
Bilevel Optimization for On-Demand
Multimodal Transit Systems

Beste Basciftci1,2(B) and Pascal Van Hentenryck1

1 Georgia Institute of Technology, 30332 Atlanta, GA, USA
beste.basciftci@gatech.edu, pascal.vanhentenryck@isye.gatech.edu

2 Sabancı University, 34956 Istanbul, Turkey

Abstract. This study explores the design of an On-Demand Multimodal
Transit System (ODMTS) that includes segmented mode switching mod-
els that decide whether potential riders adopt the new ODMTS or stay
with their personal vehicles. It is motivated by the desire of transit agen-
cies to design their network by taking into account both existing and
latent demand, as quality of service improves. The paper presents a
bilevel optimization where the leader problem designs the network and
each rider has a follower problem to decide her best route through the
ODMTS. The bilevel model is solved by a decomposition algorithm that
combines traditional Benders cuts with combinatorial cuts to ensure the
consistency of mode choices by the leader and follower problems. The
approach is evaluated on a case study using historical data from Ann
Arbor, Michigan, and a user choice model based on the income levels of
the potential transit riders.

Keywords: On-demand transit system · Mode choice · Bilevel
optimization · Benders decomposition · Combinatorial cuts

1 Introduction

On-Demand Multimodal Transit Systems (ODMTS) [13,15] combines on-
demand shuttles with a bus or rail network. The on-demand shuttles serve
local demand and act as feeders to and from the bus/rail network, while the
bus/rail network provides high-frequency transportation between hubs. By using
on-demand shuttles to pick up riders at their origins and drop them off at their
destinations, ODMTS addresses the first/last mile problem that plagues most
of the transit systems. Moreover, ODMTS addresses congestion and economy
of scale by providing high-frequency along congested corridors. They have been
shown to bring substantial convenience and cost benefits in simulation and pilot
studies in the city of Canberra, Australia and the city of Ann Arbor, Michigan.

The design of an ODMTS is a variant of the hub-arc location problem [4,5]:
It uses an optimization model that decides which bus/rail lines to open in order
to maximize convenience (e.g., minimize transit time) and minimize costs [13].
This optimization model uses, as input, the current demand, i.e., the set of
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origin-destination pairs over time in the existing transit system. Transit agen-
cies however are worried about latent demand: As the convenience of the transit
system improves, more riders may decide to switch modes and adopt the ODMTS
instead of traveling with their personal vehicles. By ignoring the latent demand,
the ODMTS may be designed suboptimally, providing a lower convenience or
higher costs. This concern was raised in [3] who articulated the potential of
leveraging data analytics within the planning process and proposing transit sys-
tems that encourage riders to switch transportation modes.

This paper aims at remedying this limitation and explores the design of
ODMTS with both existing and latent demands. It considers a pool of potential
riders, each of whom is associated with a personalized mode choice model that
decides whether a rider will switch mode for a given ODMTS. Such a choice
model can be obtained through stated and revealed preferences, using surveys
and/or machine learning [17]. The main innovation of this paper is to show how
to integrate such mode choice models into the design of ODMTS, capturing
the latent demand and human behavior inside the optimization model. More
precisely, the contributions of the paper can be summarized as follows:

1. The paper proposes a novel bilevel optimization approach to model the
ODMTS problem with latent demand in order to obtain the most cost-efficient
and convenient route for each trip.

2. The bilevel optimization model includes a personalized mode choice for each
rider to determine mode switching or latent demand.

3. The bilevel optimization model is solved through a decomposition algorithm
that combines both traditional and combinatorial Benders cuts.

4. The paper demonstrates the benefits and practicability of the approach on a
case study using historical data over Ann Arbor, Michigan.

The remainder of the paper is organized as follows. Section 2 reviews the
relevant literature. Section 3 specifies the ODMTS design problem. Section 4
proposes a bilevel optimization approach for the design of ODMTS with latent
demand, and Sect. 5 develops the novel decomposition methodology. The case
study is presented in Sect. 6 and Sect. 7 concludes the paper with final remarks.

