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Abstract

In this paper, we study the central discontinuous Galerkin (DG) method on over-

lapping meshes for second order wave equations. We consider the first order hyperbolic

system, which is equivalent to the second order scalar equation, and construct the cor-

responding central DG scheme. We then provide the stability analysis and the optimal

error estimates for the proposed central DG scheme for one- and multi-dimensional cases

with piecewise P k elements. The optimal error estimates are valid for uniform Carte-

sian meshes and polynomials of arbitrary degree k ≥ 0. In particular, we adopt the

techniques in [22, 23] and obtain the local projection that is crucial in deriving the op-

timal order of convergence. The construction of the projection here is more challenging

since the unknowns are highly coupled in the proposed scheme. Dispersion analysis is

performed on the proposed scheme for one dimensional problems, indicating that the

numerical solution with P 1 elements reaches its minimum with a suitable parameter in

the dissipation term. Several numerical examples including accuracy tests and long time

simulation are presented to validate the theoretical results.
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1 Introduction

Wave propagation is a fundamental form of energy transmission, which arises in

many fields of science, engineering and industry, such as geoscience, petroleum engi-

neering, telecommunication, and the defense industry (see [13, 18] and the references

therein). A vast amount of research can be found on the numerical approximation of

wave problems. The commonly used numerical methods include finite difference, finite

volume, spectral element and finite element methods, etc (see e.g. [15, 14, 12, 19]).

Among those numerical methods, we confine our attention to the discontinuous Galerkin

(DG) methods in this paper. DG methods are a class of finite element methods using

discontinuous basis functions, which are usually chosen as piecewise polynomials, but

could also be chosen as other types of functions to suit specific needs. The first DG

method was developed to solve a steady transport equation in [25], and later Cockburn

et al. applied the DG discretization in space, coupled with explicit Runge-Kutta time

discretization, for solving the hyperbolic conservation laws successfully [10, 9, 8, 6, 11].

Since then, the DG method has attracted more and more attention, and found broad

applications in various areas such as aero-acoustics, gas dynamics, weather forecasting,

oceanography, electro-magnetism, etc. The DG method has many advantages such as

allowing triangulations with hanging nodes, the extremely local data structure, high

efficiency in parallel computation, and the ability to easily accommodate arbitrary h-p

adaptivity, etc.

In this paper, we propose a central discontinuous Galerkin (CDG) scheme for solving

the following two way wave equation{
pt = c∇ · q+f(p, q,x, t) in Ω, t > 0,
qt = c∇p+g(p, q,x, t) in Ω, t > 0,

(1.1)

where Ω ⊂ Rd is some bounded domain, d = 1, 2, 3, and p = p(x, t) and q = q(x, t) ∈ Rd

are unknown functions, and the source terms f(p, q,x, t) ∈ R and g(p, q,x, t) ∈ Rd. The

system (1.1) without source terms is equivalent to the acoustic wave equation

ptt = c2∆p (1.2)

where ∆ is the Laplace operator, p is the acoustic pressure (the local deviation from the

ambient pressure), and c is the speed of sound. For simplicity, in the remainder of the

paper we will only consider the system (1.1) without source terms, i.e f(p, q,x, t) = 0,

g(p, q,x, t) = 0, as all results also hold for the general case with the source terms

depending linearly on p and q. That is, we will only consider the following system:{
pt = c∇ · q in Ω, t > 0,
qt = c∇p in Ω, t > 0.

(1.3)
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The central DG method was first introduced by Liu et al. in [20]. In order to avoid

Riemann solvers in constructing the numerical fluxes at the interfaces of the elements, in

[20] the authors computed two numerical solutions on the overlapping meshes. Therefore,

one advantage of the central DG method is the avoidance of the possibly complicated

construction of the numerical fluxes. Another advantage is that it allows a larger time

step (proportional to O(h/k) where h is the spatial mesh size and k is the polynomial

degree) than that of the regular DG method (which has a time step proportional to

O(h/k2)), particularly for higher order of spatial accuracy [26]. Liu et al. in [21] provided

L2 stability analysis and suboptimal error estimates for linear hyperbolic equations.

Later Liu et al. in [22] used the shifting technique to construct a special projection to

obtain optimal error estimates of the central DG methods for linear hyperbolic equations.

In [23] they continue to use this technique to obtain optimal error estimates of the DG

methods on Cartesian meshes using P k element space, which is the space of piecewise

polynomials with degree at most k in each element. Recently, the shifting technique was

adopted in the study of optimal convergence and superconvergence of semi-Lagrangian

DG methods in [30].

To solve the second order wave equation numerically, one approach is to construct

the numerical scheme directly such as the symmetric interior penalty DG method [17].

Another way is to introduce the auxiliary variables and rewrite the wave equation into a

first order system, then construct the corresponding numerical schemes, see e.g. [27, 1, 4,

3]. In this paper, we propose a central DG scheme for solving the first order system (1.3).

Our main contribution in this paper is that we provide the L2 stability and the optimal

error estimates for the proposed central DG scheme using P k elements. The proof of

optimal convergence results is valid for uniform meshes and for polynomials of arbitrary

degree k ≥ 0. Though we perform the analysis in one and two dimensions, the analysis

can be extended to higher dimensional problems without any essential difficulties. For

the multidimensional problems on Cartesian meshes, the optimal error estimates are

usually based on the use of the Qk element space, which is the tensor product of the one

dimensional finite element spaces [7, 28, 24]. Thanks to the shifting technique in [22], we

are able to construct a special local coupled projection on the overlapping meshes, thus

we obtain the optimal error estimates with the use of P k elements. The local coupled

projection can eliminate the space-discrete terms when (p, q) are both in the P k+1 space.

This superconvergence result leads to the derivation of optimal convergence rate. To the

best knowledge of the authors, this is the first work obtaining optimal convergence rate

when using the P k elements on overlapping meshes for multidimensional problems. We

also provide a dispersion analysis for the proposed scheme in one dimension based on

the Fourier analysis.

The organization of this paper is as follows. In Section 2, we propose the central DG

scheme for the wave equation (1.3). In Section 3, we prove the L2 stability and optimal
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error estimates for one- and multi-dimensional problems. The dispersion analysis for one

dimensional problems is also provided, with the P k elements for k = 0, 1, 2. Numerical

experiments are provided to verify our theoretical results in Section 4. In Section 5, we

give a few concluding remarks and perspectives for future work. Some technical proofs

of the lemmas are provided in the Appendix.

2 The central DG scheme

In this section, we present the central DG scheme for (1.3). First, we multiply the

first and second equations with functions φ and ψ, respectively, and perform integration

by parts on an open and bounded subset K ⊆ Ω, to obtain the weak formulation as

follows ∫
K

ptφdx = −
∫
K

c q · ∇φdx+

∫
∂K

c q · nKφds,∫
K

qt ·ψ dx = −
∫
K

c p∇ ·ψ dx+

∫
∂K

c pnK ·ψ ds,
(2.1)

where nK is the unit outward normal to ∂K. Now we define the central DG scheme from

the variational form (2.1). To this end, we first take the partition of the domain. Assume

we have two kinds of partitions Th and T ′
h on Ω. The partitions Th and T ′

h are overlapped

and are usually chosen as the overlapping Cartesian meshes. For general cases, we refer

to [29]. A two dimensional overlapping Cartesian mesh is shown in Figure 2.1.

Now we introduce the finite element spaces associated with these two partitions.

Vh := {φh ∈ L2(Ω) : φh|K ∈ P k(K) ∀K ∈ Th},
Wh := {ψh ∈ L2(Ω) : ψh|K′ ∈ P k(K ′) ∀K ′ ∈ T ′

h}.
(2.2)

The central DG formulation is defined as follows: Find ph ∈ Vh, qh ∈ [Vh]
d and rh ∈
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Fig. 2.1. 2D overlapping cells, the first mesh is formed by solid lines, and the dual mesh
is formed by dashed lines.

Wh, sh ∈ [Wh]
d such that for all K ∈ Th and K ′ ∈ T ′

h we have∫
K

(ph)tφh dx = −
∫
K

c sh · ∇φh dx+

∫
∂K

c sh · nKφh ds

+
1

τmax

∫
K

(rh − ph)φh dx, ∀φh ∈ Vh,∫
K

(qh)t · φ̄h dx = −
∫
K

c rh∇ · φ̄h dx+

∫
∂K

c rhnK · φ̄h ds

+
1

τmax

∫
K

(sh − qh) · φ̄h dx, ∀ φ̄h ∈ [Vh]
d,∫

K′
(rh)tψh dx = −

∫
K′
c qh · ∇ψh dx+

∫
∂K′

c qh · nK′ψh ds

+
1

τmax

∫
K′
(ph − rh)ψh dx, ∀ψh ∈ Wh,∫

K′
(sh)t · ψ̄h dx = −

∫
K′
c ph∇ · ψ̄hdx+

∫
∂K′

c phnK′ · ψ̄h ds

+
1

τmax

∫
K′
(qh − sh) · ψ̄h dx, ∀ ψ̄h ∈ [Wh]

d,

(2.3)
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where [Vh]
d =

d︷ ︸︸ ︷
Vh × · · · × Vh, and τmax is an upper bound for the time step size due

to the CFL restriction, that is, τmax = αh with a given constant CFL number α > 0

dictated by stability. ph, rh are the approximations to the solution p, and qh, sh are

the approximations to the solution q. The initial data is obtained by the standard L2

projection, that is, ph(·, 0) = Php0, rh(·, 0) = Qhp0, q
i
h(·, 0) = Phq

i
0 and sih(·, 0) = Qhq

i
0,

i = 1, · · · , d, where qi0 is the i-th argument of q0, and q
i
h and sih are the i-th arguments

of qh and sh, respectively. The L
2 projections Ph and Qh are defined as follows. For any

function u, we have Phu ∈ P k(K) and Qhu ∈ P k(K ′) satisfying∫
K

(Phu− u)φh dx = 0, ∀φh ∈ P k(K), ∀K ∈ Th,∫
K′
(Qhu− u)φ̄h dx = 0, ∀ φ̄h ∈ P k(K ′), ∀K ′ ∈ T ′

h.

(2.4)

From Theorem 3.1.5 in [5] we have

∥ph(·, 0)− p0∥+ ∥rh(·, 0)− p0∥ ≲ hk+1∥p0∥k+1,

∥qh(·, 0)− q0∥+ ∥sh(·, 0)− q0∥ ≲ hk+1∥q0∥k+1,
(2.5)

where the unmarked norm ∥ · ∥ denotes the standard L2 norm on Ω, and ∥ · ∥k+1 is the

standard norm in the Sobolev space W k+1,2(Ω).

3 Analysis of the central DG schemes

In this section, we analyze the proposed central DG scheme (2.3) for equation (1.3).

We present the L2 stability, and the a priori optimal error estimates for one and two

dimensional problems only. As we can see, the techniques we take are very general and

can be extended to higher dimensional problems without any difficulties. We also provide

a dispersion analysis for one dimensional problems. Before we proceed, we introduce some

standard Sobolev spaces notations. For any integer m > 0, let Wm,p(D) be the standard

Sobolev spaces on sub-domain D ⊆ Ω equipped with the norm ∥ · ∥m,p,D and semi-norm

| · |m,p,D. When D = Ω, we omit the index D; and if p = 2, we set Wm,p(D) = Hm(D),

∥ · ∥m,p,D = ∥ · ∥m,D, and | · |m,p,D = | · |m,D. An unmarked norm ∥ · ∥ denotes the standard

L2 norm.

