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The active phase-field-crystal (active PFC) model provides a simple microscopic mean field description of

crystallization in active systems. It combines the PFC model (or conserved Swift-Hohenberg equation) of

colloidal crystallization and aspects of the Toner-Tu theory for self-propelled particles. We employ the active

PFC model to study the occurrence of localized and periodic active crystals in two spatial dimensions. Due

to the activity, crystalline states can undergo a drift instability and start to travel while keeping their spatial

structure. Based on linear stability analyses, time simulations, and numerical continuation of the fully nonlinear

states, we present a detailed analysis of the bifurcation structure of resting and traveling states. We explore,

for instance, how the slanted homoclinic snaking of steady localized states found for the passive PFC model is

modified by activity. Morphological phase diagrams showing the regions of existence of various solution types

are presented merging the results from all the analysis tools employed. We also study how activity influences the

crystal structure with transitions from hexagons to rhombic and stripe patterns. This in-depth analysis of a simple

PFC model for active crystals and swarm formation provides a clear general understanding of the observed

multistability and associated hysteresis effects, and identifies thresholds for qualitative changes in behavior.
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I. INTRODUCTION

Pattern formation is a fascinating phenomenon observed in

both nature and laboratory experiments and studied theoreti-

cally in a wide variety of fields [1–3].

In the case of macroscopic physical systems, one can usu-

ally distinguish between passive systems that are typically

closed and develop towards thermodynamic equilibrium, and

active or nonequilibrium systems that are open and develop

under permanent energy flow. In the former, the resulting

states may exhibit spatial patterns, e.g., crystalline structures,

that can be related to self-assembly as typical structure lengths

result directly from the properties of individual constituents.

In contrast, in active systems the structures that occur are

self-organized and dissipative. In this case typical structure

lengths result from transport coefficients [4].

One prominent example of an active system is a system

consisting of active particles or agents like bacteria, animals,

or artificial microswimmers [5–8]. These agents are able to

transform different forms of energy into self-propelled di-

rected motion [9,10] and use various energy sources to drive

an internal motor mechanism; hence they represent a nonequi-

librium system driven by a continuous energy flow. Artificial

microswimmers, for instance, turn chemical energy [11] or

radiation like light [12,13] or ultrasound [14] into actively

driven, self-propelled motion. Also, vibrated granular media

in confined geometries are employed as good model systems

for certain aspects of active matter [15–18].

*u.thiele@uni-muenster.de; http://www.uwethiele.de.

In nonequilibrium systems with a large number of active

particles, intriguing collective phenomena arise. In particular,

short- and long-range interactions between individual parti-

cles can result in alignment mechanisms leading to directional

ordering (so-called polar ordering) and synchronized motion

of the self-propelled particles [19,20]. The resulting collective

modes of motion are often referred to as swarming [9]. Ani-

mals often form swarms for better protection from predators.

Further proposed functions include social interaction [21],

enhanced foraging [22,23], and increased efficiency of motion

as often observed for birds [24].

One of the most famous approaches to collective motion is

the Vicsek model [25], where each individual particle adapts

to the average direction of motion in some neighborhood, in

the presence of noise. In general, depending on the specific

interactions between particles, their density and the driving

strength (called in the following the activity) one observes

different regimes of clustering, ordering, and motion that one

may, in analogy to equilibrium behavior, call gas, liquid,

liquid-crystalline, and crystalline states [10,26]. Much re-

cent attention has focused on an actively driven condensation

phenomenon, a motility-induced phase separation between

a gaseous and a liquid state that arises purely due to self-

propulsion [27–29].

However, for certain particle interactions and/or at quite

high densities, active particles can also form crystalline or-

dered states, in particular, resting [30,31] or traveling [12,32–

34] patches with nearly crystalline order [35]. Different

bacteria can form crystalline structures. In particular, rotating

cells of Thiovulum majus, a very fast and smoothly swimming,

large and nearly spherical bacterium equipped with flagella
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[36], are attracted to each other owing to flow fields created

by their rotation, and bacterial crystals form. The connected

cells can pull nutrient-rich water towards the swarm by col-

lective motion of the flagella [23]. When buoyancy forces are

included another mechanism for structure formation becomes

available, resulting in the phenomenon of bioconvection [37].

These “active crystals” [38,39] (also called “flying crys-

tals” [35] or “living crystals” [10,12,40]) have properties that

differ from known passive crystalline clusters [41,42]. The

activity due to self-propulsion can change the critical temper-

ature and density at which crystallization sets in and may even

be necessary for crystalline clusters to emerge. Besides, activ-

ity can induce organized translational and rotational motion

[27,32,34,43]. Patches of rotating cells of Thiovulum majus

can rotate as a whole.

Many particle-based models are studied that show rest-

ing, traveling, and rotating, active, crystalline, and amorphous

clusters [40,44–46] as well as cluster crystals [47,48]. For

instance, a systematic study of the interplay of a short-range

attraction and self-propulsion in Brownian dynamics sim-

ulations shows that clusters form at low activity (due to

attraction) as well as at high activity (motility-induced) with a

homogeneous active fluid phase in between [43].

Besides discrete models like Vicsek’s, there exist a number

of continuum models for active matter [9,35,49,50]. An im-

portant example is the Toner-Tu model of swarming [51,52]. It

represents a generalization of the compressible Navier-Stokes

equations of hydrodynamics to systems without Galilei in-

variance, i.e., with preferred velocities. Recently, a simple

active phase-field-crystal (aPFC) model has been proposed

that describes transitions between the liquid state on the one

hand, and resting and traveling crystalline states on the other

[38,39], combining elements of the Toner-Tu theory and the

(passive) phase-field-crystal (PFC) model.

The PFC model is an intensively studied microscopic mean

field model for the dynamics of crystallization processes on

diffusive timescales [53]. It was introduced by Elder and co-

workers [54] and applies to passive colloidal particles as well

as to atomic systems [55,56]. Mathematically it corresponds

to the conserved Swift-Hohenberg (cSH) equation [57] in the

form of a continuity equation. In contrast to the PFC model,

the classical Swift-Hohenberg (SH) equation represents non-

conserved dynamics [58]. The SH equation is a standard

equation for studying pattern formation close to the onset of

a monotonic short-wave instability in systems without a con-

servation law, e.g., a Turing instability in reaction-diffusion

systems or the onset of convection in a Bénard system [4].

The cSH equation was first derived as the equation governing

the evolution of binary fluid convection between thermally

insulating boundaries [59]. In the PFC context, derivations

from classical dynamical density functional theory (DDFT)

of colloidal crystallization can be found in Refs. [53,60–62]

and, most recently, in Refs. [63,64]. In the course of the

derivation, the one-particle density of DDFT is shifted and

scaled to obtain the order parameter field of PFC. For brevity,

in the following we refer to the resulting order parameter as a

“density.”

The SH and PFC models both admit spatially extended

states (“crystals”) and spatially localized crystal patches

(“crystallites”). Reference [57] provides detailed bifurcation

diagrams for the PFC model in one spatial dimension (1D)

while two (2D) and three-dimensional (3D) phases are in-

vestigated via direct numerical simulations. An example of

a bifurcation diagram in 2D is given in [58]. However, since

both models represent gradient dynamics [58] these states are

necessarily steady. In contrast, in the aPFC model used here

[38] the coupling between density and polarization (quantified

by an activity parameter coupling the two fields) breaks the

gradient dynamics structure. Thus sustained motion becomes

possible. Indeed, nonvariational modifications of the noncon-

served SH equation are known to result in both standing

oscillations and in traveling states [65–67].

Spontaneous motion typically arises via a drift-pitchfork

bifurcation [68,69] and is found in many systems, includ-

ing self-aggregating membrane channels [70], drifting liquid

column arrays [71], chemically driven running droplets [72]

and traveling localized states in reaction-diffusion systems

[73–75]. The onset of motion of localized structures is stud-

ied, for instance, in Refs. [76–79] while Refs. [39,80,81]

focus on domain-filling patterns. Such localized states are

frequently observed in experiments and models in various

areas of biology, chemistry, and physics [82–88]. Examples

range from localized patches of vegetation patterns [89], lo-

cal arrangements of free-surface spikes of magnetic fluids

just below the onset of the Rosensweig instability [90], to

localized spot patterns in nonlinear optical systems [91] and

oscillating localized states (oscillons) in vertically vibrated

layers of colloidal suspensions [92]. In the context of so-

lidification as described by PFC models, localized states are

observed in and near the thermodynamic coexistence region of

liquid and crystalline states. Crystallites of various sizes and

symmetry can coexist with a liquid background depending on

control parameters such as the mean density and temperature

[57,58,93,94]. For instance, as the mean density increases,

the possible crystallites increase in size as new density peaks

(or “bumps” or “spots”) are added at their boundary. Ulti-

mately, the whole available domain is filled and the branches

of localized states terminate on a branch of space-filling

periodic states. Within their existence region, the localized

states are organized within a “snakes-and-ladders” structure

in the bifurcation diagram [95,96]. In conserved systems like

the PFC model on a finite periodic domain this structure is

slanted [57,94,97–100] but in nonconserved systems like the

SH model it is aligned in the vertical [95,101–103]. On non-

periodic domains the boundary conditions may substantially

modify this behavior [104–106].