2 Related Literature

Hub location problems are an important area of research in transit network
design (see [7] for a recent review). More specifically, the transit network design
problem considering hubs can be considered as a variant of the hub-arc location
problem [4,5], which focuses on determining the set of arcs to open between hubs,
and optimizing the flow with minimum cost. Mahéo, Kilby, and Van Hentenryck
[13] extended this problem to the ODMTS setting by introducing on-demand
shuttles and removing the restriction that each route needs to contain an arc
involving a hub. Furthermore, instead of the restriction of hubs being intercon-
nected in the network design, they consider a weak connectivity within system
by ensuring the sum of incoming and outgoing arcs to be equal to each other for
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each hub. Although these studies provide efficient solutions for a given demand,
they neglect the effect of the latent demand which can change the design of the
transit systems.

Bilevel optimization is an important area of mathematical programming,
which mainly considers a leader problem, and a follower problem that optimizes
its decisions under the leader problem’s output. Due to this hierarchical deci-
sion making structure, this area attracted attention in different urban transit
network design applications [8,11] such as discrete network design problems [9]
by improving a network via adding lines or increasing their capacities, and bus
lane design problems [16] under traffic equilibrium. Another line of research
focuses on the pricing aspects of these problems for toll optimization by consid-
ering a multi-commodity network flow problem [1], and [2] extends this setting
by jointly designing the underlying network. Studies [6,14] provide an overview
of various solution methodologies to address these problems including refor-
mulations based on Karush–Kuhn–Tucker (KKT) conditions, descent methods
and heuristics. User preferences and the corresponding latent demand constitute
important factors impacting the network design. Because of the computational
complexity involved with solving bilevel problems, it is preferred to model rider
preferences within a single level optimization problem [10]. To this end, our app-
roach provides a novel bilevel optimization framework for solving the ODMTS
by integrating user choices, and developing an exact decomposition algorithm as
its solution procedure.

3 Problem Statement

This section defines the problem statement and stays as close as possible to the
original setting of the ODMTS design [13]. In particular, the input consists of
a set of (potentially virtual) bus stops N , a set of potential hubs H ⊆ N , and
a set of trips T . Each trip r ∈ T is associated with an origin stop orr ∈ N , a
destination stop der ∈ N , and a number of passengers taking that trip pr ∈ Z+.
This paper often abuses terminology and uses trips and riders interchangeably,
although a trip may contain several riders. The distance and time between each
node pair i, j ∈ N is given by parameters dij and tij , respectively. These parame-
ters can be asymmetric and are assumed to satisfy the triangular inequality. The
network design optimizes a convex combination of convenience (mostly travel
time) and cost, using parameter θ ∈ [0, 1]: In other words, convenience is multi-
plied by θ and cost by 1 − θ. The investment cost of opening a leg between the
hubs h, l ∈ H is given by as βhl = (1 − θ) b n dhl, where b is the cost of using a
bus per mile and n is the number of buses during the planning period. For each
trip r ∈ T , the weighted cost and convenience of using a bus between the hubs
h, l ∈ H is given by τ r

hl = θ(thl + S), where S is the average waiting time of a
bus (the bus cost is covered by the investment).

This paper adopts a pricing model where the ODMTS subsidizes part, but
not all, of the shuttle costs. More precisely, for simplicity in the notations, the
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paper assumes that the transit price is half of the shuttle cost of a trip.1 With
this pricing model, the weighted cost and convenience for an on-demand shuttle
between i and j for the ODMTS and riders is given by (1−θ) g

2 dij +θtij , where
g is the cost of using a shuttle per mile. Moreover, the shuttles act as feeders to
bus system or serve the local demand. As a result, their operations are restricted
to serve requests in a certain distance. This is captured by a threshold value of
Δ miles that characterizes the trips that shuttles can serve. As a result, it is
suitable to define the weighted cost and convenience of an on-demand shuttle
between the stops i, j ∈ N as follows:

γr
ij :=

{
(1 − θ) g2dij + θtij if dij ≤ Δ

M if dij > Δ.

where M is a big-M parameter.
To capture latent ridership, this paper assumes that a subset of trips T ′ ⊆ T

currently travel with their personal vehicles, while the trips in T \ T ′ already
use the transit system. The goal of the paper is to capture, in the design of
the ODMTS, the fact that some riders may switch mode and use the ODMTS
instead of their own cars as the transit system has a better cost/convenience
trade-off. Each rider r ∈ T ′ has a choice model Cr that determines, given the
cost/convenience of the novel ODMTS, whether r will switch to the transit
system. For instance, the cost model could be

Cr(dr) ≡ 1(dr ≤ αr drcar)

where drcar represents the weighted cost and convenience of using a car for rider
r, dr represents the weighted cost and convenience of using the ODMTS in some
configuration, and αr ∈ R+. In other words, rider r would switch to transit if
its convenience and cost is not more than αr times the cost and convenience of
traveling with her personal vehicle. The choice model could of course be more
complex and include the number of transfers and other features. It can be learned
using multimodal logic models or machine learning [17].

