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Abstract

In this paper, we reconsider the inverse Lax-Wendroff (ILW) procedure, which is a nu-
merical boundary treatment for solving hyperbolic conservation laws, and propose a new
approach to evaluate the values on the ghost points. The ILW procedure was firstly pro-
posed to deal with the “cut cell” problems, when the physical boundary intersects with the
Cartesian mesh in an arbitrary fashion. The key idea of the ILW procedure is repeatedly uti-
lizing the partial differential equations (PDEs) and inflow boundary conditions to obtain the
normal derivatives of each order on the boundary. A simplified ILW procedure was proposed
in [28] and used the ILW procedure for the evaluation of the first order normal derivatives
only. The main difference between the simplified ILW procedure and the proposed ILW
procedure here is that we define the unknown u and the flux f(u) on the ghost points sep-
arately. One advantage of this treatment is that it allows the eigenvalues of the Jacobian
f'(u) to be close to zero on the boundary, which may appear in many physical problems.
We also propose a new weighted essentially non-oscillatory (WENO) type extrapolation at
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the outflow boundaries, whose idea comes from the multi-resolution WENO schemes in [32].
The WENO type extrapolation maintains high order accuracy if the solution is smooth near
the boundary and it becomes a low order extrapolation automatically if a shock is close to
the boundary. This WENO type extrapolation preserves the property of self-similarity, thus
it is more preferable in computing the hyperbolic conservation laws. We provide extensive
numerical examples to demonstrate that our method is stable, high order accurate and has
good performance for various problems with different kinds of boundary conditions including
the solid wall boundary condition, when the physical boundary is not aligned with the grids.

Key Words: Hyperbolic conservation laws; Inverse Lax-Wendroff method; Numerical
boundary condition; WENO type extrapolation; Solid wall

1 Introduction

In this paper, we consider a numerical boundary treatment for solving hyperbolic conserva-
tion laws with high order finite difference methods on the Cartesian mesh. The Cartesian
mesh is attractive and preferable for its simple structure and easy generation, and it allows
the use of the high-resolution shock capturing methods that are more complicated to develop
on unstructured meshes. As mentioned in [25], there are two kinds of difficulties that should
be treated carefully when imposing the inflow boundary conditions with the high order finite
difference schemes. One is the treatment of the ghost points near the boundary because of
the wide stencils of the interior scheme. Another difficulty is that the mesh may not be
aligned with the boundaries of the geometric body, then the so-called “cut cell” problem
arises. This problem would cause some numerical difficulties. For instance, in finite volume
methods it may lead to a restricted time step condition, and the A-box method was pro-
posed in [3] to overcome this difficulty. There are many attempts to deal with the “cut cell”
problems, such as the embedded boundary method [11, 22, 14], immersed boundary method
[17, 15], and the references therein. In this paper, we focus on the inverse Lax-Wendroff
(ILW) procedure, which was first proposed by Tan and Shu in [25] to deal with the inflow
boundary conditions when solving hyperbolic conservation laws. The idea of the ILW proce-
dure comes from the Lax-Wendroff type boundary condition procedure [9, 31], in which the
authors repeatedly used the PDEs to write the normal derivatives to the inflow boundary
in terms of the tangential derivatives, for solving the static Hamilton-Jacobi equation with
high order fast sweeping WENO methods. Tan and Shu extended this procedure to solve the
time-dependent hyperbolic conservation laws in static or moving geometries in [25, 26]. The
essence of the ILW method is repeatedly utilizing the partial differential equations (PDEs)



to obtain the normal spatial derivatives on the inflow boundary, in terms of the time and
tangential derivatives of the given boundary condition. For earlier related work of this pro-
cedure, see [7, 8]. The core idea of computing the higher order derivatives of the solution
via the governing equation dates back to the classical scheme of Lax and Wendroff, that is
why the current method is called ILW. This idea has been used extensively over the past
years for building discretizations of both differential equations and boundary conditions. For
example, in [23], Singer and Turkel introduced the equation-based compact finite difference
schemes for the Helmholtz equation. In the approach of [23], the derivatives of the solution
are needed to cancel the leading terms in the expansion of the truncation error and thus
achieve high order accuracy on a small (i.e., compact) stencil. Subsequently, similar ideas
have been explored and developed further, e.g. by Baruch, Fibich, and Tsynkov [2] and
Turkel et al. [24]. Moreover, the method of difference potentials by Ryaben’kii [18] also uses
the equation-based differentiation to enable the treatment of non-conforming boundaries on
simple grids (such as Cartesian) with no loss of accuracy. It has been applied to a variety of
2D and 3D wave propagation problems in both frequency domain [16] and time domain [4].

Due to the heavy algebra of the ILW procedure for 2D nonlinear systems, Tan et al.
developed a simplified and improved implementation of this procedure for hyperbolic systems
with source terms in [28]. The stability analysis of the ILW procedure can be found in
[25, 29, 13]. Also, this procedure has been extended to other problems such as Boltzmann
type models [5], convection-diffusion problems [12], etc. For the survey and developments of
the ILW procedure, see [27, 20].

In this paper, we study the ILW methods developed in [25, 26|, and propose a new ILW
method to solve hyperbolic conservation laws. In [25, 26], it is required that the eigenvalues
of the Jacobian f’(u) cannot be too close to zero on the boundary. We aim at removing
this restriction by evaluating the unknown w and the flux f(u) independently, thus keeping
the eigenvalues away from being the denominator. Same as in [26], we only perform the
ILW procedure for the evaluation of the first order normal derivative, while all higher order
derivatives are obtained by extrapolation. At the outflow boundary, Tan and Shu in [25, 26]
used the classical Lagrangian extrapolation or least squares extrapolation when the solution
is smooth, or the WENO type extrapolation if there is a shock near the boundary. However,
the weights of the WENO type extrapolation in [25, 26] depend explicitly on the mesh size,
hence violating the self-similarity property of the finite difference WENO schemes. In this
paper, we adopt the idea of the multi-resolution WENO method in [32], and propose a new
WENO type extrapolation. The linear weights in the multi-resolution WENO procedure
can be arbitrary, and we choose them as some suitable positive numbers in the new WENO



type extrapolation. This procedure works well in all the numerical examples. We remark
that our treatment also works well for the problems with the solid wall boundary condition.

This paper is organized as follows. In Section 2, we propose our numerical boundary
treatment for both one-dimensional and two-dimensional hyperbolic conservation laws with
the fifth order finite difference WENO method as an example. For the one-dimensional
hyperbolic conservation laws, we first briefly review the original ILW method at the inflow
boundary and the WENO type extrapolation at the outflow boundary in [25], then we intro-
duce the new ILW method and the new WENO type extrapolation, and extend them to the
two-dimensional problems. In Section 3, we provide a variety of numerical examples on ac-
curacy tests and some benchmark problems, to demonstrate the effectiveness and robustness
of the proposed algorithm. Concluding remarks are given in Section 4 .

2 Scheme formulation

In this section, we present an inverse Lax-Wendroff (ILW) procedure for treating the bound-
ary conditions. As we shall see later, this new treatment will prevent the eigenvalues of the
Jacobian f’(u) from appearing in the denominators, thus it can be applied for the cases when
the eigenvalues are close to zero. We also consider another kind of WENO type extrapo-
lation, which preserves the property of self-similarity. We begin with the one-dimensional
conservation laws to illustrate our idea, and then extend the algorithm to two-dimensional
systems.

2.1 One-dimensional scalar conservation laws

First let us briefly review the ILW method for hyperbolic equations [25], to explain the basic
idea and set notations. For simplicity, we consider the following one-dimensional equation

u+ f(u), =0, a<z<b t>0,
u(z,0) =ugp(x), a<z<b, (2.1)
u(a,t) =g(t), t>0.

Without loss of generality, we assume f'(u) > o > 0 at z = a and = = b, with « being a
positive constant. Therefore, we have an inflow boundary condition at x = a and an outflow
boundary condition at x = b. For two constants d1,ds € [0,1), we use a uniform mesh with
the mesh size Az = (b — a)/(N + 01 + 02) and distribute the grid points as

rj=a+((+0)Az, j=-3,---,N+3. (2.2)



then {zg,z1, -+ ,xy} are our interior points and the closest interior points to the left and
right boundaries are ro = a + 0;Ax and xy = b — 03 Ax respectively. Notice that we have
deliberately allowed the physical boundaries x = a and = b not located on the grid points.

In this paper, we use the fifth order upwind-biased conservative finite difference operator
with the Lax-Friedrichs flux splitting technique (see e.g. [10]) to approximate the first order
spatial derivative. The semi-discrete scheme for (2.1) is given as

() + 5= (Fyes — Fig) =0, =01, N, (2.3
where u; is the approximation of u at x = x;. For the fifth order WENO operator, the
flux fj 1 requires a six point stencil {xm}f;:?’j_g so up to three ghost points are needed near
the boundaries. We concentrate on describing how to define the values at the ghost points
{xj}j_:l—3 and {zj}jy:ﬁﬂ-

Our goal is to obtain spatial derivatives of each order at the physical boundary, then use
Taylor expansion to get the values on the ghost points. The Taylor expansion of kth order

at the left and right boundaries are respectively defined as

k
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Here 9™ u is the numerical approximation of gc—mmu at the physical boundary. In fact, by

repeatedly utilizing the equation (2.1) and the boundary condition at x = a, termed by
inverse Laz-Wendroff, we can obtain the spatial derivatives as follows.