3.1 Analysis of the central DG method in one dimension

For one dimensional case, the equation (1.3) becomes
pt = c qx, x ∈ Ω, t > 0,
qt = c px, x ∈ Ω, t > 0,
p(x, 0) = p0(x), q(x, 0) = q0(x),

(3.1)
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with periodic boundary condition. Without loss of generality, we assume that c = −1

and Ω = [0, 1]. Let {xj} be a partition of [0, 1] with hj+ 1
2
= xj+1−xj and h = maxj hj+ 1

2
.

Denote xj+ 1
2
= (xj+1 + xj)/2, Ij =

(
xj+ 1

2
, xj− 1

2

)
, and Ij+ 1

2
= (xj, xj+1). Then we have

the corresponding finite element spaces as follows.

Vh := {φh ∈ L2(Ω) : φh|Ij ∈ P k(Ij), ∀ j},
Wh :=

{
ψh ∈ L2(Ω) : ψh|I

j+1
2

∈ P k(Ij+ 1
2
), ∀ j

}
.

Vh is the set of piecewise polynomials of degree at most k over the subintervals {Ij}
with no continuity assumed across the subinterval boundaries. Likewise, Wh is the set of

piecewise polynomials of degree at most k over the subintervals Ij+ 1
2
with no continuity

assumed across the subinterval boundaries.

The semidiscrete version of the central DG scheme for solving (3.1) is defined as

follows: Find ph(·, t), qh(·, t) ∈ Vh and rh(·, t), sh(·, t) ∈ Wh such that for any φh, φ̄h ∈ Vh
and ψh, ψ̄h ∈ Wh, we have∫

Ij

(ph)tφh dx = B1(rh, ph, sh;φh)j, (3.2a)∫
Ij

(qh)tφ̄h dx = B1(sh, qh, rh; φ̄h)j, (3.2b)∫
I
j+1

2

(rh)tψh dx = B2(ph, rh, qh;ψh)j+ 1
2
, (3.2c)∫

I
j+1

2

(sh)tψ̄h dx = B2(qh, sh, ph; ψ̄h)j+ 1
2
, (3.2d)

where

B1(rh, ph, sh;φh)j =
1

τmax

∫
Ij

(rh − ph)φh dx+

∫
Ij

sh(φh)x dx

− sh(xj+ 1
2
, t)φh(x

−
j+ 1

2

) + sh(xj− 1
2
, t)φh(x

+
j− 1

2

),

B2(ph, rh, qh;ψh)j+ 1
2
=

1

τmax

∫
I
j+1

2

(ph − rh)ψh dx+

∫
I
j+1

2

qh(ψh)x dx

− qh(xj+1, t)ψh(x
−
j+1) + qh(xj, t)ψh(x

+
j ).

(3.3)

In this subsection, we study the L2 stability of the central DG scheme on overlapping

cells (3.2) for the equation (3.1), and then we provide an L2 a priori optimal error

estimates for smooth solutions.

Theorem 3.1. (L2 stability) The numerical solution ph, rh, qh and sh of the central

DG scheme (3.2) for the equation (3.1) satisfies the following L2 stability condition

1

2

d

dt

∫ 1

0

(
(ph)

2 + (qh)
2 + (rh)

2 + (sh)
2
)
dx+

1

τmax

∫ 1

0

(
(ph − rh)

2 + (qh − sh)
2
)
dx = 0

(3.4)
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Proof. Taking the test functions φh = ph, ψh = rh, φ̄h = qh and ψ̄h = sh in (3.2)

respectively, then summing it up over j, with the periodic boundary condition we have

1

2

d

dt

∫ 1

0

(
(ph)

2 + (qh)
2 + (rh)

2 + (sh)
2
)
dx

=
∑
j

1

τmax

∫ x
j+1

2

x
j− 1

2

(rh − ph)ph dx+

∫ xj+1

xj

(ph − rh)rh dx


+

1

τmax

∫ x
j+1

2

x
j− 1

2

(sh − qh)qh dx+

∫ xj+1

xj

(qh − sh)sh dx


+

∫
Ij

sh∂xphdx+

∫
I
j+1

2

ph∂xsh dx+

∫
Ij

rh∂xqh dx+

∫
I
j+1

2

qh∂xrh dx

+ sh(xj− 1
2
)ph(x

+
j− 1

2

)− sh(x
−
j )ph(xj)− sh(xj+ 1

2
)ph(x

−
j+ 1

2

) + sh(x
+
j )ph(xj)

+ rh(xj− 1
2
)qh(x

+
j− 1

2

)− rh(x
−
j )qh(xj)− rh(xj+ 1

2
)qh(x

−
j+ 1

2

) + rh(x
+
j )qh(xj)

= − 1

τmax

∫ 1

0

(ph − rh)
2 dx− 1

τmax

∫ 1

0

(qh − sh)
2 dx .

To prove the the optimal error estimates of the central DG scheme, we first introduce

some notations. Throughout this paper, A ≲ B denotes that A can be bounded by B

multiplied by a constant independent of the mesh size h. Define

Aj(ph, rh, qh, sh;φh, ψh, φ̄h, ψ̄h)

=

∫
Ij

∂tphφhdx+

∫
Ij

∂tqhφ̄hdx+

∫
I
j+1

2

∂trhψhdx+

∫
I
j+1

2

∂tshψ̄hdx

−B1(rh, ph, sh;φh)j −B1(sh, qh, rh; φ̄h)j

−B2(ph, rh, qh;ψh)j+ 1
2
−B2(qh, sh, ph; ψ̄h)j+ 1

2
.

(3.5)

Clearly, ∀ j and ∀φh, φ̄h ∈ Vh, ψh, ψ̄h ∈ Wh we have

Aj(ph, rh, qh, sh;φh, ψh, φ̄h, ψ̄h) = 0. (3.6)

Due to the consistency of the scheme (3.2), the exact solutions p, q also satisfy

Aj(p, p, q, q;φh, ψh, φ̄h, ψ̄h) = 0, ∀ j and ∀φh, φ̄h ∈ Vh, ψh, ψ̄h ∈ Wh. (3.7)

Subtracting (3.6) from (3.7), we obtain the error equation

Aj(p− ph, p− rh, q − qh, q − sh;φh, ψh, φ̄h, ψ̄h) = 0, ∀ j and ∀φh, φ̄h ∈ Vh, ψh, ψ̄h ∈ Wh.
(3.8)
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We also recall the following basic facts. For any function wh ∈ Vh or Wh, the following

inverse inequalities hold from Theorem 3.2.6 in [5]:

∥(wh)x∥ ≲ h−1∥wh∥, ∥wh∥∞ ≲ h−
1
2∥wh∥, ∥wh∥Γh ≲ h−

1
2∥wh∥, (3.9)

where Γh denotes the set of boundary points of all elements Ij or Ij+ 1
2
respectively,

and the norm ∥ · ∥Γh is the standard L2 norm. We now define the special local cou-

pled projection. For any function p, q ∈ H1(Ω), define the following coupled projection

P⋆
h(p, q) := (P1,⋆

h p,P2,⋆
h q) ∈ [Vh]

2 such that∫
Ij

P1,⋆
h p(x) dx =

∫
Ij

p(x) dx, (3.10a)∫
Ij

P2,⋆
h q(x) dx =

∫
Ij

q(x) dx, (3.10b)

P̃h(P1,⋆
h p(x),P2,⋆

h q(x);φh)j = P̃h(p(x), q(x);φh)j ∀φh ∈ P k(Ij), (3.10c)

P̃h(P2,⋆
h q(x),P1,⋆

h p(x); φ̄h)j = P̃h(q(x), p(x); φ̄h)j ∀ φ̄h ∈ P k(Ij), (3.10d)

where P̃h is given as

P̃h(p(x), q(x);φh)j

=
1

τmax

(∫ xj

x
j− 1

2

p(x+ h/2)φh(x)dx+

∫ x
j+1

2

xj

p(x− h/2)φh(x)dx

−
∫ x

j+1
2

x
j− 1

2

p(x)φh(x)dx

)
+

∫ xj

x
j− 1

2

q(x+ h/2)(φh(x))xdx

+

∫ x
j+1

2

xj

q(x− h/2)(φh(x))xdx− q(xj)
(
φh(x

−
j+ 1

2

)− φh(x
+
j− 1

2

)
)
,

(3.11)

Similarly, we can define Q⋆
h(p, q) := (Q1,⋆

h p,Q2,⋆
h q) ∈ [Wh]

2 such that∫
I
j+1

2

Q1,⋆
h p(x) dx =

∫
I
j+1

2

p(x) dx, (3.12a)∫
I
j+1

2

Q2,⋆
h q(x) dx =

∫
I
j+1

2

q(x) dx, (3.12b)

Q̃h(Q1,⋆
h p(x),Q2,⋆

h q(x);ψh)j+ 1
2
= Q̃h(p(x), q(x);ψh)j+ 1

2
, ∀ψh ∈ P k(Ij+ 1

2
), (3.12c)

Q̃h(Q2,⋆
h q(x),Q1,⋆

h p(x); ψ̄h)j+ 1
2
= Q̃h(q(x), p(x); ψ̄h)j+ 1

2
, ∀ ψ̄h ∈ P k(Ij+ 1

2
), (3.12d)
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where Q̃h is given as

Q̃h(p(x), q(x);φh)j+ 1
2

=
1

τmax

(∫ x
j+1

2

xj

p(x+ h/2)ψh(x) dx+

∫ xj+1

x
j+1

2

p(x− h/2)ψh(x) dx

−
∫ xj+1

xj

p(x)ψh(x)dx

)
+

∫ x
j+1

2

xj

q(x+ h/2)(ψh(x))x dx

+

∫ xj+1

x
j+1

2

q(x− h/2)(ψh(x))xdx− q(xj+ 1
2
)
(
ψh(x

−
j+1)− ψh(x

+
j )
)
.

(3.13)

Next, we prove the projections P⋆
h and Q⋆

h are well defined. Note that the projections are

local, so we only consider the projections defined on the reference interval [−1, 1]. In this

case, we have h = 2, τmax = 2α. The projection can be viewed as the extension of the

special projection (2.12) in [22]. Our coupled projections are applied to both functions

by using the shifting technique. Without loss of generality, we only consider P⋆
h and the

analysis of Q⋆
h is similar.

Lemma 3.1. The projection P⋆
h defined by (3.10a) - (3.10d) on the interval [−1, 1]

exists and is unique for any functions p, q ∈ H1([−1, 1]). In particular, the projection is

bounded in the L∞ norm, i.e.

∥P1,⋆
h p∥∞ + ∥P2,⋆

h q∥∞ ≤ C(k)(∥p∥∞ + ∥q∥∞), (3.14)

where C(k) is a constant that only depends on k but is independent of p, q.

Proof. We provide the proof of this lemma in the Appendix; see Section A.1.