Our main aim in this paper is to establish an overview

of the rather involved overall bifurcation structure of the

aPFC model suggested in [38] that may serve as a road

map for future studies of more realistic systems. The model

involves a simple coupling of concentration and polariza-

tion and excludes spontaneous polarization. These limitations

are responsible for the presence of a generalized reflection

symmetry in the model that is in turn responsible for the

presence of the above-mentioned drift bifurcations that govern

much of the behavior reported here. The aPFC model studied

here has been employed thus far to investigate the linear

stability of the liquid state with respect to the development of

resting and traveling crystalline patterns and in direct numer-

ical simulations of the resulting states in different geometries
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[38,39,81,107]. A detailed bifurcation study of the system in

1D was provided in [108]. The present work extends the latter

study to 2D, focusing on the onset of motion of 2D localized

states and on their destruction with increasing activity. We

also explore whether traveling localized states exhibit generic

slanted snaking—a characteristic property of resting localized

states in pattern-forming systems with a conserved quantity.

The paper is organized as follows. In Sec. II we present

the model equations, describe some of their elementary prop-

erties, and outline the numerical approaches used to solve

them. In Sec. III we study properties of spatially localized

structures described by the model in both passive and active

cases, focusing on the transition to drift in the latter case. We

also construct regime diagrams summarizing the parameter

regions where different states are present. Section IV focuses

on related results for spatially extended states and the paper

concludes with a brief discussion in Sec. V outlining future

work.

II. THE aPFC MODEL

A. Governing equations

The local state variables of the aPFC model as introduced

in Ref. [38] are the scalar order parameter field ψ (r, t ) (re-

ferred to in the following as a “density”) and the vector order

parameter field P(r, t ) (referred to in the following as a “polar-

ization”) that describes the local ordering and direction of the

active drive. Here r ∈ � ⊂ R
n, where � denotes the domain.

The field ψ (r, t ) is conserved, i.e.,
∫

�
dr ψ = 0 is constant

in time, and specifies the modulation about a mean density ψ̄

that itself encodes the deviation from the critical point [53].

The field P(r, t ) is in general nonconserved.

The uncoupled dynamics of ψ (r, t ) and P(r, t ) corre-

spond to a purely conserved and a mixed nonconserved and

conserved gradient dynamics on an underlying free energy

functional F[ψ, P], respectively. The functional contains no

terms mixing the two fields and the coupling is purely nonva-

riational, i.e., no part of it can be written as gradient dynamics.

The coupling maintains the conserved character of the ψ dy-

namics, i.e., the evolution of ψ follows a continuity equation

∂tψ = −∇ · j, where j is a flux. The nondimensional evolu-

tion equations are [38]

∂tψ = ∇2 δF

δψ
− v0∇ · P, (1)

∂t P = ∇2 δF

δP
− Dr

δF

δP
− v0∇ψ, (2)

where v0 is the coupling strength, also called an activity

parameter or strength of self-propulsion. Physically speak-

ing, P is subject to translational and rotational diffusion with

Dr being the rotational diffusion coefficient. The functional

F[ψ, P] is the sum of the standard phase-field-crystal func-

tional FPFC[ψ] [53,54,109] and an orientational part FP[P],

F = FPFC + FP, (3)

with

FPFC[ψ] =
∫

dr

{

1

2
ψ[ǫ + (1 + ∇2)2]ψ +

1

4
(ψ + ψ̄ )4

}

(4)

and

FP[P] =
∫

dr

(

1

2
C1P2 +

1

4
C2P4

)

. (5)

The functional (4) encodes the phase transition between the

liquid and crystal states [53,94]. It contains a negative in-

terfacial energy density (∼|∇ψ |2) that favors the creation of

interfaces, a bulk energy density, and a stabilizing stiffness

term [∼(�ψ )2]—this can be seen by partial integration. The

parameter ǫ encodes temperature such that negative values of

ǫ correspond to an undercooling of the liquid phase and result

in crystalline (periodic) states for suitable mean densities ψ̄ ,

whereas positive values of ǫ result in a liquid (homogeneous)

phase. The functional (5) with C1 < 0 and C2 > 0 allows for

spontaneous polarization (pitchfork bifurcation at C1 = 0).

However, in our work we avoid spontaneous polarization and

use C1 > 0 with C2 = 0 as also done in most of the analyses

of Refs. [38,39,107]. With C1 > 0 diffusion tends to reduce

polarization.

Computing the variational derivatives of the energies (4)

and (5) and introducing the result in the governing equations

(1) and (2) leads to the dynamical equations

∂tψ = ∇2{[ǫ + (1 + ∇2)2]ψ + (ψ̄ + ψ )3} − v0∇·P, (6)

∂t P = C1∇2P − DrC1P − v0∇ψ. (7)

By construction, Eq. (6) preserves
∫

�
dr ψ ≡ 0 while the as-

sumption C2 = 0 implies that Eq. (7) preserves
∫

�
dr P ≡ 0.

Moreover, the equations are nonvariational whenever v0 �= 0

and are invariant under the reflection

κ : (r, ψ, P) → (−r, ψ,−P). (8)

This symmetry permits the presence of steady, nondrifting

solutions that are not left-right symmetric, provided they are

κ symmetric. To see this, suppose we seek a solution that is

stationary in a frame moving with speed c in the x direction,

i.e., c = cx̂. In the moving frame we have

0 = ∇2{[ǫ + (1 + ∇2)2]ψ + (ψ̄ + ψ )3} − v0∇ · P + c · ∇ψ,

(9)

0 =C1∇2P − DrC1P − v0∇ψ + (c · ∇ )P. (10)

Suppose now that the solution (ψ, P) is κ symmetric with

respect to x → −x. Applying κ to (9) and (10) we obtain

0 = ∇2{[ǫ + (1 + ∇2)2]ψ + (ψ̄ + ψ )3} − v0∇ · P − c · ∇ψ,

(11)

0 =C1∇2P − DrC1P − v0∇ψ − (c · ∇ )P. (12)

Together these equations imply that c ≡ 0 and hence that

a κ-symmetric solution is necessarily at rest. In the following

we refer to such solutions as resting solutions. Note that κ

symmetry is a robust condition for a resting state. However,

Eqs. (6) and (7) also admit robust resting states that are not κ

symmetric (see below). Such states are present here because of
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the special structure of the equations and would not be present

in generic models except at isolated parameter values. Each of

these states may in turn undergo transitions to a drifting state

as parameters are varied, and in the remainder of this paper

we focus on the properties of both resting and traveling states

in 1D and 2D with a special emphasis on the onset of motion

that arises from spontaneous breaking of the κ symmetry.

Resting and traveling solutions of the aPFC model (6) and

(7) in 1D were studied in detail in Refs. [108,110]. However,

in nature, collective motion often occurs effectively in 2D.

Tissue cells, bacteria, and amoebae crawl on substrates while

ungulates like gnu or sheep display herding and organize in

2D swarms. In the context of artificial active matter, e.g.,

colloidal particles swimming on the surface of a liquid, the

system may form 2D crystals [12]. For this reason, we investi-

gate here how 2D active crystals described by the aPFC model

evolve from a localized state (LS) consisting of a single peak

into spatially extended states (crystals) under the influence of

activity. As in [108], we focus on the mean density ψ̄ and

the activity parameter v0 as the main control parameters. The

activity parameter v0 must, of course, be nonzero for the pres-

ence of traveling structures but its specific value will turn out

to have a major influence not only on the transition from rest-

ing to traveling states but also on the structure of 2D crystals

and associated pattern selection. We mention that a parallel

study based on direct numerical simulations of collective be-

havior in a 2D vacancy-aPFC model is reported in [111,112].

In this model the additional vacancy term [113,114] breaks the

symmetry between “peaks” and “holes” and so plays a similar

role to ψ̄ in our approach.

B. Numerical continuation in 2D

We employ numerical parameter continuation

[58,115,116] to determine steady (c = 0) and stationary

(|c| > 0) periodic and localized solutions of Eqs. (9) and

(10). We use the MATLAB package PDE2PATH [117] which

allows us to follow branches of solutions in parameter space,

detect bifurcations, switch branches, and in turn follow

the bifurcating branches. A phase condition that breaks

translational invariance and a constraint that enforces the

mean density ψ̄ are included as integral conditions. This

implies that in each continuation run one has two auxiliary

parameters that have to be adapted as the control parameters,

here the mean density ψ̄ or the activity v0, are varied. The

auxiliary parameters, the speed c and the Lagrange multiplier

for the density constraint, are obtained by solving a nonlinear

eigenvalue problem in the rest frame of the traveling state.

Owing to the linearity of the polarization equation all

solutions satisfy in addition the condition
∫

�
dr P ≡ 0.

Since 2D computations are much more expensive and time

consuming as compared to 1D problems, we make use of the

symmetries of the fields ψ and P = (Px, Py)T to reduce the

computational effort. Unless otherwise stated in the caption

of the figures that follow, all computations are carried out

on the half-domain as explained in Fig. 1. Here the colored

area � = [0, Lx] × [0, Ly/2] indicates the part of the domain

on which the actual computation is performed. The entire

solution profile is then obtained by exploiting the following

y
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p
er

io
d
ic

Px

Dirichlet

p
er

io
d
ic
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0 Lx

x

−Ly/2
0 Lx

x

0 Lx

x

FIG. 1. Sketch of the numerical setup: Two-dimensional struc-

tures that are reflection symmetric with respect to the x axis are

computed on a reduced domain [0, Lx] × [0, Ly/2] as indicated by

the colored area. The density field ψ and the x-component Px of the

polarization satisfy Neumann boundary conditions at y = 0 while

Dirichlet boundary conditions apply to the y-component Py of the

polarization: Py = 0 at y = 0. All fields are periodic in the x direc-

tion, i.e., only motion in the x direction is allowed. For visualization,

the entire domain �exp = [0, Lx] × [−Ly/2, Ly/2], indicated by the

colored and grayscale regions, is used.

symmetries:

ψ (x, y) = ψ (x,−y),

Px(x, y) = Px(x,−y), Py(x, y) = −Py(x,−y), (13)

where y = 0 corresponds to the horizontal line separating the

colored and gray areas. The expanded area used for visu-

alization and classification of the solutions is thus �exp =
[0, Lx] × [−Ly/2, Ly/2] with area V = Lx Ly. From the linear

stability analysis of the uniform state, we know that at onset

only the unstable mode kc = 1 ⇔ Lc = 2π grows.

