
An inverse Lax-Wendroff procedure for hyperbolic

conservation laws with changing wind direction on the

boundary

Jianfang Lu ∗, Chi-Wang Shu †Sirui Tan ‡, and Mengping Zhang §

October 18, 2020

Abstract

In this paper, we reconsider the inverse Lax-Wendroff (ILW) procedure, which is a nu-

merical boundary treatment for solving hyperbolic conservation laws, and propose a new

approach to evaluate the values on the ghost points. The ILW procedure was firstly pro-

posed to deal with the “cut cell” problems, when the physical boundary intersects with the

Cartesian mesh in an arbitrary fashion. The key idea of the ILW procedure is repeatedly uti-

lizing the partial differential equations (PDEs) and inflow boundary conditions to obtain the

normal derivatives of each order on the boundary. A simplified ILW procedure was proposed

in [28] and used the ILW procedure for the evaluation of the first order normal derivatives

only. The main difference between the simplified ILW procedure and the proposed ILW

procedure here is that we define the unknown u and the flux f(u) on the ghost points sep-

arately. One advantage of this treatment is that it allows the eigenvalues of the Jacobian

f ′(u) to be close to zero on the boundary, which may appear in many physical problems.

We also propose a new weighted essentially non-oscillatory (WENO) type extrapolation at

∗South China Research Center for Applied Mathematics and Interdisciplinary Studies, South China
Normal University, Canton, Guangdong 510631, China. E-mail: jflu@m.scnu.edu.cn. J. Lu’s research is
partially supported by NSFC grant 11901213.

†Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. E-mail: chi-
wang shu@brown.edu. C.-W. Shu’s research is partially supported by NSF grants DMS-1719410 and
DMS-2010107, and AFOSR grant FA9550-20-1-0055.

‡Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. E-mail:
sirui tan@alumni.brown.edu.

§School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026,
China. E-mail: mpzhang@ustc.edu.cn. M. Zhang’s research is partially supported by NSFC grant
11871448.

1

the outflow boundaries, whose idea comes from the multi-resolution WENO schemes in [32].

The WENO type extrapolation maintains high order accuracy if the solution is smooth near

the boundary and it becomes a low order extrapolation automatically if a shock is close to

the boundary. This WENO type extrapolation preserves the property of self-similarity, thus

it is more preferable in computing the hyperbolic conservation laws. We provide extensive

numerical examples to demonstrate that our method is stable, high order accurate and has

good performance for various problems with different kinds of boundary conditions including

the solid wall boundary condition, when the physical boundary is not aligned with the grids.

Key Words: Hyperbolic conservation laws; Inverse Lax-Wendroff method; Numerical

boundary condition; WENO type extrapolation; Solid wall

1 Introduction

In this paper, we consider a numerical boundary treatment for solving hyperbolic conserva-

tion laws with high order finite difference methods on the Cartesian mesh. The Cartesian

mesh is attractive and preferable for its simple structure and easy generation, and it allows

the use of the high-resolution shock capturing methods that are more complicated to develop

on unstructured meshes. As mentioned in [25], there are two kinds of difficulties that should

be treated carefully when imposing the inflow boundary conditions with the high order finite

difference schemes. One is the treatment of the ghost points near the boundary because of

the wide stencils of the interior scheme. Another difficulty is that the mesh may not be

aligned with the boundaries of the geometric body, then the so-called “cut cell” problem

arises. This problem would cause some numerical difficulties. For instance, in finite volume

methods it may lead to a restricted time step condition, and the h-box method was pro-

posed in [3] to overcome this difficulty. There are many attempts to deal with the “cut cell”

problems, such as the embedded boundary method [11, 22, 14], immersed boundary method

[17, 15], and the references therein. In this paper, we focus on the inverse Lax-Wendroff

(ILW) procedure, which was first proposed by Tan and Shu in [25] to deal with the inflow

boundary conditions when solving hyperbolic conservation laws. The idea of the ILW proce-

dure comes from the Lax-Wendroff type boundary condition procedure [9, 31], in which the

authors repeatedly used the PDEs to write the normal derivatives to the inflow boundary

in terms of the tangential derivatives, for solving the static Hamilton-Jacobi equation with

high order fast sweeping WENO methods. Tan and Shu extended this procedure to solve the

time-dependent hyperbolic conservation laws in static or moving geometries in [25, 26]. The

essence of the ILW method is repeatedly utilizing the partial differential equations (PDEs)