Since the projections P⋆
h and Q⋆

h are k-th degree polynomial preserving local projec-

tions, the standard approximation theory, Theorem 3.1.5 in [5] applies, i.e. for smooth

functions p, q,

∥P1,⋆
h p− p∥+ ∥P2,⋆

h q − q∥+ h
1
2∥P1,⋆

h p− p∥Γh + h
1
2∥P2,⋆

h q − q∥Γh ≲ hk+1, (3.15)

∥Q1,⋆
h p− p∥+ ∥Q2,⋆

h q − q∥+ h
1
2∥Q1,⋆

h p− p∥Γh + h
1
2∥Q2,⋆

h q − q∥Γh ≲ hk+1. (3.16)

When p, q both belong to P k+1, we have the following lemma.

Lemma 3.2. Assume that p(x) = axk+1 and q(x) = bxk+1, where a, b are constants.

Then we have the projections P⋆
h(p, q) = (P1,⋆

h p,P2,⋆
h q) and Q⋆

h(p, q) = (Q1,⋆
h p,Q2,⋆

h q).

Therefore ∀ x ∈ [xj− 1
2
, xj+ 1

2
] we have(

axk+1 − P1,⋆
h p(x), bxk+1 − P2,⋆

h q(x)
)

=
(
a(x∓ h/2)k+1 −Q1,⋆

h p(x∓ h/2), b(x∓ h/2)k+1 −Q2,⋆
h q(x∓ h/2)

)
.

(3.17)
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Proof. The proof of this lemma is provided in the Appendix; see Section A.2.

Besides the standard approximation results (3.15) and (3.16), the special projections

P⋆
h and Q⋆

h also have the following superconvergence result.

Proposition 3.1. Assume that p, q are both (k + 1)-th degree polynomial functions in

P k+1(Kj), Kj = [xj−1, xj+ 3
2
]. For a uniform partition on Ω, set pI = P1,⋆

h p ∈ Vh, qI =

P2,⋆
h q ∈ Vh and rI = Q1,⋆

h p ∈ Wh, sI = Q2,⋆
h q ∈ Wh. Then we have

B1(rI , pI , sI ;φh)j = B1(p, p, q;φh)j, ∀φh ∈ P k(Ij), (3.18)

B1(sI , qI , rI ; φ̄h)j = B1(q, q, p; φ̄h)j, ∀ φ̄h ∈ P k(Ij), (3.19)

B2(pI , rI , qI ;ψh)j+ 1
2
= B2(p, p, q;ψh)j+ 1

2
, ∀ψh ∈ P k(Ij+ 1

2
), (3.20)

B2(qI , sI , pI ; ψ̄h)j+ 1
2
= B2(q, q, p; ψ̄h)j+ 1

2
, ∀ ψ̄h ∈ P k(Ij+ 1

2
). (3.21)

Proof. We give the proof of this Proposition in the Appendix; see Section A.3.

Next we prove the optimal error estimates for the central DG scheme (3.2) on the

uniform overlapping Cartesian meshes, stated in the following theorem.

Theorem 3.2. (Error estimates) Suppose that p, q ∈ Hk+2(Ω) are the exact solutions of

the equation (3.1) with smooth initial condition p(·, 0), q(·, 0) ∈ Hk+2(Ω). The numeri-

cal solution ph, qh, rh, sh of the central DG scheme (3.2) satisfies the following L2 error

estimate

∥p− ph∥2 + ∥p− rh∥2 + ∥q − qh∥2 + ∥q − sh∥2 ≲ h2k+2. (3.22)

Proof. In the error equation (3.8), we take

φh = ph − P1,⋆
h p, φ̄h = qh − P2,⋆

h q,

ψh = rh −Q1,⋆
h p, ψ̄h = sh −Q2,⋆

h q,
(3.23)

and define

pe = p− P1,⋆
h p, qe = q − P2,⋆

h q,

re = p−Q1,⋆
h p, se = q −Q2,⋆

h q.
(3.24)

Then we obtain

Aj(φh, ψh, φ̄h, ψ̄h;φh, ψh, φ̄h, ψ̄h) = Aj(pe, re, qe, se;φh, ψh, φ̄h, ψ̄h). (3.25)

For the left-hand side of (3.25), we mimic the proof of the L2 stability to conclude∑
j

Aj(φh, ψh, φ̄h, ψ̄h;φh, ψh, φ̄h, ψ̄h)

=
1

2

d

dt

∫ 1

0

φ2
h + ψ2

h + φ̄2
h + ψ̄2

h dx+
1

τmax

∫ 1

0

(φh − ψh)
2 + (φ̄h − ψ̄h)

2 dx.

(3.26)
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For the right-hand side of (3.25), we rewrite it as a sum of five terms

Aj(pe, re, qe, se;φh, ψh, φ̄h, ψ̄h) =
5∑

ℓ=1

Aℓ
j, (3.27)

where A1
j , · · · , A5

j are given as

A1
j =

∫
Ij

(pe)tφh + (qe)tφ̄h dx+

∫
I
j+1

2

(re)tψh + (se)tψ̄h dx,

A2
j = −B1(re, pe, se;φh)j, A3

j = −B1(se, qe, re; φ̄h)j,

A4
j = −B2(pe, re, qe;ψh)j+ 1

2
, A5

j = −B2(qe, se, pe; ψ̄h)j+ 1
2
,

(3.28)

and we next estimate each term separately. For A1
j , by using the Cauchy-Schwarz in-

equality and the optimal estimates of the projection error (3.15) - (3.16), we have∑
j

A1
j ≲ hk+1(∥φh∥2 + ∥φ̄h∥2 + ∥ψh∥2 + ∥ψ̄h∥2)

1
2 . (3.29)

For Aℓ
j, ℓ = 2, . . . , 5, we use Proposition 3.1 to obtain

B1(re, pe, se;φh)j = B1

(
p−Q1,⋆

h p, p− P1,⋆
h p, q −Q2,⋆

h q;φh

)
j

− B1

(
Tp−Q1,⋆

h Tp, Tp− P1,⋆
h Tp, Tq −Q2,⋆

h Tq;φh

)
j

= B1

(
Πp−Q1,⋆

h Πp,Πp− P1,⋆
h Πp,Πq −Q2,⋆

h Πq;φh

)
j
,

(3.30)

where Πp = p − Tp,Πq = q − Tq, for any Tp, Tq ∈ P k+1(Kj). Therefore, by using the

Cauchy-Schwarz inequality, the special projection property (3.14), the Bramble-Hilbert

lemma, Theorem 4.1.3 in [5], and the inverse inequality in (3.9) for φh, we have∑
j

|A2
j | ≲ hk+1∥φh∥. (3.31)

Similarly, we also have the estimates for A3
j , A

4
j , A

5
j .∑

j

|A3
j | ≲ hk+1∥φ̄h∥,

∑
j

|A4
j | ≲ hk+1∥ψh∥,

∑
j

|A5
j | ≲ hk+1∥ψ̄h∥. (3.32)

Then we substitute the estimates (3.29), (3.31) and (3.32) into (3.26), and obtain

1

2

d

dt

∫ 1

0

φ2
h + ψ2

h + φ̄2
h + ψ̄2

h dx ≲ hk+1(∥φh∥2 + ∥φ̄h∥2 + ∥ψh∥2 + ∥ψ̄h∥2)
1
2 . (3.33)

Together with the projection error (3.15), (3.16) and the initial error estimates (2.5), we

finally obtain the desired error estimate (3.22). □
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3.1.1 Dispersion analysis

In this subsection, we derive the dispersion error for the central DG scheme (3.2)

with P 0, P 1 and P 2 elements. The technique of dispersion analysis comes from [3]. As

usually required in the dispersion analysis, we use a uniform mesh, i.e. hj = hj+ 1
2
= h,

∀ j. We assume that the initial condition has the form

p0(x) = p0e
ikx, q0(x) = q0e

ikx, (3.34)

then the exact solution is given by

p(x, t) =
p0 + q0

2
eik(x−t) +

p0 − q0
2

eik(x+t),

q(x, t) =
p0 + q0

2
eik(x−t) − p0 − q0

2
eik(x+t).

(3.35)

Clearly, the exact solution is composed of two waves ei(kx+ωt) with the dispersion relation

ω = ±k.
P 0 polynomials . For the case of piecewise constant polynomial space, we assume

ph|Ij = pj, qh|Ij = qj, rh|I
j+1

2

= rj and sh|I
j+1

2

= sj. From (3.2), we can obtain the

following relation
pj
qj
rj
sj


t

= A1


pj−1

qj−1

rj−1

sj−1

+ A2


pj
qj
rj
sj

+ A3


pj+1

qj+1

rj+1

sj+1


where A1, A2, A3 are 4× 4 matrices. From the assumption that the wave takes the form

pj(t) = p̂(t)eikxj , qj(t) = q̂(t)eikxj , rj(t) = r̂(t)e
ikx

j+1
2 , sj(t) = ŝ(t)e

ikx
j+1

2 , then the above

relation can be written as

Ût = GÛ , Û = (p̂, q̂, r̂, ŝ)T ,

where G is the amplification matrix given by

G =
1

αh

(
−I2 A
A −I2

)
, A =

(
cos(w) −2iα sin(w)

−2iα sin(w) cos(w)

)
, w =

kh

2
,

and I2 is the 2 × 2 identity matrix. The matrix G has four eigenvalues λ1,2, λ3,4, and

through calculation we obtain

ω̃1,2 =
λ1,2
i

= ±k + i
k2h

8α
∓ k3h2

24
− i

k4h3

384α
+O(k(kh)4),

ω̃3,4 =
λ3,4
i

= i
2

αh
∓ k − i

k2h

8α
± k3h2

24
+ i

k4h3

384α
+O(k(kh)4) .

Clearly, ω̃1,2 correspond to the physical modes, and ω̃3,4 are the spurious modes. The

leading errors in the physical modes are a first order dissipation error and a second order
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dispersion error. The spurious modes, on the other hand, get damped exponentially fast

in time, due to the leading imaginary part of ω̃3,4 being positive and proportional to

O(h−1).

P 1 polynomials. The analysis for the P 1 element space is similar to that for the

P 0 elements. By choosing the basis functions on each element Ij to be φ1 = −ξ + 1/2,

φ2 = ξ + 1/2, with ξ = (x − xj)/h, and Ij+ 1
2
to be ψ1 = −η + 1/2, ψ2 = η + 1/2 with

η =
(
x−xj+ 1

2

)
/h. Then the numerical solution on Ij can be written as ph = p1jφ1+p

2
jφ2,

qh = q1jφ1 + q2jφ2 and on Ij+ 1
2
can be written as rh = r1jψ1 + r2jψ2, sh = s1jψ1 + s2jψ2.

Similar as before, we obtain the following ODE

Ût = GÛ , Û = (p̂1, p̂2, q̂1, q̂2, r̂1, r̂2, ŝ1, ŝ2)T ,

in which the amplification matrix G is given by

G =
1

αh

(
−I4 A
A −I4

)
, A =

(
A1 A2

A2 A1

)
where I4 is the 4× 4 identity matrix and A1 and A2 are defined as

A1 =
1

8

(
3e−iw − eiw 7e−iw − eiw

−e−iw + 7eiw −e−iw + 3eiw

)
, A2 =

α

4
(e−iw − eiw)

(
5 −1
−1 5

)
, w =

kh

2
.

