
Physica D 414 (2020) 132723

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Patterns, localized structures and fronts in a reducedmodel of clonal
plant growth

Daniel Ruiz-Reynés a, Luis Martín a, Emilio Hernández-García a,∗, Edgar Knobloch b,
Damià Gomila a

a IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain
b Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA

a r t i c l e i n f o

Article history:

Received 28 December 2019

Received in revised form 29 August 2020

Accepted 31 August 2020

Available online 6 September 2020

Communicated by A. Yochelis

Keywords:

Pattern formation

Clonal growth

Front propagation

Vegetation patterns

a b s t r a c t

A simplified model of clonal plant growth is formulated, motivated by observations of spatial structures
in Posidonia oceanica meadows in the Mediterranean Sea. Two levels of approximation are considered
for the scale-dependent feedback terms. Both take into account mortality and clonal, or vegetative,
growth as well as competition and facilitation, but the first version is nonlocal in space while the
second is local. Study of the two versions of the model in the one-dimensional case reveals that both
cases exhibit qualitatively similar behavior (but quantitative differences) and describe the competition
between three spatially extended states, the bare soil state, the populated state, and a pattern state,
and the associated spatially localized structures. The latter are of two types, holes in the populated
state and vegetation patches on bare ground, and are organized within distinct snaking bifurcations
diagrams. Fronts between the three extended states are studied and a transition between pushed and
pulled fronts identified. Numerical simulations in one spatial dimension are used to determine front
speeds and confront the predictions from the marginal stability condition for pulled fronts.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Vegetation distribution in space is often found to be spatially
inhomogeneous even in quite homogeneous terrains, a factor that
has been recognized as very relevant to understanding ecosystem
resilience, functioning and health [1–4]. Spatial self-organization
of different types of plants has been reported and modeled in
a wide range of habitats, from arid or semiarid environments
to wetlands [2,3,5,6] and, more recently, in submerged seagrass
meadows [7]. Detailed models of the competition of plants for
scarce water have been set up to understand pattern formation
in dry ecosystems [8–11]. In other approaches, water is not ex-
plicitly modeled but a generic approach using an integral kernel,
which takes into account nonlocal competition processes with
typical interaction ranges, is used [12–16]. This last approach is
more easily generalizable to situations in which water is not the
limiting resource driving competitive interactions, as in the case
of marine plants [7].

In most of the previous models, propagation of vegetation over
a landscape is assumed to occur by seed dispersal, modeled as an
isotropic diffusion. Clonal growth by rhizome elongation, how-
ever, has directional characteristics, a fact that has been modeled
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at various levels of detail [7,17,18]. In [7] the so-called advection-
branching-death (ABD) model, describing the growth of clonal
plants at a landscape level, was introduced. This model consists of
two partial integro–differential equations for the evolution of the
density of shoots and apices of the plant. This model was derived
directly from themicroscopic mechanisms involved in clonal plant
growth, namely rhizome elongation (which appears in the model
as an advection term), branching, and death, and its parameters
can be directly linked to rates and quantities directly measured
in underwater seagrass meadows [7]. Plant interactions were
modeled in terms of a nonlocal competition kernel. Although
the model describes vegetation distribution in two-dimensional
space, the need to include the direction of growth of the apices
introduces a new (angular) variable that makes this model ef-
fectively three-dimensional and so carries a high computational
cost. Fortunately, this angular coordinate does not appear to play
a crucial role in most of the observed phenomenology [17]. For
this reason, in [18] a single equation for the total density of shoots
that captures all the dynamical regimes of the ABD model was
proposed, the clonal-growth model. Under certain approximations
this equation can be derived from the full model, establishing
a connection between the effective parameters of the simple
description and the biologically relevant parameters of the full
model.

Vegetation patterns can be extended, in the sense that the
same type of biomass organization extends over a large area
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(for example, homogeneous or periodic distributions) or localized.
Examples of the later are a patch or several patches of vegetation
surrounded by bare soil, or a bare gap or set of gaps in an
otherwise vegetated area. Different extended states can occur in
different regions of a landscape, giving rise to fronts between
them where they meet. Such fronts can remain static or move,
describing the invasion of one type of biomass configuration by
another or its retreat. In this work we study in detail the spa-
tially extended, localized, and front solutions of two versions of
the clonal-growth model [18], obtained by keeping the nonlocal
character of the interactions or replacing them by an effective
local description. In contrast to [18] we restrict the present study
to one spatial dimension, which allows a more detailed analysis
and comparison between the two levels of approximation.

The models considered are described in Section 2. The sta-
tionary solutions of the resulting equations are presented and
compared in Section 3. The dynamics of fronts between different
states, both stable and unstable, are analyzed in Section 4 and in
some cases the predicted front speeds are compared with those
determined via direct numerical simulation.

2. Model

In Ref. [18] we proposed a sequence of approximations that
lead from the full ABD model to a single differential equation
describing the evolution of the shoot density of a plant under-
going vegetative or clonal growth, the clonal-growth model. In
one spatial dimension, the model reads:

∂tn = (ωb − ωd[n])n + d0∂
2
x n + d1n∂

2
x n + d1 |∂xn|2 , (1)

where n(x, t) is the plant shoot density, ωb > 0 is the branching
rate of the plant, i.e., the birth term, and ωd[n] > 0 is the
mortality rate, which depends on the density. The terms involving
derivatives with coefficients d0 and d1 arise from rhizome elon-
gation and branching in the original model, and implement the
peculiarities of clonal growth. These coefficients may depend on
environmental conditions and hence on space, but we take both
to be constant. Note that the same coefficient d1 appears in the
last two terms.