2

to obtain the normal spatial derivatives on the inflow boundary, in terms of the time and

tangential derivatives of the given boundary condition. For earlier related work of this pro-

cedure, see [7, 8]. The core idea of computing the higher order derivatives of the solution

via the governing equation dates back to the classical scheme of Lax and Wendroff, that is

why the current method is called ILW. This idea has been used extensively over the past

years for building discretizations of both differential equations and boundary conditions. For

example, in [23], Singer and Turkel introduced the equation-based compact finite difference

schemes for the Helmholtz equation. In the approach of [23], the derivatives of the solution

are needed to cancel the leading terms in the expansion of the truncation error and thus

achieve high order accuracy on a small (i.e., compact) stencil. Subsequently, similar ideas

have been explored and developed further, e.g. by Baruch, Fibich, and Tsynkov [2] and

Turkel et al. [24]. Moreover, the method of difference potentials by Ryaben’kii [18] also uses

the equation-based differentiation to enable the treatment of non-conforming boundaries on

simple grids (such as Cartesian) with no loss of accuracy. It has been applied to a variety of

2D and 3D wave propagation problems in both frequency domain [16] and time domain [4].

Due to the heavy algebra of the ILW procedure for 2D nonlinear systems, Tan et al.

developed a simplified and improved implementation of this procedure for hyperbolic systems

with source terms in [28]. The stability analysis of the ILW procedure can be found in

[25, 29, 13]. Also, this procedure has been extended to other problems such as Boltzmann

type models [5], convection-diffusion problems [12], etc. For the survey and developments of

the ILW procedure, see [27, 20].

In this paper, we study the ILW methods developed in [25, 26], and propose a new ILW

method to solve hyperbolic conservation laws. In [25, 26], it is required that the eigenvalues

of the Jacobian f ′(u) cannot be too close to zero on the boundary. We aim at removing

this restriction by evaluating the unknown u and the flux f(u) independently, thus keeping

the eigenvalues away from being the denominator. Same as in [26], we only perform the

ILW procedure for the evaluation of the first order normal derivative, while all higher order

derivatives are obtained by extrapolation. At the outflow boundary, Tan and Shu in [25, 26]

used the classical Lagrangian extrapolation or least squares extrapolation when the solution

is smooth, or the WENO type extrapolation if there is a shock near the boundary. However,

the weights of the WENO type extrapolation in [25, 26] depend explicitly on the mesh size,

hence violating the self-similarity property of the finite difference WENO schemes. In this

paper, we adopt the idea of the multi-resolution WENO method in [32], and propose a new

WENO type extrapolation. The linear weights in the multi-resolution WENO procedure

can be arbitrary, and we choose them as some suitable positive numbers in the new WENO

3

type extrapolation. This procedure works well in all the numerical examples. We remark

that our treatment also works well for the problems with the solid wall boundary condition.

This paper is organized as follows. In Section 2, we propose our numerical boundary

treatment for both one-dimensional and two-dimensional hyperbolic conservation laws with

the fifth order finite difference WENO method as an example. For the one-dimensional

hyperbolic conservation laws, we first briefly review the original ILW method at the inflow

boundary and the WENO type extrapolation at the outflow boundary in [25], then we intro-

duce the new ILW method and the new WENO type extrapolation, and extend them to the

two-dimensional problems. In Section 3, we provide a variety of numerical examples on ac-

curacy tests and some benchmark problems, to demonstrate the effectiveness and robustness

of the proposed algorithm. Concluding remarks are given in Section 4 .

2 Scheme formulation

In this section, we present an inverse Lax-Wendroff (ILW) procedure for treating the bound-

ary conditions. As we shall see later, this new treatment will prevent the eigenvalues of the

Jacobian f ′(u) from appearing in the denominators, thus it can be applied for the cases when

the eigenvalues are close to zero. We also consider another kind of WENO type extrapo-

lation, which preserves the property of self-similarity. We begin with the one-dimensional

conservation laws to illustrate our idea, and then extend the algorithm to two-dimensional

systems.