4 Model Formulation

This section proposes an optimization model for the design of an ODMTS follow-
ing the specification from Sect. 3. In the model, binary variable zhl is 1 if there is
a bus connection from hub h to l. Furthermore, for each trip r, binary variables
xr
hl and yr

ij represent whether rider r uses a bus leg between hubs h, l ∈ H and
a shuttle leg between stops i and j respectively. Binary variable δr for r ∈ T ′

is 1 if rider r switches to the ODMTS. The bilevel optimization model for the

1 The results in this paper generalize to other subsidies and pricing models, and they
will be discussed in the extended version of the paper.
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ODMTS design can then be specified as follows:

min
∑

h,l∈H

βhlzhl +
∑

r∈T\T ′
prdr +

∑
r∈T ′

prδrdr (1a)

s.t.
∑
l∈H

zhl =
∑
l∈H

zlh ∀h ∈ H (1b)

δr = Cr(dr) ∀r ∈ T ′ (1c)
zhl ∈ {0, 1} ∀h, l ∈ H (1d)
δr ∈ {0, 1} ∀r ∈ T ′ (1e)

where dr is the cost and convenience of trip r, i.e.,

dr = min
∑

h,l∈H

τ r
hlx

r
hl +

∑
i,j∈N

γr
ijy

r
ij (2a)

s.t.
∑
h∈H
if i∈H

(xr
ih − xr

hi) +
∑
i,j∈N

(yr
ij − yr

ji) =

⎧⎪⎨
⎪⎩

1 , if i = orr

−1 , if i = der

0 , otherwise
∀i ∈ N

(2b)

xr
hl ≤ zhl ∀h, l ∈ H (2c)

xr
hl ∈ {0, 1} ∀h, l ∈ H, yr

ij ∈ {0, 1} ∀i, j ∈ N. (2d)

The resulting formulation is a bilevel optimization where the leader problem
(Eqs. (1a)–(1e)) selects the network design and the follower problem (Eqs. (2a)–
(2d)) computes the weighted cost and convenience for each rider r ∈ T in the
proposed ODMTS.

The objective of the leader problem (1a) minimizes the investment cost of
opening legs between hubs and the weighted cost and convenience of the routes in
the ODMTS for those riders. Constraint (1b) ensures weak connectivity between
the hubs and constraint (1c) represents the rider choice, i.e., whether rider r ∈ T ′

switches to the ODMTS.
The follower problem of a given trip minimizes the cost and convenience of

its route between its origin and destination, under a given transit network design
between the hubs (objective function (2a)). Constraint (2b) ensures flow conser-
vation for the bus and shuttle legs. Constraint (2c) guarantees that only open
legs are considered by each trip. The follower problem has a totally unimodu-
lar constraint matrix, once the leader problem determines the transit network
design decisions z. In this case, integrality restrictions (2d) can be relaxed, and
the problem can be solved as a linear program.

As specified, the follower problem takes into account all of the arcs between
each node pair i, j ∈ N for possible rides with on-demand shuttles. However,
due to the triangular inequality, it is sufficient to consider a subset of the arcs
for the on-demand shuttles of each trip. More precisely, the optimization only
needs to consider arcs i) from origin to hubs, ii) from hubs to destination, and
iii) from origin to destination. This subset of necessary arcs for trip r is denoted
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by Ar. Consequently, the model only needs the following decision variables for
describing the on-demand shuttles used in trip r:

yr
orrh, yr

hder ∈ {0, 1} ∀h ∈ H

yr
orrder ∈ {0, 1}.

This preprocessing step significantly reduces the size of the follower problem and
provides a significant computational benefit.