2.1. Version I: full nonlocal interaction

As a first level of description, hereafter version I, we take
Eq. (1) and retain the original nonlocal terms accounting for the
interaction between plants [7]:

ωd[n] = ωd0 +
∫ ∫

K(r⃗ − r⃗ ′)(1 − e−an(r⃗ ′))dr⃗ ′ + bn2. (2)

The first term ωd0 in (2) is the intrinsic mortality (mortality
in the absence of other plants). The second term accounts for
interactions across space in such a way that the density of shoots
at a given position can affect the growth in a neighborhood
weighted by the kernel K(r⃗ − r⃗ ′). To better control the growth of
the solutions and prevent potential blow-up, we also incorporate
a local nonlinear term bn2, where the parameter b determines
the maximum value of the density even in cases where nonlinear
effects in the integral kernel might be destabilizing. From the
biological point of view this term models local mechanisms of
competition (at the level of single shoots, for example) which are
different from the non-local ones modeled by the integral kernel.

The kernel K is taken to be the difference of two normalized
Gaussian functions G, both with zero mean but with different
magnitudes (κ , µ > 0) and widths (σκ , σ0):

K(r⃗) = κG(σκ , r⃗) − µG(σ0, r⃗). (3)

The first term on the rhs of (3) accounts for all the competitive
effects, since it increases the mortality rate, while the second

Fig. 1. Phase diagram for version I of the model. The regions where the

populated (P) and unpopulated (U) states are stable are shown in bright blue

and white, respectively, while the coexistence region between these two states

is shown in darker blue. The region where P is unstable to patterns is shown

in yellow. The symbol T refers to a transcritical bifurcation at ωd0/ωb = 1,

while SN refers to a saddle–node bifurcation where P undergoes a fold. The

curve labeled MI corresponds to the onset of modulational (or Turing) instability

that is responsible for the appearance of spatial patterns in the model. The

parameters are ωb = 0.06 year−1 , b = 1.25 cm4year−1 , σκ = 2851.4 cm,

σ0 = 203.7 cm, a = 27.38 cm2 , d0 = 631.2 cm2year−1 , d1 = 4842.1 cm4year−1 .

These parameters are appropriate for the marine plant Posidonia oceanica [7,18].

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

accounts for facilitative effects. Facilitation is taken here to re-

duce the external factors increasing mortality only; the term ωd0,

which is independent of density, encodes these external effects.

Hence, the integrated facilitation needs to satisfy µ ≤ ωd0 to

ensure positive mortality and avoid unrealistic creation of plants

by this term. Here we choose µ = ωd0 for simplicity. The range

of the competitive and facilitative interaction is given by σκ and

σ0, respectively. We assume that σk > σ0, as appropriate for the

observations in marine plants [7].

The location in parameter space of the different spatially uni-

form states of this version of the reduced model is summarized in

Fig. 1 together with their stability properties and is the same in

both one and two dimensions. In addition to qualitative agree-

ment with the dynamical regimes of the full ABD model [7],

version I of the reduced model reproduces to a high degree of

accuracy the position in parameter space of the modulational

instability (MI) of the homogeneously populated solution. This

description thus provides quantitatively accurate results, while

providing a simplified model of clonal plant growth.

2.2. Version II: effective local description

A second level of approximation, version II, results from per-

forming a moment expansion of the integral term ωd[n] and

truncating at the lowest possible order. Specifically, we first ex-

pand the exponential inside the integral and then truncate the

moment expansion of the kernel at fourth order. The approxi-

mation yields qualitative agreement with the behavior of version

I (and thus of the ABD model in [7]) in terms of the observed

dynamical regimes (compare Fig. 2 with Fig. 1). In particular, the

general ordering of the different phases in parameter space and

the nature of the bifurcations (saddle–node, transcritical, and the

MI) bounding them is the same. But there is lack of quantitative

agreement. The inclusion of higher order terms in the expansion

may improve accuracy but implies loss of simplicity. We there-

fore choose the parameters in version II to preserve as much as
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Fig. 2. Phase diagram for version II of the model. The color code is as in Fig. 1.

The parameters are ωb = 0.06 year−1 , b′ = 12.5 cm4year−1 , a′ = 100.41

cm2year−1 , κ = 0.048 year−1 , α = −8.642 · 107 cm6year−1 , β = −3.585 · 1013

cm8year−1 , d0 = 508.1 cm2year−1 , d1 = 6560.6 cm4year−1 .

possible the behavior of version I while keeping its simple form.

The mortality now reads

ωd(n) = ωd0 + a′(κ − ωb)n + b′n2 − α∂2
x n − β∂4

x n, (4)

with the intrinsic mortality ωd0 the same as before. The second

coefficient a′(κ − ωb) controls the degree of bistability. We write

this coefficient in this way to facilitate a comparison with version

I. The coefficient b′ determines the saturation level, while α

and β come from the expansion of the nonlocal term and are

responsible for the presence or absence of spatial patterns. The

parameters a′ and b′ are chosen to generate a bifurcation diagram

similar to that of version I. The conditions imposed are: (i) having

the same density of shoots at ωd0 = ωb and (ii) having the saddle–

node bifurcation of the homogeneous populated state at the same

value of the mortality rate ωd0. These conditions are imposed

at the value κ = 0.048 year−1 which will be used throughout

the paper. The parameters α and β are chosen to generate the

modulational or Turing instability at a similar mortality rate as

in version I for the same chosen value of κ , and with a similar

critical wavelength.

The equation for this version II of the model, resulting from

combining Eqs. (1) and (4), was originally derived in [18], and

some of its properties studied in two dimensions. It has several

terms in common with previously studied models. In particular

the effect of the nonvariational terms |∂xn|2 and n∂2
x n on front

motion was considered in [19] in a model of an optical system. In

the context of vegetation patterns, the model discussed in [20,21]

is very similar to our version II, although it misses the |∂xn|2 term,

which is characteristic of clonal growth.

3. Stationary patterns and localized structures

In this section we discuss the different stationary solutions

supported by versions I and II of the model in one dimension.