2.1 One-dimensional scalar conservation laws

First let us briefly review the ILW method for hyperbolic equations [25], to explain the basic

idea and set notations. For simplicity, we consider the following one-dimensional equation







ut + f(u)x = 0, a < x < b, t > 0,
u(x, 0) = u0(x), a < x < b,
u(a, t) = g(t), t > 0.

(2.1)

Without loss of generality, we assume f ′(u) > α > 0 at x = a and x = b, with α being a

positive constant. Therefore, we have an inflow boundary condition at x = a and an outflow

boundary condition at x = b. For two constants δ1, δ2 ∈ [0, 1), we use a uniform mesh with

the mesh size ∆x = (b− a)/(N + δ1 + δ2) and distribute the grid points as

xj = a + (j + δ1)∆x, j = −3, · · · , N + 3. (2.2)

4

then {x0, x1, · · · , xN} are our interior points and the closest interior points to the left and

right boundaries are x0 = a + δ1∆x and xN = b − δ2∆x respectively. Notice that we have

deliberately allowed the physical boundaries x = a and x = b not located on the grid points.

In this paper, we use the fifth order upwind-biased conservative finite difference operator

with the Lax-Friedrichs flux splitting technique (see e.g. [10]) to approximate the first order

spatial derivative. The semi-discrete scheme for (2.1) is given as

(uj)t +
1

∆x

(

f̂j+ 1

2

− f̂j− 1

2

)

= 0, j = 0, 1, · · · , N, (2.3)

where uj is the approximation of u at x = xj . For the fifth order WENO operator, the

flux f̂j+ 1

2

requires a six point stencil {xm}j+3
m=j−3 so up to three ghost points are needed near

the boundaries. We concentrate on describing how to define the values at the ghost points

{xj}−1
j=−3 and {xj}N+3

j=N+1.

Our goal is to obtain spatial derivatives of each order at the physical boundary, then use

Taylor expansion to get the values on the ghost points. The Taylor expansion of kth order

at the left and right boundaries are respectively defined as

uj =

k
∑

m=0

(xj − a)m

m!
∂(m)
x u, j = −3,−2,−1,

uj =
k

∑

m=0

(xj − b)m

m!
∂(m)
x u, j = N + 1, N + 2, N + 3.

(2.4)

Here ∂
(m)
x u is the numerical approximation of ∂m

∂xmu at the physical boundary. In fact, by

repeatedly utilizing the equation (2.1) and the boundary condition at x = a, termed by

inverse Lax-Wendroff, we can obtain the spatial derivatives as follows.

∂(0)
x u = u(a, t) = g(t),

∂(1)
x u = ux(a, t) = − ut

f ′(u)

∣

∣

∣

x=a
= − g′(t)

f ′(g(t))
,

∂(2)
x u = uxx(a, t) =

uttf
′(u)− 2u2

tf
′′(u)

f ′(u)3

∣

∣

∣

x=a
=

g′′(t)f ′(g(t))− 2g′(t)2f ′′(g(t))

f ′(g(t))3
,

...

(2.5)

Thus we can obtain {∂(m)
x u}∞m=0 completely from the given boundary condition and the PDE

by converting the spatial derivatives into the time derivatives. Then, with Taylor expansion

(2.4), we can obtain {uj}−1
j=−3. Notice that, if all the spatial derivatives are obtained by

the ILW procedure, the values at the inflow ghost points are obtained completely from the

5

given boundary condition, no extrapolation from inside the computational domain is needed.

Therefore, stability can be easily proved using the classical GKS theory [6].

Due to the heavy algebra of the ILW approach for the multi-dimensional nonlinear sys-

tems, a simplified ILW was proposed in [28], in which they obtained the first order derivative

by the ILW procedure, and higher order derivatives by extrapolation. Theoretical stability

analysis of upwind-biased finite difference schemes for linear conservation laws is reported

in [13], and in it the authors showed the smallest number of derivatives which must be ob-

tained by ILW rather than by extrapolation to ensure the stability under the maximum CFL

condition of the internal scheme.

