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Abstract

In this paper, we present a high order accurate positivity-preserving conservative remap-
ping algorithm which is based on the multi-resolution weighted essentially non-oscillatory
(WENO) reconstruction. We use a third-order method on 2D quadrilateral meshes as an
example to present the algorithm. The method can effectively remap the physical vari-
ables after mesh rezoning in the ALE algorithm. By calculating the intersection exactly,
this method does not require the same connectivity between the old and new meshes. By
reconstructing a quadratic polynomial and a zero-order polynomial for each cell in a two-
dimensional domain, this method assigns nonlinear weights for these polynomials accord-
ingly after calculating the smoothness indicators over the integration area, yielding third
order accuracy without numerical oscillations. After calculating the overlaps between the
old and new meshes and integrating the polynomials over the intersections, the remapping
is completed. Furthermore, to ensure the positivity-preserving property of relevant physical
variables in hydrodynamics numerical simulation such as density and internal energy, a sim-
ple and efficient positive-preserving limiter is adopted to slightly modify the reconstructed
polynomials, which can maintain the original order of accuracy and conservation. The algo-
rithm can be extended to higher order accuracy using higher order reconstruction and higher
order integration formula over the intersection areas. A series of numerical experiments are
performed to test the properties of the multi-resolution WENO conservative remapping al-
gorithm. Numerical results show that the algorithm is conservative, positivity-preserving,
highly efficient, third-order accurate for smooth problems, and essentially non-oscillatory for
discontinuous problems.
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1 Introduction

The Lagrangian framework and Eulerian framework are two strategies in numerical simula-
tions of fluid flow, both of them have advantages and disadvantages. Hirt et al. developed
Arbitrary Lagrangian-Eulerian (ALE) framework which combines the best properties from
the above two methods [16]. The typical indirect ALE method can be described in the

following three steps:
» Lagrangian step: update the solution and move the mesh with the fluid flow;

e Rezoning step: move the nodes of the computational mesh to more optimal positions

to ensure the quality of the mesh;

« Remapping step: conservatively transfer variables from the old distorted mesh to a

new rezoned mesh or some arbitrarily defined mesh.

In this paper, we focus on the remapping step in the indirect ALE method. In compu-
tational fluid dynamics by the ALE method, physical variables are frequently transferred
between the old and new meshes. The remapping method is required to keep the ALE
method efficient, high order accurate, essentially non-oscillatory (without code crashing),
positivity-preserving and other relevant properties. In numerical simulations of fluid flow,
fluid variables should obey the physics laws such as the law of conservation of mass, mo-
mentum and total energy. Furthermore, some variables such as density and internal energy
should be positive. Dukowicz et al. [10, 12] pointed out that the remapping procedure could
be regarded as reconstructing physical variables in the old mesh then integrating them in
the new mesh. In this context, conservative remapping means transferring the variables at
the intersection region from the old mesh to the new mesh such that the total integrals over
the old mesh and over the new mesh are equal. Based on this, there are two typical classes
of methods, namely the flux-based (or swept-based) and the intersection-based remapping

methods, to deal with this problem.



The flux-based remapping method utilizes the divergence theorem to convert the two-
dimensional area integral to one-dimensional curve integrals, then estimates fluid variables
exchanged with cells at their common interfaces [10, 34, 29, 23, 30, 27, 25]. By using the
divergence theorem, this method greatly reduces the complexity of the problem for two-
dimensional general quadrilateral meshes. However, it does require the connectivity between
the old and the new meshes to be the same, and the movement of each node in the rezoning
step should not exceed the size of its neighboring cells [34, 10]. The latter restriction could
be relaxed by solving a fictitious advection equation to march from the old mesh to the new
mesh via multiple pseudo time steps, while ensuring the restriction being enforced for each
time step. Local ALE remapping methods such as [32, 11, 24] are constructed by adopting
such advection algorithm which does not need to compute the intersections.

The intersection-based (or overlay-based) method is another typical remapping strategy
(14, 12, 13, 31, 28]. It computes the overlaps between the old and new cells exactly, and
then integrates the given fluid variable, reconstructed on the old mesh, over the intersection
region exactly. For example, by constructing a supermesh, Menon et al. presented a second-
order remapping algorithm, which is generally applicable to any polyhedral source or target
meshes [13, 31]. Powell et al. [33, 36] proposed a robust remeshing method to intersect two
convex polyhedra in 3D.

This type of methods has a wider application which includes structured or unstructured
meshes, and it does not require the new mesh to have the same connectivity as the old one,
hence the movement of the nodes can be arbitrary. Therefore, under the arbitrary moving
mesh, the intersection-based method can easily achieve conservation and high-order accuracy.
When a higher order accurate reconstruction is applied, the intersection-based method can
get the corresponding higher order accuracy, since the error in the integration step can be
ignored compared with the reconstruction error. However, the intersection-based method
is relatively more costly, as it needs the explicit determination of the overlapping region

between the old and new polygonal meshes in two-dimension or the old and new polyhedral



meshes in three-dimension. It is usually adopted when higher order of accuracy is desired or
multi-material problem is involved or there is no connectivity between the old and the new
meshes.

In the remapping process for multi-material ALE simulations, the authors from [1, 20,
21, 22, 18, 19] utilized the hybrid conservative remapping method and achieved second-order
accuracy. In [18, 19], the authors compared and analyzed the local error and the behaviors
between two different types of methods, the resource-intensive methods utilizing intersections
and the faster and simpler flux-based methods. In the cells consisting of one material,
a computationally inexpensive flux-based method was used, while for the cells consisting
of multi-materials the intersection-based method was adopted. In this way, the method
combined the advantages of the above two methods. But it would require the connectivity
of the new mesh to be the same as that of the old mesh, and the mesh movement should not
exceed the size of its neighboring cells, just like the flux-based methods.

In recent years, some higher order remapping algorithms have been developed. For
example, Cheng and Shu [6] proposed a framework of conservative remapping algorithm
which can be extended to arbitrary order of accuracy based on essentially non-oscillatory
(ENO) reconstruction in one and two-dimensional cases. By solving an advection equation,
Lipnikov and Morgan created a high-order remapping algorithm on curvilinear polygonal
meshes using the discontinuous Galerkin schemes [24].

For the sake of ensuring the monotonicity property of variables, some bound-preserving
remapping algorithms have been proposed. Based on the multidimensional positive definite
advection transport algorithm (MPDATA), the authors in [29] proposed a second-order, sign-
preserving remapping algorithm for scalar functions. By correcting high-order remapping
fluxes with low-order fluxes [25] or redistributing the remapping results conservatively with
the neighboring cells [23, 27], the remapping methods can achieve bound-preserving but
may lose accuracy near smooth extrema. For high-order remapping algorithms, Burton

et al. contributed a method for hydrodynamic fields associated with energy conservation,



entropy production, and bounds preservation [4]. By adding a posteriori multi-dimensional
optimal order detection (MOOD) limiting for the high order accurate remapping method in
2], the remapping algorithm retains the physical properties and leads to robustness. The
MOOD limiting was proposed in the limitation process of high-order finite volume methods
which consists of detecting problematic cells and decrementing the degree of polynomials, in
which way the accuracy may be reduced near the problematic cells [9].

In this paper, we will try to design a high order remapping algorithm which can maintain
physical properties such as conservative and positivity-preserving without losing accuracy.
In general, positivity-preserving is not easy to achieve without losing accuracy near smooth
extrema or in problematic cells by using a limiter. Recently, Zhang and Shu proposed a
high-order positivity-preserving limiter for finite volume and discontinuous Galerkin schemes
[39, 40] which can preserve the positivity property of density, internal energy or pressure for
compressible Euler equations. Meanwhile this limiter can keep the conservation and the
original high order accuracy.

The performance of the reconstructed polynomial affects the final remapping results in
the intersection-based method. For the sake of avoiding numerical oscillations and keeping
high order accuracy, Cheng and Shu [6] adopted the ENO reconstruction proposed in [15].
In the ENO reconstruction, by comparing the smoothness of the candidate stencils, one can
construct polynomials by the smoothest stencils, selectively avoiding stencils from contain-
ing large gradients and discontinuous points. After that, extensive progresses have been
made for high order non-oscillatory reconstructions. Liu et al. [26] improved the process
of selecting stencils by the ENO scheme, forming the weighted essentially non-oscillatory
(WENO) scheme, by utilizing nonlinear weights and using the convex combination of all the
candidate stencils. After that, Jiang and Shu [17] proposed a more effective and general
WENO scheme by optimizing the calculation of the smoothness indicators, leading to better
robustness and higher order accuracy. Recently, Zhu and Shu [41] designed a new class of

WENO schemes on the quadrilateral meshes based on multi-resolution ideas, in which the



linear weights can be arbitrary and the stencil combination method is more efficient and
simpler. They also extended this kind of WENO schemes to triangular meshes [42].