We first show the results for version I with the full nonlocal

interaction term, and then for version II based on the truncated

moment expansion, highlighting the main differences between

them. Throughout we use the mortality rate ωd0 as the main

control parameter. In order to follow stationary solutions we use

a pseudo-arclength continuation method [22,23] where the Jaco-

bian is calculated in Fourier space. Starting with an initial condi-

tion obtained using numerical simulations we continue the stable

and unstable branches changing ωd0 as a control parameter.

Fig. 3. Bifurcation diagram for version I of the model as a function of the ratio

ωd0/ωb . Panel (a) shows the maximum and minimum values of the density n

corresponding to the different stationary states while (b) shows the average

density. Continuous (dashed) lines represent stable (unstable) solutions. The P

and U states are shown in red, while the spatially periodic stripe state S is

shown in green (sample S states are shown in the panels above (a)). Spatially

localized states (LS) corresponding to holes embedded in the P state are shown

in purple while the orange curves show localized structures consisting of patches

of vegetation on bare soil, i.e., embedded in the U state. Here κ = 0.048 year−1

and the remaining parameters are as in Fig. 1.

3.1. Version I: patterns and localized structures

Different solutions are observed when the mortality ωd0

changes as summarized in the bifurcation diagram shown in
Fig. 3. When mortality is large the branching rate ωb is insufficient
to sustain growth and the only stable solution is bare soil, the
unpopulated state (U). In contrast, when the death rate is small
compared to the branching rate the homogeneous populated
state (P) prevails. In between one finds a region of coexistence
between P and U; this region terminates in a saddle–node bifur-
cation labeled SN . Both the populated and unpopulated states are
shown in red in the figure. When the branching and mortality
rates are comparable the upper P state may become unstable to
spatial modulations that develop into a periodic pattern that we
call a stripe pattern (S), shown in green in Fig. 3. The emerg-
ing stripe pattern bifurcates subcritically but undergoes a fold,
thereby generating a region of coexistence between stable stripes
and the stable upper P state for mortalities below MI. The stripe
pattern turns out to be rather robust and stable stripes are found
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Fig. 4. Close-up of the snaking region of version I of the model, emerging from

the modulational instability of the P state in Fig. 3 using the norm of the

difference between this state and P to reveal details of the snaking bifurcation

diagram. The dark purple curve represents LS with an odd number of holes,

while the bright purple curve represents LS with an even number. The green

curves correspond to stripe patterns S with two different wavenumbers, one

with the critical wavenumber and the other with the wavenumber selected by a

stationary front between the homogeneous and pattern states, which determines

the wavelength within the LS. The upper panels show the solution profiles

corresponding to the labeled locations in the bifurcation diagram (lower panel).

The parameters are as in Fig. 3.

far beyond the region of existence of the homogeneous state,
coexisting with the bare soil state U over a broad range of values
of ωd0 above the transcritical bifurcation T of U. With increasing
mortality rate the stable stripes eventually terminate in a fold
bifurcation. The unstable S states that result in turn terminate at a
second MI or Turing bifurcation located on the unstable (middle)
branch of P, very close to zero density (Fig. 3b). We mention that
between these two Turing bifurcations there are other pairs of
Turing bifurcations that also give rise to spatially periodic stripes
but with wavelengths different (smaller and larger) from the
critical wavelength corresponding to the MI of the P state, which
is the one displayed here. Thus, the S state is by no means unique.

Fig. 3 shows that in addition to the S branch, the MI or
Turing bifurcation on the upper P branch generates a pair of
branches of spatially localized structures (LS) that also emerge
subcritically, creating a window in the mortality rate, called a
snaking region [24–26], within which one finds stable stationary
states consisting of segments of the periodic S state of arbi-
trarily large length, embedded in the background P state. The
purple lines in Figs. 3 and 4 show the resulting snaking bifur-
cation diagram revealing the presence of two intertwined LS
branches consisting of states with odd and even numbers of
close-packed troughs. A single-trough state corresponds to a sin-
gle region of nearly bare soil embedded in P, i.e., a hole in an
otherwise homogeneous state, analogous to fairy circles in two
spatial dimensions. Based on the general theory developed for the
prototypical Swift–Hohenberg equation we expect that opposing
folds on the odd and even branches are connected by (unsta-
ble) branches of asymmetric states. Owing to the nonvariational

structure of the present problem we expect that these states drift,
cf. [27]. In this work we do not follow unstable states of this type.
We also note that the region of existence of LS extends beyond
the left fold of the S branch shown in the figure. This is possible
when the wavenumber selected by the LS in the snaking region
differs sufficiently from the critical wavenumber at MI to force
the LS branches to terminate on a different S branch (see Fig. 4).
In the present case the resulting snaking region extends almost
to the fold of this second S branch indicating that the chosen
parameter values are very close to a transition that breaks up
the snaking scenario. This transition occurs when the left LS folds
touch the left fold of the corresponding pattern state [28].