Glancing at the expressions of the derivatives in (2.5), we can immediately find that f ′(u)

is in the denominators in the first and higher order derivatives. This is why the authors make

the requirement that f ′(u) is away from zero on the boundary in [25]. If f ′(u) is exactly

zero, it can be treated as outflow and the ILW procedure would work without any problem.

This is the situation for the solid wall boundary conditions for Euler equations, which we

will treat both in 1D and in 2D in the numerical results section. The difficulty is when the

boundary condition, which is time dependent, transits from inflow to outflow (i.e. going

through a sonic point). When f ′(u) is still positive but very small (for the left boundary,

this is still an inflow), if we use the original ILW procedure, we would encounter a very

small number in the denominator, which makes the algorithm much less robust, it could

even blow up if we are unlucky and the denominator is too small. The main objective of this

paper is to find an alternative ILW procedure which avoids small denominators near sonic

points. Consider the one-dimensional scalar conservation laws (2.1) and the corresponding

conservative scheme (2.3). The construction of the numerical flux f̂j+ 1

2

often involves a

wide stencil near xj . In fact, the Lax-Friedrichs flux in the fifth order WENO operator

relies on {um}j+3
m=j−3 and {f(um)}j+3

m=j−3. Therefore, to make the scheme (2.3) work, we need

not only the values {uj}Nj=0, but also the ghost point values {uj}−1
j=−3 and {uj}N+3

j=N+1. The

traditional ILW procedure in [25] successfully obtained these values, as described above,

then {f(uj)}−1
j=−3 and {f(uj)}N+3

j=N+1 are obtained immediately and the numerical flux can

be formed. However, (2.5) shows that the ILW cannot tackle robustly with the case when

f ′(u) is very close to zero on the boundary.

Inflow boundary: For the inflow boundary, we would insist on using the equation but

avoiding f ′(u) appearing in the denominator. Our approach is to redefine {fj}−1
j=−3, where

fj is the approximation of f(u) at xj but is not taken simply as f(uj). A simple truncation

error analysis shows that O(∆x5) difference between this treatment and the original ILW

method in [25].

6

f(uj) = f
(

4
∑

l=0

(sd)
l

l!
∂(l)
x u

)

= f(u) + sdf(u)x +
(sd)

2

2
f(u)xx +

(sd)
3

6
f(u)xxx +

(sd)
4

24
f(u)xxxx +O(∆x5),

(2.6)

where j = −3,−2,−1, sd = xj − a. Besides, the simplified ILW proposed in [28] suggests

that, for the fifth order finite difference WENO scheme, we just need to obtain the first

derivative by the ILW procedure and the second and higher order derivatives are obtained

by extrapolation. Thus, we obtain f(u) by the boundary condition, and f(u)x by the ILW

approach, and {∂(m)
x f(u)}4m=2 by the extrapolation of the interior points. To further illustrate

our idea, we show the fifth order treatment in the following.

∂(0)
x f(u) = f(g(t)),

∂(1)
x f(u) = −g′(t),

∂(2)
x f(u) =

1

∆x2

(δ21
2

(

f(u0)− 4f(u1) + 6f(u2)− 4f(u3) + f(u4)
)

+
δ1
2

(

5f(u0)− 18f(u1) + 24f(u2)− 14f(u3) + 3f(u4)
)

+
1

12

(

35f(u0)− 104f(u1) + 114f(u2)− 56f(u3) + 11f(u4)
)

)

,

∂(3)
x f(u) =

1

∆x3

(

− δ1
(

f(u0)− 4f(u1) + 6f(u2)− 4f(u3) + f(u4)
)

+
1

2

(

− 5f(u0) + 18f(u1)− 24f(u2) + 14f(u3)− 3f(u4)
)

)

,

∂(4)
x f(u) =

1

∆x4

(

f(u0)− 4f(u1) + 6f(u2)− 4f(u3) + f(u4)
)

.