00u = u(a,t) = g(t),

Dy — ufat) = — Yt | __ 90
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Thus we can obtain {8§m)u}$§:0 completely from the given boundary condition and the PDE
by converting the spatial derivatives into the time derivatives. Then, with Taylor expansion
(2.4), we can obtain {uj}j_:l_g. Notice that, if all the spatial derivatives are obtained by
the ILW procedure, the values at the inflow ghost points are obtained completely from the
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given boundary condition, no extrapolation from inside the computational domain is needed.
Therefore, stability can be easily proved using the classical GKS theory [6].

Due to the heavy algebra of the ILW approach for the multi-dimensional nonlinear sys-
tems, a simplified ILW was proposed in [28], in which they obtained the first order derivative
by the ILW procedure, and higher order derivatives by extrapolation. Theoretical stability
analysis of upwind-biased finite difference schemes for linear conservation laws is reported
in [13], and in it the authors showed the smallest number of derivatives which must be ob-
tained by ILW rather than by extrapolation to ensure the stability under the maximum CFL
condition of the internal scheme.

Glancing at the expressions of the derivatives in (2.5), we can immediately find that f’(u)
is in the denominators in the first and higher order derivatives. This is why the authors make
the requirement that f’(u) is away from zero on the boundary in [25]. If f/(u) is exactly
zero, it can be treated as outflow and the ILW procedure would work without any problem.
This is the situation for the solid wall boundary conditions for Euler equations, which we
will treat both in 1D and in 2D in the numerical results section. The difficulty is when the
boundary condition, which is time dependent, transits from inflow to outflow (i.e. going
through a sonic point). When f’(u) is still positive but very small (for the left boundary,
this is still an inflow), if we use the original ILW procedure, we would encounter a very
small number in the denominator, which makes the algorithm much less robust, it could
even blow up if we are unlucky and the denominator is too small. The main objective of this
paper is to find an alternative ILW procedure which avoids small denominators near sonic
points. Consider the one-dimensional scalar conservation laws (2.1) and the corresponding
conservative scheme (2.3). The construction of the numerical flux fj +1 often involves a
wide stencil near z;. In fact, the Lax-Friedrichs flux in the fifth order WENO operator
relies on {um}jnifj_g and {f (um)}jn;fj_g. Therefore, to make the scheme (2.3) work, we need
not only the values {u;}?;, but also the ghost point values {u;};! 5 and {uj}jy;ﬁﬂ. The
traditional ILW procedure in [25] successfully obtained these values, as described above,
then {f(u;) j_:l_g and {f(u,) ;V: v, are obtained immediately and the numerical flux can
be formed. However, (2.5) shows that the ILW cannot tackle robustly with the case when
f'(u) is very close to zero on the boundary.

Inflow boundary: For the inflow boundary, we would insist on using the equation but
-1
j=—3

f; is the approximation of f(u) at x; but is not taken simply as f(u;). A simple truncation

avoiding f’(u) appearing in the denominator. Our approach is to redefine {f; where

error analysis shows that O(Az%) difference between this treatment and the original TLW
method in [25].



=0 (2.6)

F0)as O )+ O )+ O(A),

where j = —3,—-2, -1, s = z; — a. Besides, the simplified ILW proposed in [28] suggests
that, for the fifth order finite difference WENO scheme, we just need to obtain the first
derivative by the ILW procedure and the second and higher order derivatives are obtained
by extrapolation. Thus, we obtain f(u) by the boundary condition, and f(u), by the ILW
approach, and {&gm) f(u)}2 _, by the extrapolation of the interior points. To further illustrate
our idea, we show the fifth order treatment in the following.

o0 ) = s (S (Fl) 45 s) + 6 us) — 45(s) + F(u)
+ %(5f(u0) — 181 (u1) + 24 (up) — 14 (us) + 3f (us))
2 (357 (o) — 1047 () + 114 (uz) — 567 (us) + 11f(ws)), 7
O F(u) = s (01 (o) — () + 6 (uz) — 4F(us) + F(u)
- %( — 5f(up) + 18 (uy) — 24f (ug) + 14f (us) — 3f(u4))>,
O f(u) = 5 (Flua) — Af () + 6 (uz) — 1f () + F ).
Notice that in (2.7) we avoid placing f(u) in the denominator in obtaining {8™ f(u)}* _,.
thus we can define {f;}7! , by using the Taylor expansion with {9 f(u)}%_, even when

f'(u) = 0. To obtain the values {uj}j_:l_g, we only use the boundary condition and the
extrapolation of interior points. We present the fifth order treatment as an example to show



how to obtain {8{™u}4 _, at the left boundary.

00 = g(t),
() 1 53 52
8m u = —( (uo — 4U1 + 6UQ 4U3 + U4) - — (5U0 - 18u1 + 24u2 - 14U3 + BU4)
Ax 6 4
)
+ 7 (35u0 — 104u; + 114wz — 56u; + 1lus)
1
+ = (= 25ug + 48u1 — 36us + 165 — 3us) ),
1 /0% 01
Q@u = A—< 5 ( — 4duq + 6ug — dus + U4) + = 5 (5u0 — 18wy + 24uy — 14us + 3u4)
+% L (35u0 — 104y + 114uy — 565 + 11u4)>
1 1
8§3)u = F( (51 (uo - 4U1 + 6U2 - 4U3 + U4) + 5( - 5UO + 18u1 - 24U2 + 14U3 - 3U4)),
T
1
0§4)u = A (uo — 4uq + 6us — 4dus + u4).

(2.8)

Outflow boundary: For the outflow boundary, we obtain {uj = e 41 by extrapolation,
and f; = f(u;), 7= N+1,N+2 N + 3. If the solution of (2.1) is smooth, we can use
Lagrange extrapolation to obtain these values. In this situation, the treatment is simply using
the interior point values to construct a polynomial, and then extrapolate to the boundary.
But if there is a shock near the boundary, then it may not have enough points between the
shock and the boundary for high order extrapolation. To overcome this difficulty, in [25] Tan
and Shu developed the WENO type extrapolation which would degenerate automatically to
the lower order extrapolation but is more robust when the shock is near the boundary, while
it maintains high order accuracy if the solution stays smooth near the boundary. Again, we
first briefly review the procedure of the WENO type extrapolation proposed in [25], and take
the fifth order treatment as the illustration example. Now our goal is to obtain a (5 — m)th
order approximation of -2 poe 9™ 1 on the boundary. Assume we have five candidate stencils given
by

Sy =A{xn_p, - TN}, =0, 4

Then we can construct the Lagrange polynomials of degree  on { S, }2_,, denoted as {p,,(z)}% _,.

Suppose u is smooth on S;, by the approximation theory we have u = p,, + O(Az™!),

m = 0,---,4. This indicates that > d,.p.(x) is a fifth order approximation to u where
r=0



dy = Azt dy = Ax®, dy = Ax®, dy = Ax, dy = 1— 3 °_,d,. Then we take

am [ < R
(m) = — g —_—
am u dx™ ( 2 : dTpT (I)) ;:0: dT dxmpr (SL’)

r=0

Y
r=b

m

such that o™ u is (5 — m)-th order approximation to (’?x—m . To obtain a WENO type
extrapolation, the coefficients {d,}_, are changed into {w, }1_,, where

Q, d,
7‘:7’ 71:77 2-9
S S I A FRRT (2.9)

with € = 1075 and 3, are the smoothness indicators given in the following.

2 - oo [N d 2
Bo=Az% Bn=Y Az / (@pm(:ﬁ)) dv, m=1,--- 4 (2.10)
=1 N-1
The WENO type extrapolation works very well in [25, 26, 28, 12], etc. However, it is
preferable to preserve the property of self-similarity, which is intrinsic to the hyperbolic
conservation law but is not fulfilled by this kind of WENO type extrapolation because the
nonlinear weights w, depend on the mesh size Az explicitly. Besides, there is a parameter
g in the smoothness indicator (2.9) and its value is problem dependent in [25, 28]. We
would prefer to obtain an extrapolation which preserves the property of self-similarity when
computing the hyperbolic conservation laws.

In the following we present the new WENO type extrapolation. We will adopt the above
notations without any ambiguities. We still perform the construction on the five-point stencil
S ={xn_4, -+ ,xn} with the idea of the multi-resolution WENO methods in [32]. Assume
we have the point values {vy_4, -+ ,vn} of some function v(xz). We then have the five
sub-stencils

Sy ={an_p,- - on}, T=0,--- 4

and the corresponding interpolation polynomials are denoted as ¢,.(z), r = 0,--- ,4. If v(x)
is smooth on the stencil Sy, then g4(z) is the desired polynomial. If v(x) has a discontinuity
in the interval (xy_4, xy_3) but smooth in (zy_3,xy), then the polynomial g3(x) is desired.
The cases that the discontinuity located in (xy_3,2n_2), (Ty_2,2n_1) and (zx_1,2y) are
similar. In summary, we must use the polynomial that includes the point value vy, and the
stencil should be chosen as large as possible and the function v(z) stays smooth on it in the
meantime. In the following we give a detailed description on how to achieve this goal, while
the key idea comes from [32].



We first present the equivalent expressions of ¢,.(x) as follows.

r—1

po(z) = qo(), pe(w) = Cfi—’j il T Pm(@ =1,---,4, (2.11)

m=0 T
where {d, }1_, satisfy >0_,d, =1, d, > 0,r = 0,--- ,4. Then {d,}*_, are the linear weights
since we have q4(z) = Z;‘fzo d.p,(x). Throughout this paper we take {d,}+_, as follows.
1 2 1 4 1
I A N N S 9.12
15 , Wl 15 y W2 5 ; W3 15 , W4 3 ( )
Similar to the WENO-Z idea in [1], the nonlinear weights are taken in the following form.