In this paper, following the intersection-based remapping method, we propose a third
order accurate and positivity-preserving remapping algorithm based on the multi-resolution
WENO reconstruction in two-dimension. First, we reconstruct polynomials on the old mesh
by the multi-resolution WENO reconstruction. Then, the exact polygon clipping algorithm
[35] is used to calculate the intersections. After that, a positivity-preserving limiter is added
to modify the problematic polynomials. Finally, we integrate the reconstruction polynomials
over the intersections in the new mesh. This remapping algorithm can satisfy the require-
ments of third order accuracy, non-oscillation, conservation, positivity-preserving, and high
efficiency. Although we give a third order remapping algorithm on structured quadrilat-
eral meshes as an example, our remapping algorithm is not limited to third order accuracy
and structured meshes. It can achieve higher order accuracy with higher order reconstruc-
tion and integration formula, and can be extended to unstructured meshes by following the
same reconstruction idea in [42]. Since our algorithm is intersection-based, it can ignore
the connectivity between the old and new meshes, making it suitable for wider applications.
Compared with other remapping algorithms, there are two highlights of our new algorithm.
First, the new multi-resolution WENO procedure, which produces a WENO polynomial over
each cell rather than just an approximation at quadrature points for classical WENO proce-
dures, and which could use arbitrary positive linear weights provided that they sum to one, is
particularly suitable for this remapping task which would need integration over partial cells
and both the new and old meshes before and after remapping are subject to change from time
step to time step in an ALE algorithm. Second, by adding a positivity-preserving limiter,
intrinsic physical properties can be retained without losing accuracy and conservation.

The outline of this paper is as follows. Section 2 will describe the main procedures of the
algorithm in details, by dividing it into four parts: reconstructing polynomials on the old

mesh by the multi-resolution WENO reconstruction, calculating overlaps between the new



and old meshes, applying a positivity-preserving limiter, and integrating polynomials on the
new mesh in the last step. Section 3 will give a series of numerical experiments, to verify the
performance of the algorithm on several types of moving meshes and to compare the results
with those obtained by the unlimited quadratic reconstruction polynomials and the ENO
reconstruction algorithm. Furthermore, we apply our remapping algorithm in an indirect
ALE method and show its performance on certain classical fluid flow benchmarks such as
the Sedov, Saltzman and Noh problems. The final section contains further comments and

conclusions.

2 A high-order accurate positivity-preserving conser-
vative remapping algorithm based on multi-resolution
WENO reconstruction

2.1 Basic concepts

The ALE method needs to transfer variables from the old distorted mesh M to a new rezoned
mesh M, which is called the remapping step. The variables for the fluid flow are usually
from conservation laws, such as density, momentum, and total energy which should obey the
physics laws. In the remapping step, we suppose that we have the information about the
mesh M, M and the cell-averages of the conserved variables on M. Based on them, we will
reconstruct polynomials on the old mesh and calculate the intersections between the old and
new meshes. After that, a high-order integration formula will be adopted to generate the
cell-averages of the corresponding variables on the new mesh.

This paper will focus on the high order accurate, conservative and positivity-preserving
remapping method for the physical variables in two-dimension. For the one-dimensional or
the three-dimensional cases, the strategy given in this paper is also applicable. Now, suppose
2 is a connected domain, for the sake of narration, we set it as [0, 1] x [0, 1]. M is a structured
mesh on (2, consisting of quadrilateral cells {I;11/2j41/2},4 =1,2,--+ | Ny, j =1,2,--- | N,

where N, and NNV, are the number of cells in the x and y directions respectively. Each of the



quadrilateral cells I;;1 /2 j11/2 has four nodes {Pi;, Pi+1,j, Pit1,+1, P j+1} and the coordinate
of the node P, ; is (x;;,v:;). Note that we use quadrilateral meshes as they are the typical
choices in Lagrangian and ALE methods. Other types of structured or unstructured meshes
can be used with the same recipe.

In the typical indirect ALE method, after the Lagrangian step and the rezoning step, the
physical variables from the old mesh should be conservatively remapped to the new rezoned
mesh M. Here we do not require the meshes M and M to have the same connectivity
and the same number of nodes and cells. The new rezoned mesh is noted as M, consisting
of quadrilateral cells {fk+1/271+1/2},k =1,2,---,N, 1 =1,2,--- N,. Each cell has four
nodes {]5;”, ]5k+1,l, ]5;6+171+1, 151<;¢+1}- For both the old and the new meshes, there are neither

overlaps nor gaps between any two neighboring cells, and we have

Nz, Ny Ng, Ny
[k+1/2,l+1/2 == U Iz‘+1/2,j+1/2- (2-1)
k=1,l=1 i=1,j=1

Figures 3.1 and 3.2 illustrate examples for the uniform mesh, smoothly moving meshes
and randomly moving meshes in [0, 1] x [0, 1] respectively. Since both {]i+1/2,j+1/2}£\7:zl7,];[il
and {I; 4, /2,041 /Q}kajif\lfil can cover ) without gaps or overlaps, each cell of M can be divided

into the union of its intersections with cells in M:

Nz,Ny

ik+1/2,l+1/2: U (ik+1/2,l+1/2ﬂli+1/2,j+1/2)' (2-2)

i=1,j=1

2.2 A brief description of the positivity-preserving conservative
WENO remapping algorithm

First, we take ‘density’ as an example to illustrate the framework of the conservative remap-

ping algorithm. Other conservative variables such as ‘momentum’ and ‘total energy’ can

follow the same recipe. Based on the notations above, the conservative remapping algorithm

can be restated as “Given the old mesh M, and the cell-average of density p;i1/2j41/2 in

cach cell, find the cell-average of density in each cell of the new mesh M”. By reconstructing

piecewise polynomials p(x,y) on M, and the intersections between meshes, a high order
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integration formula can be applied to the intersection regions, yielding new cell-averages of

density in M. In order to ensure conservation, p(x,y) should satisfy

Dit1/2,j+1/2 = // Pir1/2,5+1/2(, y)dxdy/Siv1/2 ji1/2, (2.3)

Iiv1/2,541/2

where p;i1/241/2(2,y) = p(x,y) Tiirjoyine @A Siv1y241/2 is the area of the cell Ty 172 j11/0.
The remapping algorithm is then automatically conservative. In fact, if we denote

N:c Ny

Mk+1/2,l+1/2 = Z Z // pi+1/27j+1/2(x,y)dazdy,

i=1 j=L
Tev1y2,04172 N Lig1/2,541/2

where Mi+1/2,j+1/2 = ﬁi+1/2,j+1/2si+1/2,j+1/27 Mk+1/2,l+1/2 are the mass of the cells [i+1/2,j+1/2
and T, k+1/2,1+1/2, Tespectively, and if we ignore the machine error of the numerical integration
and intersections which will be mentioned in Sections 2.4 and 2.5, we can prove that the

total mass of M equals to the total mass of M:

N, Ny ~ N, Ny N, Ny
Z Z Mk+1/2,l+1/2 = Z Z(Z Z // pi+1/g,j+1/2(x,y)d:vdy)
k=1 =1 k=1 I=1 i=1 j=L

Tevry2,040172 N Tiry2,541/2

Nz Ny Nz Ny

— Z Z(Z Z // Piv1/2,j+1/2(7, y)dzdy)

i=1 j=1 k=1 I=1.
Tev1y2,040172 N Ligay2,541/2

Nz Ny
= ZZ // Pz‘+1/2,j+1/2($7y)d33dy
i=1 j=1

i+1/2,j+1/2
Nm Ny

= Z Z Mi+1/2,j+1/2~

i=1 j=1

If the intersections are exactly obtained and the numerical integration is also exact for the
piecewise polynomials, the remapping error comes only from the reconstruction step.

Besides conservation, a remapping algorithm should also fulfill a few other properties

such as ‘high-order accuracy’, ‘non-oscillatory’, ‘high efficiency’ and ‘positivity-preserving’.

In particular, the polynomial reconstruction over a discontinuous function may generate

numerical oscillations and ‘non-oscillatory’ means no spurious numerical oscillations appear



near discontinuities. ‘Positivity-preserving’ means the method can keep the positivity of the
relevant physically positive variables such as density and internal energy in the fluid flow.

To satisfy these desired properties, our scheme follows a four-step procedure:

Reconstruction: Reconstruct polynomials p;i1/2 j41/2 (x,y) in each cell of M.

Intersection: By the polygon clipping algorithm [6, 35], compute the intersections

fk+1/2,l+1/2 m Liv1/2,541/2
for each cell in M.

