norm δg
1/2
m on three

meshes for various weights W2 = 10m (2 ≤ m ≤ 6).

10-2 10-1

h

10-4

10-3

10-2

10-1

L
2
 E

rr
or

s

Re=1, We=0.2, =0.5

L2 error in  
slope = 1.1
L2 error in  
slope = 0.7
L2 error in p
slope = 1.2
H1 error in u
slope = 0.7

g1/2 of LS solutions
slope = 1.5

10-2 10-1

h

10-4

10-3

10-2

10-1

L
2
 E

rr
or

s

Re=1, We=0.2, =0.5

L2 error in  
slope = 1.2
L2 error in  
slope = 1.6
L2 error in p
slope = 1.3
H1 error in u
slope = 1

g1/2 of LS solutions
slope = 1.5

(a)W2 = 102 (b)W2 = 106

Figure 2. L2 errors of τ , σ, p, H1 error in u, and g1/2 functional
norm of the LS solutions for (a) W2 = 102 and (b) W2 = 106.

U at k = 2 with N2 = 25000 and Mesh G at k = 3 with N3 = 12993, respectively.
Figure 5 shows Mesh G in the k-th refinement step for k = 1, 2, and 3 by the ALS
method starting from the initial mesh T. The results show these adaptive meshes
are highly refined near the corner. More details about meshes are given in Table 2.

5.2.2. Weight adjustment criteria. The optimal weight W2 of the form W2 = 10m

is chosen in a similar manner to the first example; we iterate over m for 2 ≤ m ≤ 6

for the functional g
1/2
m in (32) on the uniformly refined Mesh T with 6144 elements.

As shown in Figure 6, δg
1/2
m = |g1/2

m+1 − g
1/2
m |/g1/2

m+1 is less than 10−4 at m = 6,

therefore, W2 = 106 is chosen as the optimal weight for the LS formulation. Figure
6 also shows u(2.5, 0.5), the horizontal velocity u at (2.5, 0.5), converges to 1.546
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Figure 3. The slot channel with d = h = l = 1

0 1536 4000 6000 12993 25000
Number of elements, N

k

1e-05

2e-05

1e-04

1e-03
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k1/

2
/

 N
k

Re=1, We=0.1, =0.5

LS on  Mesh U
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Figure 4. ∆g
1/2
(k) /∆Nk = |g1/2

(k) − g
1/2
(k−1)|/|Nk − Nk−1| versus the

number of elements Nk for k =1, 2, and 3, where g
1/2
(k) denotes the

functional value by Nk.

for W2 ≥ 104. Figure 7 shows streamlines of the LS solutions using W2 = 104

and W2 = 106, respectively. The figure shows that satisfactory solutions can be
obtained by a sufficiently large weight, W2 = 106, as shown in [11].

5.2.3. Computation grids. Grid independence results of g1/2 and the convergence
of g1/2 by LS and ALS methods are presented in Figure 8(a) and (b), respectively.
The figure shows that both LS and ALS methods yield the same convergent results
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Figure 5. Mesh G with various number of elements Nk in refine-
ment steps.

Table 2. Meshes considered for (We, ε, Re)=(0.1, 0.5, 1).

Mesh Type Method Nk
a Sb kc

Mesh S Initial uniform grids LS 348 4 –
Mesh T Initial uniform grids LS 1536 4 –
Mesh U Uniform refined grids with Mesh T LS 24576 5 2
Mesh G Adaptive grids by g1/2 with Mesh T ALS 12993 4 3
Mesh H Adaptive grids by g1/2 with Mesh S ALS 18320 4 5

aNk represents the number of elements at the k refinement step.
b S is the number of Newton steps for convergence.
c k is the number of mesh refinements.

of g1/2, O(h). However, using the ALS method, the number of unknowns can be
reduced from 111648 to 59551, therefore, the ALS method on Mesh G is more
efficient than the LS method on Mesh U.

Furthermore, in Figure 9, we present contours of g
1/2
e on uniform Meshes T and

U by the LS method and adaptive Mesh G by the ALS method. Figures 9(b) and

9(c) show similar contours of g
1/2
e on Meshes U and G, respectively, and as shown in
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Figure 6. The LS solutions using W2 = 106 on the uniformly
refined Mesh U with 6144 elements. Reduction of functional norm
δg

1/2
m and u(2.5, 0.5) for various weights W2 = 10m (2 ≤ m ≤ 6).

X

Y

X

Y

(a)W2 = 104 (b)W2 = 106

Figure 7. Streamlines of LS solutions on the refined Mesh U with
6144 elements using (a) W2 = 104 and (b) W2 = 106.

Figure 9(a), g
1/2
e near the corner on Mesh T can be reduced using Meshes U and G.

Thus, Meshes U and G reduce the residual error of the system generated by corner
singularity. Using the ALS scheme, the number of elements can be reduced from
24576 (Mesh U) to 12993 (Mesh G), thus, the ALS method on Mesh G is more

efficient than the LS method on Mesh U. Figure 10 presents contours of g
1/2
e on the

coarse uniform Mesh S and the adaptive Mesh H, respectively. The results indicate

that g
1/2
e on Mesh S can be reduced by Mesh H. Note that the contours of g

1/2
e on

Meshes G and H in Figures 9(c) and 10, respectively, are almost in agreement. For
the initial Mesh T, the number of elements and the refinement steps can be reduced
from 18320 (Mesh H) to 12993 (Mesh G) and from 5 (Mesh H) to 3 (Mesh G),
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Figure 8. LS solutions at Re = 1, We = 0.1, and ε = 0.5 using
W2 = 106. (a) Grid independence results for g1/2. (b) Convergence
of g1/2 by the LS and ALS methods.

respectively. Thus, Mesh T as the initial Mesh for the ALS method outperforms
the initial Mesh S.

Finally, we compare streamlines of the ALS solutions for the exponential PTT
(a = 1), linear PTT (a = 0), and the Oldroyd-B (ε = 0) models at We = 1. Figure
11 shows that vortices for We = 1 fluids. The vortices of the fluids move toward
the reentrant corners and are consistent with those obtained on uniform grids in
[14]. The result shows that the shear-thinning behavior of the exponential PTT
flow seems to be more obvious than the linear PTT or Oldroyd-B flows.

6. Conclusion. We considered a nonlinear a posteriori error estimator based on a
first-order LS method for the exponential PTT viscoelastic model of strong flows.
The LS method was developed by assigning proper weights to the terms of the LS
functional, in which the mass conservation weights are obtained by the a posteriori
error estimator. We also proposed an adaptive LS (ALS) for the exponential PTT
model, where the a posteriori error estimator of the LS solution is used for adap-
tive mesh refinements. The proposed approach resolves some difficulties related to
the presence of corner singularities in this second example. In addition, the ALS
approach with adaptive mesh refinements improves computational efficiency.
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