The matrix G has eight distinct eigenvalues λi, i = 1, . . . , 8, and we obtain

ω̂1,2 =
λ1,2
i

= ±k + i
h3k4 (3 + 16α2)

1152α
∓ h4k5 (81 + 80α2)

17280
+O(k(kh)5) ,

ω̂3,4 = i
1

2h
+O(1), ω̂5,6 = i

3

2h
+O(1), ω̂7,8 = i

2

h
+O(1) .

(3.36)

The leading errors in the physical modes ω̂1,2 are a third order dissipation error and a

fourth order dispersion error. Clearly we can see the magnitude of the leading error term

i
h3k4(3 + 16α2)

1152α
in (3.36) reaches its minimum at α =

√
3/4. The spurious modes, on

the other hand, get damped exponentially fast in time, due to the leading imaginary

parts of ω̂3,4,5,6,7,8 being positive and proportional O(h−1).

P 2 polynomials. For the piecewise quadratic polynomial case, we choose the basis

functions on each element Ij to be φ1 = 2ξ(ξ−1/2), φ2 = −4(ξ2−1/4), φ3 = 2ξ(ξ+1/2)

where ξ = (x−xj)/h and on each element Ij+ 1
2
to be ψ1 = 2η(η−1/2), ψ2 = −4(η2−1/4),

ψ3 = 2η(η+1/2) where η = (x−xj+ 1
2
)/h. Similar derivations show that there are twelve

eigenvalues of the amplification matrix, and

ω̂1,2 =
λ1,2
i

= ±k + i
53k6h5

2918400
∓ 24089k7h6

646912000
+O(k(kh)8) for α = 1,

ω̂3,4 = i
2

α

1

h
+O(1), ω̂5,6,7,8 = i

27α±
√
9α2 − 3840α4

16α2

1

h
+O(1),
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ω̂9,10,11,12 = i
5α±

√
9α2 − 3840α4

16α2

1

h
+O(1)

The leading errors in the physical modes ω̂1,2 are a fifth order dissipation error and a

sixth order dispersion error. Since the formulation of the coefficient of the leading term

is too long to simplify, here, we just give the case for α = 1. For the spurious modes, we

can verify by basic algebraic manipulations that the imaginary part of the leading term

of ω̂3,...,12 is positive and propositional O(h−1) for arbitrary α > 0. Thus they can get

damped exponentially fast in time.

Remark 3.1. Compared with [3], we obtain the same dissipation error order and disper-

sion error order. Besides, we provide the best parameter α for P 1 element to reach the

minimum dissipation error. For P 0 and P 2 elements, the dissipation error is decreasing

as α increases. For the dissipation and dispersion analysis of general P k, it will be left

to our future work.

3.2 Analysis of the central DG method in multidimensions

For d = 2 in (1.3), we have the following two dimensional problem
pt = c qx + c ry, (x, y) ∈ Ω, t > 0,

qt = c px, (x, y) ∈ Ω, t > 0,

rt = c py, (x, y) ∈ Ω, t > 0,

p(x, y, 0) = p0(x, y), q(x, y, 0) = q0(x, y), r(x, y, 0) = r0(x, y),

(3.37)

again with periodic boundary conditions. We assume Ω = [0, 1]2 and c = −1.

Let
{
Ki,j = [xi− 1

2
, xi+ 1

2
] × [yj− 1

2
, yj+ 1

2
]
}
, i = 1, . . . , Nx, j = 1, . . . , Ny be a partition

of Ω into rectangular cells. Let
{
Ki+ 1

2
,j+ 1

2
= [xi, xi+1] × [yj, yj+1]

}
, i = 1, . . . , Nx, j =

1, . . . , Ny be a dual mesh with xi =
(
xi− 1

2
+xi+ 1

2

)
/2 and yj =

(
yj− 1

2
+ yj+ 1

2

)
/2. Then we

have the finite element spaces as follows.

Vh :=
{
v ∈ L2(Ω) : φ|Ki,j

∈ P k(Ki,j), ∀ i, j
}
,

Wh :=
{
v ∈ L2(Ω) : φ̄|K

i+1
2 ,j+1

2

∈ P k(Ki+ 1
2
,j+ 1

2
), ∀ i, j

}
,

where P k(Ki,j) denotes the space of polynomials of degrees at most k defined on Ki,j;

no continuity is assumed across cell boundaries, and P k(Ki+ 1
2
,j+ 1

2
) denotes the space of

polynomials of degrees at most k defined on Ki+ 1
2
,j+ 1

2
; no continuity is assumed across

cell boundaries. We denote

hix = xi+ 1
2
− xi− 1

2
, hjy = yj+ 1

2
− yj− 1

2
,

h
i+ 1

2
x = xi+1 − xi, h

j+ 1
2

y = yj+1 − yj,
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h = max
(
hix, h

j
y, h

i+ 1
2

x , h
j+ 1

2
y

)
.

The semidiscrete central DG scheme for solving equation (3.37) is defined as follows.

Find the numerical solutions ph, qh, rh ∈ Vh and uh, vh, wh ∈ Wh such that for all test

functions φh, φ̄h, φ̃h ∈ Vh and ψh, ψ̄h, ψ̃h ∈ Wh and all i, j, we have∫
Ki,j

(ph)tφh dxdy = B1(uh, ph, vh, wh;φh)i,j, (3.38a)∫
Ki,j

(qh)tφ̄h dxdy = B2(vh, qh, uh; φ̄h)i,j, (3.38b)∫
Ki,j

(rh)tφ̃h dxdy = B3(wh, rh, uh; φ̃h)i,j, (3.38c)

∫
K

i+1
2 ,j+1

2

(uh)tψh dxdy = B1(ph, uh, qh, rh;ψh)i+ 1
2
,j+ 1

2
, (3.38d)∫

K
i+1

2 ,j+1
2

(vh)tψ̄h dxdy = B2(qh, vh, ph; ψ̄h)i+ 1
2
,j+ 1

2
, (3.38e)∫

K
i+1

2 ,j+1
2

(wh)tψ̃h dxdy = B3(rh, wh, ph; ψ̃h)i+ 1
2
,j+ 1

2
, (3.38f)

where B1,B2,B3 are given as

B1(uh, ph, vh, wh;φh)i,j =
1

τmax

∫
Ki,j

(uh − ph)φh dxdy +

∫
Ki,j

(
vh(φh)x + wh(φh)y

)
dxdy

−
∫ y

j+1
2

y
j− 1

2

vh(xi+ 1
2
, y)φh(x

−
i+ 1

2

, y)− vh(xi− 1
2
, y)φh(x

+
i− 1

2

, y) dy

−
∫ x

i+1
2

x
i− 1

2

wh(x, yj+ 1
2
)φh(x, y

−
j+ 1

2

)− wh(x, yj− 1
2
)φh(x, y

+
j− 1

2

) dx,

B2(vh, qh, uh; φ̄h)i,j =
1

τmax

∫
Ki,j

(vh − qh)φ̄h dx+

∫
Ki,j

uh(φ̄h)x dxdy

−
∫ y

j+1
2

y
j− 1

2

uh(xi+ 1
2
, y)φ̄h(x

−
i+ 1

2

, y)− uh(xi− 1
2
, y)φ̄h(x

+
i− 1

2

, y) dy,

B3(wh, rh, uh; φ̃h)i,j =
1

τmax

∫
Ki,j

(wh − rh)φ̃h dx+

∫
Ki,j

uh(φ̃h)y dxdy

−
∫ x

i+1
2

x
i− 1

2

uh(x, yj+ 1
2
)φ̃h(x, y

−
j+ 1

2

)− uh(x, yj− 1
2
)φ̃h(x, y

+
j− 1

2

) dy.

In this subsection, we consider the semidiscrete central DG method for multidimen-

sional problems. Without loss of generality, we derive the L2 stability and prove the

optimal a priori error estimates for the central DG scheme (3.38) in two dimensions
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(d=2). We only consider the rectangular mesh and finite element space is piecewise P k

element space. The analysis can be extended to the higher dimensional cases d > 2

without any difficulties.

Theorem 3.3. (L2 stability) The approximations ph, qh, rh ∈ Vh and uh, vh, wh ∈ Wh

of the semidiscrete central DG method (3.38) for the equation (3.37) has the following

L2 stability property

1

2

d

dt

(
∥ph∥2 + ∥qh∥2 + ∥rh∥2 + ∥uh∥2 + ∥vh∥2 + ∥wh∥2

)
= − 1

τmax

(∫
Ω

(ph − uh)
2 dxdy +

∫
Ω

(qh − vh)
2 dxdy +

∫
Ω

(rh − wh)
2 dxdy

)
≤ 0.

(3.39)

Proof. Taking (φh, φ̄h, φ̃h) = (ph, qh, rh) ∈ [Vh]
3 and (ψh, ψ̄h, ψ̃h) = (uh, vh, wh) ∈ [Wh]

3

in the scheme (3.38), summing up over j, and using the periodic boundary condition, we

have

1

2

d

dt

(
∥ph∥2 + ∥qh∥2 + ∥rh∥2 + ∥uh∥2 + ∥vh∥2 + ∥wh∥2

)
=
∑
i,j

B1(uh, ph, vh, wh; ph)i,j + B2(vh, qh, uh; qh)i,j + B3(wh, rh, uh; rh)i,j

+
∑
i,j

B1(ph, uh, qh, rh; uh)i+ 1
2
,j+ 1

2
+ B2(qh, vh, ph; vh)i+ 1

2
,j+ 1

2

+ B3(rh, wh, ph;wh)i+ 1
2
,j+ 1

2

= − 1

τmax

∫
Ω

(ph − uh)
2 + (qh − vh)

2 + (rh − wh)
2 dxdy ≤ 0 .

(3.40)

Next, we start to derive the optimal error estimates for the central DG scheme (3.38).

Assume the mesh is uniform, i.e. hix = h
i+ 1

2
x = hx and hjy = h

j+ 1
2

y = hy. We first define

Ai,j(ph, qh, rh, uh, vh, wh;φh, φ̄h, φ̃h, ψh, ψ̄h, ψ̃h)

=

∫
Ki,j

∂tphφh dxdy +

∫
Ki,j

∂tqhφ̄h dxdy +

∫
Ki,j

∂trhφ̃h dxdy

+

∫
K

i+1
2 ,j+1

2

∂tuhψh dxdy +

∫
K

i+1
2 ,j+1

2

∂tvhψ̄h dxdy +

∫
K

i+1
2 ,j+1

2

∂twhψ̃h dxdy

− B1(uh, ph, vh, wh;φh)i,j − B2(vh, qh, uh; φ̄h)i,j − B3(wh, rh, uh; φ̃h)i,j

− B1(ph, uh, qh, rh;ψh)i+ 1
2
,j+ 1

2
− B2(qh, vh, ph; ψ̄h)i+ 1

2
,j+ 1

2

− B3(rh, wh, ph; ψ̃h)i+ 1
2
,j+ 1

2
.