Next, we define the boundary conditions (BCs) imposed

on � = [0, Lx] × [0, Ly/2]. In order to pin the solutions such

that the applied symmetries are preserved, we use Neumann

BCs in the y direction for ψ and Px. Accordingly, Py is kept

zero at y = 0 and y = Ly/2, i.e., Dirichlet BCs are applied.

The combined BCs in the y direction read

∂yψ (x, y = 0, Ly/2) = 0,

∂yPx(x, y = 0, Ly/2) = 0, Py(x, y = 0, Ly/2) = 0. (14)

In the x direction, periodic BCs are imposed on all three fields.

Owing to the chosen BCs, the y-component cy of the drift

velocity c always remains zero. This implies that crystalline

structures have to be oriented such that the desired drift, e.g.,

as observed in time simulations or experiments, is in the x

direction, i.e., cx �= 0.

Besides the rectangular geometry, we also make use of a

hexagonal domain when discussing the passive PFC model

and the phenomenon of slanted snaking of branches of steady

LS. There, the numerical continuation is done on a triangular

domain, namely, a right-angled triangle with a hypotenuse of

the side length of the hexagon and Neumann BCs for ψ . In the

passive case, Px and Py remain zero. The triangle defined by

the vertices at (x, y) = 2π (0, 0), 2π (0, 3), and 2π (1, 3/
√

3)

is 1/12th of the entire domain as pictured in Fig. 3. Note that
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FIG. 2. (Left) Bifurcation diagram showing branches of homoge-

neous, periodic, and localized steady states of the passive PFC model

(v0 = 0) on a rectangular domain. Shown is the L2-norm ||ψ ||2 as

a function of the mean density ψ̄ . Stable and unstable states are

shown as solid and dotted lines, respectively. The liquid phase (gray

horizontal line) is destabilized at ψ̄ ≈ −0.55 and an unstable branch

of periodic hexagonal patterns (black line, cf. location IV) emerges

subcritically. In a secondary bifurcation, a branch of LS (blue line)

is created. After various folds responsible for repeated gain and loss

of stability, the LS branch terminates on the same branch of periodic

hexagons from which it bifurcated. (Right) Selected solution profiles

ψ (r) at locations labeled I to IV in the left panel. The domain size

is 2La × 4Lc with where La = 2Lc/
√

3 is the side length of a triangle

and Lc = 2π is its height and the critical wavelength. The remaining

parameter is ǫ = −0.98.

the equilateral triangles found in the hexagon have a height

Lc = 2π and a side length La = 2√
3
Lc = 4π√

3
.

All the bifurcation diagrams that follow show the L2 norm

of the density profile that we use as the main solution measure.

FIG. 3. (Left) Bifurcation diagram showing branches of homo-

geneous (gray line), periodic (black line), targetlike (red line), and

localized (blue line) steady states of the passive PFC model (v0 = 0)

on a hexagonal domain. Shown is the norm ||ψ ||2 as a function of the

mean density ψ̄ . (Right) Selected solution profiles ψ (r) at locations

labeled I to IV in the left panel. The hexagonal domain has side

length 3La. Remaining line styles and parameters are as in Fig. 2.

In 2D this norm is defined by

||ψ ||2 =
√

1

V

∫

�exp

dr ψ (r)2 (15)

with area V and r = (x, y)T ∈ � ⊂ R
2. In addition to numer-

ical continuation, we also perform numerical time simulations

employing a pseudospectral method with semi-implicit Euler

time stepping.

III. LOCALIZED STATES

As known from the passive PFC model [57] and from

results in 1D [108], we can identify a transition region where

patches of the liquid and crystalline states coexist. In the

vicinity of the linear instability threshold of the liquid state,

a broad variety of spatially localized states (LS or crystallites)

is therefore expected.

We use numerical continuation of Eqs. (9) and (10) to

explore the bifurcation structure of the resulting active crys-

tallites in 2D. How do (active) crystallites grow in the plane as

a function of the mean density ψ̄? What is the influence of the

activity parameter v0? Are fully 2D traveling states possible?

Do traveling LS exhibit the same slanted snaking as the resting

LS?

A. Passive PFC model: Slanted snaking

We start by constructing bifurcation diagrams as a function

of the mean density ψ̄ for the passive PFC model, i.e., by

setting v0 = 0, resulting in uncoupled Eqs. (9) and (10), with

P ≡ 0 for all time.

Figures 2 and 3 depict typical slanted snaking of the LS

branches along their path to a spatially extended crystal. In

both bifurcation diagrams, the continuation in ψ̄ starts from

the uniform state ψ = 0 referred to as the liquid state (gray

branch). At a critical density close to ψ̄ = −0.55, this state

loses stability and a branch of periodic solutions of hexagonal

order bifurcates (black branch) in a transcritical bifurcation.

We did not follow the supercritical part of the emerging

branch that corresponds to so-called cold or down hexagons.

As expected, a secondary bifurcation is detected on the

branch of periodic states close to the primary bifurcation. On

the rectangular domain used in Fig. 2, the bifurcating branch

(blue line) corresponds to spatially localized hexagonal crys-

tallites. The branch undergoes a series of folds corresponding

to the addition of a pair of layers of density peaks, symmet-

rically with respect to y = 0 (Fig. 2); this is not the case in

larger domains, however [94]. At each fold, the stability of

the branch changes. Solid lines correspond to stable solutions

and dotted lines indicate unstable solutions. Eventually, the

LS branch terminates on the branch of the spatially extended

hexagons and the entire domain is filled with the crystalline

state. Thereafter, the crystalline state is stable. Owing to the

conservation of ψ , the loci of the left and right saddle-node

bifurcations align along lines slanted towards higher ψ̄ . Since

the model is passive with v0 = 0 and P ≡ 0, no traveling

states can exist and all solutions are steady.

Figure 3 presents a similar bifurcation diagram obtained

from continuation on a hexagonal domain. In contrast to the

rectangle used in Fig. 2, a rotationally symmetric solution
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FIG. 4. (Left) Bifurcation diagram showing suppressed snaking

at lower values of ǫ, here ǫ = −1.5, in the passive PFC model

(v0 = 0). In contrast to ǫ = −0.98 (Figs. 2 and 3) the crystalline

patches do not grow by adding layers of density peaks. Instead a

single peak grows into an elongated structure and subsequently forms

a dumbbell-shaped two-peak state. Asymmetric states are omitted.

The domain size is 2La × 2Lc. Remaining line styles and parameters

are as in Fig. 2.

(red line, location I) emerges at the first secondary bifurcation

from the hexagonal state. This type of LS has been termed

a ring solution. Its branch has been tracked until the state

starts to interact with the Neumann boundaries of the tri-

angular computation domain and its symmetry is destroyed.

Apparently the hexagonal geometry favors the emergence of

ringlike solutions as it is closer to rotational symmetry than

the previously used rectangle.

The snaking branch of LS (blue line) bifurcates in a tertiary

bifurcation from the branch of ring solutions. This bifurcation

is actually imperfect due to numerical grid effects. However,

in Fig. 3 this cannot be seen by eye. The crystalline patch of

hexagonal order gradually grows until the hexagonal domain

is completely filled and the branch terminates on the branch

of the periodic crystals (black line). As the hexagonal domain

is of a larger area than the rectangular one used in Fig. 2, more

density peaks fit in and the LS snaking branch consists of more

back-and-forth oscillations. Note, in particular, that in both

cases the LS, be they hexagonal patches or rings, are present

below the fold of the spatially extended hexagonal state, i.e.,

outside of the region of bistability between the trivial state

and the hexagonal crystal. This observation confirms that the

coexistence region is wider than the region of bistability—a

typical feature of systems with a conserved quantity.

Figures 2 and 3 use ǫ = −0.98 as employed in earlier

studies [38,39,81]. However, at yet smaller values of the tem-

peraturelike parameter ǫ, e.g., ǫ = −1.5, the localized density

peak does not grow into a patch of hexagonal order but rather

elongates, forming first an oval structure and ultimately a

dumbbell state (Fig. 4). On rectangular domains this elon-

gation is a natural consequence of the domain shape and

represents a continuous transition. However, this elongated

state is not a consequence of boundaries: the continuation

was carried out on various domains with the same result.

In particular, and in contrast to all other solution profiles

shown here, ψ (r) in Fig. 4 is not computed on half of the

depicted domain and mirrored, and so states (I)–(III) depict

the actual computed solution profiles. Here the density peak is

placed in the middle of the computational domain in order to

avoid a possible influence of the boundaries. Based on these

computations we conclude that the observed states describe

gradual spot fission as ψ̄ varies, i.e., fission of a spot into a

pair of adjacent spots (see, e.g., [118]). We have found no

evidence for the coexistence of this state with any spatially

extended state at these parameter values. Note that dumbbell

localized states were previously observed in the nonconserved

SH equation in both 2D and 3D [119].