Qo T 4
wrziTv ar:dr<1+< )>7T:07"'747
Zgzoo‘s + 5y

dp =

(2.13)
_ _ 3
r= (max (8- 50%) "+ max (late) - @)
where the || - || is the standard L?>-norm on (xy_1,Zx41), and the smoothness indicators
{B,}4_, are defined as follows.
Bo = o,
- ! 2 2.14
:ZAxm_l/ <—QT(I)> d!lﬁ', r= ]-7 a4> ( )
- dz
I=1 N-1

with e = 107" is placed to avoid the denominator becoming zero (notice that this choice of
e would make the denominator to become (107%)% = 1071¢ when f, is zero or is very small,
which is close to machine zero in double precision), and ¢y is a positive constant. Note that
po(z) is a constant function so its smoothness indicator vanishes by the second equation in
(2.14), thus we take 5y be proportional to $;. When ¢q is small enough, the extrapolation
tends to be the constant extrapolation when there is a discontinuity locates on (zx_2, Tx).
Throughout this paper, we take ¢y = 0.1 and later we can see it works well in the numerical
tests. With this new WENO type extrapolation, we have the extrapolating polynomial as

= Z err(x>

With the newly obtained polynomial p(x), we have the derivatives {0g(gr)u}§:0 at x = b.

dr
O = ——p(a), =0, .4, (2.15)
With these derivatives on o = b, we then use Taylor expansion (2.4) to obtain the values on

the ghost points {xj}ﬁyjﬁﬂ.
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Remark 2.1. We have made two modifications from the previous algorithms in [25, 28].
One is to separate the evaluation of u and f(u) on the ghost points, thus it allows us to
handle the case when f'(u) vanishes on the boundary. The other is to make use of the multi-
resolution WENQO procedure to obtain a new WENO type extrapolation, which preserves the
property of self-similarity. This is because we use the constants in the linear weights in
(2.13), thus it is independent of Ax. Also, the second and higher order derivatives are
obtained by extrapolation, and we still need to use the new WENO type extrapolation when
the shock comes near the boundary.

2.2 One-dimensional systems

Consider the 1D compressible Euler equations
U+FU),=0, z¢€(ab), t>0, (2.16)

where U and F(U) are defined as

Uy P Fy U
U=|U]=(pu]|, FU =|FE]|=|pu?+p

p,u,p and E stand for density, velocity, pressure and total energy per unit volume, respec-
tively. The equation of state is

E=p/(y=1)+pu’/2,

where v is the heat capacity ratio and v = 1.4 for air when the temperature is within a
suitable range. Notice that U; no longer stands for the value of U at x = x, but only stands
for the density p. So are Uy and Us. Thus, we take the notation (U;); to stand for the value
of Uy at x = z;, and U; = ((Uy);, (Us);, (Us);)*. Similarly, (F}); is the value of Fy(U) at
x = z;, and F; = (F(Uy), F»(U;), F5(U;))". Without loss of generality, we consider the left
boundary = = a. Firstly, we rewrite the governing equation (2.16) into the following form.

U, + F(U)U, =0,
where the Jacobian matrix F'(U) is given as

0 1 0
1
FU)y=| 303 B=yu y-1[, (2.17)
1
5(7 —DuP—uH H—(y—1u* ~u
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with the enthalpy H = (E+p)/p. The number of the boundary conditions are determined by
the signs of the eigenvalues of the Jacobian matrix F'(U). By the similarity transformation
F'(U) = RAR™!, we have

Vi+AV, =0, (2.18)
where V' = R7!U are characteristic variables, A = diag(u — ¢, u, u +c), and ¢ = \/vp/p is

the speed of sound, and R and R~! are given as

1 1 1
R-| v—c u u+c

1
H — uc §u2 H + uc

11 1 11
Suc + 1(7 — 1)u? —5(7 —Du — 3¢ 5(7 - 1) (2.19)
. 1
R =S| &=s( - (v = Du 1—v
bhet T - i - Dutie L1
——uc+—(y—Du* —=(y—1Du+=c =(v—
U g\ o\ 2¢ o\

In the finite difference WENO scheme, it takes this characteristic decomposition when ob-
taining the numerical fluxes, and now we use this decomposition at £ = a to determine the
inflow boundary conditions and outflow boundary conditions.

Now let us consider four cases in the following:

Case l: u—c>0;
Case 2: u—c<0, u>0;
Case 3: u<0, u+c>0;
Case 4: u+c¢<0.

Note that the above u and ¢ in these four cases are obtained at z = a.

For the case 1, we have all eigenvalues positive, thus we need three inflow boundary
conditions. Our goal is to obtain both {8’U}4, and {0 F(U)}L, at z = a, then we can
use the Taylor expansion (2.4) to obtain U and F(U) on the ghost points {xj};:l_?). For
simplicity, we denote (w)™® if w is obtained from the boundary conditions and the governing
equations, and (w)®*" if w is obtained from the extrapolation of the interior points. Similar to
the scalar case in (2.8), we first consider U = (Uy, Uy, U3)T and use the boundary conditions

@VU)" and {(OVU)*1}4, to obtain {dV UL, at = = a.
VU = (U), WU = VU, 1=1,--- 4. (2.20)
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By the Taylor expansion (2.4), we obtain {Uj}j_:l_g. Then we consider {aé”F(U)};;O. Sim-
ilar to the scalar case in (2.7), we use the boundary conditions YU to obtain 8£O)F(U),
obtain 8§1)F(U) by the ILW procedure, and obtain {&g)F(U) 1, by extrapolation at x = a.

OV F(U) = F@OU), 9VFU) = @0V FU)™.
AV F(U) = OV F(U))™, 1=2,3.4

T

(2.21)

By the Taylor expansion (2.4), we obtain {Fj};:l_3 Then case 1 is finished.

For the case 2, we have two positive eigenvalues and one negative eigenvalue, thus we
need two boundary conditions at x = a. For convenience, we assume that the two boundary
conditions are p(a,t) = ¢1(t), pu(a,t) = g2(t). In fact, it is equivalent to prescribing the
incoming characteristic variable V5, V3 as a function of the outgoing characteristic variable
Vi, where (Vi, Vs, V3)T =V = R7IU [25].

As before, we shall obtain U on the boundary = = a firstly. With the extrapolation
and the prescribed boundary conditions, we can obtain U at x = a, i.e. U; = g1(t), Uy =
g2(t),Us = (U3)***. With U at x = a, we are able to perform the local characteristic
decomposition and obtain the incoming characteristic variables V5, V3 and outgoing variable
V1 in the interior domain. In particular, the outgoing characteristic variable V; is used for
extrapolation. For simplicity we denote R = (r;;)sx3, B = (74j)sx3. Then at the left
boundary x = a, we have

OOU, = gi(t), OOUs = go(t), 0VUs = (Vi)™ — F11g1(t) — Fa12(t)) /T3,
WU, = (VU 9VU, = (0VTU,)*, 1 =1,--- 4.

x x x

(2.22)

From (2.19) we know that 713 = (7 — 1)/(2¢%) # 0, thus (2.22) is well-defined. In (2.22)
8§0)U3 obtained on the boundary is not for the Taylor expansion, but for computing F(U)
on the boundary. Now we assume {(U;); ;:1_3 and {(Ug)j}j_:l_3 are obtained by (2.22) and
(2.4). To obtain {(Us);};2 5 , with the relation V = R™'U we have

j==3>
Us = (V)" = F1oUs — FraUs) [Fas. (2.23)

Notice that (2.22) is performed at the left boundary = = a while (2.23) is considered on the
ghost points {z;};1_,.

Now let us turn to the definitions of {8§l)F (U)},- Since we have obtained VU at the
left boundary x = a, we immediately obtain 03(50)F(U) with the expression F(&(EO)U). The
key step in this algorithm is to obtain 8;21)F(U) by the ILW procedure. By the boundary
conditions and the governing equations, we can obtain 8§1)F1(U) and 89(51)F2(U). To obtain
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09(51)F3(U), we use the relation R™'F(U), = AV,. The second order and higher order
derivatives are obtained by extrapolation. We summarize the procedure in the following.

OVF(U) = FOVU),

xT

IVF(U) = (0N F)™ = —g)(t), a“Fz(U)—(ai”F)”w: —95(t),

OV F5(U) = ((u—c)(0MV1)*™ + Frugy (1) + F1agh(t)) [Fas,
IVF(U) = (0VF(U))™, | =2,3,4.

(2.24)

By the Taylor expansion (2.4), we obtain {F}};1_5. Then case 2 is finished.

For the case 3, we have one inflow boundary condition and two outflow boundary con-
ditions. Assume we have the boundary condition for p(z,t) = g¢1(¢). Firstly we use the
extrapolation and boundary condition to obtain U at x = a. Then we perform the charac-
teristic decomposition at x = a and obtain the characteristic variables V', and V; and V5 are
outgoing characteristic variables and V3 is incoming characteristic variable. By the relation
V = R7'U, we have

VU = RV, where V) = (Vl)m> Vo = (Vz)m> Vi = (gl(t) - 7“11(V1)m - 7“12(V2)ext)/7“13,

T

VU, = (VU) 1=1,--- 4,

(2.25)
where r13 = 1 7& 0 thus V3 is well-defined in (2.25). By the Taylor expansion (2.4), w
obtain {(U1);},2_5 . To obtain {(Us);},2_5 and{(Us),};2_5 , we have {(0 vy et o and
{(ai’) Vo)ert it -0 at the boundary and we use Taylor expansion (2.4) to obtain {(V;);}:2

j=-3
and {(V%); j__g . Then we use the relation V' = R™'U to obtain U, and Us.