(3.41)

Clearly, ∀ i, j and ∀ (φh, φ̄h, φ̃h) ∈ [Vh]
3, (ψh, ψ̄h, ψ̃h) ∈ [Wh]

3 we have

Ai,j(ph, qh, rh, uh, vh, wh;φh, φ̄h, φ̃h, ψh, ψ̄h, ψ̃h) = 0. (3.42)
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The exact solution p, q, r also satisfies

Ai,j(p, q, r, p, q, r;φh, φ̄h, φ̃h, ψh, ψ̄h, ψ̃h) = 0,

∀ i, j and ∀ (φh, φ̄h, φ̃h) ∈ [Vh]
3, (ψh, ψ̄h, ψ̃h) ∈ [Wh]

3.
(3.43)

Subtracting (3.42) from (3.43), we obtain the error equation

Ai,j(p− ph, q − qh, r − rh, p− uh, q − vh, r − wh;φh, φ̄h, φ̃h, ψh, ψ̄h, ψ̃h) = 0,

∀ i, j and ∀ (φh, φ̄h, φ̃h) ∈ [Vh]
3, (ψh, ψ̄h, ψ̃h) ∈ [Wh]

3.
(3.44)

We now define the special local coupled projection for the two dimensional problem. For

any functions p, q, r ∈ H1(Ω), define the following coupled projection P⋆ : [H1(Ω)]3 →
[Vh]

3, P⋆(p, q, r) := (P1,⋆p,P2,⋆q,P3,⋆r) such that∫
Ki,j

P1,⋆p dxdy =

∫
Ki,j

p dxdy, (3.45a)∫
Ki,j

P2,⋆q dxdy =

∫
Ki,j

q dxdy, (3.45b)∫
Ki,j

P3,⋆r dxdy =

∫
Ki,j

r dxdy, (3.45c)

P̃h

1
(P1,⋆p,P2,⋆q,P3,⋆r;φh)i,j = P̃h

1
(p, q, r;φh)i,j, ∀φh ∈ P k(Ki,j), (3.45d)

P̃h

2
(P2,⋆q,P1,⋆p; φ̄h)i,j = P̃h

2
(q, p; φ̄h)i,j, ∀φh ∈ P k(Ki,j), (3.45e)

P̃h

2
(P3,⋆r,P1,⋆p; φ̄h)i,j = P̃h

2
(r, p; φ̄h)i,j, ∀φh ∈ P k(Ki,j), (3.45f)

where P̃h

1
and P̃h

2
are given as

P̃h

1
(p, q, r;φh)i,j

=
1

τmax

(∫
K1

i,j

p(x+ hx/2, y + hy/2)φh dxdy +

∫
K2

i,j

p(x− hx/2, y + hy/2)φh dxdy

+

∫
K3

i,j

p(x+ hx/2, y − hy/2)φh dxdy +

∫
K4

i,j

p(x− hx/2, y − hy/2)φh dxdy

−
∫
Ki,j

p(x, y)φh dxdy

)
+

∫
K1

i,j

q(x+ hx/2, y + hy/2)(φh)x dxdy +

∫
K2

i,j

q(x− hx/2, y + hy/2)(φh)x dxdy

+

∫
K3

i,j

q(x+ hx/2, y − hy/2)(φh)x dxdy +

∫
K4

i,j

q(x− hx/2, y − hy/2)(φh)x dxdy

+

∫
K1

i,j

r(x+ hx/2, y + hy/2)(φh)y dxdy +

∫
K2

i,j

r(x− hx/2, y + hy/2)(φh)y dxdy

+

∫
K3

i,j

r(x+ hx/2, y − hy/2)(φh)y dxdy +

∫
K4

i,j

r(x− hx/2, y − hy/2)(φh)y dxdy
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−
∫ yj

y
j− 1

2

q(xi, y + hy/2)
(
φh(x

−
i+ 1

2

, y)− φh(x
+
i− 1

2

, y)
)
dy

−
∫ y

j+1
2

yj

q(xi, y − hy/2)
(
φh(x

−
i+ 1

2

, y)− φh(x
+
i− 1

2

, y)
)
dy

−
∫ xi

x
i− 1

2

r(x+ hx/2, yj)
(
φh(x, y

−
j+ 1

2

)− φh(x, y
+
j− 1

2

)
)
dx

−
∫ x

i+1
2

xi

r(x− hx/2, yj)
(
φh(x, y

−
j+ 1

2

)− φh(x, y
+
j− 1

2

)
)
dx ,

P̃h

2
(q, p; φ̄h)i,j

=
1

τmax

(∫
K1

i,j

q(x+ hx/2, y + hy/2)φ̄h dxdy +

∫
K2

i,j

q(x− hx/2, y + hy/2)φ̄h dxdy

+

∫
K3

i,j

q(x+ hx/2, y − hy/2)φ̄h dxdy +

∫
K4

i,j

q(x− hx/2, y − hy/2)φ̄h dxdy

−
∫
Ki,j

q(x, y)φ̄h dxdy

)
+

∫
K1

i,j

p(x+ hx/2, y + hy/2)(φ̄h)x dxdy +

∫
K2

i,j

p(x− hx/2, y + hy/2)(φ̄h)x dxdy

+

∫
K3

i,j

p(x+ hx/2, y − hy/2)(φ̄h)x dxdy +

∫
K4

i,j

p(x− hx/2, y − hy/2)(φ̄h)x dxdy

−
∫ y

j+1
2

yj

p(xi, y − hy/2)
(
φ̄h(x

−
i+ 1

2

, y)− φ̄h(x
+
i− 1

2

, y)
)
dy

−
∫ y

j+1
2

yj

p(xi, y − hy/2)
(
φ̄h(x

−
i+ 1

2

, y)− φ̄h(x
+
i− 1

2

, y)
)
dy ,

where K1
i,j = (xi− 1

2
, xi) × (yj− 1

2
, yj), K

2
i,j = (xi, xi+ 1

2
) × (yj− 1

2
, yj), K

3
i,j = (xi− 1

2
, xi) ×

(yj, yj+ 1
2
), K4

i,j = (xi, xi+ 1
2
)× (yj, yj+ 1

2
).

Similarly, we can define Q⋆
h(p, q, r) := (Q1,⋆

h p,Q2,⋆
h q,Q3,⋆

h r) ∈ [Wh]
3. Next, we prove

the projections P⋆
h and Q⋆

h are well defined. Similar to the argument in the one dimen-

sional case, we need to show the existence and uniqueness of projections on the reference

cell [−1, 1]2. In this case, τmax = 2α, α is a constant. The following lemma implies the

projection P⋆
h is well defined.

Lemma 3.3. The projection P⋆
h defined by (3.45a) - (3.45f) on the cell [−1, 1]2 exists

and is unique for any functions p, q, r ∈ H1(Ω), and the projection is bounded in the L∞

norm, i.e.

∥P1,⋆
h p∥∞ + ∥P2,⋆

h q∥∞ + ∥P3,⋆
h r∥∞ ≤ C(k)(∥p∥∞ + ∥q∥∞ + ∥r∥∞). (3.46)

where C(k) is a constant that only depends on k but is independent of p, q, r.
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Proof. We give the proof of this lemma in the Appendix; see Section A.4.

The standard approximation theory, Theorem 3.1.5 in [5] implies, for smooth func-

tions p, q, r,

∥P1,⋆
h p− p∥+ ∥P2,⋆

h q − q∥+ ∥P3,⋆
h r − r∥ ≲ hk+1,

∥P1,⋆
h p− p∥Γh + ∥P2,⋆

h q − q∥Γh + ∥P3,⋆
h r − r∥Γh ≲ hk+

1
2 .

(3.47)

Analogous to Lemma 3.2 in the one dimensional case, we have the following lemma.

Lemma 3.4. Assume that (p, q, r) = (axk+1−ℓyℓ, bxk+1−ℓyℓ, cxk+1−ℓyℓ), where a, b, c are

constants, ℓ = 0, · · · , k+1. Then we have the projections P⋆
h(p, q, r) = (P1,⋆

h p,P2,⋆
h q,P3,⋆

h r),

Q⋆
h(p, q, r) = (Q1,⋆

h p,Q2,⋆
h q,Q3,⋆

h r), and we have(
p(x, y)− P1,⋆

h p(x, y), q(x, y)− P2,⋆
h q(x, y), r(x, y)− P3,⋆

h r(x, y)
)

=
(
p(x∓ hx/2, y ∓ hy/2)−Q1,⋆

h p(x∓ hx/2, y ∓ hy/2),

q(x∓ hx/2, y ∓ hy/2)−Q2,⋆
h q(x∓ hx/2, y ∓ hy/2),

r(x∓ hx/2, y ∓ hy/2)−Q3,⋆
h r(x∓ hx/2, y ∓ hy/2)

)
=
(
p(x∓ hx/2, y ± hy/2)−Q1,⋆

h p(x∓ hx/2, y ± hy/2),

q(x∓ hx/2, y ± hy/2)−Q2,⋆
h q(x∓ hx/2, y ± hy/2),

r(x∓ hx/2, y ± hy/2)−Q3,⋆
h r(x∓ hx/2, y ± hy/2)

)
.

(3.48)

Proof. We provide the proof of this lemma in the Appendix; see Section A.5.

Again, using the above lemma we can show that P⋆
h and Q⋆

h satisfy the following

superconvergence property.

Lemma 3.5. Assume that (p, q, r) = (axk+1−ℓyℓ, bxk+1−ℓyℓ, cxk+1−ℓyℓ), ℓ = 0, 1, · · · , k+
1. Let (pI , qI , rI) = (P1,⋆p,P2,⋆q,P3,⋆r), (uI , vI , wI) = (Q1,⋆p,Q2,⋆q,Q3,⋆r), then

B1(p− uI , p− pI , q − vI , r − wI ;φh)i,j = 0, ∀φh ∈ P k(Ki,j), (3.49)

B1(p− pI , p− uI , q − qI , r − rI ;ψh)i,j = 0, ∀ψh ∈ P k(Ki+ 1
2
,j+ 1

2
), (3.50)

B2(q − vI , q − qI , p− uI ; φ̄h)i,j = 0, ∀ φ̄h ∈ P k(Ki,j), (3.51)

B2(q − qI , q − vI , p− pI ; ψ̄h)i+ 1
2
,j+ 1

2
= 0, ∀ ψ̄h ∈ P k(Ki+ 1

2
,j+ 1

2
), (3.52)

B3(r − wI , r − rI , p− uI ; φ̃h)i,j = 0, ∀ φ̃h ∈ P k(Ki,j), (3.53)

B3(r − rI , r − wI , p− pI ; ψ̃h)i+ 1
2
,j+ 1

2
= 0, ∀ ψ̃h ∈ P k(Ki+ 1

2
,j+ 1

2
). (3.54)

Proof. We provide the proof of this lemma in the Appendix; see Section A.6.

Next, we can use above lemmas to prove our main result in the following theorem.

Theorem 3.4. (Error estimates) Suppose that p, q, r ∈ Hk+2(Ω) are exact solutions of

the equation (3.37) with smooth initial condition p(·, 0), q(·, 0), r(·, 0) ∈ Hk+2(Ω). The
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numerical solutions ph, qh, rh, uh, vh, wh of the central DG scheme (3.38) satisfy the fol-

lowing L2 error estimates

∥p− ph∥2 + ∥q − qh∥2 + ∥r − rh∥2 + ∥p− uh∥2 + ∥q − vh∥2 + ∥r − wh∥2 ≲ h2k+2.
(3.55)

Proof. In the error equation (3.44), we take

φh = ph − P1,⋆
h p, φ̄h = qh − P2,⋆

h q, φ̃h = rh − P3,⋆
h r,

ψh = uh −Q1,⋆
h p, ψ̄h = vh −Q2,⋆

h q, ψ̃h = wh −Q3,⋆
h r,

(3.56)

and define

pe = p− P1,⋆
h p, qe = q − P2,⋆

h q, re = r − P3,⋆
h r,

ue = p−Q1,⋆
h p, ve = q −Q2,⋆

h q, we = r −Q3,⋆
h r.