For mortalities larger than the branching rate, ωd0 > ωb,
a different type of stable spatially localized structure is found,
consisting of isolated vegetation patches on bare soil (see orange
lines in Figs. 3 and 5). The bifurcation structure of these LS differs
from the previous case, and they do not lie on a standard snaking
branch. Instead these states bifurcate from the unstable P branch
close to zero density and below the MI bifurcation at which the S
state terminates (see inset in Fig. 5). This bifurcation corresponds
to a long wavelength instability, and generates a state with wave-
length equal to the system size. The low-amplitude one-patch
solution that arises is unstable and grows in amplitude with
increasing mortality until it reaches a fold where it acquires sta-
bility and becomes a high amplitude stable single patch solution.
Beyond the fold the patch state continues to grow in amplitude
but now for decreasing mortality until it reaches a second fold.
Near this second fold the solution starts to change shape, the
central part of the patch developing a relative minimum that
continues to decrease along the subsequent branch. Thus, the
patch starts to divide into two patches until, after a third fold,
two low-amplitude LS are present and these gradually decrease in
amplitude with decreasing mortality until the branch terminates
back on the unstable P branch. Very close to this bifurcation both
peaks become very shallow and their maxima move rapidly apart
until they are separated by L/2, i.e., half the system size. Thus, the
termination point corresponds to a pattern-forming bifurcation
of the unstable P state to a two-peak state much like the long-
wave bifurcation to the single peak state that occurs at a lower
value of the density. The bifurcation to the two-peak state is
in fact a pitchfork bifurcation, one fork of which corresponds
to the termination of the two-peak state generated from the
single peak state via peak-splitting as just described, while the
other takes part in a similar scenario but based on a two-peak
state. This scenario results, again via peak-splitting, in a four-peak
state that terminates on P at yet higher (but still small) density
(Fig. 5). Once again, close to this termination point the four peaks
become equidistant, i.e., separated by L/4, allowing this branch to
terminate in a pattern-forming bifurcation from a periodic state.
In fact this behavior is observed for any number of equispaced
identical peaks, even or odd, generated in corresponding bifurca-
tions along the unstable P branch. Similar bifurcation structures
have been found in other systems [29,30]. We conjecture that
in the limit of an infinite domain the wavelength along the
unstable S branch increases by wavelength doubling that occurs
via the same process as that occurring for the one-peak and two-
peak states, i.e., via repeated peak-splitting [29,30], ultimately
reaching the transcritical bifurcation T and zero wavenumber,
much as occurs in the Gray–Scott model [31,32]. This scenario is
supported by the fact that in all cases the folds on the right align
at ωd0/ωb ≈ 3.538, a value that is close to that of the fold on the
S branch, while the folds on the left align at ωd0/ωb ≈ 2.207; the
intermediate folds are also aligned (at ωd0/ωb ≈ 3.044). Ref. [33]
describes a scenario whereby the single peak state may reconnect
with or turn into a pattern state.
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Fig. 5. Close-up of the region of vegetation spots on bare soil from version

I of the model. Light orange curve represents LS with one peak, while dark

orange represents LS with two peaks separated by half the system size. The

stripe pattern S with the critical wavenumber is shown in green. The upper

panel shows the solution profiles corresponding to the labeled locations in the

bifurcation diagram (lower panel). The parameters are as in Fig. 3.

The stationary solutions shown have been computed using
different discretizations ∆x. Periodic solutions have been com-
puted using a domain size equal to one wavelength and have
been represented showing multiple wavelengths to emphasize
the extended nature of the pattern. For the stripes with critical
wavenumber shown in Figs. 3–5, the number of grid points is
N = 128 and ∆x = 0.533 m. For stripes with wavelength
selected by the localized structure shown in Figs. 4 N = 128 and
∆x = 0.703 m. For all LS N = 1024. Those with odd and even
number of holes shown in Figs. 3 and 4 use ∆x = 0.615 m and
∆x = 0.703 m, respectively. For patches shown in Figs. 3 and 5,
∆x = 0.509 m.

3.2. Version II: patterns and localized structures

Fig. 6 shows the corresponding bifurcation diagram for the
P, U, S and LS states in version II of the model. The bifurcation
scenario is qualitatively similar to that observed in version I
(compare Fig. 6 with Fig. 3), confirming the fact that this simpler
version of the model captures all the basic mechanisms. However,
substantial quantitative differences are observed. For instance,
the mortality ranges in which each solution exists are reduced,
while the solution profile becomes more triangular. As a result
the bare soil minima in the S state are much narrower.

These solutions have been computed following the same pro-
cedure as for version I of the model. For the stripes N = 128,
while for all localized structures N = 2048, with ∆x = 0.448 m
in all cases.

4. Fronts

Fig. 3 for version I and Fig. 6 for version II reveal the exis-
tence of several different regions of coexistence between the U,

Fig. 6. Bifurcation diagram and sample stationary solutions of version II as a

function of the ratio ωd0/ωb . The color scheme, labels and line types are as in

Fig. 3; κ = 0.048 year−1 and the remaining parameters are as in Fig. 2.

P and S states owing to the presence of multiple stable solutions,

raising the possibility of a number of different fronts connecting

these states. As many as three stable spatially extended states

can coexist simultaneously, a situation that also arises in other

vegetation pattern-forming models [33]. Here we study the fronts

connecting the populated state with the unpopulated state (P–U

fronts), the stripe pattern with the populated state (S–P fronts)

and the stripe pattern with the unpopulated state (S–U fronts).

We note that our one-dimensional study is also relevant for

flat fronts in two dimensions advancing in the normal direction.

However, flat fronts may experience transversal instabilities in

two dimensions changing the front profile (see e.g. [20]). From

this perspective, a dedicated investigation is needed to achieve

a complete description of front propagation in two dimensions.

Nevertheless, the propagation of fronts is strongly influenced by

the stability range of LS, where the one- and two-dimensional

cases show general agreement [18].

Front dynamics depend strongly on the stability of the states

that are involved. The speed of moving fronts connecting two

linearly stable states necessarily depends on nonlinear processes,
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Fig. 7. Space–time representation of a pushed P–U front whereby a stable P

state invades a stable U state in version I of the model. The figure shows

n(x, t) along the vertical axis at successive times t , displaced in the vertical

by t . The front travels with speed v ≈ 0.044 m/year. Here ωd0 = 0.0679 year−1

(ωd0/ωb = 1.132) and the remaining parameters are as in Fig. 3.