U=RV, whereV, = (Vl)m’ Vo= (Vz)ext7 Vs = (Ul - 7’11(V1)ext - le(%)ext)/ﬁ?,-
(2.26)
Notice that (2.25) is performed at the left boundary = = a while (2.26) is considered on the
ghost points {SL’J}]__g
In the following we consider {9 F(U) o In the case 2 we have elaborated on how
to obtain {&g)F(U)}?:O and case 3 follows almost in the same way. Thus we present the
algorithm in the following directly.

0V F(U) = FOPU),
OV F(U) = RAV,, where (u— )0V = (u— ¢)(0VV), udMVy = u(0MVy)ert,
(u+c)0Vs = (=g (1) — ria(u — )OVi — rigudVVy) [,

IVF(U) = (0VF(U))™, | =2,3,4.
(2.27)
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The ILW procedure in (2.27) is in the third line, in which we use the relation 8% Fy (U) =
(89(51)17’1)“” = —¢;(t) in obtaining (u + 0)89(01)‘/}). By the Taylor expansion (2.4), we obtain
{F;};1 5. Then case 3 is finished.

For the case 4, we have three outflow boundary conditions. The treatment of this case is
very simple. Firstly, we have the characteristic decomposition at x = a and we can obtain
the characteristic variables {8(1)V}4 o at = a. With Taylor expansion (2.4), we then obtain

V and transform V into U by the relation U = RV, therefore we obtain {U,} j__g

U= R(V)“" (2.28)

After we obtain the {U;};!
case 4 is finished.

we substitute them into F'(U) and obtain {F}} thus

j=—3 J_—3’

We summarize our algorithm of the boundary treatment at the left boundary as follows.

Assume we have obtained {U;}[_ at time level ¢,,. Our goal is to obtain {U;};2 5, {Fj}].

J_—3’ J_—3

1. Firstly, obtain U with the extrapolation and boundary conditions at the boundary.
Perform the characteristic decomposition, and decide the prescribed inflow boundary
conditions according to the signs of the eigenvalues of A in (2.18).

2. There are four cases of the different signs of eigenvalues of A and they need different
treatments.

e Case 1: u—c > 0. We have three inflow boundary conditions at the boundary
x = a. We obtain {89(CI)U};1:0 by (2.20), then we can obtain {U;}; 5 by the
Taylor expansion (2.4). Also, we have {&g F(U)}!_, by (2.21), and we can obtain
{F; }J_ 5 by the Taylor expansion (2.4).

e Case 2: u—c < 0, u > 0. We have two inflow boundary conditions and one
outflow boundary condition at the boundary x = a. We firstly obtain {ai” Ui,
and {8“ Us}lo by (2.22), then we can obtain U; and Uy at @ = x_3,2_9,2_1 by
the Taylor expansion (2.4). With the extrapolation of Vj, we can obtain Us at
T =2 3,0 g,x 1 by (2.23). Then we have {8(1) F(U)},_, by (2.24), and we can
obtain {F}} j_ 3 by the Taylor expansion (2.4).

e Case 3: u <0, u+c>0. We have one inflow boundary condition and two outflow
boundary conditions at the boundary = = a. We firstly obtain {&gl)Ul 1, by
(2.25), then we can obtain U; at x = x_3,x_s,z_1 by the Taylor expansion (2.4).
With extrapolation of V; and V5, we can obtain Us and Uz at © = x_1,2_9,2_3
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by (2.26). We then have {09(51) F(U)},_, by (2.27), and we can obtain { F} }]_ 3 b
the Taylor expansion (2.4).

e Case 4: u+ ¢ < 0. We have three outflow boundary conditions at the boundary
z = a. by the extrapolation of V', we can obtain U at {z;};1_4 by (2.28). And
we can obtain {Fj }J_ 4 by substitute U into F(U) at {z; }J_ 3

Remark 2.2. Many physical problems are described by the compressible inviscid FEuler
equations with the no-penetration boundary condition at solid walls. In the computation,
the most popular way to impose the no-penetration boundary condition is the reflection
technique, that all interior solution components are reflected symmetrically to the values of
the ghost points, except for the normal velocity whose sign is reversed. For the treatment of
the solid wall boundary condition u = 0, we would like to use the boundary condition pu = 0
on the boundary and adopt the case 3 in the above algorithm. In this case, the algorithm
needs some changes because we prescribe the boundary condition for p as an illustration
example in the above algorithm. We now show the modifications of the case 3 for treating
the solid wall boundary condition and briefly write them down as follows.

Assume we have the boundary condition pu =0 at x = a. We obtain {8 U1 o by the
following equations.

OOU = RV, where Vi = (V)" Vo = (Vo)™ Vs = (= ro1 (V1) — 1a0(Va) ") /7o,

xT

oVU, = (VU 1 =1,--- ,4.

T

(2.29)

By the Taylor expansion, we obtain {(Us); j__3 . With the extrapolation of Vi and Vs, we
can obtain Uy and Us on the ghost points {:I:J}]__3 by the following equations.

U=RYV, where ) = (Vl)em, Vo = (‘/2)6”7 Vs = (Uz - 721(‘/1)6“ - 7’22(V2)6mt)/7"23-
(2.30)

After we obtain YU on the ghost points {2;};1_5, we then have {&g)F(U)}?:O atrz =a
by the following equations.

OV F(U) =F(O"U),

OV F(U) = RAV,, where (u— ¢)o"V; = (u — ¢)(0WV1), udVVy = u(0VVy)e,
(u+ )0V = (=191 (u — )0V VL — r90udV V) /193,

IVF(U) = (0VF(U))™, | =2,3,4.

~— ~—

(2.31)
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With the derivatives {&EDF(U)}?:O at x = a, we can obtain {Fj}j_:l_3 by the Taylor expan-

S10M.

Remark 2.3. If the solution is smooth near the boundary, then we can use Lagrange
extrapolation in the above algorithm. But if there is a shock near the boundary, then in the
above algorithm we recommend to use the WENO type extrapolation given in the 1D scalar
case, which makes the algorithm more robust.

2.3 Two-dimensional problems

In this subsection, we generalize the approach to the two-dimensional problems. The two-
dimensional compressible Euler equations are given as

U+FU),+GU),=0, (z,y)e€Q, t>0, (2.32)
where
p gu pU
v= " Foy= | M P ewy=| BT
E u(E + p) v(E +p)

with suitable boundary conditions and initial conditions. p,u,v,p and E stand for the
density, z-velocity, y-velocity, pressure and total energy per unit volume, respectively. The
equation of state is

E=p/(y—1)+p(u®+v%)/2,

where v is the heat capacity ratio and v = 1.4 for air when the temperature is within a
suitable range.

Assume we have a Cartesian mesh for 2 and the boundary 02 may not be aligned with
the grid points. Then the grid points inside the domain €2 are called the interior grid points.
Assume we have the fifth order finite difference WENO method as our interior scheme and
the values on the interior grid points are obtained already. Our goal is to obtain the values
on the ghost points, denoted as P in Figure 1. Following [25], we first find the Py on 02 so
that the outward normal n to 0f) at P, goes through P.

We set up a local coordinate system at F, by

T _p (= (T Tie\ [ cos@ sinf
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Figure 1: The local coordinate at Fy in 2D problems: the ghost point P marked in green
and its projection point Py € 9 marked in red.

/ 09
/N @
/

where 6 is the angle between the outward normal n to 92 at P, and the z-axis, and T is the

rotation matrix. Through this rotation, Z-axis is aligned with the outward normal n. Now
we denote
U= (Uh U27 U37 U4>T = (/77 /7717 p/ﬁ7 E)T7

where 4 and v are given as

then the Euler equations (2.32) can be transformed into the following form
U,+FU); +GU); =0. (2.34)
We still use the following notations without causing any ambiguities.
F(U) = (F\, F5, F3, F))", G(U) = (Gy,G2,G3,Gy)".

Thus, at Py we will consider the transformed Euler equations (2.34) instead of the original
one for convenience. Once we obtain U, we can transform back to U without any difficulties.

~ A

We now show the transformation of F(U) and G(U) from F(U) and G(U) as follows.
F(U) =ThwF 4+ TuGy,
F(U) = (Tyw)?*F + 2T\ To  Fs + (Ts1)*Gs,
(U) =TT (Fy — Gs) + (ThTes + ThoTo ) Fs,
(U) - T11F4 + T21G4.

2.35
" (2.35)
Fy
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G1(U) =T F\ + TGy,

Go(U) = TuTie(Fy — G3) + (T Taa + TiaTos) F3, (2.36)
G3(U) = (Th2)*Fy + 2 TiaToo F3 + (T22)°G3,

Gy(U) = TioFy + TGy

~ A

In the following we show how to obtain the values of F(U) and G(U) on the ghost point
P. First we need the normal derivatives, i.e. the z-directional derivatives, up to 4-th order.
Now we rewrite the transformed Euler equations (2.34) into the following form.