Positivity-preserving limiter: Modify the reconstructed polynomial p;i1/2 j4+1/2(2,y) by
the designed positivity-preserving limiter, so that the modified polynomial pl(fl) /2.j4+1/2 (z,y)

could preserve positivity while maintaining the original order of accuracy.

Integration: For each cell of M, calculate the numerical integration over the intersections
exactly by a numerical quadrature. Sum the integration in each intersection region of

the cells in M and obtain the cell-averages pj41 /2,14+1/2 On M.

2.3 Multi-resolution WENO reconstruction

For the first step of our remapping algorithm, we use the multi-resolution WENO reconstruc-
tion proposed by Zhu and Shu [41]. Based on the multi-resolution idea, they constructed
a series of unequal-sized hierarchical central spatial stencils that can use arbitrary posi-
tive linear weights. Compared with the original WENO reconstruction, the multi-resolution
WENO uses fewer stencils and arbitrary linear weights, but still achieves the desired high-
order accuracy and non-oscillatory performance efficiently. Since we are aiming for third
order accuracy in this paper as an example, according to [41], we choose a large and a small
stencil to construct a quadratic polynomial and a zeroth degree polynomial respectively, and

perform a convex combination of them.
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—== Stencil T,
S l— Stencil T;

1

1

1

1

: 1 Pivyj+1
[

RS

i-1 i i+1 i+2

Figure 2.1: Two types of central stencils for I;;y/541/2. The black dotted lines indicate
the old mesh M, the blue solid lines indicate the small stencil T} and the red dashed lines

indicate the big stencil T5.

To be more specific, we select 71 = {[;1; /2§41 /2} as the small stencil and T, as the large

stencil, where
Ty = {Lic1y2,-172: lic1j2 54172, Lic1y2,548/2, Liviy2,-1/2, Liv1y2.11)2,
Liv12,543/2 Tivsrag—1/2, livsja sz, Livsjagessa)-

Figure 2.1 shows these two stencils for the cell I; 1/ j11/2. The reconstruction procedure
below is the third-order multi-resolution WENO reconstruction in two-dimension. Following
a similar procedure, a higher order reconstruction scheme can be extended [41, 42]. Take
density in the fluid flows as an example. Suppose we are given the cell-averages of density
in (2.3) for all the cells in M, then the procedure is summarized as follows. We will ignore
boundary effects and assume periodic boundary conditions in the reconstruction procedure
for a simple description. In fact, for the cells near the boundary, they can be treated in
the same way as the inner cells when the corresponding variables in the ghost cells outside

the computational domain are given by the boundary conditions such as periodic, reflective,

piston and so on.
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1. Polynomial reconstruction

For the sake of clarity, we omit the superscripts 4, j in ¢}’ (z,v), ¢5” (z,y) which indicate
the reconstruction polynomials in the cell I; 11/ 41/2. Without loss of generality, all

the symbols shown below refer to the cell I /2 j11/2.

Reconstruct the zero degree polynomial ¢;(z,y) = ¢ and the second-degree polynomial
@(r,y) = ao(z—af;)* tar(r—af ;) (y—yi;) +az(y—vi;)* +as(r —af ;) +au(y —yf ;) +as,

where (zf ;, 97 ;) is the center of Iy jy1/0, which satisfy:

// qs(ar,y)dxdy = ﬁi+1/2,j+1/25i+1/2,j+1/2> s=1,2. (2-4)

Iiv1/2,511)2
It is easy to reconstruct ¢i(z,y) = Pit1/2,+1/2- G2(x,y) has six degrees of freedom,
but the large stencil has nine cells, so we adopt a constraint least-square procedure to

determine {a;, i =0,1,--- ,5}:

@2(7,y) = arg gﬂein Z | // G (v, y)dzdy — ﬁm+1/2,n+1/25m+1/2,n+1/2|27

m+1/2,n+1/2

s.t. // G2(2,y)dzdy = pit1/2,41/2541/2,541/2,

Iiv1/2,541/2

(2.5)

where the sum over (m,n) denotes the sum over the nine cells in the stencil 75 and

the set Q = {G2(z,y) € P?} (polynomials of degree at most 2).

2. Linear weights for the reconstruction polynomials

We take pi(7,) = a1(x,y), and

1 71
p2(,y) = —q(v,y) — —pi1(2,y),
V2 V2

where 1 +792 = 1, 75 # 0 are the linear weights. Following [41], we assume 7, = %11%,
where 5, = 107, 1 = 1,2, so we have 7, = 1-,72 = 2. By combining ps(z,y) and

p1(z,y) with the linear weights, optimal accuracy can be achieved

1p1(z,y) + ep2(x,y) = g2, y).

12



These linear weights can maintain good accuracy in the smooth region. But near the
discontinuity, the quadratic polynomial ¢(z,y) may produce oscillations. Therefore,
the WENO idea should be adopted, which can not only maintain the third-order

accuracy in the smooth region but also avoid oscillations near the discontinuities.

. Smoothness indicator

The designed smoothness indicators (1, 82 can avoid the numerical oscillation of the
polynomial near the discontinuity.

al1+l2

li+2|—
P = Z // Slibé,ljjl/g(wpz(%y))Qdﬂcdy, l1,l2=0,1,2. (2.6)

ll+l2:1’%¢+1/2,j+1/2

As the smoothness indicator of the zeroth degree polynomial p;(x,y) obtained by (2.6)

would be zero, an alternative definition of (; is proposed in [41]:
G = (Pit1/2,-1/2 — ﬁ1;+1/2,j+1/2)2, G = (Pi-1/2+1/2 — ﬁi+1/2,j+1/2)2a

Gs = (Pit1/2,+3/2 — ﬁi+1/2,j+1/2)27 G = (Pivsj2j+1/2 — ﬁz’+1/2,j+1/2)2-

[ is calculated as

B =min{¢ + ¢, G+ (3, 3+ G, G+ G}

If a shock does not pass the central target cell I; /2 j11/2, then at least one of the above
4 quadrants should be smooth, hence the minimum of these 4 smoothness indicators

should be small, indicating that ; is small.

. Nonlinear weights

According to the linear weights and smoothness indicators, we obtain the nonlinear

weights by [5]

—, [ =1,2, (2.7)

where

T ’52 —ﬁ1|

o = ~i(1 = (2 1=1.2 2.8
Wi ’Yl( +Bl+5)7 T ( 9 )a ) &y ( )

and we take ¢ = 10™* in our computation.

13



5. Convex combination

The final reconstruction polynomial for the old cell I; 1/ 112 is given as follows,
Pz’+1/2,j+1/2(95a y) = wip1(w,y) + wapa(z,y). (2.9)

Generally speaking, the size of the smooth indicators i, B2, have the same magnitude
in smooth regions, yielding w; close to the optimal linear weights 7, for [ = 1,2. In the
meantime, if the large stencil T, contains a discontinuity and the small stencil T} does not,
we will have y > f; and the nonlinear weights wy < w;, making ps(x,y) contributing
little to the final polynomial and hence achieving the effect of essential non-oscillation. For
illustration, we will show 1, B2, w1, wsy for the smooth test function in Figure 3.3 and for the

discontinuous test function in Figure 3.5.

2.4 Intersections between the old and new meshes

After reconstructing the polynomials on the old mesh, the process of remapping the conserved
variables of the old mesh to the new mesh requires the calculation of the intersections.
Although compared with the flux-based method, its costs are relatively high, the error of
an exact polygon clipping algorithm or the construction of a super-mesh [13, 31] is close to
machine zero and the intersection-based method can be applied for meshes with different
connectivity or different number of cells, which makes the intersection-based method more
widely applicable.

In this paper we will use the Sutherland-Hodgman polygon clipping algorithm [35] to
determine the intersections between the old and new meshes. By setting visible and invisible
sides, the algorithm divides the polygon into several parts and only polygons in the visible
side are what we need. Utilizing this exact clipping algorithm, the error from the intersection
step is close to machine zero.

The main component for the Sutherland-Hodgman polygon clipping algorithm is to find

the intersection points between two polygons. Figure 2.2 gives an example to show how this

14



clipping algorithm works. In the figure, we use 9 red quads clip against the blue quad and all
of the intersections have been labeled by black solid lines. The Sutherland-Hodgman polygon
clipping algorithm is exact theoretically. Although there are still some clipping errors from
the calculation of intersection points, the clipping error associates with the machine precision
which could be neglected especially compared with the errors from the WENO reconstruction

scheme.

Figure 2.2: Example for the Sutherland-Hodgman polygon clipping algorithm. The cells
on the old mesh are labeled in red, the cell on the new mesh is labeled in blue and the
intersections are labeled in black.