Fig. 8. Speed v of the P–U (red dots) and S–U (yellow dots) fronts in version I

of the model as a function of ωd0/ωb . Solid line represents the linear marginal

stability prediction for a pulled P–U front. The blue dot corresponds to a

numerical simulation without the term |∂xn|2 , while the black dot corresponds

to removing in addition all nonlocal competition (σκ = 0). Parameters are as in

Fig. 3.

i.e. processes occurring beyond the immediate vicinity of the
front. Such fronts are called pushed [34]. In contrast, fronts of
constant form describing the invasion of a linearly unstable state
by a stable one may travel with a speed determined via a lin-
ear mechanism that requires that perturbations ahead of the
front grow at just such a rate that a front of constant form
is maintained [34]. These fronts are thus pulled by the linear
instability ahead of them. It should be mentioned, however, that
the existence of pulled fronts does not imply that such fronts are
selected. Pushed fronts can exist in the same parameter regime
and these would travel with a different speed. In the case of
coexistence between pulled and pushed fronts, the front with the
larger velocity is usually the one that is observed [35,36].

The speed v of a pulled front can be obtained by considering
infinitesimal perturbations, of the form eikx+λ(k)t or equivalently
eikx

′+Λ(k)t with Λ(k) = ikv + λ(k), to the unstable state in the
comoving reference frame x′ = x − vt [34,37]. Applying the
condition of marginal stability, i.e., that in the frame moving
at speed v perturbations neither grow nor decay, leads to the
requirement that the (complex) group speed and the growth rate
of the perturbation both vanish, yielding three conditions that
are solved for the unknown speed v of the front and the real
and imaginary wavenumbers at the leading edge of the front.

Specifically, the conditions are Re [Λ(k)] = 0 and dΛ(k)/dk = 0,
where k = kr + iki, the real and imaginary parts of k representing
the wavenumber ahead of the front and the spatial decay of its
envelope. These equations can be written as v = Re [λ(k)] /ki,
Re [dλ(k)/dk] = 0 and v = −Im [dλ(k)/dk]. This calculation is
further developed in the Appendix, and applied to specific fronts
in our model systems as described in the following sections.

4.1. Fronts in version I of the model

In this section we show the results obtained with version
I, using the bare mortality ωd0 as the main control parameter
and keeping the other parameters as in Fig. 3. Our numerical
simulations use a pseudospectral method with periodic boundary
conditions and ∆t = 1.667 · 10−3 years, ∆x = 0.255 m and N =
4096, 8192 and 16384 grid points starting with a homogeneous
initial condition, the U or P state, with a very narrow step function
at x = 0 to excite a competing solution. In the cases in which two
distinct fronts are possible (tristability) we use the profile of the
desired front obtained for other values of the mortality as initial
condition.

We study first the P–U fronts between the two homogeneous
solutions. We can distinguish two cases. When ωd0/ωb > 1 (but
below a value at which the state P behind the front destabilizes,
see below) the front is a pushed front as both P and U are
stable. The front speed as well as the direction of advance is
thus determined by nonlinearities. We observe numerically that
P always invades U. Fig. 7 shows an example of this type of
front. On general grounds, one would expect to find a sufficiently
large value of the mortality, a Maxwell point, beyond which
the direction of the front reverses and the bare soil invades the
populated solution. However, it turns out that this occurs beyond
the mortality rate for the instability of the P solution to pattern
formation (MI), and we never observe this type of desertification
front.

For ωd0/ωb < 1 the U state is unstable and a pulled front
whereby P advances into U exists. Its speed can be computed
from the marginal stability approach. In Fig. 8 we show, as a
function of ωd0/ωb, the speed v of the pulled front computed
analytically (red line, see Appendix) and from numerical simu-
lations (red dots). It is clear that the marginal stability prediction
of the speed fails. The front speed for ωd0/ωb < 1 appears to be a
continuation of the pushed front speed for ωd0/ωb > 1. We have
investigated the discrepancy between the linear marginal stabil-
ity prediction and numerics by performing numerical simulations
in which the nonlinear terms that do not appear in the linear
calculation are removed. First we removed the term d1 |∂xn|2 but
the resulting change in the speed of the front is small (blue
dot in Fig. 8 for ωd0/ωb = 0.4). We then removed nonlocality
in the competition term as well by setting σκ = 0 (black dot
in Fig. 8). In this second case the velocity changes dramatically
and coincides with the linear marginal stability prediction. This
result points to the nonlocal interaction term as the source of
discrepancy between the linear marginal stability prediction and
the speed of the front in the full system. We ascribe this effect to
an inhibiting effect of existing plants at the edge of the front on
the growth of plants a certain distance ahead of the front, thereby
decreasing the speed of propagation. This interpretation is sup-
ported by the presence of a density maximum in the front profile
located at the front edge and generated by long range interactions
(Fig. 7). We note that in systems of reaction–diffusion equations
the speed selection problem is more complex (the fastest front
is not always the one selected) than in single species problems
and nonlocal systems such as that studied here are, somewhat
loosely, equivalent to a higher-dimensional system [38]. Other
effects of nonlocal terms on the speed of fronts have been studied
in [15,39,40].
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Fig. 9. Space–time representation of a pushed S–U front connecting a stable

stripe pattern S with the unpopulated state U in version I of the model. The front

travels with speed v ≈ 0.033 m/year; ωd0 = 0.0837 year−1 (ωd0/ωb = 1.395)

and the remaining parameters are as in Fig. 3.

Fig. 10. Spatial profiles of S–U and P–U fronts at equispaced times. Panel (a)

shows the spatial profile of the density n(x) across an S–U front and (b) its

appearance in a (∂xn, n) plot, both for ωd0 = 0.0837 year−1 (ωd0/ωb = 1.395).

The black dots in panels (b) indicate the bare soil state U and the homogeneous

populated state P. Panels (c) and (d) show the corresponding quantities for a

P–U front at ωd0 = 0.0758 year−1 (ωd0/ωb = 1.263). The remaining parameters

are as in Fig. 3.