U, + F'(U)U; + G(U); = 0,

A~

where the Jacobian matrix F'(U) is given as

0 1 0 0
1
. SOy =@ +9%) —a? B-ma (-7 -1
F(U)=| 2 o R A (2.37)
—Uv ) U 0

1
50— D@ +0%) —aH H+(1-7)a (190 i

and H = (E + p)/p is the enthalpy as in the one-dimensional case. With the similarity
transformation F’ (IAI) = RAR™!, we perform the characteristic decomposition and obtain

V,+ AV, + RT'G(U); = 0, (2.38)

where the characteristic variables V' = R‘lff, A = diag(t — ¢, u, 4,0+ ¢), ¢ = \/vp/p and

1 0 1 1
u—c 0 U u+c
R = o1 o o ;
1
H—dc 5(1124—@2) H +c

1 A ) 1 ) (2.39)

glitic) —5((y=Nite) —5(y=10 Sy-1)
R_l . l —602 0 C2 O

2| A-b (v = 1a (y=1o  1-=v |~
1 1 1

) —3(r=1p 3= 1)

>

gl —tc) —5((y—1)

with by = (v — 1)(a* + ©%)/2. The number of boundary conditions depends on the signs of
the eigenvalues @ and @ + ¢. We also have four cases in the following:

Case 1: u+4c<0;
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Case 2: u<0, u4+c>0;
Case 3: u—c<0, u>0;
Case 4: w—c>0.

Note that u and ¢ are obtained at the boundary point Fy in Figure 1. In the 1D case, we
consider the above four cases at the left boundary x = a, and since we have set up a local
coordinate, the z-direction is the outward normal direction, then we reverse the order of
the four cases. We will briefly elucidate the algorithm in the following, and one can refer
to the 1D case for more detailed description of the idea. For convenience, we still take the
notations (w)® and (w)®** respectively standing for w obtained by the ILW procedure and
by extrapolation, and R = (7;)axa, B = (Fij)axa.

For the case 1, all eigenvalues are positive so we have four inflow boundary conditions.
We now show the approaches to obtain {Og)ﬁ}?zo and {85’1?(0)};1:0 at Py. To obtain
{Qg)l}'}f‘:o , we have the following equations.

8;0)(). _ (fj)ile 89%”[}* _ (@(Acl)f])ext’ l=1,---,4. (2.40)

After we obtain {Qg)l}'}f‘:o, then we have the following equations to obtain {Qg)F (UYL,

~

0F(U) = F(0,"U), 9))F(U)=(9,"F(U))",
MNFU) = 0V F(U))™, | =2,3,4.

T

(2.41)

By the Taylor expansion, we can obtain U and F(f]) at P. The case 1 is finished.

For the case 2, we have one positive eigenvalue and three negative eigenvalues, thus we
have three boundary conditions. Assume we have the boundary conditions for p, pu, pv at Py,
then we transform the boundary conditions into Uy(Z, 7,t) = gr(2,9,1), k=1,2,3, (2,7) €
0f). With the extrapolation and boundary conditions, we can obtain U and matrices R R,
A at F,. We then perform the characteristic decomposition and obtain the characteristic
variables V.= R™'U. Since @+ ¢ > 0 and 4 < 0, the outgoing characteristic variable is V}
where (V1, Vs, V3, V4)T = V. We have the following equations to obtain {Qg)l}'}f‘zo at By.

3
00 = gult), k=1,2,3, 000 = (Vi)™ = 3 Fuegn(®)) /7.

k=1

(2.42)
U, = (VU™ k=1,2,3,1=1,- 4.
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With Taylor expansion, we obtain {U;}3_, at P. Then by V = R'U at P we have
A~ 3 A~
Us = ((‘/A:)ext - Zf4kUk) [Taa. (2.43)
k=1

To obtain {85’1?((7)};1:0 at Py, we have the following equations.

. 3 . 2.44
O F(O) = ((+ @ Vit = 3 indl F(@)) s, 24

k=1
OV F(U) = 8V F(U))™, | = 2,3,4.

A

By the Taylor expansion, we can obtain F(U) at P. The case 2 is finished.

For the case 3, we have one inflow boundary condition and three outflow boundary
conditions. Assume we have the boundary condition for Ul(i', U,t) = q1(2,9,1), (z,79) € 0.
With the extrapolation and boundary conditions, we can obtain U and matrices R, R,
A at FP,. With the characteristic decomposition, we have the characteristic variables V' =

R_llAf, and V5, V3, V} are outgoing variables. Then we have the following equations to obtain
{0 U3,

4
00 = RV, where Vi = (i)™, k =2,3,4, and Vi = (91(t) = 3_ rus(Vi)*")
k=2
85)01 = (8él)U1)e:ct7 [ = 17 T 74'
(2.45)

By the Taylor expansion, we can obtain U at P, and we then have

4
U =RV, where V}, = (Vi) k =2,3,4,and V| = <Ul — Zrlk(Vk)ext> /r11. (2.46)

k=2

Therefore, we obtain U at P. We again emphasize that (2.45) is performed at P, while
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(2.46) is performed at P. To obtain {Qg)F(Tj) 1o, We have the equations as follows.
o' F(U) = F(0,"0),
OV F(U) = RAV;, where 00\"V5 = a(8\ 1),

T

(2.47)

A

By the Taylor expansion, we obtain F'(U) at P. The case 3 is finished.

For the case 4, with the extrapolation we obtain U at Py, thus obtain the matrices R,
R~! and A. Then we perform the characteristic decomposition and obtain the characteristic
variables V = R™'U and {Qg)V}?:O. With Taylor expansion, we obtain V' at P and then
transform it back to U by U =RV, given by

U=R(V)™*, (2.48)

After we obtain U at P, we just plug it into F(U) and obtain F(U) at P. The case 4 is
finished.

We summarize the algorithm for 2D problems as follows. Assume we have obtained U
on the interior points at time level t,, and our goal is to define U and F(U) on the ghost
point P.

1. For the ghost point P, find the corresponding boundary point Py € 9€). Set up the local
coordinate (2.33) and obtain the transformed system (2.34). With the extrapolation
and boundary conditions we obtain U at P,. Perform the characteristic decomposition
at Py, and decide the prescribed inflow boundary conditions according to the signs of
the eigenvalues of A in (2.38).

2. There are four cases of the different signs of eigenvalues of A in the following:

e Case 1: u+ c < 0. We have four inflow boundary conditions at Fy. We obtain
{Og)ff}?:o by (2.40), then we can obtain U at P by the Taylor expansion. Also,
we have {Qg)F(U) 4, by (2.41), and we can obtain F(U) at P by the Taylor

expansion.

e Case 2: u+c > 0, 4 < 0. We have three inflow boundary conditions and one
outflow boundary condition at P,. We firstly obtain {Qg) Uk}?zo, k=1,2,3 by
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(2.42), then we can obtain {U;}?_, at P by the Taylor expansion. With the
extrapolation of Vj, we obtain Uy at P by (2.43). Then we have {&g)F(lAI)}?:O

A

by (2.44), and then we can obtain F'(U) at P by the Taylor expansion.

e Case3: 4 > 0, u—c < 0. We have one inflow boundary condition and three outflow
boundary conditions at P,. We firstly obtain {a;”Ul o by (2.45), then we can
obtain U; at P by the Taylor expansion. With the extrapolation of {V,}i_,, we
can obtain {U;}!_, at P by (2.46). We then have {0 F(U)}., by (2.47), and

A

we can obtain F'(U) by the Taylor expansion.

e Case 4: u—c > 0. We have four outflow boundary conditions. By the extrapola-
tion of V', we can obtain U at P by (2.48). And we can obtain F(U) by plugging
U into it.

3. After we obtain U, we plug it into G(U) and obtain F' and G. With the equations
(2.35) and (2.36), we finally obtain F'(U) and G(U).

We remark that for the no-penetration boundary condition (u,v)-n = 0 at solid walls, we
would like to use the boundary condition ptt = 0 and apply the case 3 in the above algorithm.
In this situation, the formula needs some modifications since in the above algorithm we only
consider the boundary condition of p for illustration purposes. In the following, we show
the modifications in the case 3 in the above algorithm for treating the solid wall boundary
condition.

Assume we have the boundary condition for p = 0 at the boundary point F,. We obtain
{0? U1}, by the following equations.

00U = RV, where Vi, = (Vi)*, k=2,3,4, and V; = (— rzk(Vk)“’“) /721,

4

i (2.49)
00y = V)=, 1=1,--- 4.

Then we can obtain U, at P by the Taylor expansion. With the extrapolation of {V;}i_,,

we can obtain {Ul, Us, U4} at P by the following equations.

4
U =RV, where Vj, = (V,)!, k = 2,3,4, and V; = (UQ . Zrzk(vk)ext) fror. (2.50)

k=2
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We then obtain {Qg)F (U)}, by the following equations.

oV F(U) = FOVU),
O\ F(U) = RAV;, where 40"V, = a(8"V5)e",
adPVy = a(@P VA, (4 + )OI Vi = (i + ) (9D V), (2.51)

and (it — €)05 Vi = (= roptdVVa — ro500y) Vs — ras (it + )0 V3) f1a1,
VW) = OV F(U))*, 1 =2,3,4.

Then we can obtain F(U) at P by the Taylor expansion.

2.4 Two-dimensional extrapolation

In this subsection, we consider the two-dimensional extrapolation. Unlike the one-dimensional
case, the extrapolation becomes complicated in 2D because the points are usually not well-
ordered in the normal direction. Our treatment is to construct the 1D polynomials in the
normal direction, then we follow the algorithm of 1D extrapolation to obtain the normal
derivatives. To this end, we adopt the least squares method to obtain an interpolating poly-
nomial in 2D, then we can obtain the approximating values along the normal direction and
the 1D polynomials are obtained. If the solution is smooth near the boundary, we could just
use the high order interpolating polynomial to obtain the normal derivatives and tangential
derivatives. However, if there is a discontinuity near the boundary, then we need to do more
efforts in constructing the polynomial to make the algorithm more robust. In this subsection,
we mainly introduce the two-dimensional WENO type extrapolation.