2.5 Conservative remapping

After obtaining the reconstructed polynomial by the above steps and the intersections be-
tween the old and new meshes, the integration of the polynomial on the new mesh could
be calculated. Since we provide a second-order polynomial in two-dimension as an example,
no matter what the overlapping is, it can be divided into several triangles and the following

integration formula (2.10) can be used,
g, 3P
A
// Pi+1/2,j+1/2(95>?/)d93dy = 3 Zpi+1/2,j+1/2(Pk)a (2.10)
o~ k=1

where P are the middle points of the three edges of the triangle. The numerical integration

formula (2.10) is exact for second-order polynomials in two-dimension and then the cell-

15



average of density in the new mesh can be given as:

N, Ny
1

ﬁk+1/2,l+1/2 == Z // Pi+1/2,j+1/2(33,y)d37dy- (2-11)
Sk+1/2041/2 12 ey
’ Ik+1/2,l+1/2ﬂli+1/2,j+1/2

In this way, the total mass of the domain 2 is conserved.

2.6 Positivity-preserving limiter

Some physical variables such as density and internal energy should always be positive for a
fluid flow problem, thus the results of the remapping step should keep this property. In the
simulation of fluid flow, all the conservative variables such as momentum (m,n) and total
energy (F) besides density should also be remapped. During the remapping cycle, density

m? +n2

5, may become negative, which is not physical. Define

and internal energy e = E —
w = (p,m,n, )T and G = {w|p > 0,e > 0} which can be proven to be a convex set.
Following the previous notations, w = (p,m, n, )7 is the cell-average of w on the old mesh.
The positivity-preserving of density and internal energy means when we input w € G into
the remapping algorithm, then we get w € G, where w is the cell-averages of W on the new
mesh.

As we further want to design our remapping algorithm to have positivity-preserving

property, before the procedure of conservative remapping introduced in the above subsection,

we will try to modulate the reconstruction polynomials in each cell ;112 j41/2

Wi+1/2,j+1/2($, y) = (pi+1/2,j+1/2($7 y), mi+1/2,j+1/2<x7 y)a n¢+1/2,j+1/2(17, y), Ei+1/2,j+1/2(37= y))T,

to obtain the new polynomials W;y1/9,41/2(2,y) € G at specific quadrature points to be

described below, such that w € G will hold. In the meantime, we require that

/ Wit1/2,+1/2(2, y)dody = / Wit1/2,j+1/2(2, y)dady,

Iiv1/2,541/2 Ii+1/2,j+1/2
so this process can preserve conservation. As we have mentioned above, after the recon-

structing and clipping steps, we need to calculate the integration over the intersections.
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Since we only need to ensure positivity of density and internal energy for the integrals of
the conservative variables over the intersections, if we guarantee the values of density and
internal energy at all the quadrature points used in the numerical integration formula (2.10)
to be positive, then we can achieve our goals, due to the convexity of the set G. We note
that the quadrature points in our remapping algorithm are the middle points of the triangle
edges in the intersections, according to (2.10).

Following [37, 39], the positivity-preserving limiter for density and internal energy is
split into two steps. For simplicity, we ignore the subscript i, j and we denote the set of
quadrature points in the cell ;112 j41/2 by Ga'"), which consists of all the middle points of

the triangle edges for all the intersection triangles in I; 11/ j41/2.

1. Positivity-preserving of density p(x,y).

After the reconstruction step, we obtain the WENO polynomial vector w(z,y) =
(p(z,y),m(z,y),n(z,y), E(z,y))T, and its cell-average vector w = (p,m,n, E)T € G.

We modify the reconstructed quadratic polynomial p(x,y) by the following formula,

plx,y) = bi(p(z,y) — p) + p,

) p—¢ . (2.12)
0y = min{l,|——|}, b= min ),
1 { Iﬁ_b|} nin p(z,y)

where ¢ is a very small positive constant which satisfies p > ¢ (if p < ¢ in a certain

cell, then the limiter returns the cell average, namely 6; = 0). In our code, we take

e=10"13,

Remark 2.1. By modifying the polynomial p(x,y) through (2.12), the values of p(x,y)
at the integration points (x,y) € Ga'") are positive. Therefore, the cell average of
density obtained by the values of modified polynomials at these integration points through

the formula (2.11) are positive.

Proof. Since b= min p(x,y), there will be two cases.
(z,y)€Gall)
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(a) Ifb <e=10"" then 6, = min{1,[25[} = 2=;. We have

ﬁ(xay) = le(l‘,y) + (1 - el)ﬁ

_p—c¢ e—b_
p—¢ e—b_

> b

SR

—c=10"", (2,y) € Ga'l.

(b) If b > € = 1073, then we have §; = 1 and p(z,y) = p(z,y) > 107" for all

(z,y) € GaD.

. Positivity-preserving of internal energy.

After the first step, we define W(z,y) = (p(x,y), m(x,y),n(z,y), E(z,y))T, and the

m?(z.y)+n°(z,y)

Sy SO the limited

internal energy is calculated by e(W(x,y)) = E(x,y) —
polynomials are given by:

e(w)

w(z,y) = b(W(z,y) — W)+ W, 6= min (2.13)

(z,y)€GalD 6(V_V) - e(ﬁ/(a:, y)) '
After being modified by 6, W(z,y) € G, for all (z,y) € Ga'!) which can be proven
in the similar way as above. Thus we know the cell average of density and internal

energy on the new mesh obtained by w(x,y) are positive.

Notice that the cost of this positivity-preserving limiter is minimal, since we only need

to compute values of the reconstructed polynomials at a few numerical quadrature points in

Ga'". This limiter can keep conservation and accuracy (for a proof of accuracy maintenance,

see [38]), which will be verified in the numerical experiments in the next section.

So far, the main procedure of the multi-resolution WENO positivity-preserving high-order

conservative remapping algorithm is accomplished step by step, including polynomial recon-

struction, intersection, positivity-preserving limiter, and the conservative remapping. In the

next section, the accuracy of the algorithm will be verified through numerical experiments,

18



and its non-oscillatory property will be verified for discontinuous profiles. At the same time,
the positivity-preserving property will be tested on several examples. Furthermore, we apply
our remapping algorithm in an indirect ALE method and show its performance on certain
classical fluid flow benchmarks such as the Sedov, Saltzman and Noh problems. Finally,
the runtime efficiency will be compared with the ENO remapping algorithm with the same

accuracy.

3 Numerical tests

In this section, a series of numerical examples will be performed to verify the conservative,
high order accurate, positivity-preserving, and non-oscillatory natures of the algorithm. At
the same time, the numerical results of different conservative remapping algorithms will be
given for comparison. Suppose M is an uniform mesh with edges parallel to the axes.
Divide by Az, Ay equidistantly along the z,y axes, and 0 = 21 < 29 < -+ < &y, 41 = 1,
0=1wy <y < - <yn,4+1 = 1, so the vertices of the mesh are denoted by (x;,y;) =
((i — 1)Az, (j — 1)Ay). To mimic the distorted mesh yielding from the ALE method, we
generate the smoothly moving meshes and randomly moving meshes from the uniform mesh
M©. Here just for simplicity, we suppose that the old and new meshes have the same number

of nodes and cells.

« The smoothly moving mesh M7

n

n . .
T = T+ M7 sin(27x;) sin(27y;),
(3.1)

n
Yi; = Yj + cM sin(27z;) sin(27y;),
where cp; = 0.1, the superscript n refers to the times of remapping and N is the total number
of remapping steps. After remapping n = N times, the smoothly moving mesh M¥ will be

back to the original one MY = MO and the schematic diagrams are given by Figure 3.1.

« The randomly moving mesh M,

n o n
no__ n
Yiiy = Y5 T crsi; Ay,
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Figure 3.1: Schematic diagrams of the uniform mesh and the smoothly moving mesh, N, =
N, =8, N = 10. Left: the black solid mesh is the uniform mesh M and the blue dashed
mesh is the smoothly moving mesh M}; Right: the black solid mesh is the smoothly moving
mesh MY and the blue dashed mesh is the smoothly moving mesh M.

n
2,77

where r7;, s7'; are the random numbers between —0.5 and 0.5. The randomly moving meshes
are obtained by adding random perturbations to inner vertices of the uniform mesh. In the
later experiments, we take cg = 0.5 and Figure 3.2 shows the schematic diagrams of “uniform

mesh M° to randomly moving mesh M}” and “randomly moving mesh M3 to randomly

moving mesh M$”.

In the following numerical experiments, the remapping step starts from a uniform mesh
and uses conservative remapping algorithms to remap physical variables from the uniform
mesh MO to the smoothly moving mesh M} or the randomly moving mesh M}, and then
to the next mesh, until the remapping is performed N times. For the sake of verifying the
accuracy, after the final remapping step (Step N), the mesh will be back to MY, hence the
accuracy of the algorithm can be easily verified. The errors from the clipping step can be
ignored compared with the errors from the reconstruction step, and the integration formula
(2.10) is exact for the third-order algorithm, so the error of this remapping algorithm is

mainly determined by the reconstruction step and the positivity-preserving step.