5 Solution Methodology

This section presents a decomposition approach to solve the bilevel problem (1).
The decomposition combines traditional Benders optimality cuts with combina-
torial Benders cuts to capture the rider choices. The Benders master problem
is associated with the leader problem and considers the complicating variables
(zhl, δr, dr) and the subproblems are associated with the follower problems. The
master problem relaxes the user choice constraint (1c). The duals of the sub-
problems generate Benders optimality cuts for the master problem. Moreover,
combinatorial Benders cuts are used to ensure that the rider mode choices in
the master problem are correctly captured by the master problem. The overall
decomposition approach iterates between solving the master problem and guess-
ing (z̄hl, δ̄r, d̄r) and solving the subproblems to obtain the correct value dr from
which the switching decision Cr(dr) can be derived. The overall process termi-
nates when the lower bound obtained in the master problem and upper bound
computed through the feasible solutions converge.

Section 5.1 presents the master problem and Sect. 5.2 discusses the subprob-
lem along with some preprocessing steps. Section 5.3 introduces the cut gener-
ation procedure and proposes stronger cuts under some natural monotonicity
assumptions. Section 5.4 specifies the proposed decomposition algorithm and
proves its finite convergence. Finally, Sect. 5.5 improves the decomposition app-
roach with Pareto-optimal cuts.

5.1 Relaxed Master Problem

The initial master problem (3) is a relaxation of the bilevel problem (1), i.e.,

min
∑

h,l∈H

βhlzhl +
∑

r∈T\T ′
prdr +

∑
r∈T ′

prδrdr

s.t. (1b), (1d), (1e). (3a)

Each iteration first solves the relaxed master problem (3), before identifying
combinatorial and Benders cuts to add to the master problem. These cuts depend
on the proposed transit network design and rider choices as discussed in Sects.
5.2 and 5.3. The objective function (3a) involves nonlinear terms and needs to be
linearized. Since the mode choice is binary, the nonlinear terms can be linearized
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easily by defining νr = δrdr and adding the following constraints to the master
problem for each trip r ∈ T ′:

νr ≤ M̄rδr (4a)
νr ≤ dr (4b)
νr ≥ dr − M̄r(1 − δr) (4c)
νr ≥ 0, (4d)

where the constant M̄r is an upper bound value on the objective function value
of the lower level problem of trip r.

5.2 Subproblem for Each Trip

The subproblems for the decomposition algorithm are the duals of the follower
problems (2). Since the follower problems have a totally unimodular constraint
matrix for a given binary z̄ vector, the integrality condition for variable xr

ij can
be relaxed into by xr

ij ≥ 0 and the bounds xr
ij ≤ 1 can be discarded since it

is redundant due to constraint (2c). Then, the dual of the subproblem for each
route r ∈ T can then be specified by introducing the dual variables ur

i and vr
hl:

max (ur
orr − ur

der ) −
∑

h,l∈H

z̄hlv
r
hl (5a)

s.t. ur
h − ur

l − vr
hl ≤ τ r

hl ∀h, l ∈ H (5b)
ur
i − ur

j ≤ γr
ij ∀i, j ∈ Ar (5c)

ur
i ≥ 0 ∀i ∈ N, vr

hl ≥ 0 ∀h, l ∈ H. (5d)

Problem (2) is trivially feasible by using the direct trip between origin and des-
tination (which may have a high cost) and hence the dual problem (5) bounded.
The optimal objective value of subproblem (2) under solution {z̄hl}h,l∈H is
denoted by SP r(z̄). In the following section, this value is utilized to evaluate
the rider’s mode choice and possibly to generate combinatorial cuts.

5.3 The Cut Generation Procedure

The cut generation procedure receives a feasible solution ({z̄hl}h,l∈H , {δ̄r}r∈T ′ ,
{d̄r}r∈T ) to the relaxed master problem. It solves the dual subproblem (5) for
each trip r ∈ T under the network design z̄. For any trip r ∈ T ′, the cut genera-
tion procedure then analyzes the feasibility and optimality of the solution of the
relaxed master problem, depending on the value of SP r(z̄). The cut generation
first needs to enforce the consistency of the choice model.