(3.57)

Then we obtain

Ai,j(φh, φ̄h, φ̃h, ψh, ψ̄h, ψ̃h;φh, φ̄h, φ̃h, ψh, ψ̄h, ψ̃h)

=Ai,j(pe, qe, re, ue, ve, we;φh, φ̄h, φ̃h, ψh, ψ̄h, ψ̃h).
(3.58)

For the left-hand side of (3.58), we mimic the proof of the L2 stability to conclude∑
i,j

Ai,j(φh, φ̄h, φ̃h, ψh, ψ̄h, ψ̃h;φh, φ̄h, φ̃h, ψh, ψ̄h, ψ̃h)

=
1

2

d

dt

∫
Ω

φ2
h + φ̄2

h + φ̃2
h + ψ2

h + ψ̄2
h + ψ̃2

h dxdy

+
1

τmax

∫
Ω

(φh − ψh)
2 + (φ̄h − ψ̄h)

2 + (φ̃h − ψ̃h)
2 dxdy.

(3.59)

For the right-hand side of (3.58), we rewrite it as a sum of seven terms

Ai,j(pe, qe, re, ue, ve, we;φh, φ̄h, φ̃h, ψh, ψ̄h, ψ̃h) =
7∑

ℓ=1

Aℓ
i,j, (3.60)

where A1
i,j, · · · , A7

i,j are given as

A1
i,j =

∫
Ki,j

∂tpeφh dxdy +

∫
Ki,j

∂tqeφ̄h dxdy +

∫
Ki,j

∂treφ̃h dxdy

+

∫
K

i+1
2 ,j+1

2

∂tueψh dxdy +

∫
K

i+1
2 ,j+1

2

∂tveψ̄h dxdy +

∫
K

i+1
2 ,j+1

2

∂tweψ̃h dxdy,

A2
i,j = −B1(ue, pe, ve, we;φh)i,j, A3

i,j = −B2(ve, qe, ue; φ̄h)i,j, A4
i,j = −B3(we, re, ue; φ̃h)i,j,

A5
i,j = −B1(pe, ue, qe, re;ψh)i+ 1

2
,j+ 1

2
, A6

i,j = −B2(qe, ve, pe; ψ̄h)i+ 1
2
,j+ 1

2
,

A7
i,j = −B3(re, we, pe; ψ̃h)i+ 1

2
,j+ 1

2
.
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Now we proceed to estimate each term of A1
i,j, · · · ,A7

i,j separately. For A1
i,j, we use the

optimal error estimates of the projections to obtain∑
i,j

|A1
i,j| ≲ hk+1(∥φh∥2 + ∥φ̄h∥2 + ∥φ̃h∥2 + ∥ψh∥2 + ∥ψ̄h∥2 + ∥ψ̃h∥2)

1
2 . (3.61)

Next we give the details of the estimate for A2
i,j as an example. For Aℓ

i,j, ℓ = 3, . . . , 7,

the analysis is similar. We use Lemma 3.5 and the Bramble-Hilbert Lemma in [5] to

obtain

B1(ue, pe, ve, we;φh)i,j

= B1(p− χp, p− χp, q − χq, r − χr;φh)i,j

+ B1(χp −Q1,⋆
h χp, χp − P1,⋆

h χp, χq −Q2,⋆
h χq, χr −Q3,⋆

h χr;φh)i,j

+ B1(Q1,⋆
h (χp − p),P1,⋆

h (χp − p),Q2,⋆
h (q − χq),Q3,⋆

h (χr − r);φh)i,j

= B1(p− χp, p− χp, q − χq, r − χr;φh)i,j

+ B1(Q1,⋆
h (χp − p),P1,⋆

h (χp − p),Q2,⋆
h (q − χq),Q3,⋆

h (χr − r);φh)i,j

≲ hk+1(∥p∥k+2,Di,j
+ ∥q∥k+2,Di,j

+ ∥r∥k+2,Di,j
)∥φh∥0,Ki,j

,

(3.62)

where Di,j = Ki− 1
2
,j− 1

2

∪
Ki− 1

2
,j+ 1

2

∪
Ki+ 1

2
,j− 1

2

∪
Ki+ 1

2
,j+ 1

2
and (χp, χq, χr) are arbitrary

functions in [P k+1(Di,j)]
3. Thus summing (3.62) over i, j, we have∑

i,j

|A2
i,j| =

∑
i,j

|B1(ue, pe, ve, we;φh)i,j|

≲ hk+1(∥p∥2k+2 + ∥q∥2k+2 + ∥r∥2k+2)
1
2∥φh∥.

(3.63)

Similarly, we also have the estimates for A3
i,j, · · · ,A7

i,j.∑
i,j

|A3
i,j| ≲ hk+1(∥p∥2k+2 + ∥q∥2k+2 + ∥r∥2k+2)

1
2∥φ̄h∥,∑

i,j

|A4
i,j| ≲ hk+1(∥p∥2k+2 + ∥q∥2k+2 + ∥r∥2k+2)

1
2∥φ̃h∥,∑

i,j

|A5
i,j| ≲ hk+1(∥p∥2k+2 + ∥q∥2k+2 + ∥r∥2k+2)

1
2∥ψh∥,∑

i,j

|A6
i,j| ≲ hk+1(∥p∥2k+2 + ∥q∥2k+2 + ∥r∥2k+2)

1
2∥ψ̄h∥,∑

i,j

|A7
i,j| ≲ hk+1(∥p∥2k+2 + ∥q∥2k+2 + ∥r∥2k+2)

1
2∥ψ̃h∥.

(3.64)

Substituting the estimates (3.61), (3.63) and (3.64) into the left-hand side of (3.58), and

combining with (3.59) we have

1

2

d

dt

∫
Ω

φ2
h + φ̄2

h + φ̃2
h + ψ2

h + ψ̄2
h + ψ̃2

h dxdy

≲ hk+1(

∫
Ω

φ2
h + φ̄2

h + φ̃2
h + ψ2

h + ψ̄2
h + ψ̃2

h dxdy)
1
2 .

(3.65)
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Finally, integrate the above inequality over [0, t], together with the initial projection

error implies the designed result (3.55). □

4 Numerical examples

In this section, we present some numerical examples to validate our theoretical results.

First, we will test the accuracy of our algorithm for one and two dimensional problems,

and then we will take a long time simulation to see how the L2 error and energy evolve

against time. Two kinds of time-stepping methods are adopted in this section. For the

test of accuracy, we take the classical fourth order Runge-Kutta method as the time-

stepping method, see e.g. [2]. For the long time simulation, we use the ninth order

strong stability preserving Runge-Kutta (SSPRK) method [16], to reduce the error from

the temporal discretization [3]. The CFL condition is τ = O(h), where τ is the temporal

step size and h is the maximum spatial step size.

4.1 Accuracy test

Example 4.1. Consider the two way wave equation (3.1). We take the initial conditions

p0(x) = sin(x), q0(x) = − cos(x),

such that the exact solutions are given as

p(x, t) = (sin(ct) + cos(ct)) sin(x), q(x, t) = (sin(ct)− cos(ct)) cos(x),

where the sound speed is c = 1.2. The computation domain is (0, 2π), and the final time

is T = 1.3. Table 4.1 shows the designed orders of accuracy.

Example 4.2. Consider the two dimensional wave equation (3.37). We take the follow-

ing initial conditions

p0(x, y) = sin(x) sin(y), q0(x, y) = − 1√
2
cos(x) sin(y), r0(x, y) = − 1√

2
sin(x) cos(y).

Then the exact solutions are

p(x, y, t) =
(
sin
(√

2ct
)
+ cos

(√
2ct
))

sin(x) sin(y),

q(x, y, t) =
1√
2

(
sin
(√

2ct
)
− cos

(√
2ct
))

cos(x) sin(y),

r(x, y, t) =
1√
2

(
sin
(√

2ct
)
− cos

(√
2ct
))

sin(x) cos(y),

where the sound speed is c = 1.2. The computational domain is (0, 2π)× (0, 2π), and the

final time is T = 0.6. Similarly, Tables 4.2 and 4.3 show the designed orders of accuracy.
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Table 4.1. Errors and convergence orders produced by the scheme (3.2) with k =
0, 1, 2, 3 in Example 4.1. The final time is T = 1.3.

N
∥p− ph∥ ∥q − qh∥ ∥p− rh∥ ∥q − sh∥

L2 error order L2 error order L2 error order L2 error order

P 0

16 8.90E-02 – 9.33E-02 – 8.90E-02 – 9.33E-02 –
32 4.55E-02 0.97 4.61E-02 1.02 4.55E-02 0.97 4.61E-02 1.02
64 2.30E-02 0.98 2.29E-02 1.01 2.30E-02 0.98 2.29E-02 1.01

128 1.16E-02 0.99 1.14E-02 1.01 1.16E-02 0.99 1.14E-02 1.01
256 5.79E-03 1.00 5.70E-03 1.00 5.79E-03 1.00 5.70E-03 1.00
512 2.90E-03 1.00 2.85E-03 1.00 2.90E-03 1.00 2.85E-03 1.00

P 1

16 4.55E-03 – 1.20E-02 – 4.55E-03 – 1.20E-02 –
32 1.05E-03 2.11 3.11E-03 1.94 1.05E-03 2.11 3.11E-03 1.94
64 2.56E-04 2.04 7.85E-04 1.99 2.56E-04 2.04 7.85E-04 1.99

128 6.36E-05 2.01 1.97E-04 2.00 6.36E-05 2.01 1.97E-04 2.00
256 1.59E-05 2.00 4.92E-05 2.00 1.59E-05 2.00 4.92E-05 2.00
512 3.97E-06 2.00 1.23E-05 2.00 3.97E-06 2.00 1.23E-05 2.00

P 2

16 1.95E-04 – 3.11E-05 – 1.95E-04 – 3.11E-05 –
32 2.45E-05 2.99 3.74E-06 3.06 2.45E-05 2.99 3.74E-06 3.06
64 3.07E-06 3.00 4.63E-07 3.01 3.07E-06 3.00 4.63E-07 3.01

128 3.83E-07 3.00 5.77E-08 3.00 3.83E-07 3.00 5.77E-08 3.00
256 4.79E-08 3.00 7.21E-09 3.00 4.79E-08 3.00 7.21E-09 3.00
512 5.99E-09 3.00 9.00E-10 3.00 5.99E-09 3.00 9.00E-10 3.00

P 3

16 9.61E-06 – 8.06E-06 – 9.61E-06 – 8.06E-06 –
32 5.07E-07 4.25 8.08E-07 3.32 5.07E-07 4.25 8.08E-07 3.32
64 2.22E-08 4.51 6.13E-08 3.72 2.22E-08 4.51 6.13E-08 3.72

128 1.03E-09 4.43 4.06E-09 3.92 1.03E-09 4.43 4.06E-09 3.92
256 5.58E-11 4.21 2.58E-10 3.98 5.58E-11 4.21 2.58E-10 3.98
512 3.32E-12 4.07 1.62E-11 3.99 3.32E-12 4.07 1.62E-11 3.99

4.2 Long time behaviors

In this subsection, we study the long time behavior of the DG scheme (3.2) in Example

4.1. We study the time history of the L2 error and energy of the numerical solution up

to T = 3000. We consider k = 0, 1, 2 in the finite element spaces Vh and Wh on the fixed

uniform mesh h = π/32. The L2 error is(
∥p− ph∥2 + ∥q − qh∥2 + ∥p− rh∥2 + ∥q − sh∥2

) 1
2
,

and the energy is

∥ph∥2 + ∥qh∥2 + ∥rh∥2 + ∥sh∥2.