Assume we have the values {f;;} on the grid points of a function f(z,y) in the in-
terior domain. Our goal is to obtain the normal derivatives and tangential derivative, i.e.
{ prii } , and f; at the boundary point 4. Since we may not have the well-ordered points
to do the Lagrange extrapolation, we construct the interpolating polynomials by the least
squares method. To this end, we just take a stencil £ to obtain the high order approximating
polynomial as follows.

£ = { ri;) € Q \f (2 — 28)? + (5 — ym,)? < R} (2.52)

where R is a positive constant, and we take R = 5 h, h = max{Ax, Ay} in the numerical tests
if not noted otherwise. With the least squares method, we can obtain the 2D polynomial
Q(x,y) € P* on the stencil £, where P* = span{z'y™, | +m < k} is a set of polynomials
whose degree of freedom are not greater than k. Thus, near the boundary point P, we have
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the polynomial Q(z,y) that is a fifth order approximation to f(z,y). When the function
f(x,y) is smooth, we can obtain the normal derivatives and tangential derivative at Py from
the constructed high order polynomial Q(z,y). But when there is a discontinuity near the
boundary, special treatment is needed in obtaining {885%—”; f }jn:o and f;. In the following
we describe the two-dimensional WENO type extrapolation based on the multi-resolution
WENO method in [32].

First, on the boundary point Py we have a segment P,P; which is along the normal
direction, and PyP, = --- = P3P, = h, see Figure 2. Since we have already obtained the
high order approximating polynomial Q(x,y), we can obtain the approximating values of f
and f; on the points {P,}2 _,. Now we have five stencils S, = {Py,---, P}, r=10,--- ,4
and the approximating values of f and f; on them, then we can perform the 1D WENO
type extrapolation.

Figure 2: Hlustrative sketch for 2D ex-
trapolation: the ghost point P marked in
green and its projection point Py € 0f).
The interpolating points F, - - - , Py dis-
tributed uniformly along the normal di-
rection and they are marked in blue. The
stencils for 2D extrapolation are marked
by square symbol in black.

4

.—o» We first construct the corresponding 1D

To obtain the normal derivatives {%—mm f }
polynomials ¢,.(z) on S,., r = 0,---,4. Different from the 1D WENO type extrapolation,
we construct the ¢o(z) and ¢.(z), r =1, -+ ,4 from different 2D interpolating polynomials.
Without loss of generality, we assume & = —mh at P,, m = 0,---,4. For the constant
approximating polynomial ¢o(Z), instead of using the the polynomial Q(x,y) to obtain the
approximating value on Py, we construct a polynomial Qq(x,y) € P° by using the following

stencil & with the least squares method.

& = {(xivyj> €, \/(%‘ —xp)?+ (y; —yp)? < Ro}a

where Ry is a positive constant, and we take Ry = 1.1 h in the numerical tests if not noted
otherwise. Now we take qo(Z) = Qo(x,y). Next, with the approximating polynomial Q(z,y)
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obtained previously, we then get the approximating values of f on {P,}% _,. With these
approximating values, we can construct the interpolating polynomials ¢.(%) € P"(P,P;) on
S., 7 =1,---,4, where P¥(PyP,) is a set of polynomials whose degree is not greater than
k on PyP;. So far, we have obtained ¢,(2) on S,, r = 0,--- ,4, then the 1D WENO type
extrapolation can apply and the normal derivatives can be obtained. Here we just briefly
write down the procedure of obtaining the normal derivatives {% f }fn:()'

We first present the expressions of p,.(&) as follows.

[y

r—

i,

. . . ~dy R
po(l’) = QO(x)a pr(x> = Z d_QT(x> - d_pm(x)v r= 17 e 747 (253)
m=0 o "

3
I

where {d, }*_, are the linear weights defined in (2.12). Then the nonlinear weights are given

as follows.
o T 4
Wy = . ) ar:dr(]-_l'( )>>T:0a"'>4a
im0 SO
0 . (2.54)
J— — 2 ) — T 3

r = (max{(8 - 8}) " + max{llao(#) — (@)}

where the || - || is the standard L?-norm on (—h, h), and the smoothness indicators {£, }2_,

are defined as follows.

Bo = cobhs

T

oY ai 2.55
ﬁr:Zhﬂl/_h(@qr(x)) dé, r=1,--- 4, ( )

=1

with ¢ = 107* and ¢; is a positive constant, and we take ¢y = 0.1 throughout this paper.
Then we have a combination of polynomials {p,(%)}1_,.

p(E) =Y wepr(@).

With the polynomial p(#), we have the desired normal derivatives {0 u}1_, at P,.

d?”
di"p(i>’ TIOv"' 74' (256)

8§T)u =

In the algorithm for 2D problems in the previous subsection, we have not written down
the explicit formula of the ILW method, but only use the notation (-)#* instead. In fact, the
main difference of the formula between 1D and 2D is that we have the tangential derivatives
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in 2D case. If we have the enough boundary conditions, then we could obtain the tangential
derivatives with the explicit expressions, but this situation may not always be true. A
common way to obtain the tangential derivatives is by extrapolation.

We now proceed to obtain the tangential derivative a% f. With the 2D approximating

polynomial Q(z,y), we can obtain the approximating values of a% fon {P,} _,. To obtain

%)

35 (2, y), with the chain rule we have

Ox dy
Qy = Qxa—g + an_ﬂ = T51Qx + T2Qy. (2.57)

where (7};)2x2 = T is the rotation matrix in (2.33). Then we are able to construct the 1D
polynomials ¢.(z) on S,, and ¢, is r-th order approximation to (%f, r=1,---,4. Also, we
take ¢o(2) = 0. Note that it would destroy the self-similarity property if we apply the above
procedure to {§,(Z)}2_, directly. Thus, we adopt the nonlinear weights {w, }*_, obtained in
(2.54) , then we have

(&) =Y wi ().

where ¢(Z) is an approximating polynomial of a% f, Then we obtain the tangential derivative

a% = ¢(0), since we have £ = 0 at 1.

3 Numerical tests

In this section, we show the numerical results of one- and two-dimensional problems. We
adopt the third order TVD Runge-Kutta method [21] as the time-stepping method. When
testing the order of accuracy, to match the order of spatial discretization we take the CFL
condition as At = O(h*/3), where h is maximum spatial step size. For the cases containing
shocks, we take the CFL condition as At = O(h). In 1D case, we take the parameter
6 =107, 8 = 107% in (2.2) if not noted otherwise.

3.1 One-dimensional problems

Example 3.1. Consider the one-dimensional linear scalar conservation laws with variable

coefficient in the following:

{ut + (cos(w(x + t))u)x =f, O0<z<l1,t>0, (3.1)

u(x,0) =sin(rz), 0<z <1,
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with the appropriate boundary condition and f, is the additional source term. The sign of
cos(m(x+t)) will affect the type of the boundary conditions. In fact, when cos(m(x+t)) > 0,
then we have inflow boundary condition at x = 0, and outflow boundary condition at x = 1.
And when cos(m(z+t)) < 0, we then have inflow boundary condition at x = 1, and outflow
boundary condition at v = 0. If cos(m(x +t)) = 0, the equation (3.1) degenerates and we
consider it as outflow boundary. We take a suitable source term function f, so that the
exact solution is
u(z,t) = sin(w(z — t)).

We take the final time T' = 1.2 to test our algorithm.

From Table 3.1, we can see the designed fifth order convergence in I*—, [?— and {*°—norms.

Table 3.1: Errors and orders of accuracy for solving one-dimensional linear scalar conser-
vation laws (3.1) with final time 7" = 1.2 in Example 3.1.

N ' error order | [? error order | [ error order
16 | 7.71E-04 — 9.66E-04 - 2.76E-03 -

32 | 1.68E-05 5.52 | 2.61E-05 5.21 | 9.90E-05 4.80
64 | 4.50E-07 5.22 | 6.51E-07 5.32 | 2.48E-06 5.32
128 | 1.34E-08 5.07 | 1.92E-08 5.08 | 7.34E-08 5.08
256 | 4.03E-10 5.06 | 5.71E-10 5.07 | 2.18E-09 5.07
512 | 1.13E-11  5.16 | 1.56E-11 5.20 | 6.00E-11  5.18

Example 3.2. Consider the Burgers equation in the following:

2
u
ut+(7)x =0, 0<z<3/2,t>0, (3.2)

uw(z,0) =1+ 2sin(nz),

with an appropriate boundary condition. At x = 0, when u > 0 we have the inflow boundary
condition; When u < 0, we have the outflow boundary condition. At x = 3/2, When u < 0,
we have inflow boundary condition; When u > 0, we have the outflow boundary condition.
We take the final time T = 0.12 and t = 1.5 to test our algorithm, which represent the
smooth case and non-smooth case respectively. Note that u changes its sign at the right
boundary before final time t = 1.5 .

From Table 3.2, we can see the designed fifth order when the exact solution is smooth
at time 7" = 0.12. Before time 7" = 1.5, u changes its sign at x = 3/2, and we can see the

shock is well captured and no instability occurs in Figure 3.
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Table 3.2: Errors and orders of accuracy for solving one-dimensional Burgers equation (3.2)
with final time 7" = 0.12 in Example 3.2.