Next, we move on to the active PFC model and investigate

the influence of the activity parameter v0. By continuation

in ψ̄ at v0 = 0, we produce various LS whose response to

activity is then studied. As explained in Sec. II A, we use a

rectangular domain and symmetries of ψ and P in order to

perform continuation on a reduced-size domain. In Sec. III D

we return to slanted snaking and study to what extent snaking

is modified by activity. In particular, we study the bifurcation

structure of traveling states as a function of ψ̄ .

B. Active PFC model: Onset of motion

We now systematically explore how LS in 2D respond to

increasing activity by employing the activity parameter v0

as the main control parameter. From results obtained for LS

in 1D [108], we expect transitions from resting to traveling

LS (RLS and TLS, respectively) associated with symmetry

breaking between the two fields ψ and P, as centers of the

density peaks shift with respect to +1 defects in P at a critical

activity vc. For resting crystals, P points down the gradient of

ψ , leading to a defect at the center of the density peak, similar

to the vector field of a monopole. These defects are termed +1

defects [cf. Fig. 6(a)].

Figure 5 shows a typical bifurcation diagram as a function

of v0. A stable one-peak LS at rest (represented by a solid blue

line) undergoes a drift instability at vc ≈ 0.15. The traveling

one-peak LS (orange branch) are stable up to v0 ≈ 0.24 where

the branch folds back to smaller v0. Unstable branches are

shown as dotted lines. The drift velocity c of the TLS increases

as
√

v0 − vc as previously observed. Due to larger grid effects

in 2D (we use an adaptive grid), the onset of motion is not

perfectly sharp in c (cf. Fig. 5). Since the criterion for the onset

of motion derived in [108] applies in two spatial dimensions,

we track the quantity ||ψ ||22 − ||P||22 to reveal a zero crossing

at vc, and use this procedure to identify drift bifurcations.

The onset of motion is associated with the appearance of

symmetry breaking between ψ and the vector field P for

sufficiently large v0. Centers of the density peaks shift with

respect to the +1 defects in P as depicted in Fig. 6. For resting

states, averaging P over the area of a single density peak yields

zero. Above vc, a net orientation of P emerges and traveling

crystals or crystallites come into existence. In Fig. 6(b), the

net polarization points to the left leading to a negative drift

velocity c. The direction of the shift and hence the resulting

sign of the velocity are arbitrary: both directions correspond

to the same branch of traveling solutions. This agrees well

with similar observations for the onset of motion for extended
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FIG. 5. (Left) Bifurcation diagram of resting and traveling one-

peak LS at mean density ψ̄ = −0.9 showing the L2 norm of ψ

as a function of the activity v0. Resting and traveling states are

indicated by blue and orange lines, respectively. Branches of stable

and unstable states are shown as solid and dotted lines. At vc ≈ 0.15,

a stable resting LS undergoes a drift pitchfork bifurcation and a

branch of traveling localized states (TLS) emerges. The region of

existence of the TLS is limited by a fold at v0 ≈ 0.24. The panels

on the right show (top) selected solution profile ψ (r) at v0 = 0.1

(only part of the domain is shown); (center) the drift velocity c vs

v0. Above vc ≈ 0.15, the velocity increases as
√

v0 − vc. Deviations

from a sharp onset of motion are due to lattice effects. (Bottom) The

difference ||ψ ||22 − ||P||22 crosses zero at the drift pitchfork bifurca-

tion. Note that, in the left panel, ||ψ ||2 times the area V is plotted for

clarity as for 2D domains the norm of LS tends to be very small. The

domain size is V = 60 × 30. Remaining parameters are ǫ = −1.5,

C1 = 0.1, C2 = 0, and Dr = 0.5.

patterns [38,81]. Similar results hold for an aPFC model with

an additional vacancy term [111].

If ψ̄ is chosen too low, i.e., too close to the solid-liquid

transition, activity can melt crystallites before motion sets in.
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FIG. 6. Density ψ (r) and polarization P(r) profile shown as a

color map overlaid with white arrows for (a) a resting (v0 = 0.13)

and (b) a traveling (v0 = 0.22 > vc) one-peak LS. Note that in (a) the

+1 defect of the polarization field coincides with the density maxi-

mum (and the net polarization is zero), while in (b) they are shifted

with respect to one another as the front-back symmetry is broken.

The shift corresponds to a net polarization, i.e., net propulsion to the

left, with c ≈ −0.19. Only a part of the computational domain is

shown. The remaining parameters are as in Fig. 5.

FIG. 7. (Left) Bifurcation diagram of a resting two-peak LS (cf.

Fig. 4) at mean density ψ̄ = −0.9 showing the L2 norm of ψ as a

function of the activity v0. (Right) Selected density profiles ψ (r)

at v0 = 0.03 (top) on the upper part of the branch of left-right

symmetric states (blue line), v0 = 0.09 (middle) on the branch of

left-right asymmetric states (black line), and v0 = 0.04 (bottom) on

the lower part of the branch of the left-right symmetric states. In

contrast to the one-peak LS, only resting two-peak LS exist at this

mean density as the saddle-node bifurcation of the symmetric states

is located at v0 < vc ≈ 0.15. The remaining line styles, parameters,

and the domain size are as in Fig. 5.

This is what happens to two-peak LS at rest at ψ̄ = −0.9

as v0 increases and the two-peak LS passes through a fold

before encountering a parity-breaking bifurcation (Fig. 7).

Here the branch of two-peak LS does not reach far enough

in v0 to fulfill the criterion for the onset of motion and

activity melts the structure before the onset of drift: the posi-

tion of the fold is at v0 ≈ 0.14 < vc. Close to the fold there

is a subcritical pitchfork bifurcation generating steady but

asymmetric solutions [dotted black branch, cf. Fig. 7 (right

central panel)] that bifurcate off the blue branch correspond-

ing to solutions with left-right symmetry in ψ (r) (right upper

and lower panels). Note that the dotted black line represents

two different asymmetric solutions related by reflection with

respect to a suitable origin: [ψ (x, y), Px(x, y), Py(x, y)] ↔
[ψ (−x, y), −Px(−x, y), Py(−x, y)]. At ψ̄ = −0.9 these two-

peak LS coexist with the one-peak LS from Fig. 5 but all

two-peak states are unstable.

For ψ̄ = −0.8, however, the fold of the two-peak LS shifts

beyond the threshold for the onset of motion and the two-peak

LS also undergo a drift bifurcation. Owing to the additional

spatial degree of freedom in 2D a reflection-symmetric struc-

ture at rest may undergo motion in two orthogonal directions,

longitudinal and transverse, resulting in a drastic change in the

overall bifurcation picture. Figure 8 summarizes the intricate

bifurcation structure of two-peak crystallites at this value of

ψ̄ . This complicated behavior is disassembled into Figs. 9 to

11 shedding additional light on the different branches of TLS

that emerge.

Figure 9 depicts branches of TLS moving longitudinally,

i.e., parallel to the long axis of the elongated LS while Fig. 11
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FIG. 8. Summary bifurcation diagram showing ||ψ ||2 vs v0 for

resting and traveling dumbbell-shaped two-peak LS at mean den-

sity ψ̄ = −0.8. Blue and black lines indicate branches of resting

symmetric and asymmetric LS, respectively. At v0 ≈ 0.15, states

traveling in different directions (orange branches) emerge in various

drift bifurcations. See Figs. 9 and 11 for details and selected solution

profiles. Thin gray lines correspond to branches of resting and travel-

ing one-peak LS. Remaining line styles, parameters, and the domain

size are as in Fig. 5.

shows the branches of TLS moving transversely, i.e., parallel

to the short axis of the LS. Interestingly, the latter branch

extends to higher values of v0.

Figure 10 magnifies the upper part of the bifurcation dia-

gram presented in Fig. 8 completing the branch of asymmetric

LS. Interestingly, the branch exhibits tilted snaking like that

found in other pattern-forming systems with a conservation

law [101]. However, the behavior does not correspond to

the usual snakes-and-ladders structure of snaking branches

of symmetric LS connected by branches of asymmetric LS.

Instead, the asymmetric LS snake in a slightly slanted, spi-

ralling fashion. With each loop, the asymmetric LS grows

in the longitudinal direction by creating one new peak (see,

e.g., the density profiles in panels I–VI of Fig. 10). All the

asymmetric states are unstable.

The resting elongated two-peak LS are connected to the ro-

tationally symmetric one-peak solution as indicated in Fig. 11,

state III. This point is also a fold near which the stable resting

one-peak LS (solid gray line) start to deform into a two-peak

LS. Because of the influence of the boundaries this is a contin-

uous transition. In fact, all (reflection-symmetric) resting LS

in Fig. 8 correspond to a single branch, similar to the result

for the snaking branches as a function of ψ̄ . The branches of

one-peak LS (moving and resting) are shown in light gray with

solid (dotted) lines for (un)stable states. Unfortunately, at this

value all two-peak LS are still unstable, just as for ψ̄ = −0.9

(Fig. 7).