Suppose the initial cell-averages of density in the cell I 12 41/2 is ﬁ?+1/2 4172 and
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Figure 3.2: Schematic diagrams of the uniform mesh and the randomly moving mesh, N, =
N, =8, N = 10. Left: the black solid mesh is the uniform mesh M° and the blue dashed
mesh is the randomly moving mesh Mk; Right: the black solid mesh is the randomly moving
mesh M3 and the blue dashed mesh is the randomly moving mesh M$,.

ﬁf\_’H J2j+1/2 18 the cell-average of density after remapping for N times in the same cell, the
norms of the error € are given by

Ng,N, ~N =0
Zi:l,jll |(pi+1/2,j+1/2 - pz’+1/2,j+1/2)Si+1/27j+1/2|

Nz, Ny ’
Ei:l,jzl Si+1/2,j+1/2 (3-3)

_ ~N 0
|€]]oo = 19‘31{72%};‘3% ’pi+1/2,j+l/2 - pi+1/2,j+1/2"

lells =

3.1 Accuracy tests

To verify the accuracy of the algorithm, we compare the performance of the following
four third order remapping algorithms: the unlimited polynomial reconstruction gs(z,y)
given by the formula (2.5) denoted as P2, the ENO remapping algorithm [6], the multi-
resolution WENO remapping algorithm without the positivity-preserving limiter (WENO)
and the multi-resolution WENO remapping algorithm with the positivity-preserving limiter
(P-WENO). Under different sizes of the meshes, we remap the physical variables on the
smoothly moving meshes and the randomly moving ones, then calculate the obtained errors

in the L' and L* norms respectively. First we consider a test on the following smooth
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function with periodic boundary condition

plx,y) = sin?(27z) sin?(27y). (3.4)

Here we give two versions of positivity-preserving limiter noted as ‘P-WENO-A’ and ‘P-
WENO-B’ respectively. The first version (version A) is applying the limiter as mentioned
above, namely the limiter is applied whenever some of the values at the integration quadra-
ture points inside an old cell are negative. The second version (version B) is to apply the
limiter in an old cell only when at least one of the cell averages of a new cell which intersects
with this old cell is negative after reconstruction and integration. Clearly, the second version
is less restrictive in applying the limiter, hence can be expected to be more efficient. We will
compare the cost of these two versions in Section 3.5.

Table 3.1: Error and order of the P2, ENO, WENO and P-WENO remapping algorithms on
the 2D smoothly moving meshes, N = 10.

P2

ENO

WENO

P-WENO-A

P-WENO-B

Mesh

Ll

Ll

Ll

Ll

Ll

8 X8
16 x 16
32 x 32
64 x 64

1.69E-2

2.7TE-3  2.61
2.84E-4 3.29
2.11E-5 3.75

1.73E-2

2.83E-3 2.61
2.86E-4 3.31
2.14E-5 3.74

3.98E-2

4.16E-3  3.26
2.84E-4 3.87
2.11E-5 3.75

3.98E-2

4.16E-3  3.26
2.84E-4 3.87
2.11E-5 3.75

3.98E-2

4.16E-3  3.26
2.84E-4 3.87
2.11E-5 3.75

Mesh

LOO

LOO

LOO

LOO

LOO

8 x 8

3.54E-2

3.59E-2

9.04E-2

9.04E-2

9.04E-2

16 x 16
32 x 32
64 x 64

1.25E-2
1.10E-3
6.53E-5

1.50
3.51
4.07

1.31E-2
1.25E-3
6.89E-5

1.45
3.40
4.18

3.76E-2
1.28E-3
6.53E-5

1.26
4.88
4.29

3.76E-2
1.28E-3
6.53E-5

1.26
4.88
4.29

3.76E-2
1.28E-3
6.53E-5

1.26
4.88
4.29

Table 3.1 and Table 3.2 show the remapping results. Table 3.3 shows the percentage of

the cells with negative integration points noted as N,

Npp

Ne=—-PP
‘T NxN,xN,’

where Npp is the total number of the cells with negative integration points during the
remapping. From Table 3.1 and Table 3.2, we can see all the four remapping algorithms reach

third-order accuracy on both types of meshes. As expected, the P2 remapping algorithm
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Table 3.2: Error and order of the P2, ENO, WENO and P-WENO remapping algorithms on
the 2D randomly moving mesh, N = 10.

P2

ENO

WENO

P-WENO-A

P-WENO-B

Mesh

Ll

Ll

Ll

Ll

Ll

8 x 8
16 x 16
32 x 32
64 x 64

1.59E-2

1.86E-3 3.09
1.63E-4 3.51
1.87E-5 3.12

1.60E-2

1.97E-3 3.01
1.78E-4 3.47
2.07E-5 3.11

3.61E-2

3.48E-3 3.37
1.68E-4 4.38
1.88E-5 3.16

3.61E-2

3.49E-3 3.37
1.69E-4 4.37
1.90E-5 3.15

3.61E-2

3.48E-3 3.37
1.68E-4 4.38
1.88E-5 3.16

Mesh
8 x 8
16 x 16
32 x 32
64 x 64

LOO
0.14E-2
7.25E-3
1.09E-3
1.31E-4

LOO
5.15E-2
7.99E-3
1.32E-3
1.42E-4

LOO
1.14E-1
2.25E-2
1.10E-3
1.31E-4

LOO
1.14E-1
2.25E-2
1.10E-3
1.31E-4

LOO
1.14E-1
2.25E-2
1.10E-3
1.31E-4

2.83
2.73
3.06

2.69
2.60
3.21

2.34
4.36
3.07

2.34
4.36
3.07

2.34
4.36
3.07

Table 3.3: Percentage of cells with negative integration points (noted as N¢) obtained by the
P2, ENO, WENO and P-WENO remapping algorithms on the 2D smoothly moving mesh
and randomly moving meshes, N = 10.

Ne(%) smoothly moving meshes | Ne(%) randomly moving meshes
8x8 16x16 32x32 64x64|8x8 16x16 32x32 64 x64
P2 0 7.23 5.47 3.81 0 9.38 8.45 5.53
ENO 0 7.03 5.47 3.76 0 16.21 11.58 6.42
WENO 0 6.84 5.27 3.81 0 8.59 8.15 5.53
P-WENO-A 0 0 0 0 0 0 0 0
P-WENO-B 0 6.84 5.27 3.81 0 8.59 8.15 5.53
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has the smallest error for this smooth problem. There is only a little difference of the L*,
L norms of errors between the WENO and P-WENO remapping algorithms. After adding
the positivity-preserving (noted as PP below) limiter, the P-WENO remapping algorithm
can still preserve third-order accuracy. The error of the WENO and P-WENO remapping
algorithms becomes closer to the results of the P2 remapping algorithm with the increase

of the mesh size. From the above two tables, we observe that the accuracy of these two

P-WENO versions are nearly the same.
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Figure 3.3: The parameters (31, f2, w1, ws in the reconstruction step of the third-order WENO
remapping algorithm in the accuracy test, N, = N, = 64.

In Figure 3.3, we present the smoothness indicators (1, 82 and the nonlinear weights
w1, ws in the WENO reconstruction step for this smooth test function. From the top figures
of Figure 3.3, we can see 1 and (3, are of the same magnitude of sizes. From the bottom three
figures of Figure 3.3, we can observe w; & 7;,wy & 73, therefore, the final reconstruction

polynomial p;i1/2j11/2(2,y) = wipi(x,y) + wopa(x,y) = vapi(z,y) + vep2(z,y) = ¢(z,v),
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which makes it approximate the optimal third order accuracy.
Next we consider the following system (3.5) in [0, 1] x [0, 1], and compare the performance

of the WENO and P-WENO remapping algorithms under the smoothly moving mesh

p(x, y) B 6_25[(55_0-5)2(9_0-5)2}7
’LL(I, y) = SlIl(’]TZL’), (3 5)
v(w,y) = sin(my), '

E(z,y) = sin®(2mz)sin®(27y),
where (u,v) is the velocity in the x, y directions respectively. Before the remapping pro-
cedure, we utilize a high order integral formula to calculate the cell-averages of density p,

momentum pu, pv and total energy F on the initial mesh.

Table 3.4 shows the errors of the four conservative variables in L' and L norms ob-
tained by the P2, WENO, P-WENO remapping algorithms on the smoothly moving meshes
with N = 10. All of the three remapping algorithms are third-order accurate, and the
positivity-preserving limiter does not reduce the order of accuracy which is consistent with
the theoretical result. Again, we observe that the accuracy of the two versions of the P-
WENO algorithm are nearly the same. To save space, we will adopt the more efficient
version P-WENO-B in the following numerical experiments for the discontinuous problems

and will simply denote it as P-WENO.