The P–U front is observed for ωd0/ωb below a critical value
1.325 ± 0.008 (which is close to but below the MI occurring
at ωd0/ωb ≈ 1.345). In this region P always invades U and no
Maxwell point (i.e., a value of ωd0 at which propagation direction
reverses) is found. When ωd0/ωb ≳ 1.325 ± 0.008, the P state
behind the front destabilizes so that the front generates a stripe
pattern in its wake, i.e., it becomes a S–U front. We note, however,
that there is a small region (1.277 ± 0.014 ≲ ωd0/ωb ≲ 1.325 ±
0.008) of coexistence between the two fronts (yellow dots in
Fig. 8).

Fig. 9 shows a space–time representation of an S–U front at
ωd0/ωb = 1.395. This front, whereby S invades U, is pushed since
both S and U are stable at this mortality rate. The front’s leading
edge is very steep, and is followed by a sloping plateau that leads
to the formation of a deep hole that is characteristic of the S state

Fig. 11. Speed v and wavenumber q of the S–U (yellow dots) front and speed v

of the P–U (red dots) front as a function of ωd0/ωb in version I of the model. In

panel (a) the speeds of the two fronts fall on the same curve, although hysteresis

is present in the interval 1.277±0.014 ≲ ωd0/ωb ≲ 1.325±0.008. In panel (b) a

nonzero wavenumber is selected in the interval 1.291 ≲ ωd0/ωb ≲ 2.207, i.e., in

the interval within which the S–U front travels and is stable. Parameters as in

Fig. 3.

at this mortality rate. Once the hole forms the plateau relaxes,
reproducing the S profile near its maxima. Note that in the ref-
erence frame moving with the front the deposition of successive
holes is an oscillatory process with a well-defined temporal period
and we conjecture that, in that reference frame, the S–U front
forms via a (subcritical) Hopf bifurcation of the P–U front. For this
reason the leading edge of the S–U front at, say, ωd0/ωb ∼ 1.395
closely resembles that of the corresponding P–U front (Fig. 10), a
fact that is likely responsible for the similar speeds of these two
fronts (Figs. 8 and 11). Indeed, Figs. 10(a,c) show the profiles of
the S–U and P–U fronts at equispaced times, with (a) showing
the initiation of the deep hole associated with the S state. No such
hole is generated behind a P–U front. Panels (b,d) show that these
fronts can be viewed, respectively, as heteroclinic connections
between a limit cycle (the S state) and the trivial or zero state
(the U state), and between two equilibria, one corresponding to
the P state and the other to the U state, indicated by the black
spots in the figure. Note the similarity of the trajectory leaving
the zero state. In both cases the density profile has a pronounced
maximum just behind the leading edge of the front, which we
ascribe to the absence of competition ahead of the front. Such
overshoots are characteristic of fairy circles in arid ecosystems as
well.

The S–U front is observed for ωd0/ωb ≳ 1.277 ± 0.014 and
travels with a speed that decreases monotonically with ωd0 until
ωd0/ωb ≈ 2.205 ± 0.005 where its speed vanishes (Fig. 11). In
this interval of mortalities the S–U front selects a well-defined
and nonzero wavenumber q in its wake, with values shown in
Fig. 11. Beyond ωd0/ωb ≈ 2.205 no new holes are generated
and a stationary state consisting of equispaced, widely separated
stripes is observed. The stopping of the front is not the result of
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Fig. 12. Space–time representation of a pulled S–P front in version I of the

model. Here stable stripes S invade an unstable homogeneous state P with

speed v ≈ 0.169 m/year, which is well reproduced by the marginal stability

calculation corresponding to a pulled front. The transient responsible for the

initial thinner stripes decays rapidly leaving a well-defined stripe wavelength.

Here ωd0 = 0.0846 year−1 (ωd0/ωb = 1.41) and the remaining parameters are

as in Fig. 3.

conventional front pinning [25], since the spatial eigenvalues of

U cannot be complex owing to the requirement that the den-

sity n(x) is everywhere non-negative. We have been unable to

determine whether the selected wavenumber q remains nonzero

at ωd0/ωb ≈ 2.205 but we mention that the region ωd0/ωb ≳

2.205 is in any case populated by a number of stable stationary

equispaced-patch states resembling the 1-peak, 2-peak localized

structures described in Section 3.1; only one of these would

be selected by the moving front as ωd0/ωb → 2.205, most

likely corresponding to q = 2π/L or the 1-peak state. Thus, the

transition at ωd0/ωb ≈ 2.205 would correspond to a transition

from a state with an intrinsic wavelength 2π/q to one where the

wavelength is determined by the domain size L.

The last front we consider is an S–P front between the stripe

pattern S and the populated state P. The stability of the P state

changes at the MI instability (occurring at mortality ωd0,c , with

ωd0,c/ωb = 1.345), whereas S is always stable in the region of

coexistence with P. For ωd0 < ωd0,c the only possible front is

pushed since both S and P are stable. As ωd0,c/ωb decreases from

1.345 the speed of the pushed front also decreases and falls to

zero at the right boundary of a pinning region which extends from

ωd0/ωb = 1.294 to the saddle–node bifurcation at which the S

state selected by the front is created (see Fig. 3). For mortalities

above MI (ωd0/ωb > 1.345) the pushed front continues to be

selected over the pulled front that now exists, until the speed

of the latter exceeds that of the pushed front; thereafter the

pulled front prevails (Fig. 13(a)). An example of this pulled front

advancing into the P state is shown in Fig. 12. The transition from

pushed to pulled takes place around ωd0,c/ωb ≈ 1.375 where

an abrupt change in the dependence of the front speed on the

mortality is clearly visible. This change in the behavior of the front

speed is associated with a similar change in the wavenumber

of the S state deposited behind the front and the wavenumber

measured at the leading edge (Fig. 13(b)). The pulled S–P front

that prevails at sufficiently high mortalities remains stable until

the saddle–node bifurcation SN of the P state; its speed is well

predicted by the linear marginal stability calculation throughout

this range as is the wavenumber measured at the leading edge.