At vc ≈ 0.15, various TLS emerge at drift bifurcations

marked in Figs. 9 and 11 by black circles. TLS moving par-

allel to their long axis (Fig. 9) do not reach activity values

as high as the TLS moving transversely (Fig. 11). Figure 9

shows that two distinct branches of TLS originate in a drift-

FIG. 9. (Top left) Shown is a subset of the bifurcation curves

from Fig. 8, namely, the traveling dumbbell-shaped two-peak LS that

move parallel to their long axis, the one-peak states, and the resting

two-peak states. The right panels show selected density profiles ψ (r)

at points labeled I to IV in the main panel. The resting two-peak

LS are destabilized with respect to parallel motion in drift-pitchfork

bifurcations at vc ≈ 0.16, marked by black circles. On the orange

branches of traveling LS, state III (state II) travels with the larger

(smaller) density peak at the front. The asymmetric steady solution

is destabilized in a drift-transcritical bifurcation marked by the circle

on the black branch. Here two branches of TLS with opposite drift

velocities emerge. The lower left panels show the drift velocity c as a

function of v0 and the measure ||ψ ||22 − ||P||22 that crosses zero at the

respective onsets of motion. The remaining line styles, parameters,

and the domain size are as in Fig. 8.

transcritical bifurcation on the branch of resting asymmetric

states (black). Owing to the lack of left-right symmetry of the

density profile, each direction of the drift results in a separate

branch. In particular, the TLS on the upper branch move to

the left with the larger density peak at their tip (cf. Fig. 9, state

III) while the lower branch that emerges (bending towards

lower norm) corresponds to TLS with the smaller density peak

at the tip (state II). Both branches of TLS terminate on the

branch of resting left-right symmetric LS (blue) in respective

drift-pitchfork bifurcations (marked by circles).

We mention that on the scale of Fig. 9 the bifurcation

occurring on the branch of asymmetric RLS does not exhibit

the typical shape of a transcritical bifurcation as both branches

of TLS seem to bifurcate towards larger v0. Our identification

of this bifurcation as a drift-transcritical bifurcation is based

on similar behavior observed in 1D [108] where more precise

computations are possible, and for this reason we believe

that one of two branches undergoes a fold very close to the

transcritical bifurcation. Grid effects make it very hard to

remain on branches of RLS and lead to rather blurred onsets
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FIG. 10. Shown is a magnification of Fig. 9 completing the

branch of steady asymmetric LS (black dashed line). Panels I to VI

present selected density profiles ψ (r) at points labeled I to VI in the

main panel. The remaining line styles, parameters, and the domain

size are as in Fig. 9.

of the drift velocity c vs v0. However, with the help of the

onset criterion derived in Ref. [108], we are able to determine

the exact location of all drift bifurcations (lower panels of

Fig. 9).

Figure 11 explores the branches of traveling two-peak LS

that travel transversely. Here the picture is simpler. As for the

traveling one-peak LS, a branch of TLS stretches between a

pair of drift bifurcations highlighted by black circles. Panels

on the right show selected density profiles.

Overall, the bifurcation structure of traveling two-peak LS

is much more intricate than that of the single-peak LS. More-

over, increasing ψ̄ from −0.9 to −0.8 drastically changes

the bifurcation structure. Figure 12 illustrates how the drift

bifurcations and TLS come into existence by showing a series

of four bifurcation diagrams for increasing values of mean

density ψ̄ . Between ψ̄ = −0.67 and −0.65 a pair of drift

bifurcations is created. Their origin coincides with the fold

of the branch of resting states (blue lines) as shown by a

two-parameter continuation. For increasing ψ̄ , the region of

existence of TLS grows as the fold of the TLS branch moves

to higher values of v0 while the threshold activity for the onset

of migration vc stays practically constant. These results are

consistent with the results of extensive fold continuation in

1D. Note that for Fig. 12 we have used ǫ = −0.98 in contrast

to previous figures with ǫ = −1.5.

With the various TLS obtained by continuation in v0 in

hand, we are now able to construct a morphological phase

diagram (next section). This is followed by an examination

of the bifurcation diagrams for fixed v0 as the mean density ψ̄

varies and a study of the phenomenon of slanted homoclinic

snaking for active crystallites at v0 > 0 in Sec. III D.

FIG. 11. (Top left) Shown is a subset of bifurcation curves from

Fig. 8, namely, the traveling dumbbell-shaped two-peak LS that

move perpendicular to their long axis, the one-peak states, and the

resting two-peak states. The remaining panels, line styles, symbols,

parameters, and the domain size are as in Fig. 9.

C. Morphological phase diagram

Before discussing in detail the bifurcation structure as a

function of ψ̄ and changing the temperaturelike parameter ǫ to

allow for snaking, we conclude the discussion of active crys-

tallites at ǫ = −1.5 by presenting a large-scale morphological

phase diagram in the parameter plane spanned by v0 and ψ̄ .

The phase diagram is determined numerically by counting

peaks of ψ (r, t ) after a sufficiently long transient. To favor the

creation of LS, six density bumps are superposed at random

positions on the homogeneous phase marginally perturbed by

white noise. For the polarization P, we choose a randomly

perturbed trivial state P0 = 0 as initial condition.

The domain with periodic boundaries has a size of 8Lc ×
7La with La = 4π/

√
3 being the side length of a hexagon and

Lc = 2π the critical wavelength at the onset of crystallization.

As already mentioned, Lc is the height of triangles found in

the hexagonal pattern. This domain size results in a maximum

number of 56 density peaks in a periodic array [cf. Fig. 14(I)].

In Fig. 13 periodic states with around 56 density peaks are

displayed in green, whereas LS exist within the blueish area.

The white area without any density peaks corresponds to the

liquid state ψ (r) = 0. The white lines indicate the stability

limits obtained from linear stability of the liquid phase, with

the vertical white line indicating the onset of motion at vc

(vc ≈ 0.15, independently of ψ̄). The limits of the existence

of LS are determined by a two-parameter continuation of their

fold. The black lines show the position of folds of resting one-

peak LS (solid black) and of traveling one-peak LS (dotted

black). The position of the saddle-node bifurcations of 2D

032601-9



OPHAUS, KNOBLOCH, GUREVICH, AND THIELE PHYSICAL REVIEW E 103, 032601 (2021)

FIG. 12. A sequence of bifurcation diagrams ||ψ ||2 vs v0 show-

ing how traveling one-peak LS (orange line) come into existence with

increasing mean density ψ̄ (from top left to bottom right) at ǫ =
−0.98 (corresponding to the value used in [38]). Two drift-pitchfork

bifurcations appear simultaneously at the saddle-node bifurcation of

the branch of resting LS (blue line). Increasing ψ̄ further expands

the range of existence of traveling LS toward larger v0 and the

drift-pitchfork bifurcations separate. The onset of motion is always

at vc ≈ 0.15. Remaining line styles, parameters, and the domain size

are as in Fig. 5.

FIG. 13. Morphological phase diagram for the aPFC model in

2D in the plane spanned by the activity v0 and the mean density ψ̄ as

obtained through systematic time simulations. The region of stable

liquid state is white, while crystalline structures of various size exist

in the colored areas. The color bar indicates the number of density

peaks formed in the domain of size 8Lc × 7La with La = 2Lc/
√

3 and

Lc = 2π . Regions where resting and traveling LS exist are marked

by shades of blue while domain-filling periodic patterns are shown

as green (56 peaks). The various lines in the diagram, the initial

conditions for the simulations, and the peak counting procedure

are described in the text. The remaining parameters are ǫ = −1.5,

C1 = 0.1, C2 = 0, and Dr = 0.5 as used throughout Sec. III B. The

parameter increments between simulations are �v0 = 0.035 and

�ψ̄ = 0.0125. See Fig. 14 for a magnification of the region close

to the onset of motion and selected density profiles.

FIG. 14. The large panel shows a magnification of the region

close to the onset of motion in the morphological phase diagram in

Fig. 13. The parameter increments between simulations are �v0 =
0.02 and �ψ̄ = 0.025. The small panels show selected density pro-

files ψ (r) at points labeled I to V in the phase diagram after the time

simulations have converged. Arrows indicate direction of motion.

Shown are (I) resting hexagonal pattern close to the transition to

stripes, (II) traveling hexagonal pattern, (III) traveling cluster of

hexagonal order, (IV) resting LS, and (V) traveling LS.

TLS starts to shift backwards, towards smaller values of v0

at v0 ≈ 0.7. This is a major difference from the one-peak TLS

in one spatial dimension which exist to arbitrarily high v0.

The time simulations indicate large areas of existence of

various active LS (blueish area). The extent of the LS region

ranges from single density peaks (light blue) to patches of LS

almost filling the entire domain (dark blue). Selected solution

profiles ψ (r) can be found in Fig. 14. The phase diagram also

illustrates how hexagonal periodic states change their shape

towards a stripe pattern resulting in a lower number of density

peaks [Fig. 14(I)]. For such patterns each elongated ridge is

only counted as a single density peak. Close to the limit of

linear stability of the liquid state, large patches of localized

crystalline order coexist with the uniform state [Fig. 14(III)].

Resting LS (v0 < 0.15, left of the vertical dotted line denoting

the onset of motion) exist down to low values of ψ̄ ≈ −1.05.

Increasing activity melts most of these LS (ψ̄ < −0.95) and

the v0 range of their existence contracts as ψ̄ decreases.

Higher ψ̄ favors traveling LS (−0.95 � ψ̄ � −0.7, 0.15 �
v0 � 0.7) and traveling crystals that fill the entire domain are

present for ψ̄ � −0.65, the linear stability threshold of the

liquid state, and v0 � 0.15, where the blue region terminates

giving way to green areas. We also see that traveling periodic

states exist to arbitrarily high activities and do not melt, unlike

most LS, in agreement with similar observation in 1D [108].

The morphological phase diagram in Figs. 13 and 14 may

be compared with similar phase diagrams obtained experi-

mentally or via particle-based simulations of systems that also

show active and passive interactions, the latter resulting in
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crystals at zero and low activity. The collective behavior of

Quincke rollers investigated in Ref. [120] provides an exam-

ple. Figure 1 of this paper shows a phase diagram that reveals

similar transitions to those found here: At low activity the

authors find resting crystallites that with increasing activity

either “evaporate” into a “gas” (at lower densities) similar to

the transition from resting localized states to a uniform state

for ψ̄ � −0.95 in Fig. 14 or start to travel (at higher densities)

similar to the transition from resting localized or crystalline

states to traveling states for ψ̄ � −0.95. Moreover, below a

certain density their traveling crystals evaporate upon a further

increase in activity similar to our case for −0.7 � ψ̄ � −0.95

(cf. Fig. 13) while at higher density they turn into traveling

bands, a transition we do not see, possibly because of our

smaller system size.