3.2 Non-oscillatory test

In this section, we use the step function (3.6) as the test function to verify the essentially
non-oscillatory property of the multi-resolution WENO remapping algorithm with or without

the positivity-preserving limiter.

(z,y) = 100 y>(z—04),
{Z%; = 1 Zs%m—ag. (3.6)

The P2, WENO and P-WENO remapping algorithms have been used in this experiment,

under the randomly moving mesh set with NV, = N, = 32 and remapping for N = 10 times.
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Table 3.4: The P2, WENO and P-WENO conservative remapping algorithms on the
Nc is the percentage of cells which conclude negative

smoothly moving meshes, N = 10.

integration points.

Mesh P U pU E Ne(%)

Lt 8x8 | 1.72E-3 1.74E-3 1.74E-3 1.58E-2 0
P2 16 x 16 | 3.17TE-4 2.44 | 3.43E-4 2.34 | 3.44E-4 2.34 | 2.62E-3 2.59 10.74
32 x 32| 3.69E-5 3.10 | 4.03E-5 3.09 | 4.03E-5 3.09 | 2.71E-4 3.27 8.55

64 x 64 | 3.46E-6 3.42 | 3.56E-6 3.50 | 3.56E-6 3.50 | 1.99E-5 3.77 5.16

Lt 8 x 8 | 2.34E-3 2.43E-3 2.52E-3 2.55E-2 0
WENO 16 x 16 | 3.17E-4 2.88 | 3.43E-4 2.83 | 3.44E-4 2.87 | 2.86E-3 3.16 5.47
32 x 32 | 3.69E-5 3.10 | 4.03E-5 3.09 | 4.03E-5 3.09 | 2.71E-4 3.40 6.35

64 x 64 | 3.46E-6 3.42 | 3.56E-6 3.50 | 3.56E-6 3.50 | 1.99E-5 3.77 4.00

Lt 8 x8 | 2.02E-3 2.26E-3 2.31E-3 2.71E-2 0
pweno-a | 16 X 16 | 3.17TE-4  2.70 | 3.43E-4 2.72 | 3.44E-4 2.75 | 2.87E-3 3.24 0
32 x 32| 3.70E-5 3.10 | 4.05E-5 3.08 | 4.03E-5 3.09 | 2.71E-4 3.40 0

64 x 64 | 3.47E-6 3.41 | 3.58E-6 3.50 | 3.56E-6 3.50 | 2.00E-5 3.76 0

Lt 8 x 8 | 2.34E-3 2.43E-3 2.52E-3 2.55E-2 0
pwenos | 16 X 16 | 3.17E-4 2.88 | 3.43E-4 2.83 | 3.44E-4 2.87 | 2.86E-3 3.16 5.47
32 x 32| 3.69E-5 3.10 | 4.03E-5 3.09 | 4.03E-5 3.09 | 2.71E-4 3.40 6.35

64 x 64 | 3.46E-6 3.42 | 3.56E-6 3.50 | 3.56E-6 3.50 | 1.99E-5 3.77 4.00

L™ 8 x8 | 7.19E-3 7.72E-3 7.82E-3 3.62E-2 0
P2 16 x 16 | 1.88E-3 1.93 | 2.03E-3 1.93 | 1.97E-3 1.99 | 1.25E-2 1.54 10.74
32 x 32| 2.65E-4 283 | 2.99E-4 276 | 2.93E-4 275 | 1.07TE-3 3.55 8.55

64 x 64 | 2.81E-5 3.24 | 3.28E-5 3.19 | 3.30E-5 3.15 | 6.45E-5 4.05 5.16

L> 8 x8 | 1.62E-2 1.67E-2 1.76E-2 7.13E-2 0
WENO 16 x 16 | 1.84E-3 3.14 | 2.03E-3 3.04 | 2.18E-3 3.02 | 2.38E-2 1.58 5.47
32 x 32| 265E-4 2.79 | 2.98E-4 2.77 | 293E-4 2.90 | 1.28E-3 4.22 6.35

64 x 64 | 2.81E-5 3.24 | 3.28E-5 3.18 | 3.30E-5 3.15 | 6.45E-5 4.31 4.00

L™ 8 x8 | 1.62E-2 1.67E-2 1.76E-2 7.98E-2 0
pweno-a | 16 X 16 | 1.84E-3 3.14 | 2.03E-3 3.04 | 2.18E-3 3.02 | 2.38E-2 1.75 0
32 x 32| 265E-4 2.79 | 2.99E-4 2.77 | 293E-4 2.90 | 1.28E-3 4.22 0

64 x 64 | 2.81E-5 3.24 | 3.28E-5 3.19 | 3.30E-5 3.15 | 6.45E-5 4.31 0

L™ 8 x 8 | 1.62E-2 1.67E-2 1.76E-2 7.13E-2 0
pweno-s | 16 X 16 | 1.84E-3  3.14 | 2.03E-3 3.04 | 2.18E-3 3.02 | 2.38E-2 1.58 5.47
32 x 32| 2.65E-4 2.79 | 2.98E-4 2.77 | 293E-4 2.90 | 1.28E-3 4.22 6.35

64 x 64 | 2.81E-5 3.24 | 3.28E-5 3.18 | 3.30E-5 3.15 | 6.45E-5 4.31 4.00
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(c) WENO (d) P-WENO

Figure 3.4: The non-oscillatory test: remapping the step function by the third-order P2,
WENO and P-WENO remapping algorithms, cell-averages of density, N = 10, N, = N, =
32. Top left: exact; Top right: P2; Bottom left: WENO; Bottom right: P-WENO.

Figure 3.4 shows the results of the P2, WENO and P-WENO remapping algorithms
compared with the exact results. We can see that there are some oscillations near the
discontinuity in the top right figure of Figure 3.4, but there is no oscillation in the bottom
two figures, which demonstrates that the WENO and P-WENO remapping algorithms are
robust and essentially non-oscillatory when dealing with shock or contact discontinuities in
the ALE method.

Figure 3.5 shows the parameters (31, 82, w1, ws in the reconstruction step of the third-
order WENO remapping algorithms in this step function test. Near the discontinuity, we

can see 1 < (53 which demonstrates the polynomial ¢a(x,y) is less smooth. ws < w; leads
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Figure 3.5: The parameters (31, #2, w1, ws in the reconstruction step of the third-order WENO
remapping algorithms in the step function test, N, = N, = 64.

to p1(x,y) having a greater influence on the final polynomial p(x,y) which can avoid the
numerical oscillation. In the smooth region, the nonlinear weights w; and w, are close to the

linear weights, thus yielding to highly accurate results.

3.3 Positivity-preserving tests

The positivity-preserving limiter is added after the reconstruction step to maintain the pos-
itivity of density and internal energy at all stages of the remapping. We design several
numerical experiments to verify that the P-WENO remapping algorithm can preserve pos-
itivity. The process is still remapping from a uniform mesh to a randomly moving mesh,
after several remapping times between randomly moving meshes, the final remapping brings

the mesh back to the initial uniform mesh M?Y.
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3.3.1 The step function for the positivity-preserving test

We make a small modification on the step function in Section 3.2 to test the positivity-

preserving property of our remapping algorithms.

(z,y) = 100 y>(z—04),
{Z<x,§> = 0 y<ibiow) (3.7)

In this test, the values of density is zero when y < £(z — 0.4), which brings difficulties for

the remapping algorithm since negative cell-averages may be generated.

(¢) WENO (d) P-WENO

Figure 3.6: The positivity-preserving test on the step function by the P2, WENO and the
P-WENO remapping algorithms, cell-averages of density, N = 10, N, = N,, = 32. Top left:
exact; Top right: P2; Bottom left: WENO; Bottom right: P-WENO. The white symbols in
the top right and bottom left profiles represent the cells where the cell-averages are negative.