Definition 1 (Choice Consistency). For a given trip r, the solution values
{z̄hl}h,l∈H and δ̄r are consistent with SP r(z̄) if

δ̄r = Cr(SP r(z̄)).
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As a result, it is useful to distinguish the following cases in the cut generation
process:

1. Solution values {z̄hl}h,l∈H and δ̄r are inconsistent with SP r(z̄)
(a) δ̄r = 1 and Cr(SP r(z̄)) = 0;
(b) δ̄r = 0 and Cr(SP r(z̄)) = 1.

2. Solution values {z̄hl}h,l∈H and δ̄r are consistent with SP r(z̄).

The first inconsistency (case 1(a)) can be removed by using the cut∑
(h,l):z̄hl=0

zhl +
∑

(h,l):z̄hl=1

(1 − zhl) ≥ δr (6)

Proposition 1. Constraint (6) removes inconsistency 1(a).

The second inconsistency (case 1(b)) can be removed by using the cut∑
(h,l):z̄hl=0

zhl +
∑

(h,l):z̄hl=1

(1 − zhl) + δr ≥ 1 (7)

Proposition 2. Constraint (7) removes inconsistency 1(b).

Combinatorial cuts (6) and (7) ensure the consistency between the rider choice
model and the transit network design z̄. These cuts can be strenghtened under
a monotonicity property.

Definition 2 (Anti-Monotone Mode Choice). A choice function C is anti-
monotone if d1 ≤ d2 ⇒ C(d1) ≥ C(d2).

Proposition 3. Let r ∈ T . If z̄1 ≤ z̄2, then SP r(z̄1) ≥ SP r(z̄2).

Proof. If z̄1 ≤ z̄2, more arcs are available in the network defined by z̄2 than in
the network defined by z̄1. Therefore, the length of the optimum shortest path
for trip r under z̄1 is greater than or equal to that of z̄2. 	

The following proposition follows directly from Proposition 3.

Proposition 4. Let r ∈ T and Cr be an anti-monotone choice function. If z̄1 ≤
z̄2, then Cr(SP r(z̄1)) ≤ Cr(SP r(z̄2)).

When the choice function is anti-monotone, stronger cuts can be derived.

Proposition 5. Consider an anti-monotone choice function. Then constraint
(6) for case 1(a) can be strengthened into constraint∑

(h,l):z̄hl=0

zhl ≥ δr (8)
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Proof. Consider case 1(a) and network design z̄. Let z̃ be a network design
obtained by removing some arcs from z̄. By Proposition 3, SP r(z̃) ≥ SP r(z̄) for
any trip r. Hence, by Proposition 4, Cr(SP r(z̃)) ≤ Cr(SP r(z̄)). Therefore, the
right term of cut (6) does not remove the inconsistency and the result follows. 	

Proposition 6. Consider an anti-monotone choice function. Then constraint
(7) for case 1(b) can be strengthened into constraint∑

(h,l):z̄hl=1

(1 − zhl) + δr ≥ 1 (9)

Proof. Consider case 1(b) and network design z̄. Let z̃ be a network design
obtained by adding some arcs to z̄. By Proposition 3, SP r(z̃) ≤ SP r(z̄) for any
trip r. Hence, by Proposition 4, Cr(SP r(z̃)) ≥ Cr(SP r(z̄)). Thus, the left term
of cut (7) does not remove the inconsistency and the result follows. 	

Since the dual subproblem (5) is bounded, it is also possible to add an optimality
cut to the master problem in both cases of 1 and 2 using the weighted cost and
convenience of each obtained route. This cut is the standard Benders optimality
cut and it uses the vertex (ūr, v̄r) obtained when solving the dual subproblem
as follows:

dr ≥ (ūr
orr − ūr

der ) −
∑

h,l∈H

zhlv̄
r
hl. (10)

It is also possible to obtain an upper bound from the solutions to the subprob-
lems. Indeed, the rider choices can be derived from the solutions of the sub-
problems and used instead of the corresponding master variables for the mode
choices.

The experimental results use the choice function Cr(dr) ≡ 1(dr ≤ αr drcar): A
rider r chooses the ODMTS if her weighted cost and convenience is not greater
than αr times the weighted cost and convenience drcar of using her personal car.
This choice function is anti-monotone.

Proposition 7. The choice function Cr(dr) ≡ 1(dr ≤ αr drcar) is anti-
monotone.

Proof. By definition, dr decreases when adding arcs to a network and dr1 ≤ dr2
implies Cr(dr1) ≥ Cr(dr2). 	