In the simulation, we make the comparisons between different α in τmax, to see how

α will affect the long time behavior of the numerical solutions. From Figure 4.1, we can

see that for the P 0 element, the numerical solution decays very quickly with smaller α,
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Table 4.2. Errors and convergence orders of ph, qh, rh produced by the scheme (3.38)
with k = 0, 1, 2, 3 in Example 4.2.

Nx × Ny
∥p− ph∥ ∥q − qh∥ ∥r − rh∥

L2 error order L2 error order L2 error order

P 0

20×16 1.06E-01 – 2.40E-02 – 2.26E-02 –
40×32 5.36E-02 0.98 1.04E-02 1.21 1.01E-02 1.16
80×64 2.69E-02 0.99 4.84E-03 1.10 4.78E-03 1.08

160×128 1.35E-02 1.00 2.34E-03 1.05 2.33E-03 1.04

P 1

20×16 8.85E-03 – 6.92E-03 – 8.64E-03 –
40×32 2.22E-03 1.99 1.95E-03 1.83 2.42E-03 1.84
80×64 5.52E-04 2.01 4.97E-04 1.97 6.17E-04 1.97

160×128 1.37E-04 2.01 1.25E-04 2.00 1.55E-05 1.99

P 2

20×16 6.17E-04 – 5.95E-04 – 5.85E-04 –
40×32 7.22E-05 3.10 9.68E-05 2.62 9.64E-05 2.60
80×64 7.98E-06 3.18 1.37E-05 2.82 1.37E-05 2.81

160×128 1.01E-06 2.98 1.77E-06 2.96 1.77E-06 2.96

P 3

20×16 2.66E-05 – 5.32E-05 – 4.79E-05 –
40×32 1.80E-06 3.89 5.42E-06 3.30 4.39E-06 3.45
80×64 1.15E-07 3.97 4.04E-07 3.75 3.27E-07 3.75

160×128 7.18E-09 4.00 2.61E-08 3.95 2.11E-08 3.95

Table 4.3. Errors and convergence orders of uh, vh, wh produced by the scheme (3.38)
with k = 0, 1, 2, 3 in Example 4.2.

Nx × Ny
∥p− uh∥ ∥q − vh∥ ∥r − wh∥

L2 error order L2 error order L2 error order

P 0

20×16 1.06E-01 – 2.40E-02 – 2.26E-02 –
40×32 5.36E-02 0.98 1.04E-02 1.21 1.01E-02 1.16
80×64 2.69E-02 0.99 4.84E-03 1.10 4.78E-03 1.08

160×128 1.35E-02 1.00 2.34E-03 1.05 2.33E-03 1.04

P 1

20×16 8.85E-03 – 6.92E-03 – 8.64E-03 –
40×32 2.22E-03 1.99 1.95E-03 1.83 2.42E-03 1.84
80×64 5.52E-04 2.01 4.97E-04 1.97 6.17E-04 1.97

160×128 1.37E-04 2.01 1.25E-04 2.00 1.55E-05 1.99

P 2

20×16 6.17E-04 – 5.95E-04 – 5.85E-04 –
40×32 7.22E-05 3.10 9.68E-05 2.62 9.64E-05 2.60
80×64 7.98E-06 3.18 1.37E-05 2.82 1.37E-05 2.81

160×128 1.01E-06 2.98 1.77E-06 2.96 1.77E-06 2.96

P 3

20×16 2.66E-05 – 5.32E-05 – 4.79E-05 –
40×32 1.80E-06 3.89 5.42E-06 3.30 4.39E-06 3.45
80×64 1.15E-07 3.97 4.04E-07 3.75 3.27E-07 3.75

160×128 7.18E-09 4.00 2.61E-08 3.95 2.11E-08 3.95

and the L2 errors and energies of different α become flat as time evolves. For the P 1

element, the L2 error increases slower and the energy decays slower when α =
√
3/4.
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This coincides with the theoretical result in (3.36) in the dispersion analysis, since the

magnitude of the leading error term i
h3k4(3 + 16α2)

1152α
in (3.36) reaches its minimum at

α =
√
3/4. For the P 2 element, the L2 error and energy almost remain the same during

the time evolution. This indicates our method is of low dissipation and very suitable for

long time simulation, especially when the polynomial degree is high.

5 Concluding remarks

In this paper, we propose the central DG method for solving second order wave

equations. Instead of dealing with the scalar equation directly, we focus our attention

on the first order system which is equivalent to the original equation. We construct the

central DG scheme for the system, and derive the L2 stability and the optimal error

estimates. In the error estimates, we adopt the so-called shifting technique in [22] to

construct a special local projection. The main difference between the projection here

and the one in [22] is that the unknowns are highly coupled in the proposed scheme,

making the analysis of the projection more difficult. Several lemmas and propositions

are proposed to overcome this difficulty, and we have eventually obtained the the optimal

error estimates for arbitrary P k polynomial space on uniform Cartesian meshes. We also

perform a dispersion analysis for the proposed scheme in the one dimensional case,

showing that the dissipation of the numerical solution with P 1 elements has a minimum

with a suitable choice of the parameter α. We present several numerical examples, and

all of them coincide very well with our theoretical results. In the error estimates, there

is an assumption that the mesh should be uniform so that the shifting technique could

work. It is very challenging to remove this restriction and this will be one of our future

works. Besides, the extension to nonlinear equations and the dispersion analysis for

general P k elements are also very intriguing and challenging that constitute our future

work.

A Appendix: Proof of a few technical lemmas and

propositions

In this appendix, we collect the proof of some of the technical lemmas and proposi-

tions in the error estimates.

A.1 Proof of Lemma 3.1

Proof. Note that (P1,⋆
h p,P2,⋆

h q) belongs to the finite dimensional space [P k([−1, 1])]2, thus

we only need to solve a linear system to obtain (P1,⋆
h p,P2,⋆

h q) and the existence and
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uniqueness are equivalent. Thus, we only prove the uniqueness of the projection P⋆
h. We

set (pI , qI) = (P1,⋆
h p,P2,⋆

h q) with p = q = 0, and would like to prove (pI , qI) = (0, 0). By

the definition of the projection P⋆
h, we take φh = pI and φ̄h = qI in P̃h(pI , qI ;φh) and

P̃h(qI , pI ; φ̄h), and do a change of variables x→ x+ 1 to obtain

0 = P̃h(pI , qI ; pI) + P̃h(qI , pI ; qI)

=
1

2α

(∫ 0

−1

pI(x+ 1)pI(x) dx+

∫ 1

0

pI(x− 1)pI(x) dx−
∫ 1

−1

pI(x)pI(x) dx

)
+

1

2α

(∫ 0

−1

qI(x+ 1)qI(x) dx+

∫ 1

0

qI(x− 1)qI(x) dx−
∫ 1

−1

qI(x)qI(x) dx

)
+

∫ 0

−1

qI(x+ 1)(pI(x))x dx+

∫ 1

0

qI(x− 1)(pI(x))x dx

+

∫ 0

−1

pI(x+ 1)(qI(x))x dx+

∫ 1

0

pI(x− 1)(qI(x))x dx

− qI(0)(pI(1)− qI(−1))− pI(0)(qI(1)− qI(−1))

=
1

2α

(∫ 1

0

2pI(x)pI(x− 1) dx−
∫ 1

0

pI(x)pI(x) dx−
∫ 1

0

pI(x− 1)pI(x− 1) dx

)
+

1

2α

(∫ 1

0

2qI(x)qI(x− 1) dx−
∫ 1

0

qI(x)qI(x) dx−
∫ 1

0

qI(x− 1)qI(x− 1) dx

)
+

∫ 1

0

(qI(x)pI(x− 1))x dx+

∫ 1

0

(qI(x− 1)pI(x))x dx

− qI(0)(pI(1)− qI(−1))− pI(0)(qI(1)− qI(−1))

= − 1

2α

∫ 1

0

(pI(x− 1)− pI(x))
2 dx− 1

2α

∫ 1

0

(qI(x− 1)− qI(x))
2 dx .

(A.1)

Then it indicates that

pI(x) = pI(x− 1), qI(x) = qI(x− 1), ∀x ∈ (0, 1), (A.2)

which implies pI(x) ≡ constant and qI(x) ≡ constant. These together with (3.10a) and

(3.10b), we have

(pI(x), qI(x)) ≡ (0, 0). (A.3)

Thus we finish the proof of uniqueness. We now proceed to the proof of (3.14). We

denote

(pI , qI) =

(
k+1∑
i=1

aix
i−1,

k+1∑
i=1

bix
i−1

)
. (A.4)
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Take the test functions φh = φ̄h = xi−1, i = 2, · · · , k + 1, then we have

P̃h(pI , qI ;x
i−1) =

k+1∑
ℓ=1

Di,ℓaℓ +
k+1∑
ℓ=1

Di,ℓ+k+1bℓ,

P̃h(qI , pI ;x
i−1) =

k+1∑
ℓ=1

Di+k+1,ℓaℓ +
k+1∑
ℓ=1

Di+k+1,ℓ+k+1bℓ,

∫ 1

−1

pI dx =
k+1∑
ℓ=1

D1,ℓaℓ,

∫ 1

−1

qI dx =
k+1∑
ℓ=1

Dk+2,ℓ+k+1bℓ.

(A.5)

It is easy to prove

|P̃h(pI , qI ;x
i−1)| ≲ ∥p∥∞ + ∥q∥∞, |P̃h(qI , pI ; x

i−1)| ≲ ∥p∥∞ + ∥q∥∞ .

We denote

σ = (a1, · · · , ak+1, b1, · · · , bk+1)
T ,

γ1 =

∫ 1

−1

p dx, γi = P̃h(pI , qI ;x
i−1), i = 2, · · · , k + 1,

γk+2 =

∫ 1

−1

q dx, γi+k+1 = P̃h(qI , pI ;x
i−1), i = 2, · · · , k + 1.

We now obtain the following linear system:

Dσ = γ, (A.6)

and we can solve this linear system to get σ = D−1γ. Each component of σ is bounded

by ∥p∥∞ + ∥q∥∞, i.e. |ai| ≲ ∥p∥∞ + ∥q∥∞ and |bi| ≲ ∥p∥∞ + ∥q∥∞, i = 1, . . . , k + 1.

Therefore (3.14) holds true.

A.2 Proof of Lemma 3.2

Proof. We only prove one case that ∀ x ∈ [xj− 1
2
, xj+ 1

2
],

axk+1 − P1,⋆
h p(x) = a(x− h/2)k+1 −Q1,⋆

h p(x− h/2),

bxk+1 − P2,⋆
h q(x) = b(x− h/2)k+1 −Q2,⋆

h q(x− h/2) .