Figure 3.6 shows the results of the P2, WENO and P-WENO remapping algorithms. To

see more clearly, we cut Figure 3.6 along j = 16 and show the results in Figure 3.7, where
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Mesh size: 32x32, j=16
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Figure 3.7: The positivity-preserving test on the step function by the P2, WENO and the
P-WENO remapping algorithms, cell-averages of density at j = 16, zoomed-in figures at
¢ =19 and ¢ = 31 on the right, N = 10, N, = N, = 32. Top right: < = 19; Bottom right:
1= 31.

we observe that the WENO remapping algorithm produces negative cell-average value of
—1.77 x 1077 at i = 31 and the P2 remapping algorithm produces negative cell-average

value of —2.62 at ¢ = 19 near the discontinuity but the result from the P-WENO remapping

algorithm can always preserve positivity.
3.3.2 The cylinder function

We construct a circular discontinuous function noted as ‘the cylinder function’ in [0, 1] x [0, 1],

and take C'(0.5,0.5) as the center of the circle

{pgx,y) = 10 d(x,y) <

where

d(z,y) = v/(z — 0.5)2 + (y — 0.5)2 (3.8)

is the Euclidean distance between the center C'(0.5,0.5) and the point (z,y), the radius
r is given as 0.25 in the numerical experiments. Obviously, the cylinder function is not
continuous, and the cell-averages far away from the central circle are zero which may cause

negative results.
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(c) WENO (d) P-WENO

Figure 3.8: The positivity-preserving test on the cylinder function by the P2, WENO and the
P-WENO remapping algorithms, cell-averages of density, N = 10, N, = N,, = 32. Top left:
exact; Top right: P2; Bottom left: WENO; Bottom right: P-WENO. The white symbols in
the top right and bottom left profiles represent the cells where the cell-averages are negative.

Figure 3.8 shows the remapping results of the P2, WENO and P-WENO remapping
algorithms against the exact solution with the mesh size 32 x 32. For the sake of seeing
the discrepancy between the three algorithms for positivity-preserving more clearly, we cut
Figure 3.8 along i = 16 and show the results in Figure 3.9. Differently from the results of
P-WENO, negative cell-averages from the P2 remapping algorithm at j = 7 and from the

WENO remapping algorithm at j = 27 can be observed near the discontinuity just as before.
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Mesh size: 32x32, i=16
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Figure 3.9: The positivity-preserving test on the cylinder function by the P2, WENO and
the P-WENO remapping algorithms, cell-averages of density at ¢ = 16, zoomed-in figures at
Jj = 7and j = 27 on the right, N = 10, N, = N, = 32. Top right: j = 7; Bottom right:
j=2T.

3.3.3 The cone function

Next, we use the cone function to test the positivity-preserving property,
p(z,y) = 10max(1 — 4d(z,y), 0).

Figure 3.10 shows the remapping results with or without the PP limiter compared with
the exact function and Figure 3.11 shows the cuts along ¢+ = 16. It is obvious that the P2,
WENO remapping algorithms generate negative cell-averages, however the P-WENO does
not.

From the above figures, we can see that the P2 remapping algorithm and the WENO
remapping algorithm may generate negative density in the area where the cell-averages are
close to 0 and change drastically. But with the PP limiter, P-WENO can handle this

problem, no negative cell-averages appear.
3.3.4 The mimetic Sedov problem

Last, we mimic the Sedov problem to test the performance of our remapping algorithms on
the fluid flow problem. u and v refer to the velocity in the z and y directions, § = 107% is a

small constant number and we set g = 0.75 in the definition below.
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Figure 3.10: The positivity-preserving test on the cone function by the P2, WENO and

P-WENO remapping algorithms, cell-averages of density, N
exact; Top right: P2; Bottom left: WENO; Bottom right: P-WENO. The white symbols in

the top right and bottom left profiles represent the cells where the cell-averages are negative.
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Mesh size: 32x32, i=16
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Figure 3.11: The positivity-preserving test on the cone function by the P2, WENO and P-
WENO remapping algorithms, cell-averages of density at i = 16, zoomed-in figures at j =7
and j = 27 on the right, N = 10, N, = N, = 32. Top right: j = 7; Bottom right: j = 27.

( §4+6(Z)® if r= /224y <y,
pley) = ) h else
0.83z\
(u(r,y)) _ (0.83y) it r=+/2®+y* <o, (3.9)
v(@y) (8) else. :
coy) = { 0.25+3 (1= L) if r=yaTF ¥ <n,
7 1) else.

Figures 3.12-3.13 show the exact profile and the remapping results by the P2, WENO,
P-WENO remapping algorithms of density and internal energy corresponding to the cell-
averages of the conserved variables for the mimetic Sedov problem respectively. From these
figures, we can see that without the positivity-preserving limiter, some negative values of
density and/or internal energy corresponding to the cell-averages of the conserved variables
emerge in the figures, which have been highlighted by the white dots. In Figure 3.12, we can
see some negative cell-averages of density by the WENO remapping algorithm at the region
where the exact solution p ~ § = 107% is close to zero. Similarly, in Figure 3.13, we observe
some negative internal energy corresponding to the cell-averages of the conserved variables
by the WENO remapping algorithm at r > ry, where the exact solution e ~ § = 1076 is
close to zero. Since p(z,y), e(z,y) in the mimetic Sedov problem are radial functions, we

take the cuts at ¢« = 1 shown as Figures 3.14-3.15. From the above two figures we can see
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Figure 3.12: The remapping results for the mimetic Sedov problem: contour of density,
N =10, N, = N, = 32. Top left: exact; Top right: P2; Bottom left: WENO; Bottom right:
P-WENO. The white symbols in the top right and bottom left profiles represent the cells
where the cell-averages are negative.
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Figure 3.13: The remapping results for the mimetic Sedov problem: contour of internal
energy, N = 10, N, = N, = 32. Top left: exact; Top right: P2; Bottom left: WENO; Bottom
right: P-WENO. The white symbols in the top right and bottom left profiles represent the
cells where the internal energy from the cell-averages are negative.
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Mesh size: 32x32, i=1
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Figure 3.14: The positivity-preserving test on the mimetic Sedov problem by the P2, WENO
and P-WENO remapping algorithms, cell-averages of density at ¢ = 1, zoomed-in figures at
J = 27 on the right, N =10, N, = N, = 32.
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Figure 3.15: The positivity-preserving test on the mimetic Sedov problem by the P2, WENO
and P-WENO remapping algorithms, cell-averages of internal energy at ¢ = 1, zoomed-in
figures at j = 26 and j = 27 on the right, N = 10, N, = N, = 32. Top right: j = 26;
Bottom right: 7 = 27.
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that without the PP limiter some negative values of density and internal energy emerge at

J =26 and 5 = 27 when the exact values are close to zero.

3.4 The tests in the ALE simulation

We further apply our P-WENO conservative remapping algorithm in an indirect ALE method
after the Lagrangian step and the rezoning step. The classical WENO reconstruction has
already been used to design the Lagrangian and ALE methods in the literatures, for example
[7, 3]. Here, we modify the 2D second order ENO positivity-preserving Lagrangian scheme in
[8] by using the multi-resolution WENO reconstruction introduced in this paper. Then this
modified Lagrangian scheme is adopted in the Lagrangian step of the ALE method. We take
three classical fluid flow examples, i.e., the Sedov problem, the Saltzman problem and the
Noh problem for numerical tests. We will compare the results of the above mentioned purely
positivity-preserving Lagrangian scheme and the positivity-preserving ALE method, which
will demonstrate the good performance of the ALE method with our P-WENO remapping

algorithm.
3.4.1 The Sedov problem

First we test the Sedov problem by the purely positivity-preserving Lagrangian scheme and

the ALE method with the P-WENO conservative remapping algorithm. The initial condition

is given as:
p =1
u = 0, (3.10)
v = 0,

where the internal energy e of the system is 107! almost everywhere except the cell near the
origin where we set e = 182.09. p = (7 — 1)pe. 7 = 1.4. The simulation is performed on the
initially uniform grid consisting of 30 x 30 rectangular cells in [0, 1.1] x [0,1.1]. Reflective
boundary conditions are given for the four boundaries and the numerical results are shown
in Figure 3.16 at time t = 1.