(2.7)

Notice that in (2.7) we avoid placing f ′(u) in the denominator in obtaining {∂(m)
x f(u)}4m=0,

thus we can define {fj}−1
j=−3 by using the Taylor expansion with {∂(m)

x f(u)}4m=0 even when

f ′(u) = 0. To obtain the values {uj}−1
j=−3, we only use the boundary condition and the

extrapolation of interior points. We present the fifth order treatment as an example to show

7

how to obtain {∂(m)
x u}4m=0 at the left boundary.

∂(0)
x u = g(t),

∂(1)
x u =

1

∆x

(

− δ31
6

(

u0 − 4u1 + 6u2 − 4u3 + u4

)

− δ21
4

(

5u0 − 18u1 + 24u2 − 14u3 + 3u4

)

+
δ1
12

(

35u0 − 104u1 + 114u2 − 56u3 + 11u4

)

+
1

12

(

− 25u0 + 48u1 − 36u2 + 16u3 − 3u4

)

)

,

∂(2)
x u =

1

∆x2

(δ21
2

(

u0 − 4u1 + 6u2 − 4u3 + u4

)

+
δ1
2

(

5u0 − 18u1 + 24u2 − 14u3 + 3u4

)

+
1

12

(

35u0 − 104u1 + 114u2 − 56u3 + 11u4

)

)

,

∂(3)
x u =

1

∆x3

(

− δ1
(

u0 − 4u1 + 6u2 − 4u3 + u4

)

+
1

2

(

− 5u0 + 18u1 − 24u2 + 14u3 − 3u4

)

)

,

∂(4)
x u =

1

∆x4

(

u0 − 4u1 + 6u2 − 4u3 + u4

)

.

(2.8)

Outflow boundary: For the outflow boundary, we obtain {uj}N+3
j=N+1 by extrapolation,

and fj = f(uj), j = N + 1, N + 2, N + 3. If the solution of (2.1) is smooth, we can use

Lagrange extrapolation to obtain these values. In this situation, the treatment is simply using

the interior point values to construct a polynomial, and then extrapolate to the boundary.

But if there is a shock near the boundary, then it may not have enough points between the

shock and the boundary for high order extrapolation. To overcome this difficulty, in [25] Tan

and Shu developed the WENO type extrapolation which would degenerate automatically to

the lower order extrapolation but is more robust when the shock is near the boundary, while

it maintains high order accuracy if the solution stays smooth near the boundary. Again, we

first briefly review the procedure of the WENO type extrapolation proposed in [25], and take

the fifth order treatment as the illustration example. Now our goal is to obtain a (5−m)th

order approximation of ∂m

∂xmu on the boundary. Assume we have five candidate stencils given

by

Sr = {xN−r, · · · , xN}, , r = 0, · · · , 4.

Then we can construct the Lagrange polynomials of degree r on {Sr}4r=0, denoted as {pm(x)}4m=0.

Suppose u is smooth on S4, by the approximation theory we have u = pm + O(∆xm+1),

m = 0, · · · , 4. This indicates that
4
∑

r=0

drpr(x) is a fifth order approximation to u where

8

d0 = ∆x4, d1 = ∆x3, d2 = ∆x2, d3 = ∆x, d4 = 1−
∑3

r=0 dr. Then we take

∂(m)
x u =

dm

dxm

(4
∑

r=0

drpr(x)

)

=

4
∑

r=0

dr
dm

dxm
pr(x)

∣

∣

∣

x=b
,

such that ∂
(m)
x u is (5 − m)-th order approximation to ∂m

∂xmu. To obtain a WENO type

extrapolation, the coefficients {dr}4r=0 are changed into {ωr}4r=0, where

ωr =
αr

∑4
s=0 αs

, αr =
dr

(ε+ βr)q
, (2.9)

with ε = 10−6 and βr are the smoothness indicators given in the following.