5.4 Decomposition Algorithm

The decomposition is summarized in Algorithm 1. It uses a lower and an upper
bound to the bilevel problem (1) to derive a stopping condition. The master
problem provides a lower bound and, as mentioned earlier, an upper bound can
be derived for each network design by solving the subproblems and obtaining
the mode choices for the trips.

Proposition 8. Algorithm 1 converges in finitely many iterations.
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Algorithm 1. Decomposition Algorithm
1: Set LB = −∞, UB = ∞, z∗ = ∅.
2: while UB > LB + ε do
3: Solve the relaxed master problem (3) and obtain the solution ({z̄hl}h,l∈H ,

{δ̄r}r∈T ′ , {d̄r}r∈T ).
4: Update LB.
5: for all r ∈ T do
6: Solve the subproblem (5) under z̄, and obtain SP r(z̄).
7: Add optimality cut in the form (10) to the relaxed master problem (3).
8: for all r ∈ T ′ do
9: if {z̄hl}h,l∈H and δ̄r are inconsistent with SP r(z̄) then

10: Add cuts in the form (8) or (9) to the relaxed master problem.
11: if Cr(SP r(z̄)) is 1 then
12: Set δ̂r = 1.
13: else
14: Set δ̂r = 0.
15: ̂UB =

∑

h,l∈H βhlz̄hl +
∑

r∈T\T ′ prSP r(z̄) +
∑

r∈T ′ pr δ̂rSP r(z̄).

16: if ̂UB < UB then
17: Update UB as ̂UB, z∗ = z̄.

Proof. The algorithm generates traditional Benders optimality cuts and, in addi-
tion, the consistency cuts of the form (8) or (9). When all the consistency cuts are
generated, the algorithm reduces to a standard Benders decomposition. There
are only finitely many consistency cuts, because the decision variables z and δr

are binary. Since each iteration adds at least one new consistency or Benders
cut, the algorithm is guaranteed to converge in finitely many iterations. 	


5.5 Pareto-Optimal Cuts

The decomposition algorithm can be further enhanced by utilizing Pareto-
optimal cuts [12] through alternative optimal solutions of the subproblems. To
this end, the algorithm first solves the follower problem (2) under a given network
design, obtains the optimal objective value for the corresponding trip, and then
solve the Pareto subproblem, i.e., a restricted version of the dual subproblem (5)
under this optimal value.

Observe that, once the transit network design z̄ is given, the follower prob-
lem of each trip r is equivalent to solving a shortest path problem considering
the union of the arcs defined by z̄ and the arcs in the set Ar. Consequently,
this shortest path information can be obtained by solving a linear program and
obtaining the objective value σr for trip r. Using this information, the Pareto
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subproblem for trip r is defined as follows:

max (ur
orr − ur

der ) −
∑

h,l∈H

z0hlv
r
hl (11a)

s.t. ur
h − ur

l − vr
hl ≤ τ r

hl ∀h, l ∈ H (11b)
ur
i − ur

j ≤ γr
ij ∀i, j ∈ Ar (11c)

(ur
orr − ur

der ) −
∑

h,l∈H

z̄hlv
r
hl = σr (11d)

ur
i ≥ 0 ∀i ∈ N, vr

hl ≥ 0 ∀h, l ∈ H, (11e)

where z0 is a core point that satisfies the weak connectivity constraint (1b). To
obtain an initial core point, it suffices to select a value η ∈ (0, 1), and set zhl = η
for all h, l ∈ H.

6 Computational Results

The computational study considers a data set from Ann Arbor, Michigan with 10
hubs located around high density corridors and 1267 bus stops. The experiments
examine a set of trips from 6 pm to 10 pm on a specific day. The studied data set
involves 1503 trips with a total of 2896 users, where the origin and destination
of each trip are associated with bus stops. The costs and times between the bus
stops are asymmetric in the studied data set. The study included a preprocessing
step to ensure the triangular inequality with respect to the cost and convenience
parameters of the on-demand shuttles between the stops.