Similar results have been found in other systems [35,36].

Fig. 13. Speed v and wavenumber q of an S–P front in version I of the model as a

function of ωd0/ωb . Dots and crosses correspond to numerical simulations while

the solid line represents the linear marginal stability prediction for a pulled

front. In panel (b), dots correspond to the wavenumber of the S state deposited

behind the front while crosses correspond to the wavenumber measured at the

leading edge. The prominent change in slope, identified by a vertical line, is

associated with the transition from a pushed front to a pulled front. Parameters

are as in Fig. 3.

4.2. Fronts in version II of the model

In this section we study briefly the same fronts as in Sec-
tion 4.1 but for version II of the model. The simulations are again
done with a pseudospectral method, employing ∆t = 0.167
years, ∆x = 0.025 m, N = 1024 and periodic boundary condi-
tions. Initial fronts are formed by connecting smoothly the two
desired spatially extended states. The following figures summa-
rize the results. As before, we take ωd0 as the control parameter,
with the other parameters as in Fig. 6.

Fig. 14 shows an example of a P–U front at ωd0/ωb = 1.15,
i.e., a pushed front connecting the two homogeneous states P and
U, which are both stable at this mortality value. The figure shows
that P invades U. For the parameter values used the front has a
constant but nonmonotonic profile and travels at constant speed
v ≈ 1.091 · 10−3 m/year.

Fig. 15 shows a space–time representation of a S–U front at
ωd0/ωb = 1.25, i.e., a front connecting the stable stripe state S to
the stable bare ground state U. This is a pushed front whereby the
stripe state colonizes bare ground via a time-dependent precursor
that evolves into a stationary stripe pattern. For our parameter
values the invasion speed is v ≈ 4.330 · 10−4 m/year.

Fig. 16 shows the speed of S–U fronts as a function of ωd0/ωb

and compares it with the speed of P–U fronts. We see that
for fixed parameter values the latter travel faster, an effect we
attribute to the absence of pinning.

Fig. 17 shows a space–time representation of the third type
of front, an S–P front connecting the stripe state S to the ho-
mogeneous populated state P at ωd0/ωb = 1.3. Both states are
stable so this is a pushed front. In contrast to version I of the
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Fig. 14. Space–time representation of a pushed P–U front in version II of the

model, in which a stable P state invades a stable U state with speed v ≈
1.091·10−3 m/year. Here ωd0 = 0.069 year−1 (ωd0/ωb = 1.15) and the remaining

parameters are as in Fig. 6.

Fig. 15. Space–time representation of an S–U front in version II of the model.

The front travels with speed v ≈ 4.330 · 10−4 m/year in the direction of S

invading U. Here ωd0 = 0.075 year−1 (ωd0/ωb = 1.25) and the remaining

parameters are as in Fig. 6.

Fig. 16. Speed v of P–U (red symbols) and S–U (yellow symbols) fronts in

version II of the model as functions of ωd0/ωb . Parameters are as in Fig. 6.

model here the front invasion does not proceed with a clearly

defined temporal period between successive nucleations of new

stripes, which leads to a non-constant velocity. We are unsure of

the reason for this. Nevertheless a mean invasion speed can be

estimated and we find that v ≈ 4.419 · 10−3 m/year.

Finally, Fig. 18 shows a classic example of a pinning–depinning

transition associated with S–P fronts [26]. The speed v of the

front decreases as one approaches the edge of the pinning region

Fig. 17. Space–time representation of an S–P front in version II of the model.

The front travels with speed v ≈ 4.419 · 10−3 m/year. Here ωd0 = 0.078 year−1

(ωd0/ωb = 1.3) and the remaining parameters are as in Fig. 6.

Fig. 18. Speed v of an S–P front in version II of the model as a function of

ωd0/ωb , showing the pinning region in which the front is stationary. The dots

correspond to numerical simulations while the solid line represents the linear

marginal stability prediction for a pulled front. Parameters are as in Fig. 6.

containing stationary spatially localized structures; sufficiently
close to the edge the speed is expected to vary as the square root
of the distance from the edge. Within the pinning region the front
is self-pinned, i.e., it is pinned to the pattern state behind it, and
in the depinned regime (|v| > 0) the front is pushed until it is
superseded at ωd0/ωb ≈ 1.355 by the pulled front created in the
MI.

Conclusions

We have explored two versions of a simplified model for clonal
plant growth [18], motivated by undersea patterns observed in
Posidonia oceanica meadows [7]. The first version takes into ac-
count nonlocal competition and facilitation through appropriately
formulated, albeit phenomenological kernels. The second simpli-
fies these kernels via a gradient expansion and, after truncation,
leads to a nonlinear but local evolution equation. In both cases
we have taken the mortality parameter ωd0 as the bifurcation
parameter and explored the behavior of each version as the
mortality varies. In both cases we have made every effort to
employ realistic values of the remaining parameters.

The key findings of our work are:
(i) There is a qualitative agreement between the nonlocal and

local models in that both exhibit the same sequence of transitions
between the three spatially extended states, the populated state
P, the unpopulated state U and the pattern state S, as ωd0 varies.
Nevertheless, substantial quantitative differences are seen. The
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nonlocal version is believed to provide more accurate predictions
for the real vegetation dynamics, whereas the local approxima-
tion, because of its simpler structure, can be used as a qualitative
tool to understand the transitions between different regimes.

(ii) In addition to spatially extended states both systems also
exhibit two types of spatially localized structures, one resembling
holes in the homogeneously populated state and the other re-
sembling vegetation patches on bare ground, i.e., embedded in
the U state. These states are organized within distinct bifurcation
structures of snaking type, qualitatively similar to those arising
in related local [21] and nonlocal [16] vegetation models.