D. Snaking of active crystallites

In this section we explore in detail the bifurcation structure

of both resting and traveling active crystallites as a function of

the mean density ψ̄ . Having analyzed the slanted snaking of

passive LS (Sec. III A), we now wish to examine the influence

of the activity parameter v0 on the snaking of 2D LS and the

response of 2D TLS to varying ψ̄ .

The value ǫ = −1.5 of the effective temperature turns out

to be too low to support continuous snaking of both passive

and active LS (cf. Fig. 4). At these values of ǫ the snaking

branches most likely break up into disconnected pieces. For

this reason we increase the temperature to ǫ = −0.98 as done

for passive crystallites in Sec. III A. In addition, this value is

also employed in [38] where the aPFC model was introduced.

There, diffusion is set to C1 = 0.2 leading to vc ≈ 0.3. The

high diffusion causes many crystallites to melt before motion

can set it. We therefore stick to C1 = 0.1 as used in the previ-

ous sections, for which the threshold for the onset of migration

is vc ≈ 0.15.

Figure 15 depicts the bifurcation diagram at v0 = 0.151,

slightly above vc and allowing for TLS. The overall picture

is similar to the slanted homoclinic snaking found for passive

LS. The branches of LS bifurcate from periodic solutions that

emerge in subcritical primary bifurcations from the desta-

bilized liquid state and extend well below the folds of the

periodic state. Besides the resting crystal (Fig. 15, dotted

black branch), there is a branch of traveling spatially extended

patterns (red). Both crystals are of hexagonal order and their

norms differ only slightly. The inset in Fig. 15 enlarges the

region close to the folds of the periodic states, illustrating their

small separation.

The resting and traveling LS branch off from the resting

and traveling periodic solutions in secondary bifurcations at

small amplitude. Since the value of the activity parameter v0

is above the threshold for migration, all RLS (blue branch)

are unstable as indicated by dotted lines. The TLS exhibit the

typical alternation of stable and unstable states familiar from

slanted snaking of passive LS. Like the branches of periodic

solutions the resting and traveling LS have very similar L2

norm.

The lower panel of Fig. 15 shows the drift velocity c of the

respective solutions as a function of ψ̄ . Evidently, RLS (blue)

and the resting crystal (black) have c = 0. The velocity of the

FIG. 15. Bifurcation diagram showing slanted snaking of rest-

ing and traveling LS at ǫ = −0.98. Shown is the norm ||ψ ||2 as

a function of the mean density ψ̄ with activity fixed at the still

relatively low value v0 = 0.151 > vc that allows for the coexistence

of resting and traveling states. Labels I to IV mark the location of

the stable traveling LS shown on the right. The liquid phase (gray

line) with norm zero is destabilized at ψ̄ ≈ −0.53 and a branch

of traveling periodic patterns (dark red) emerges. Close to the first

primary bifurcation, a branch of resting crystals (black) emerges

in another primary bifurcation. Resting and traveling LS (blue and

orange), respectively, bifurcate in secondary bifurcations from these

branches. Since v0 > vc, all resting solutions are unstable. The inset

illustrates the small separation of the branches in terms of their norm.

The lower panel shows the drift velocity c as a function of ψ̄ . Since

c < 0, all TLS move to the left. The domain size is 2La × 4Lc while

the remaining line styles and parameters are as in Fig. 5.

traveling crystal (red) rises slightly as the crystal grows. In

contrast to the main panel, here it is easy to see how the TLS

branch off from the traveling periodic solution. All in all, the

drift velocity c does not depend strongly on ψ̄ .

The same holds at v0 = 0.18 as shown in Fig. 16. The

bottom right panel reveals that c is almost independent of the

mean density ψ̄ . Because v0 = 0.18 is beyond the positions

of the folds of RLS, resting solutions are no longer present.

As also observed at smaller v0, the TLS (orange) emerge in

a secondary bifurcation from the branch of traveling crystals

(red). With increasing ψ̄ , the TLS grow by adding density

peaks until the whole domain is filled by the crystalline state

and the TLS branch terminates on the branch of traveling

periodic states [cf. Fig 16(IV)]. In contrast to passive snaking,

the growth of the TLS does not occur by adding density peaks

layer by layer. The broken symmetry at v0 > vc seems to favor

growth via the addition of pairs of density peaks, maintaining

reflection symmetry with respect to y = 0 at all times, as

shown in panels (I) and (II). The different growth pattern is

reflected in the larger number of undulations of the snaking

branch as compared to the passive case in Fig. 2.

Overall, we find that the mean density ψ̄ does not have a

strong influence on the drift velocity c of the traveling states.
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FIG. 16. Bifurcation diagram ||ψ ||2 vs ψ̄ for traveling hexagonal

patterns and traveling LS at the relatively high activity v0 = 0.18

where no resting states exist. Labels I to IV denote the locations of

the stable traveling LS shown on the right. The bottom right panel

shows the drift velocity c as a function of ψ̄ . All states travel to the

left. Domain size, line styles, and the remaining parameters are as in

Fig. 15.

In addition, there are no connections between the branches

of RLS (of hexagonal order) and TLS (also of approximately

hexagonal order) as ψ̄ varies. Hence, changes in the mean

density cannot directly induce drift instability (although a

suitable ψ̄ is necessary for drift instabilities to occur when

varying v0). And rather unexpectedly (when taking the 1D

results [108] as a guide), the branch of TLS at ǫ = −0.98

exhibits slanted homoclinic snaking much as observed for

RLS in the passive system and in active ones at small v0.

We do not expect the spatial dimension to play a role here;

more likely, the presence of slanted snaking is solely a con-

sequence of choosing an effective temperature ǫ that is not

too negative. We mention that slanted snaking associated with

traveling structures is present even in nonconserved systems

[121], likely a consequence of the fact that the drift speed is

itself a nonlocal property.

IV. PERIODIC STATES

In two spatial dimensions, different periodic patterns can

be distinguished. Besides stripes that can be regarded as a 2D

extension of the periodic states determined in 1D [108], the

aPFC model exhibits both hexagonal and rhombic structures.

In this section we analyze the periodic states that emerge in

the 2D aPFC model and, in particular, study their bifurcation

structure.

FIG. 17. Selected snapshots of periodic density patterns ψ (r) at

the fixed mean density ψ̄ = −0.4 as obtained for increasing activity

by time simulation. (a) A resting hexagonal pattern at v0 = 0.25,

(b) a traveling hexagonal pattern at v0 = 0.3, (c) a traveling rhombic

pattern at v0 = 0.8, and (d) a traveling stripe pattern at v0 = 1.5.

The respective directions of motion are indicated by white arrows.

The domain size is 6Lc × 5La while the remaining parameters are

ǫ = −0.98, C1 = 0.2, C2 = 0 as in Ref. [38].

A. Crystal structure and activity

The original passive PFC model exhibits crystalline hexag-

onal patterns in certain ranges of the temperature ǫ and mean

density ψ̄ . Changing the mean density can lead to transitions

to stripes [57]. These transitions can also be induced by the

activity v0. In the original paper [38] introducing the aPFC

model, numerical time simulations show a transition from a

resting hexagonal pattern to traveling hexagons with increas-

ing v0. A further increase leads to a transition to traveling

rhombic patterns and, ultimately, to traveling stripes. Snap-

shots from time simulations at certain values of v0 and the

same set of control parameters as in [38] are shown in Fig. 17

and these reproduce previously made observations.

The domain is of size 6Lc × 5La with critical wavelength

Lc = 2π and side length La = 4π/
√

3 accounting for 30 den-

sity peaks in hexagonal order. At v0 = 0, resting hexagons

are oriented parallel to the y axis and perfectly match the

aspect ratio of Lx and Ly. As v0 is increased the wave vector

and geometry of the pattern change. The whole crystalline

structure reacts by a rotation within the periodic domain [cf.

Figs. 17(a) and 17(b)] thereby adjusting its position such that

the dominant wave vectors fit into the domain.

Rhombic [Fig. 17(c)] and stripe patterns [Fig. 17(d)] orient

themselves parallel to the y axis as Lx is a multiple of Lc = 2π .

Following the drift instability at vc ≈ 0.3, these patterns travel

with a constant speed c while keeping their spatial period-

icity. White arrows indicate the direction of motion. Stripes

always travel perpendicular to their orientation. Hexagons and

rhombi also exhibit specific directions of motion. Therefore,

the patterns have to be correctly oriented when employing
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FIG. 18. The main panel shows the bifurcation diagram ||ψ ||2
vs v0 for hexagonal patterns oriented such that the onset of motion is

parallel to an edge. Resting hexagons (blue line) are stable (solid line)

until a drift-pitchfork bifurcation occurs at vc ≈ 0.3 where a branch

of stable traveling hexagonal patterns (orange line) emerges. The

corresponding drift velocity c is shown in the lower left panel while

the lower right panel shows the measure ||ψ ||22 − ||P||22 that crosses

zero at the drift bifurcation. On the right selected solution profiles

ψ (r) at the locations labeled I to IV in the bifurcation diagram are

shown. Profiles II—IV travel in the x direction to the right. The

domain size is V = 3La × 4Lc and the remaining parameters are as

in Fig. 17.

numerical continuation with the particular boundary condi-

tions discussed in Sec. II A. These only permit motion in the

x direction.