To model rider preferences in the formulation, the computational study used
an income-based classification. This approach assumes that, as the income level
of a rider increases, she becomes more sensitive to the quality of the ODMTS
route (convenience). In particular, the study considers three classes of riders: i)
low-income, ii) middle-income and iii) high-income, where a certain percentage of
riders from each class is assumed to use the ODMTS. The trips are then classified
with respect to their destination locations, which can be associated with the
residences of the corresponding riders. In particular, in the base scenario, 100%
of low-income riders, 75% of middle-income riders, and 50% of high-income users
utilize the transit system, whereas the remaining riders have the option to select
the ODMTS or use their personal vehicles by comparing the obtained route with
their current mode of travel.

The convenience parameter θ is set to 0.01 for weighting cost and convenience.
The cost of an on-demand shuttle per mile is taken as g = $2.86 and the cost
of a bus per mile is b = $7.24. The buses between hubs have a frequency of
15 min, resulting in 16 buses during the planning horizon with length of 4 h. As
mentioned earlier, the price of a ride in the ODMTS is half the cost of the shuttle
legs. The base case of the case study sets αr to 1.25 and 1 for middle-income
and high-income riders respectively. The distance threshold for the on-demand
shuttles, Δ, is set to 2 or 5 mi.
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6.1 Transit Design and Mode Switching

Figure 1 depicts the transit network design between hubs under the proposed
approach. The bus stops associated with the lowest income level are red dots,
those of the middle-income level are grey boxes, and those of the high-income
level are green plus symbols. In the resulting network design, almost every hub
is connected to at least another hub ensuring weak connectivity of the network.

Fig. 1. Network design for the ODMTS with 10 Hubs with Δ = 2.

Table 1. Adoption rates, average route time and average ride cost for the ODMTS.

Income
level

#trips %adoption #riders %adoption Avg
route
time (s)

Avg
route
cost ($)

Low 476 1.00 877 1.00 901.45 2.41

Middle 784 0.96 1615 0.97 553.43 2.43

High 149 0.72 285 0.79 583.10 2.78

Table 1 shows the rider preferences, and the average time and cost of the
obtained routes. In particular, columns ‘#trips’ and ‘#riders’ represent the num-
ber of trips and riders of the ODMTS. The “%adoption” columns correspond to
the adoption rate, i.e., the percentage of trips or riders utilizing the ODMTS.
When computing the adoption rate, these numbers include the initial set of
riders, i.e., 100% of low-income riders, 75% of middle-income riders and 50%
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of high-income riders. The cost and convenience of the ODMTS is sufficiently
attractive to exhibit significant mode switching, even for the high-income pop-
ulation. Columns for the average route time and cost represent the averages for
the obtained routes regardless of the fact that whether riders adopts the tran-
sit system or not. The results highlight the high adoption rates. The average
route time is the longest for the low-income riders given their long commuting
trips. Similar results are observed for the number of transfers, which include the
transfers between on-demand shuttles and buses, and between the buses in the
hubs. Specifically, from the set of riders choosing the transit system, 22% of low-
income riders, 8% of medium-income riders, and 3% of high-income riders have
at least 3 transfers. Moreover, the number of transfers decreases with increases
in income level.

Table 2. Comparing the average cost and time of the ODMTS trips and those using
personal vehicles (Cars).

ODMTS trips Car trips

Time Cost Time Cost

Income level ODMTS Cars ODMTS Cars ODMTS Cars ODMTS Cars

Low 901.45 405.96 2.41 10.72 NA NA

Medium 528.94 296.95 2.38 7.14 1489.80 585.03 5.17 14.55

High 529.84 326.53 2.30 7.06 93.77 31.51 0.21 0.88

Table 2 presents a cost and convenience analysis for the ODMTS trips and
those using personal vehicles (cars). The columns corresponding to “ODMTS
Trips” represent users who chose the transit system, whereas columns corre-
sponding to “Car Trips” are for those using their personal vehicles, once they
observe the transit network design. It also provides the cost and convenience of
the other mode, i.e., the convenience and cost of using a personal vehicle for those
using the ODMTS and vice-versa. As can be seen, the cost of using the ODMTS
is significantly lower, although personal vehicles would decrease the commute
time significantly for low-income riders. Note however that the ODMTS has also
achieved low commuting times. Riders using personal vehicles do so because the
transit times are simply too large for their trips.