We denote (pI , qI) ∈ [P k(Ij)]
2 that

pI(x) = axk+1 − a(x− h/2)k+1 +Q1,⋆
h p(x− h/2),

qI(x) = bxk+1 − b(x− h/2)k+1 +Q2,⋆
h q(x− h/2) .
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By the uniqueness of the projections, we only need to check (pI , qI) satisfying (3.10a) -

(3.10d). It is easy to verify that∫
Ij

pI dx =

∫
Ij

axk+1 dx−
∫
Ij

a(x− h/2)k+1 −Q1,⋆
h p(x− h/2) dx

=

∫
Ij

axk+1 dx−
∫
I
j− 1

2

axk+1 −Q1,⋆
h p(x) dx

=

∫
Ij

axk+1 dx =

∫
Ij

p dx,

(A.7)

where we use the definition of projection Q1,⋆
h in (3.12a) on Ij− 1

2
. By the same argument

above, we have ∫
Ij

qI d =

∫
Ij

bxk+1 dx =

∫
Ij

q dx. (A.8)

And, ∀φh(x) ∈ P k(Ij) we have

P̃h(pI , qI ;φh)j

= P̃h(p, q;φh)j − P̃h(p(x− h/2)−Q1,⋆
h p(x− h/2), q(x− h/2)−Q2,⋆

h q(x− h/2);φh)j

= P̃h(p, q;φh)j − Q̃h(p(x)−Q1,⋆
h p(x), q(x)−Q2,⋆

h q(x);φh(x+ h/2))j− 1
2

= P̃h(p, q;φh)j,

(A.9)

where we have used the fact that φh(x+h/2) ∈ P k(Ij− 1
2
). By similar argument, we have

P̃h(qI , pI ; φ̄h)j = P̃h(q, p; φ̄h)j, ∀ φ̄h(x) ∈ P k(Ij). (A.10)

Therefore, the uniqueness of the projection Q⋆
h implies that (pI , qI) = (P1,⋆

h p,P2,⋆
h q).

A.3 Proof of Proposition 3.1

Proof. Note that the projection preserves the k-th degree polynomials, which means

when (p, q) ∈ [P k(Kj)]
2, then (pI , qI) = (p, q) ∈ [Vh]

2 and (rI , sI) = (p, q) ∈ [Wh]
2. Thus

we only need to consider the case (p, q) = (axk+1, bxk+1), where a, b are constants. For

simplicity, we only prove (3.18), and other cases can be obtained by similar argument.
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By Lemma 3.2, we have

B1(rI , pI , sI ;φh)j =
1

τmax

∫ xj

x
j− 1

2

rIφh dx+

∫ x
j+1

2

xj

rIφh dx−
∫
Ij

pIφh dx


+

∫ xj

x
j− 1

2

sI∂xφhdx+

∫ x
j+1

2

xj

sI∂xφhdx

− sI(xj+ 1
2
)φh(x

−
j+ 1

2

) + sI(xj− 1
2
)φh(x

+
j− 1

2

)

=
1

τmax

∫ xj

x
j− 1

2

(pI(x+ h/2)− p(x+ h/2) + p(x))φh dx

+

∫ x
j+1

2

xj

(pI(x− h/2)− p(x− h/2) + p(x))φh dx−
∫
Ij

pIφhdx

)

+

∫ xj

x
j− 1

2

(qI(x+ h/2)− q(x+ h/2) + q(x))∂xφhdx

+

∫ x
j+1

2

xj

(qI(x− h/2)− q(x− h/2) + q(x))∂xφhdx

− (qI(xj)− q(xj) + q(xj+ 1
2
))φh(x

−
j+ 1

2

)

+ (qI(xj)− q(xj) + q(xj− 1
2
))φh(x

+
j− 1

2

)

= P̃h(pI − p, qI − q;φh)j +B1(p, p, q;φh)j

=B1(p, p, q;φh)j.

(A.11)

Then we obtain the desired result.

A.4 Proof of Lemma 3.3

Proof. Similar to the proof of Lemma 3.1, we assume that (p, q, r) = (0, 0, 0). For

simplicity, we take (pI , qI , rI) = (P1,⋆
h p,P2,⋆

h q,P3,⋆
h r), and (φh, φ̄h, φ̃h) = (pI , qI , rI) in

(3.45d) - (3.45f). To simplify the formulation, we transform all the integration regions

into the same subcell K1
i,j = [xi− 1

2
, xi] × [yj− 1

2
, yj] with a change of variables. Then we

have

0 = P̃h

1
(pI , qI , rI ; pI)i,j + P̃h

2
(qI , pI ; qI)i,j + P̃h

2
(rI , pI ; rI)i,j

=
−1

τmax

(∫
K1

i,j

(pI(x+ hx/2, y + hy/2)− pI(x, y))
2 dxdy

+

∫
K1

i,j

(pI(x+ hx/2, y)− pI(x, y + hy/2))
2 dxdy

)
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+
−1

τmax

(∫
K1

i,j

(qI(x+ hx/2, y + hy/2)− qI(x, y))
2 dxdy

+

∫
K1

i,j

(qI(x+ hx/2, y)− qI(x, y + hy/2))
2 dxdy

)
+

−1

τmax

(∫
K1

i,j

(rI(x+ hx/2, y + hy/2)− rI(x, y))
2 dxdy

+

∫
K1

i,j

(rI(x+ hx/2, y)− rI(x, y + hy/2))
2 dxdy

)
,

which implies that ∀ (x, y) ∈ K1
i,j, we have

pI(x, y) = pI(x+ hx/2, y + hy/2), pI(x+ hx/2, y) = pI(x, y + hy/2),

qI(x, y) = qI(x+ hx/2, y + hy/2), qI(x+ hx/2, y) = qI(x, y + hy/2),

rI(x, y) = rI(x+ hx/2, y + hy/2), rI(x+ hx/2, y) = rI(x, y + hy/2).

(A.12)

Thus pI(x, y), qI(x, y), rI(x, y) are constants onKi,j. By (3.45a) - (3.45c), we immediately

get pI = qI = rI = 0. We have finished the proof of uniqueness, which is equivalent to

the existence. Notice that the projection is a local projection, hence we can do a change

of variables to transform the integration regions into the reference cell [−1, 1]2 by taking

ξ = 2(x− xi)/h and η = 2(y − yj)/h. Taking a similar derivation as in A.1, we have

∥pI∥∞ + ∥qI∥∞ + ∥rI∥∞ ≤ C(k)(∥p∥∞ + ∥q∥∞ + ∥r∥∞). (A.13)

A.5 Proof of Lemma 3.4

Proof. We only give the proof of one of the cases, as the others can be verified by similar

arguments. We will prove the first equality of (3.48). We denote

pI(x, y) = p(x, y)− p(x− hx/2, y − hy/2) +Q1,⋆
h p(x− hx/2, y − hy/2),

qI(x, y) = q(x, y)− q(x− hx/2, y − hy/2) +Q2,⋆
h q(x− hx/2, y − hy/2),

rI(x, y) = r(x, y)− r(x− hx/2, y − hy/2) +Q3,⋆
h r(x− hx/2, y − hy/2).

Note that (pI , qI , rI) ∈ [P k(Ki,j)]
3, by the uniqueness of the projection P⋆

h, we only need

to verify that (pI , qI , rI) satisfies the definition of the projection P⋆
h. It is easy to check∫

Ki,j

pI(x, y) dxdy =

∫
Ki,j

p(x, y) dxdy −
∫
K

i− 1
2 ,j− 1

2

(
p(x, y)−Q⋆

hp(x, y)
)
dxdy

=

∫
Ki,j

p(x, y) dxdy .

(A.14)
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Thus (3.45a) is verified. Similarly, (3.45b) - (3.45c) can also be verified. For (3.45d), we

have

P̃h

1
(pI , qI , rI ;φh)i,j = P̃h

1
(p, q, r;φh)i,j

−P̃h

1
( p(x− hx/2, y − hy/2)−Q1,⋆

h p(x− hx/2, y − hy/2),

q(x− hx/2, y − hy/2)−Q2,⋆
h q(x− hx/2, y − hy/2),

r(x− hx/2, y − hy/2)−Q3,⋆
h r(x− hx/2, y − hy/2);φh)i,j

= P̃h

1
(p, q, r;φh)i,j

−Q̃h

1
( p(x, y)−Q1,⋆

h p(x, y), q(x, y)−Q2,⋆
h q(x, y),

r(x, y)−Q3,⋆
h r(x, y);φh(x+ hx/2, y + hy/2))i− 1

2
,j− 1

2

= P̃h

1
(p, q, r;φh)i,j.

Thus (3.45d) is verified. Also, (3.45e) - (3.45f) can be verified in the similar way.

A.6 Proof of Lemma 3.5

Proof. We only prove (3.49) in the following. Using Lemma 3.4, we have

B1(uI , pI , vI , wI ;φh)i,j =B1(p, p, q, r;φh)i,j + P̃h

1
(pI − p, qI − q, rI − r;φh)i,j

=B1(p, p, q, r;φh)i,j.

(3.50) - (3.54) can be obtained by similar argument.
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local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM

Journal on Numerical Analysis, 39:264-285, 2001.

[8] B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discon-

tinuous Galerkin finite element method for conservation laws III: one dimensional

systems. Journal of Computational Physics, 84:90–113, 1989.

[9] B. Cockburn and C.-W. Shu, TVB Runge–Kutta local projection discontinuous

Galerkin finite element method for conservation laws. II. general framework. Math-

ematics of Computation, 52:411–435, 1989.

[10] B. Cockburn and C.-W. Shu, The Runge-Kutta local projection P1-discontinuous

Galerkin finite element method for scalar conservation laws. Mathematical Modelling

and Numerical Analysis, 25:337–361, 1991.

[11] B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for

conservation laws V: multidimensional systems. Journal of Computational Physics,

141:199–224, 1998.

[12] G. C. Cohen, Higher-order numerical methods for transient wave equations. Scien-

tific Computation. Springer-Verlag, Berlin, 2002. With a foreword by R. Glowinski.

[13] D. R. Durran, Numerical methods for wave equations in geophysical fluid dynamics,

vol. 32 of Texts in Applied Mathematics, Springer-Verlag, New York, 1999.

[14] D. Gottlieb and J. S. Hesthaven, Spectral methods for hyperbolic problems, Journal

of Computational and Applied Mathematics, 128: 83–131, 2001.

[15] D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods: theory and

applications. Society for Industrial and Applied Mathematics, Philadelphia, Pa.,

1977. CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26.

[16] S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time

discretization methods, SIAM Review, 43:89–112, 2001.

33



[17] M. J. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element
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Fig. 4.1. L2 error and energy evolve against time by the DG scheme (3.2) with P 0, P 1

and P 2 element. The spatial mesh size h = π/32. τmax = αh, α = 0.1,
√
3/4, 1, 10. The

final time is T = 3000.

(a) L2 error, P 0 element. (b) Energy, P 0 element

(c) L2 error, P 1 element. (d) Energy, P 1 element

(e) L2 error, P 2 element. (f) Energy, P 2 element
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