B. Pattern selection and bifurcation structure

From time simulations in previous studies [38,39], it is

known that the activity parameter v0 does not only lead to a

transition from resting to traveling patterns, but also strongly

influences the crystal structure. Here we use numerical con-

tinuation to investigate if the different traveling patterns are

connected via bifurcations and how the patterns are selected.

Starting with a steady state hexagonal pattern at v0 = 0 in

a suitable domain, we follow the branch of hexagonal crystals

in v0. Figure 18(I) illustrates the chosen domain. Its aspect

ratio corresponds to the ratio between the height Lc and the

side length La of equilateral triangles within the hexagon.

The hexagons are oriented with one edge parallel to the

direction of motion observed in time simulations close to the

onset of motion (cf. Fig. 17).

The resulting bifurcation diagram is depicted in the main

panel of Fig. 18. The branch of resting hexagons is shown in

blue, whereas the traveling hexagonal pattern corresponds to
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FIG. 19. Density ψ (r) and polarization P(r) profiles in terms of

a color map with overlaid white arrows, respectively, for (a) a resting

(v0 = 0.25) and (b) a traveling (v0 = 0.4 > vc) hexagonal pattern. In

(a) the +1 defects of the polarization field coincide with the density

maxima (and the net polarization is zero), while in (b) they are shifted

with respect to one another, breaking the left-right symmetry. This

shift generates a net polarization and results in net propulsion to the

right with c ≈ 0.3. Parameters and domain size are as in Fig. 18.

the orange branch. At the critical activity vc ≈ 0.3, the resting

pattern is destabilized in a drift-pitchfork bifurcation. The

left bottom panel shows the characteristic growth of the drift

velocity c; close to the drift instability c ∝
√

v0 − vc. The sec-

ond small panel demonstrates that the quantity ||ψ ||22 − ||P||22
crosses zero at the onset of motion. Note that the onset of

motion at vc ≈ 0.3 corrects earlier studies [38] and confirms

the critical activity value found in [81].

The four selected solution profiles ψ (r) (I)–(IV) corre-

spond to the locations indicated in the main panel. The density

profiles illustrate how the hexagonal order of the crystal is

preserved with increasing v0. However, the individual density

peaks change their shape from circular bumps towards oval

and even rectangular peaks, cf. Figs. 18(III) and 18(IV). The

branch of traveling hexagons is stable up to very high values

of activity, in other words, we did not detect a destabilizing

bifurcation on this branch.

Figure 19 gives details on the symmetry breaking associ-

ated with the onset of motion of the hexagonal pattern. The

density field ψ (r) is given as a color map and the polarization

field P(r) is indicated by white arrows. Figure 19(a) depicts

the two fields in a resting crystal. As discussed for LS in

Sec. III B for resting states, the centers of the density peaks

coincide with +1 defects of P. One of the corresponding

symmetries is broken beyond the onset of motion and the

topological defects of P shift with respect to the peaks of

ψ . Hence, when averaging the polarization over a density

peak, a net polarization and drift emerge. Figure 19(b) shows

a moving hexagonal crystal with a positive net polarization.

In the red area of the maximum of ψ , more arrows point to

the right than to the left and the crystal therefore moves to the

right without change of shape.

For the bifurcation diagram in Fig. 20, the orientation of

the hexagon has been rotated by 90◦, i.e., the drift is forced

to occur perpendicular to an edge of the hexagon. The do-

main size is adapted to match the hexagons by switching the

lengths of Lx and Ly from Fig. 18. As in Fig. 18, the resting
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FIG. 20. The main panel shows the bifurcation diagram ||ψ ||2
vs v0 for hexagonal patterns for the onset of motion perpendicular

to an edge. On the right selected solution profiles ψ (r) at locations

labeled I to IV in the bifurcation diagram are shown. Profiles II–IV

travel in x direction to the right. Resting hexagons (blue line) are

stable (solid line) until a drift-pitchfork bifurcation at vc ≈ 0.3 where

a branch of stable traveling hexagonal patterns (orange line) emerges.

With increasing v0, the traveling hexagonal pattern (e.g., profile II)

deforms into modulated stripes (e.g., profile III). The branch termi-

nates on the horizontal branch of traveling stripes (dark green line,

e.g., profile IV) that itself emerges in a drift-pitchfork bifurcation

from an unstable branch of resting stripes (red line). The domain size

is V = 4Lc × 3La and the remaining parameters are as in Fig. 17.

hexagonal pattern (blue branch) is destabilized in a drift-

pitchfork bifurcation at vc,⊥ = 0.3015 as compared to vc,‖ =
0.3008 in Fig. 18. The slightly larger threshold is in agreement

with results from time simulations where drift parallel to an

edge (cf. Fig. 18) is found for motion at onset. Black circles

highlight the drift bifurcations in the main panel of Fig. 20.

Besides stable resting hexagons, an unstable resting stripe

pattern exists in this setup (red branch). The resting stripes

undergo a drift bifurcation at vc ≈ 0.3 as well.

In contrast to hexagons traveling parallel to an edge, the

hexagons traveling perpendicular to an edge do not persist

to arbitrarily high v0 and instead terminate on a branch of

traveling stripes (horizontal green line) in a supercritical pitch-

fork bifurcation. Along this branch, the crystal continuously

changes from traveling deformed hexagons (Fig. 20, profile

II) to traveling modulated stripes (III); moreover, the solutions

lose stability in a Hopf bifurcation at v0 ≈ 0.6 before reaching

the termination point. The horizontal branch of moving stripes

confirms the results for periodic states in 1D that also maintain

a constant norm by shifting the relative positions between

ψ (x) and P(x) with changing v0. The traveling stripes even-

tually gain stability in a Hopf bifurcation at about v0 = 1.5

FIG. 21. The main panel shows the bifurcation diagram ||ψ ||2 vs

v0 for square patterns oriented such that the motion is parallel to a

diagonal of the square. On the right selected solution profiles ψ (r)

at locations labeled I to III in the bifurcation diagram are shown.

Profiles II–III travel in the x direction to the right. Resting squares

(black line) are unstable. At drift-pitchfork bifurcations at vc ≈ 0.3

branches of unstable traveling square patterns (orange lines) emerge.

At v0 ≈ 0.7 traveling squares gain stability in a Hopf bifurcation.

The domain size is 2
√

2Lc × 2
√

2Lc and the remaining parameters

are as in Fig. 17.

after undergoing various bifurcations (not shown). At v0 =
1.5, random initial conditions evolve into drifting stripes in

numerical time stepping. Note that vertical stripes do not fit

into the domain of Fig. 18 as Lx is not a multiple of Lc = 2π .

In the parameter range where Fig. 20 exhibits only unstable

states, time simulations show either traveling rhombic patterns

[cf. Fig. 17(c)] or states with a more intricate time dependence

(not shown).

Even though time simulations show a different direction

at the onset of motion of the traveling hexagons, the detected

branch of modulated stripes (Fig. 20, profile III) corresponds

to a solution type that arises within large scale parameter scans

presented in Sec. IV C. In addition, continuation confirms that

resting stripes are unstable for all values of v0 as suggested by

time simulations. Since time simulations also point to rhombic

patterns, we have also performed continuation on a square

domain. Figure 21 shows that the branch of squares traveling

parallel to a diagonal (orange) becomes stable at about v0 ≈
0.7, in perfect agreement with the traveling squares observed

in time simulations [cf. Fig. 17(c)], and suggests that these

stable traveling squares extend to arbitrarily large values of

the activity parameter v0. Squares traveling parallel to a side

are expected as well, but were not computed.

Finally, Fig. 22 combines the results from continuation

runs on different domains. Around practically identical values

of v0, vc ≈ 0.3, all resting crystals undergo drift instabilities.

As for the resting states at small v0, only hexagons (blue

branch) are stable (solid line). Traveling squares and traveling

stripes gain stability at higher values of v0 that are in perfect
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FIG. 22. Combined bifurcation diagrams for the resting and trav-

eling periodic states in Figs. 18, 20, and 21. Note that the domain

sizes differ between the different branches. All resting patterns un-

dergo drift-pitchfork instabilities at nearly identical values of v0,

vc ≈ 0.3. Different traveling states coexist at large activity v0.

agreement with numerical time simulations. Numerical con-

tinuation suggests that different traveling crystals coexist. In

the simulations the domain and in particular its aspect ratio

appear to select the moving pattern.

C. Morphological phase diagram

In order to complete the picture of crystalline states and

the influence of v0 and ψ̄ , we again perform numerous time

simulations and construct a morphological phase diagram in

the (v0, ψ̄ ) plane for the parameter set employed in this sec-

tion. The time simulations are carried out in the same way as

previously described in Sec. III C and again LS and various

periodic states are distinguished in terms of the number of

peaks of ψ (r). Figure 23 shows the resulting phase diagram,

confirming the power of numerical fold continuation (black

lines) to predict the region of existence of LS obtained from

time simulations.

The parameter set used is from Ref. [38] and includes a

high value of the diffusion constant C1 = 0.2—twice the value

used in Sec. III B. The high diffusion leads to, first, a higher

vc ≈ 0.3 (cf. vertical dotted line) and, second, it suppresses

the existence of LS for increasing activity (no blue areas for

v0 > 0.5). The green crystalline area exhibits density fields

with more than 56 peaks for high activities. Here solution

profiles show traveling rhombic patterns (Fig. 23, profile II)

with a smaller wavelength than the hexagonal states. Thus,

more peaks fit into the considered domain. At higher mean

densities towards ψ̄ = −0.4 the rhombic patterns transform

into a stripe pattern. However, the stripes are still sufficiently

modulated in space to account for a high number of peaks as

depicted in Fig. 23, profile III. Accordingly, the number of

counted density peaks does not decrease.