N ' error order | [? error order | [ error order
16 | 2.09E-02 — 3.81E-02 — 9.46E-02 —

32 | 2.93E-03 2.83 | 8.49E-03 2.16 | 3.87E-02 1.29
64 | 3.38E-04 3.12 | 1.34E-03 2.66 | 8.11E-03 2.25
128 | 2.07E-05 4.03 | 8.84E-05 3.92 | 5.89E-04 3.78
256 | 7.27TE-07 4.83 | 3.36E-06 4.72 | 2.48E-05 4.57

512 | 2.32E-08 4.97 | 1.06E-07 4.99 | 7.95E-07 4.96

Figure 3: Plots of the numerical solution of one-dimensional Burgers equation at t = 1.5 in
Example 3.2. Solid line: exact solution. Red circles: numerical solution with our boundary
treatments.
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Example 3.3. Consider the 1D Euler equation (2.16) with an additional source term f.
With appropriately chosen f,, we have the exact solution as follows:

p(x,t) =1+ 0.2sin(x — sin(nt)t), w(z,t) =sin(nt), p(x,t)=2.
The computational domain is 2 = (0,27), and we take the final time as T = 1.4.

For simplicity, we only show the errors and orders of accuracy for the density p in Table
3.3. The number of boundary conditions are determined by the signs of the three eigenvalues
of F'(U), i.e. {u—c,u,u+c}, c=+/vp/p. At the left boundary = = 0, if u — ¢ > 0, we
have three boundary conditions; If u — ¢ < 0 and v > 0, we have two boundary conditions;
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If w <0 and u+ c> 0, we have one boundary condition; If u + ¢ < 0, then no boundary
conditions are imposed. At the right boundary x = 2, if u — ¢ > 0, then we do not have
any boundary conditions; If © > 0 and u — ¢ < 0, then we have one boundary condition; If
u+c >0 and u < 0, we have two boundary conditions; If u + ¢ < 0, then we have three
boundary conditions. In Example 3.3, we only consider the case u —c < 0,u 4+ ¢ > 0 and
u changes sign at the boundary as time evolves. Note that when v = 0, we only have one
boundary condition on the boundary. On the boundaries x = 0 and x = 27, we prescribe the
boundary condition for p if one boundary condition is required, and for p, pu if two boundary
conditions are required. Table 3.3 show that our algorithm achieves the optimal order of

convergence in ['—, [?— and [*°*—norms.

Table 3.3: Density errors and orders of accuracy in Example 3.3. On the boundaries, the
eigenvalues of F'(U) are u — ¢ < 0, u + ¢ > 0, and u changes sign as time evolves.

N ' error order | [? error order | [ error order
16 | 3.91E-04 — 6.97E-04 — 9.78E-04 -

32 | 1.98E-05 4.30 | 2.52E-05 4.30 | 6.34E-05 3.95
64 | 7.42E-07 4.74 | 9.58E-07 4.72 | 2.19E-06 4.86
128 | 2.51E-08 4.88 | 3.36E-08 4.83 | 1.16E-07 4.23
256 | 8.01E-10 4.97 | 1.09E-09 4.95 | 4.61E-09 4.65
512 | 2.53E-11 4.98 | 3.40E-11 5.00 | 1.63E-10 4.82

Example 3.4. Consider the interaction of two blast waves problem. The governing equa-
tions are 1D Fuler equations (2.16) with the initial conditions given as

103, 0<2<0.1,
p=1 u=1 p=<107% 01l<z<09,
102, 09<az<1.

The computational domain is (0,1), and the final time is t = 0.038.

In Figure 4, we show the numerical result of the Example 3.4, indicating that our algo-
rithm works well when considering the solid wall boundary condition. The reference solution
is computed on the spatial grid N = 5120 with the reflecting technique on the boundaries.
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Figure 4: Plots of the density profile at ¢ = 0.038 in Example 3.4. Solid line: reference
solution is computed by the fifth order WENO scheme with Az = 1/5120, together with
the reflecting boundary conditions. Red circles: numerical solutions, together with the new
ILW boundary treatment.
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3.2 Two-dimensional problems

Example 3.5. We now test our method for two-dimensional linear scalar hyperbolic con-

servation laws with variable coefficients in the following:

ut+<(£+t>u> +02u, =f;, inQ,t>0,

6 (3.3)

u(z,y,0) =sin(z +y) in€Q,

with Q = (—=1,1) x (=1,1). We choose suitable boundary conditions and a source function
fs such that the exact solution is

u(x,y,t) =sin(x +y — 0.31).
We divide the domain with the uniform Cartesian mesh as follows.
$Z:(Z+51)A$,Z:—3,,Nm+3, yjz(j—F(Sg)Ay,j:—?),,Ny—F?), (34)

with the mesh step size Ax = 2/(N, + 01 + 92), Ay = 2/(Ny + 63 + d4). Then we have
zg = —14+01 Az, vy, = 1-0:Az, yo = —1+083Ay, yn, = 1—0,Ay. We take §; = 65 = 107,
8y = 6, = 1078, The final time is T = 0.8.
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In Example 3.5, when x/6 + ¢t > 0, we have inflow boundary condition at y = —1 and
outflow boundary condition at y = 1. Similarly, When x/6+t¢ < 0, we have outflow boundary
condition at y = —1 and inflow boundary condition at y = 1. When /6 +t =0 at y = +1,
we impose the outflow boundary condition. From Table 3.4, we can see that our method
achieves the designed fifth order convergence.

Table 3.4: Errors and orders of accuracy in Example 3.5. 6; = 03 = 107}, 6, = d, = 1076,
The final time is T" = 0.8.

N, x N, I" error order | [? error order | [*® error order
8 x 10 1.58E-04 — 2.23E-04 — 8.30E-04 —
16 x 20 | 3.79E-06 5.38 | 6.61E-06 5.08 | 3.66E-05 4.50
32 x40 |9.93E-08 5.25 | 1.92E-07 5.11 | 1.06E-06 5.11
64 x 80 | 2.92E-09 5.09 | 6.29E-09 4.93 | 3.81E-08 4.80

128 x 160 | 8.25E-11 5.15 | 1.77E-10 5.15 | 1.17E-09 5.03

256 x 320 | 2.35E-12  5.14 | 5.25E-12 5.08 | 3.62E-11 5.01

Example 3.6. We now test our method for two-dimensional linear scalar hyperbolic con-
servation laws on a disk in the following:

(3.5)

U +uy, +uy =0 in Q¢ >0,
u(z,y,0) = up(z,y) in Q,

with appropriate boundary conditions. The computational domain ) is a disk centered at
origin with radius 1. We test the following two initial conditions separately:

(a) wolz,y) = sin(z +y),

0.254+0.5sin(x +vy), x+y < —1.2,
(b> UO('I7 y) = .

1.25+0.5sin(xr +y), elsewhere.

In Example 3.6, we consider the linear scalar conservation laws (3.5) on a disk and test
two kinds of initial boundary conditions. For the initial condition (a), the exact solution
is smooth and we have the expected fifth order convergence in Table 3.5. For the initial
condition (b), there is a discontinuity in the domain, and we show the contour and cut at
y = 0.2 of the numerical solution. In [25], it needs a special care when impose the inflow
boundary condition on the ghost points near the intersection of the inflow and outflow
boundary. By our method, we do not need to treat this case separately and we can see no
instability occurring at the boundary.
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Table 3.5: Errors and orders of accuracy in Example 3.6 with initial condition (a). The
final time is 7" = 1.2.

N, x N, | " error order | [* error order | [* error order
8 x 10 1.20E-04 — 2.01E-04 — 7.75E-04 —
16 x 20 | 4.98E-06 4.59 | 9.27E-06 4.44 | 4.40E-05 4.14
32 x40 | 1.64E-07 4.93 | 4.39E-07 4.40 | 4.78E-06 3.20
64 x 80 | 5.39E-09 4.92 | 1.88E-08 4.55 | 3.18E-07 3.91

128 x 160 | 1.56E-10 5.11 | 7.38E-10 4.67 | 1.84E-08 4.11

256 x 320 | 3.69E-12 5.40 | 1.64E-11 5.50 | 6.90E-10 4.74

Figure 5: Plots of the numerical solution in Example 3.6 with initial condition (b). N, =
256, N, = 320. The final time is 7" = 0.8. Left figure: the contour of the numerical
solution. Right figure: the cut of the numerical solution at y = 0.2. Solid line in black is
the exact solution, and the cut of the numerical solution is shown with the red circles.
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Example 3.7. We next consider the 2D Burgers equation

u? u?
5):0 + (?
w(z,y,0) =1+ 0.5sin(r(z+y)) in Q,

ug + ( )y =0 inQ, t>0,

(3.6)

with appropriate boundary conditions. We consider both the square domain = (—1,1) X
(—1,1) and the circular domain Q = {(z,y) : 2*> + y*> < 1}. For the square domain, the
partition is similar as (3.4).

In Example 3.7, we take R = 4.3h in (2.52) for the square domain and R = 5.5h in
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(2.52) for the circular domain when performing the 2D extrapolation. We can see the fifth

order convergence at least in I'— and [2—norms in Table 3.6 for both square and circular

domains. When we take the final time 7" = 1.2, there is a shock developed in the interior

domain, and from Figure 6 we can see the shock is well captured and no instability occurs.

Table 3.6: Errors and orders of accuracy in Example 3.7. The final time is 7" = 0.2.