The next results examine the effect of the threshold value Δ on the rides with
on-demand shuttles. Figure 2 presents the network design with Δ = 5 mile. This
allows for longer shuttle rides from origin to destination of each trip compared to
the Δ = 2 case in Fig. 1. As a result, the network design has fewer connections
between hubs. Although the investment cost for the network design is lower
in this case, the average trip cost increases and the average time of the trips
decreases through the adoption of more on-demand shuttles. This highlights the
trade-off between the high-frequency buses and on-demand shuttles.
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Fig. 2. Network design for the ODMTS with 10 Hubs with Δ = 5.

6.2 The Benefits of the Formulation

This section compares the novel bilevel formulation with latent demand (L) with
the original formulation that ignores the latent demand (O). In other words, the
original formulation designs the network with T \T ′ trips but is evaluated on the
complete set T of trips. The two network designs are then compared in terms of
cost and convenience. To obtain a realistic setting, the share of public transit is
assumed to be 10% for each income level. The results are presented in Table 3.

Table 3. Comparison of the proposed (L) and original (O) models with Δ = 5.

Model Income Adoption Investment ($) ODMTS trips ($) Conv. (s) Cost &
Conv.

L Low 1.00 2482.38 17530.24 1269263.87 32505.13

Middle 1.00

High 0.84

O Low 1.00 861.54 20685.56 1167457.12 33006.20

Middle 0.99

High 0.82

The results show that both models have similar results in terms of mode
switching. However, the new formulation has a higher investment cost and a
lower cost for the ODMTS trips compared to the original formulation. The dif-
ference between the models is highlighted in Fig. 3, which shows the network
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designs under the two approaches: The dashed legs represent the design under
the original model, and the other legs correspond to the design of the proposed
model. This result is intuitive: With more ridership, the ODMTS should open
more legs and further reduces congestion. It shows that the novel formulation
provides a more robust solution that should reassure transit agencies. As the orig-
inal formulation opens fewer legs between hubs, users utilize more on-demand
shuttles, resulting in trips with more convenience but at much higher costs. In
terms of the total investment and trips cost, the results show that the new and
original formulations have total costs of $20012.62 and $21547.10, respectively.
As this cost improvement corresponds to a planning horizon of 4 h, it scales up to
a gain of $1227585 over a yearly plan with 200 days over 16 h. This is signifi-
cant for this case study and highlights why transit agencies are worried about the
success of ODMTS when they are planned with the existing demand only: They
will under-invest in bus lines and sustain higher shuttle costs. The formulation
proposed in this paper remedies this limitation: By taking into account the per-
sonalized choice models of riders, the network design invests in high-frequency
buses, decreasing the overall cost while maintaining an attractive level of con-
venience. Note also that, the pricing model adopted in this paper keeps the
transit costs low but is also conducive to numerous mode switchings, since the
transit system subsidies half the cost. It is also important to report the compu-
tational performance of the proposed algorithms. The formulation with latent
demand requires 513 s to converge in 8 iterations, whereas the original formula-
tion requires 189 s in 8 iterations for the case study.

Fig. 3. Network designs of the proposed model (L) and the original model (O).
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7 Conclusion

This study presented a bilevel optimization approach for modeling the ODMTS
by integrating rider preferences and considering latent demand. The transit net-
work designer optimizes the network design between the hubs for connecting
them with high frequency buses, whereas each rider tries to find the most cost-
efficient and convenient route under a given design through buses and on-demand
shuttles. The paper considered a generic preference model to capture whether
riders switch to the ODMTS based on the obtained route and their current
mode of travel. To solve the resulting optimization problem, the paper proposed
a novel decomposition approach and developed combinatorial Benders cuts for
coupling the network design decisions with rider preferences. A cut strengthen-
ing was also proposed to exploit the structure of the follower problem and, in
particular, a monotonicity assumption of the choice model. The potential of the
approach was demonstrated on a case study using a data set from Ann Arbor,
Michigan. The results showed that ignoring latent demand can lead to significant
cost increase (about 7.5%) for transit agencies, confirming that these agencies
are correct in worrying about customer adoption. This is the case even for a
pricing model where the transit agency and riders share the shuttle costs. The
new formulation can also be solved in reasonable time.

Current work is devoted to examining the impact of various cost models
and different choice models for riders. Applications of the model to the city of
Atlanta is also contemplated and should reveal some interesting modeling and
computational challenges given the size of the city.
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