V. SUMMARY AND CONCLUSIONS

We have studied in considerable depth the bifurcation

structure of an active phase-field-crystal model in two spa-

tial dimensions. This model, first introduced in Ref. [38],

FIG. 23. Morphological phase diagram for the aPFC model ac-

companied by selected density profiles at locations labeled I–V

obtained from systematic simulations. Large panel: Different states

are characterized by the total number of density peaks that form in a

rectangular domain of size 7La × 8Lc as indicated by color coding.

The various lines in the diagram, the initial conditions of the simula-

tions, and the peak counting procedure are described in the text. The

liquid state refers to a uniform density phase with zero peaks (white

area). LS exist in the regions marked in blue. Periodic hexagonal

patterns (green) fill the domain with 56 density peaks (I). Around

v0 > 1 the number of peaks slightly increases as resting hexagonal

patterns (I) begin transforming towards traveling rhombic patterns

(II) with a smaller wavelength allowing for more density peaks.

Arrows indicate the direction of motion. At even higher v0, traveling

stripe patterns (III) arise. These remain spatially modulated so that

individual peaks can still be located on each ridge and the number of

density peaks does not drop. (IV) and (V) give examples of resting

LS coexisting with the liquid phase. The remaining parameters are

ǫ = −0.98, C1 = 0.2, C2 = 0, and Dr = 0.5 as in [38].

describes a variety of resting and traveling spatially extended

and spatially localized structures.

First, using the mean concentration ψ̄ as the control

parameter, we have analyzed how the classical slanted snakes-

and-ladders structure (slanted homoclinic snaking) known

from the phase-field-crystal model [57] is modified by

activity. In particular, we have shown that with increasing ac-

tivity, one finds a critical value for the onset of motion of both

domain-filling crystals and the various localized states associ-

ated with them. In general, an increase in activity suppresses

resting localized and crystalline states. Resting LS ultimately

annihilate in saddle-node bifurcations at critical values of

the activity parameter that are similar for all the states stud-

ied, while resting periodic or crystalline states disappear in

a supercritical pitchfork bifurcation of the homogeneous or

liquid state. In other words, activity eventually melts all rest-

ing crystalline structures as the driving force overcomes the

attractive forces that stabilize the equilibrium crystals and the

crystallites that exist in the reference system without activity.
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However, at values of the activity below this melting point,

the branches of resting states exhibit drift bifurcations for

suitable diffusion and mean densities, generating branches of

traveling states. These may exist stably within certain ranges

of activity as shown here by numerical two-parameter contin-

uation of the relevant bifurcations. In other words, although

activity may melt traveling crystallites, there are extended

parameter regimes where this is not the case. In fact, we have

found that while high activity melts most traveling localized

states, i.e., traveling crystalline patches, this is not the case

for traveling periodic states, i.e., traveling domain-filling crys-

tals. These can be driven with arbitrarily high activity and

then exhibit correspondingly high drift velocities. We believe

that this is most likely the case because the periodicity of

the domain-filling crystals is fixed, while traveling localized

states naturally adapt their peak to peak spacing to the im-

posed parameter values. This additional degree of freedom

may make such states less stable. Note that the crystallites

we have found are not related to the motility-induced clusters

discussed, e.g., in [27–29]. The size of such “kinetic clusters”

tends to increase with activity [32] while here we have stud-

ied “adhesive clustering” where, in contrast, activity tends to

destroy clusters. This has also been observed in the Brownian

dynamics simulations of Ref. [43] for self-propelled particles

with short-range attraction (see also the review [26]). There,

with increasing activity, adhesive clusters are destroyed before

kinetic clustering sets in beyond a range of gaslike behavior.

A transition from resting to traveling adhesive clusters is also

described. In Ref. [122] short-range attractive and long-range

repulsive interactions are combined, resulting in an initial

increase in the size of adhesive clusters with activity, before

their destruction at yet higher activity.

We remark that to our knowledge motility-induced clus-

tering has not yet been described by an aPFC model since

such models generally show how equilibrium crystallization

is modified by activity. In the context of an aPFC model,

motility-induced clustering would imply that for some param-

eter values no clusters exist at zero activity but appear when

activity is increased beyond a certain threshold. Whether such

models are capable of describing kinetic clustering will no

doubt be clarified in future studies, cf. [111].

Next, we have investigated the region of existence of

traveling localized states and showed that such TLS are

generic solutions in extended regions of the plane spanned

by the mean concentration and activity. While broader TLS

with three and more peaks quickly vanish into the homoge-

neous background, narrow localized states (with one and two

density peaks) can be driven at quite high activities where they

reach high velocities. This does not seem to be the case in

the nonvariational systems studied in [66,67]. Thus a future

comparative study of the present system, the systems studied

in [66,67] and those reviewed and discussed in [65] would be

beneficial.

A substantial focus of the paper has been on the nature of

the onset of motion of the competing localized and extended

structures. We found that this occurs at critical values of the

activity that depend only weakly on the size of a particular

localized state or the number of density peaks within it. We

have shown that a previously derived criterion for the onset of

motion of active crystals in 1D also holds in two dimensions,

namely, that the zero crossing of the difference of the squared

norms of the two steady fields (||ψ0||22 − ||P0||22) marks the

onset of motion for all localized and extended crystalline

states. This criterion holds at the drift-pitchfork bifurcation of

κ-symmetric states and may be used to determine the critical

strength of the activity parameter that is needed for collective

traveling motion. It also determines the onset of drift of asym-

metric states via the drift-transcritical bifurcation. Whether

such simple criteria can be derived for more complicated

active matter models that capture faithfully the specific prop-

erties of laboratory systems and the active particles at hand

remains to be investigated.

The onset of motion in the aPFC model studied here dif-

fers from that in the nonvariational Swift-Hohenberg equation

studied in [66]. There, at any value of the driving parame-

ter in front of the nonvariational term, all asymmetric states

drift and all symmetric states are at rest. Here, however, the

special form of the coupling of the two fields allows for

resting asymmetric states even at a finite activity parameter,

a nongeneric feature of the model that will be investigated

further in future work. Within the aPFC model both symmetric

and asymmetric states undergo sharp transitions to drift as

the activity parameter v0 increases. However, only the former

are expected to be present in generic κ-symmetric models,

with the latter replaced by continuous or imperfect transitions.

Because of this the results of the present work are expected

to assist greatly in the computations of drifting states in such

models, particularly those lying on disconnected branches

associated with such imperfect bifurcations. This topic will

also be the subject of a future study.

The additional degrees of freedom present in 2D lead to

considerably more complex bifurcation diagrams than in 1D

[108] largely because more states are possible and the fact

that these states can drift in more than one direction. Besides

translation modes, rotational modes can also be destabilized

and the particular direction of the drift with respect to symme-

try axes of the LS has to be taken into account. A rotationally

symmetric one-peak LS has shown many similarities to the

1D case, while the less symmetric dumbbell-shaped two-peak

LS turned out to be unstable for any nonvanishing value of

activity. For the employed value of the effective temperature,

the active crystallites exhibit slanted homoclinic snaking and

resting LS as well as traveling LS exhibit similar behavior.

The LS, whether resting or traveling, gradually grow in size

as one follows the LS branch until they fill the entire domain

and respectively terminate on a periodic resting or traveling

solution. At lower values of the effective temperature the

snaking behavior apparently ceases and is replaced by new

behavior the details of which remain unclear.

In 2D, the activity parameter also strongly influences the

crystal structure of space-filling, fully periodic solutions. We

have identified a multistability region with stable traveling

hexagons, traveling rhombuses, and traveling stripes. Here

finite size effects such as the aspect ratio of the domain control

pattern selection but it is evident that in the thermodynamic

limit the phase diagram must be highly complex. We have

presented morphological phase diagrams that combine in-

formation from time simulations and numerical continuation

providing an indication of this complexity. Besides showing

the transition between resting and traveling localized states,
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these diagrams demonstrate the impressive capability of fold

continuation for localized states to predict the existence lim-

its determined from time simulations. These phase diagrams

share many features with similar diagrams obtained in exper-

iments on the collective behavior of Quincke rollers [120] as

discussed at the end of Sec. III C. In the future similar phase

diagrams should be generated for active particle systems that

allow for both adhesive and kinetic clustering.

Finally, we highlight a number of questions that merit

further investigation. As experimental studies often focus on

the collective behavior of many interacting particles and clus-

ters [27,32,34], we need to investigate further whether it is

possible to derive statistical models from single cluster bifur-

cation studies such as the present one. Such a methodology

has recently been presented for ensembles of sliding drops

[123]. Moreover, the rather simple coupling of concentration

and polarization in the aPFC model considered here excludes

spontaneous polarization. These limitations are responsible

for the presence of the κ symmetry of the model that is in

turn responsible for the presence of drift bifurcations that

govern so much of the behavior reported here. It is necessary,

therefore, that the results obtained here regarding the onset of

motion should be compared to systematic studies of the bifur-

cation structure of related models of active matter, including

the vacancy-aPFC model [111,112], the chiral aPFC model

[124], as well as more realistic active DDFT [64] or active

Dean-Kawasaki models [48]. This will allow one to develop

a clearer general understanding of the observed multistability

of states and associated hysteresis effects as well as of the

thresholds for qualitative changes in behavior. The present

study may serve as a road map for such analyses.

The data that support the findings of this study are openly

available [125].
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