N, x N, | ["error order | [? error order | [ error order
8 x 10 6.51E-04 - 1.15E-03 - 4.94E-03 -
16 x 20 | 3.80E-05 4.10 | 1.17E-04 3.30 | 1.52E-03 1.70
Square 32 x40 | 1.70E-06 4.48 | 6.01E-06 4.28 | 9.87E-05 3.94
64 x 80 | 6.94E-08 4.61 | 3.05E-07 4.30 | 6.03E-06 4.03
128 x 160 | 2.39E-09 4.74 | 1.14E-08 4.74 | 2.54E-07 4.57
256 x 320 | 7.59E-11 5.10 | 3.71E-10 4.94 | 9.09E-09 4.81
8 x 10 3.47E-04 - 4.93E-04 - 1.46E-03 -
16 x 20 | 2.70E-05 3.69 | 6.87TE-05 2.84 | 6.79E-04 1.11
Disk 32 x40 | 1.41E-06 4.26 | 4.03E-06 4.09 | 4.46E-05 3.93
64 x 80 | 5.85E-08 4.59 | 1.91E-07 4.40 | 3.97E-06 3.49
128 x 160 | 2.15E-09 4.86 | 7.97E-09 4.55 | 3.85E-07 3.37
256 x 320 | 5.82E-11 5.11 | 2.50E-10 5.02 | 1.46E-08 4.72

Example 3.8. Consider the two-dimensional Euler equations (2.32) with appropriate source

terms, boundary conditions and initial conditions, such that the exact solutions are given

as

plx,y,t) =1+ 0.2sin(z — u(z,y,t)t) cos(y — v(x,y,t)t),
u(z,y,t) = 0.7sin(27t),

v(x,y,t) = 0.3 cos(2nt),

plx,y,t) =1,

The computational domain is Q = (0, 2m) x (0, 27), and we take the partition of the domain
similar as (3.4). The final time is T = 0.6.

In Example 3.8, u and v change their signs on the boundary as the time evolves. We take
the R = 4.9 in 2D extrapolation (2.52). In Table 3.7, we report the density errors and we
can see the designed fifth order is achieved at least in {' —norm.

Example 3.9. Consider the vortex evolution problem for two-dimensional Fuler equation
(2.32) (see e.g. [10, 19]). We set the mean flow as p =1, p =1, and (u,v) = (1,1). An
isentropic vortezx perturbation is added to the mean flow and centered at (xo,yo) initially
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Figure 6: Plots of the numerical solution in Example 3.7. N, = 256, N, = 320. The
final time is 7" = 1.2. Top left figure: the contour of the numerical solution on the square
domain. Top right figure: the cut of the numerical solution on the square domain at
y = 0.2. Bottom left figure: the contour of the numerical solution on the disk. Bottom
right figure: the cut of the numerical solution on the disk at y = 0.2. Solid line in black is
the exact solution, and the cut of the numerical solution is shown with the red circles.
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Table 3.7: Density errors and orders of accuracy in Example 3.8. On the left and right
boundaries, the eigenvalues of F/'(U) are u — ¢ < 0, u + ¢ > 0, and u changes sign as time
evolves. On the bottom and upper boundaries, the eigenvalues of G'(U) are v — ¢ < 0,
v+ ¢ > 0, and v changes sign as time evolves.

N, x N, | " error order | [? error order | [* error order
8 x 10 3.12E-03 - 3.99E-03 - 1.33E-02 -
16 x 20 1.64E-04 4.25 | 2.54E-04 3.98 | 1.03E-03 3.68
32 x 40 6.14E-06 4.74 | 9.17TE-06 4.79 | 4.64E-05 4.48
64 x 80 1.89E-07 5.02 | 2.89E-07 4.99 | 1.62E-06 4.83

128 x 160 | 6.20E-09 4.93 | 1.04E-08 4.80 | 1.01E-07 4.01

256 x 320 | 2.02E-10 4.94 | 3.66E-10 4.83 | 3.65E-09 4.79

05 =0,

where (T,7) = (x — xo,y — yo), > = T> + y>. An simple calculation shows that the

exact solution of the vortex evolution problem is that the vortex convected with the mean
velocity, and we denote it as U.. The number of boundary conditions is determined by
the signs of four eigenvalues of F'(U) or G'((U)) on the boundaries, and we take the
boundary conditions from U, whenever needed. Since the mean flow moves with the velocity
(1,1), the vortex movement is not aligned with the mesh direction. In the computation,
we take the vortex strength ¢ = 5, and (xo,y0) = (0,0). The computational domain is
Q= (—0.5,1) x (—=0.5,1), and the partition of the domain is similar as (3.4). We take the
final time s T = 1.

In Table 3.8, we report the errors, convergence orders of the density in the vortex evolution
in Example 3.9. The eigenvalues change their sign on the boundaries, and we can see the

convergence order is around 5 at least in {!—norm.

Example 3.10. Consider the double Mach reflection problem [30]. The problem describes
a Mach 10 shock horizontally impinges on a ramp inclined by a 30° angle. In order to
impose the solid wall boundary condition on the ramp, people usually consider an equivalent
problem that a Mach 10 shock initially makes a 60° angle with the horizontal wall and use
the reflection technique [10]. With the ILW approach, we are able to solve the original
problem with the Cartesian mesh in a single domain. The computational domain is the
same as in [25]. We have the initial conditions as follows.

( (8,10,0,116.5), <0,
7u7 U’ =
PIOPI=A (14,0,0,1), z >0,
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Table 3.8: Density errors and orders of accuracy for the vortex evolution problem in Ex-
ample 3.9.

N, x N, | " error order | [* error order | [*® error order
8 x 10 9.84E-04 - 1.42E-03 - 4.95E-03 -
16 x 20 | 3.21E-05 4.94 | 4.26E-05 5.06 | 1.34E-04 5.21
32 x40 | 1.34E-06 4.58 | 1.82E-06 4.55 | 6.00E-06 4.48
64 x 80 | 5.12E-08 4.71 | 6.68E-08 4.77 | 2.13E-07 4.82

128 x 160 | 1.81E-09 4.82 | 2.46E-09 4.76 | 1.02E-08 4.38

256 x 320 | 6.53E-11 4.80 | 9.73E-10 4.66 | 5.90E-10 4.11

The left and bottom boundary condition is set to be the post-shock condition, and the outflow
boundary condition is imposed on the right boundary. On the upper boundary y = 23/12 +
\/3/2, we have the post-shock condition when x < 10t and pre-shock condition when x >
10t. On the ramp, we use our proposed ILW procedure and the WENO type extrapolation.
The final time is taken to be 0.2.

In Figure 7, we show the numerical solution for both Az = Ay = 1/3/480 and Az =
Ay = /3/960, and their zoomed-in region near the double Mach stem at time ¢t = 0.2 in
Example 3.10. It indicates our algorithm works well for treating the solid wall boundary
condition.

Example 3.11. Our last example is an inviscid, compressible Mach 3 flow moving towards
a circular cylinder from the left. The cylinder locates at the origin with radius 1, and the
solid wall boundary condition is imposed on the surface of the cylinder. In [10], a body-
fitted curvilinear mesh is used, and it can be transformed to the Cartesian mesh, then the
reflection technique can be applied on the surface. With the ILW approach presented in
[25], we can solve this problem on the Cartesian grids directly. Different from [25], we take
a larger computational domain is @ = (—3,9) x (—6,6). At the left boundary v = —3, we
have supersonic inflow boundary condition, and we have free-stream boundary conditions
at the boundaries x =9, y = 6. On the surface of the cylinder, the solid wall boundary
condition is imposed, i.e. (u,v)-n = 0.

In Example 3.11 we take the final time as T" = 40, and the numerical solution reaches
the steady state in the subregion (—3,0) x (—6,6). In Figure 8, we can see the bow shock is
well-captured with the mesh Az = Ay = 1/40 and Az = Ay = 1/80.
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Figure 7: Density contour of double Mach reflection at ¢ = 0.2 in Example 3.10. 30
contours from 1.731 to 20.92.
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4 Concluding remarks

In this paper we consider a high order boundary treatment for solving hyperbolic conservation
laws with high order finite difference methods on a Cartesian mesh. The boundary treatment
is very challenging because of the wide stencil of the interior scheme and the domain boundary
intersects with the Cartesian mesh in an arbitrary fashion. We propose a new inverse Lax-
Wendroff procedure to handle the boundary condition, which could be used for the case
when the eigenvalues of the Jacobian matrix are close to zero. Different from [25, 26],
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Figure 8: Pressure contour of flow past a cylinder in Example 3.11. 20 contours from 2 to
13.
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we perform the inverse Lax-Wendroff procedure on the evaluation of the flux values, thus
it avoids the eigenvalues appearing in the denominators. We also propose a new WENO
type extrapolation, which will be evoked when there is shock near the boundary. The new
WENO type extrapolation can preserve the property of self-similarity, which is desirable
in the computation of hyperbolic conservation laws. The idea of the new WENO type
extrapolation comes from the multi-resolution WENO schemes [32]. We present extensive
numerical examples to validate the good performance of the proposed method, especially
for the problems with solid wall boundary condition and the eigenvalues of the Jacobian
matrix changing their signs on the boundary. The computational cost of the boundary
treatment is not negligible, especially when the extrapolation occupies a large proportion of
the boundary treatment in two-dimensional problems. We will consider this issue and try to
reduce the computational cost in our future work. Also, we can see that this approach only
evaluates the first order derivatives by the inverse Lax-Wendroff procedure, and all other
higher order derivatives are obtained by extrapolation. Thus from [13], stability may be an
issue when extending this approach to higher order, which will be investigated in our future
work. Third, this approach may provide another way to treat the boundary conditions for
convection-diffusion problems in [12], since the flux values are evaluated independently.
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