In this case, we change the purely positivity-preserving Lagrangian scheme to the positivity-
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Figure 3.16: The results for the Sedov problem with N, = N, = 30, ¢t = 1. Top left: grid
and density by the Lagrangian scheme; Top right: grid and density by the ALE method.
Bottom left: grid and pressure by the Lagrangian scheme; Bottom right: grid and pressure
by the ALE method.
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preserving ALE method when ¢ = 0.5 and perform the rezoning and remapping algorithm
every 20-time steps to make the grid deformation not too serious. Both of the two meth-
ods can handle this case well, while the grid in the ALE method is better than that of the

Lagrangian scheme.
3.4.2 The Saltzman problem

Next, we test the Saltzman problem with N, = 100, N, = 10 in [0, 1] x [0,0.1] by the purely
positivity-preserving Lagrangian scheme and the ALE method with the P-WENO remapping
algorithm. The left boundary of the computation domain is a piston with a constant velocity
of 1, and reflective boundary conditions are taken for the other three boundaries. In this

test, the initial condition is:

p - 17

u = 0,

- 0. (3.11)
p = 1071,

v = % The initial grid is shown in Figure 3.17. In this case, a purely positivity-preserving
Lagrangian scheme will blow up at the later time due to the distorted grid. So we only
compare the results at time ¢ = 0.6 in Figure 3.18. The ALE method with our P-WENO
remapping algorithm can produce the results at any time. Figure 3.18 shows its results
at t = 0.6,0.8 respectively. In the figures, we can see the piston have arrived at the right
boundary and returned when ¢ = 0.8. By comparing with the purely Lagrangian scheme, we

can see the more robustness of the ALE method with our remapping algorithm.

o N & @ ® =

0.4 05

Figure 3.17: Initial grid for the Saltzman problem, N, = 100, N, = 10.
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Figure 3.18: The results for the Saltzman problem with N, = 100, N, = 10. Top left: grid
and density by the Lagrangian scheme at time ¢ = 0.6; Top right: grid and pressure by the
Lagrangian scheme at time ¢t = 0.6. Middle: grid, density and pressure by the ALE method
at time t = 0.6; Bottom: grid, density and pressure by the ALE method at time ¢ = 0.8;

3.4.3 The Noh problem

Finally, we test the Noh problem with the initially uniform Cartesian grid in [0, 1] x [0, 1],
and it is difficult for the Lagrangian scheme to simulate because the grid is prone to be

distorted near the origin with the time marching. In our test, we take a 35 x 35 uniform grid

as our initial grid and calculate up to time ¢ = 0.6. The initial condition is:

p = 1
u. = —1174 (3.12)
e = 107,

where wu, is the radial velocity at the cell center. v = 5/3. We take the free boundary
condition for the right and upper boundaries and take the reflective boundary condition for

the lower and left boundaries. As an example, we show the results of the Noh problem under

the purely positivity-preserving Lagrangian scheme at ¢ = 0.54. After that time, the time
step tends to zero causing the failure of the simulation. This problem can be solved by the

ALE method. By adding the rezoning step and the P-WENO conservative remapping step
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after t = 0.5, the ALE method can produce the results at the later time. We show its results

at time ¢ = 0.6 in Figures 3.19. In the figure, we can see the grid with the better quality.

0.1 02
X

(d) Zoomed-in Lagrangian den- (e) Zoomed-in ALE density ¢ = (f) Zoomed-in ALE internal en-
sity t = 0.54 0.6 ergy t = 0.6

Figure 3.19: The results for the Noh problem with N, = N, = 35. Top left: grid and density
by the Lagrangian scheme at t = 0.54; Top middle: grid and density by the ALE method
at t = 0.6; Top right: grid and internal energy by the ALE method at ¢ = 0.6. Bottom:
the zoomed grid, density and internal energy near the origin. The white symbols in the top
right figure represent the cells where the cell-averages of internal energy are negative.

Without the PP limiter in the WENO remapping algorithm used in the ALE method,
the code can not continue since negative internal energy and pressure emerge. According to
statistics, there are about 3.55% cells which have been modified by the PP limiter, these
cells have been labeled in white color in the top right figure of Figure 3.19.

In the above three examples, we can observe that with the help of our P-WENO remap-
ping algorithm, the ALE method is positivity-preserving and more robust than the purely
Lagrangian scheme. Especially in the Noh problem, there are some cells modified by our

positivity-preserving limiter, without which the ALE method will fail due to the negative
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internal energy.

3.5 The cost comparison of three types of high order remapping
algorithms

In this subsection, the computational cost of the P2, ENO, WENO, P-WENO-A and P-
WENO-B remapping algorithms with the same accuracy are compared. An efficient high-
accuracy remapping algorithm should ensure that it does not cost too much when increasing
the accuracy, and the added positivity-preserving limiter should not bring too much extra
cost. We test five remapping algorithms on the function (3.4), described in the accuracy
test. As shown in Table 3.5, we record the cost of polynomial reconstruction (Reconst.) step
and the positivity-preserving limiter (Limiter.) step in the remapping procedure, and then
give the corresponding total computational cost on three different mesh sizes.

Table 3.5: Cost of five third order remapping algorithms in different sizes of the smoothly

moving meshes, N = 10. The last column T); indicates the total cost of time versus the
unlimited P2 remapping algorithm.

Reconst. Limiter. Total Ty
Mesh size P2 2.60E+2 0 3.43E+42 -
16 x 16  WENO 3.40E+2 0 424E+2 1.24

P-WENO-A 341E+2 8.12E+1 5.06E+2 148
P-WENO-B 3.36E+2 7.00E4+0 4.32E+2 1.26

ENO 5.88E+3 0 5.96E+3 17.38
Mesh size P2 1.13E+3 0 1.51E+3 -
32 x32 WENO 1.44E+3 0 1.82E4+3 1.21

P-WENO-A 1.50E+3 3.69E+2 2.26E+3 1.50
P-WENO-B 149E+3 3.17E+1 1.93E+3 1.28

ENO 2.13E+4 0 217E+4 14.37
Mesh size P2 5.51E+3 0 7.14E+3 -
64 x 64 WENO 6.75E+3 0 8.34E+3 1.17

P-WENO-A 7.14E+4+3 1.59E+3 1.04dE+4 1.46
P-WENO-B 7.31E+3 1.39E+2 937E+3 1.31
ENO 7. 79E+4 0 7.96E+4 11.15

It can be seen from Table 3.5 that adding the PP limiter does not bring too much
extra cost to the program. Moreover, compared with the ENO remapping algorithm with

the same accuracy, the P-WENO and the WENO remapping algorithms have significantly
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higher efficiency. While the two parts of the numerical integration and the calculation of the
intersection region are nearly the same, the ENO remapping algorithm needs to construct
several polynomials on different stencils and compare the coefficients of these polynomials to
select the optimal stencil during the reconstruction process, which brings significant extra
cost to the reconstruction step, resulting in a total cost several times higher than that of the
P-WENO and WENO remapping algorithms. We also compare the cost of the two P-WENO
versions. The P-WENO-B remapping algorithm, which applies the limiter only when the
reconstructed cell averages on the new mesh become negative, is more efficient than the

P-WENO-A remapping algorithm.

4 Conclusion

Aiming at the remapping step in the ALE method simulating the fluid flows, we develop
a non-oscillatory, positivity-preserving, conservative, third order accurate remapping algo-
rithm based on the multi-resolution WENO reconstruction. For the remapping step in the
ALE framework, conservative physical variables such as mass, momentum, and total energy
need to be transferred between old and new meshes. Take mass as an example, the detailed
analysis is performed based on the cell-average of density. In this paper, the multi-resolution
WENO reconstruction is used to reconstruct the polynomials on the old mesh, the overlap-
ping area between old and new meshes is calculated by the Sutherland-Hodgman clipping
algorithm. After that, a positivity-preserving limiter is added, ensuring that the remapping
results guarantee the positivity of density and internal energy. Finally, using numerical
quadrature with sufficient accuracy, the reconstruction polynomial is integrated over the in-
tersections exactly to achieve conservation. A series of accuracy tests, non-oscillatory tests,
and positivity-preserving tests verify that the algorithm is conservative, positivity-preserving,
essentially non-oscillatory and high order accurate.

Specifically, in this paper, the multi-resolution WENO reconstruction is applied to recon-

struct the third-order accurate polynomials. Higher order reconstruction polynomials can
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also be considered by following the same recipe, as detailed in [41, 42]. Furthermore, if we
combine the higher order WENO reconstruction and higher order integration formula, then
the higher order P-WENO remapping algorithm can be designed as well. The cost of the
simple multi-resolution WENO reconstruction method is much less than the ENO recon-
struction of the same accuracy. After using the Sutherland-Hodgman clipping algorithm to
calculate the overlapping area, we utilize the exact numerical integration formula to calcu-
late the integration of reconstruction polynomial over the overlapping area. For higher order
reconstruction polynomials, the corresponding higher order accurate quadrature formula is
necessary at this step. In the process of numerical integration, a positivity-preserving limiter
is added. If the reconstructed polynomials do not meet the requirements of the positivity-
preserving property, we modify the polynomial by the PP limiter while maintaining the high
order accuracy and conservation.

In the numerical experiments, we verify the properties of the algorithm on different mov-
ing meshes. The results show that the algorithm can keep the designed third-order accuracy
for smooth problems and is essentially non-oscillatory for discontinuous problems, both on
smoothly moving meshes and on randomly moving meshes. We also test the performance
of our remapping algorithm by the true ALE simulation. By comparing with the purely
Lagrangian scheme, the ALE method with our remapping algorithm shows its positivity-
preserving property and more robustness to handle the problem where the Lagrangian scheme
fails. Based on the advantages of the intersection-based method, our remapping algorithm
can be applied to unstructured meshes without the same connectivity.

The design of high order conservative positivity-preserving remapping algorithm in three
dimensions and high order conservative positivity-preserving ALE method constitutes our

future work.
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