(iii) Both systems exhibit a variety of fronts connecting ex-
tended states, and these may be either pushed or pulled. In the
former case the speed of the front is determined by nonlinear
processes while in the latter the front speed can be computed
from a marginal stability criterion as described in [34]. In many
systems, pulled fronts with marginal stability velocities are good
descriptions of fronts describing stable states invading unstable
states. Here we have found situations in which this is the case,
but also cases in which pushed fronts prevail. The characteristic
front speeds are in all cases very slow, of the order of centimeters
per year, a result that is consistent with the observed slow evo-
lution of Posidonia oceanica meadows, the case to which model
parameters were fitted.

We emphasize that the results obtained here for the one-
dimensional case are also relevant to the spreading of vegetation
in two dimensions, since stable localized structures in one dimen-
sion block front propagation in two dimensions. However, our
understanding of the dynamics of vegetation fronts based on the
results of a one-dimensional analysis is necessarily limited since
transverse instabilities, if present, may change both the front
profile and its speed. Moreover, the presence of multiple patterns,
their different orientations with respect to the front, and their
different stability ranges make the analysis of fronts between
patterned states in two dimensions much more challenging.

The spatial period-doubling we observe at small amplitude
near the transcritical bifurcation of the U state appears to be
characteristic of many vegetation models. In the present case
it takes place via peak-splitting as the mortality parameter ωd0

increases, a process that occurs in related systems as well [29,33].
This process requires that near their termination the peaks that
result adjust their mutual position to generate a periodic state,
since only periodic states can terminate in a Turing bifurcation.
Other systems exhibit spatial period division organized within a
foliated snaking structure which does not require the localized
structures to adjust their location [41–45]. Related wavelength
division is found in other systems [30]. The fact that the region
of stability of periodically spaced vegetation patches appears to
extend all the way down to zero wavenumber (in an infinite do-
main) allows sensitive wavelength adaptation when parameters
are varied [46].
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Appendix or set. Marginal stability predictions for pulled P–U
and S–P fronts

In this Appendix we give details of the marginal stability
predictions for the velocity, and real and imaginary parts of the
wavenumber of pulled P–U and S–P fronts in the two versions of
the model.

A.1. Version I

We use the notation A∗ ≡ an∗e−an∗
, eκ ≡ e−(k2r −k2

i
)σ2

κ /2 and

e0 ≡ e−(k2r −k2
i
)σ2

0
/2, where n∗ is the constant density of a populated

state P given by the solution of the equation ωb − ωd(n
∗) = 0.

The dispersion relation obtained from the linearization of version
I of the model around the state n = n∗ can be used to write the
condition vki = Re[λ(k)] in the form

vki = −2bn∗2 − (d0 + d1n
∗)(k2r − k2i )

− A∗
(

κeκ cos(krkiσ
2
κ ) − ωd0e0 cos(krkiσ

2
0 )

)

. (5)

Similarly the condition Re
[

dλ(k)

dk

]

= 0 becomes

0 =
(

−(d0 + d1n
∗)

+ A∗
(

κeκ cos(krkiσ
2
κ )

σ 2
κ

2
− ωd0e0 cos(krkiσ

2
0 )

σ 2
0

2

))

2kr

+ A∗
(

κeκ sin(krkiσ
2
κ )

σ 2
κ

2
− ωd0e0 sin(krkiσ

2
0 )

σ 2
0

2

)

2ki, (6)

while condition v = −Im
[

dλ(k)

dk

]

takes the form

v =
(

+(d0 + d1n
∗)

− A∗
(

κeκ cos(krkiσ
2
κ )

σ 2
κ

2
− ωd0e0 cos(krkiσ

2
0 )

σ 2
0

2

))

2ki

+ A∗
(

κeκ sin(krkiσ
2
κ )

σ 2
κ

2
− ωd0e0 sin(krkiσ

2
0 )

σ 2
0

2

)

2kr . (7)

These three equations are solved numerically for the unknowns
v, kr and ki characterizing the speed and leading edge profile
of a pulled front, specifically a pulled S–P front as illustrated in
Fig. 13 (solid line). The same procedure around n∗ = 0 leads
to the analytical solution v = 2

√
d0(ωb − ωd0), kr = 0 and

ki = √
(ωb − ωd0)/d0 for a pulled P–U front, as illustrated in Fig. 8

(solid line).

A.2. Version II

Following the same procedure for version II the dispersion
relation obtained from the linearization around n = n∗ can be
written as

λ = p1 + p2k
2 + p3k

4, (8)
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where p1 = ωb − ωd0 − 2a′(κ − ωb)n
∗ − 3bn∗2, p2 = −((α +

d1)n
∗ + d0), and p3 = βn∗. Thus, the condition vki = Re[λ(k)] can

be written in the form

vki = p1 + p2(k
2
r − k2i ) + p3(k

4
r + k4i − 6k2r k

2
i ). (9)

The second condition Re
[

dλ(k)

dk

]

= 0 becomes

0 = 2kr (p2 + 2p3(k
2
r − k2i ) − 4p3k

2
i ), (10)

and the last condition v = −Im
[

dλ(k)

dk

]

takes the form

v = −2ki(p2 + 2p3(k
2
r − k2i ) + 4p3k

2
i ). (11)

The velocity of a front between stripes and the homogeneous
solution can be computed in the case where kr ̸= 0, where

kr = ±







√

−3p2 ±
√

7p22 − 24p1p3

8p3
. (12)

The imaginary part ki can be computed using the expression

ki = ±
√

p2 + 2p3k2r

6p3
. (13)

In terms of these quantities the speed v is given by

v = −8kip3(k
2
r + k2i ). (14)

The last expression is used to compute the velocity of a pulled
S–P front, which is represented in Fig. 18. The velocity of a P–U
front can be obtained from a linearization around n∗ = 0, which
leads to the same expressions as in version I of the model.
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