β0 = ∆x2, βm =

4
∑

l=1

∆x2l−1

∫ xN+1

xN−1

(dl

dxl
pm(x)

)2

dx, m = 1, · · · , 4. (2.10)

The WENO type extrapolation works very well in [25, 26, 28, 12], etc. However, it is

preferable to preserve the property of self-similarity, which is intrinsic to the hyperbolic

conservation law but is not fulfilled by this kind of WENO type extrapolation because the

nonlinear weights ωr depend on the mesh size ∆x explicitly. Besides, there is a parameter

q in the smoothness indicator (2.9) and its value is problem dependent in [25, 28]. We

would prefer to obtain an extrapolation which preserves the property of self-similarity when

computing the hyperbolic conservation laws.

In the following we present the new WENO type extrapolation. We will adopt the above

notations without any ambiguities. We still perform the construction on the five-point stencil

S = {xN−4, · · · , xN} with the idea of the multi-resolution WENO methods in [32]. Assume

we have the point values {vN−4, · · · , vN} of some function v(x). We then have the five

sub-stencils

Sr = {xN−r, · · · , xN}, r = 0, · · · , 4,

and the corresponding interpolation polynomials are denoted as qr(x), r = 0, · · · , 4. If v(x)
is smooth on the stencil S4, then q4(x) is the desired polynomial. If v(x) has a discontinuity

in the interval (xN−4, xN−3) but smooth in (xN−3, xN), then the polynomial q3(x) is desired.

The cases that the discontinuity located in (xN−3, xN−2), (xN−2, xN−1) and (xN−1, xN) are

similar. In summary, we must use the polynomial that includes the point value vN , and the

stencil should be chosen as large as possible and the function v(x) stays smooth on it in the

meantime. In the following we give a detailed description on how to achieve this goal, while

the key idea comes from [32].

9

We first present the equivalent expressions of qr(x) as follows.

p0(x) = q0(x), pr(x) =

r
∑

m=0

dm
dr

qr(x)−
r−1
∑

m=0

dm
dr

pm(x), r = 1, · · · , 4, (2.11)

where {dr}4r=0 satisfy
∑4

r=0 dr = 1, dr > 0, r = 0, · · · , 4. Then {dr}4r=0 are the linear weights

since we have q4(x) =
∑4

r=0 drpr(x). Throughout this paper we take {dr}4r=0 as follows.

d0 =
1

15
, d1 =

2

15
, d2 =

1

5
, d3 =

4

15
, d4 =

1

3
. (2.12)

Similar to the WENO-Z idea in [1], the nonlinear weights are taken in the following form.

ωr =
αr

∑4
s=0 αs

, αr = dr

(

1 +
(τ

ε+ βr

)4)

, r = 0, · · · , 4,

τ =
(

max
1≤l≤3

{(βl − β4)
2}
)

1

2

+ max
1≤l≤4

{‖q0(x)− ql(x)‖3}
(2.13)

where the ‖ · ‖ is the standard L2-norm on (xN−1, xN+1), and the smoothness indicators

{βr}4r=0 are defined as follows.

β0 = c0β1,

βr =
r

∑

l=1

∆x2l−1

∫ xN+1

xN−1

(dl

dxl
qr(x)

)2

dx, r = 1, · · · , 4, (2.14)

with ε = 10−4 is placed to avoid the denominator becoming zero (notice that this choice of

ε would make the denominator to become (10−4)4 = 10−16 when βr is zero or is very small,

which is close to machine zero in double precision), and c0 is a positive constant. Note that

p0(x) is a constant function so its smoothness indicator vanishes by the second equation in

(2.14), thus we take β0 be proportional to β1. When c0 is small enough, the extrapolation

tends to be the constant extrapolation when there is a discontinuity locates on (xN−2, xN).

Throughout this paper, we take c0 = 0.1 and later we can see it works well in the numerical

tests. With this new WENO type extrapolation, we have the extrapolating polynomial as

p(x) =
4

∑

r=0

ωrpr(x).

With the newly obtained polynomial p(x), we have the derivatives {∂(r)
x u}4r=0 at x = b.

∂(r)
x u =

dr

dxr
p(x), r = 0, · · · , 4. (2.15)

With these derivatives on x = b, we then use Taylor expansion (2.4) to obtain the values on

the ghost points {xj}N+3
j=N+1.

10

Remark 2.1. We have made two modifications from the previous algorithms in [25, 28].

One is to separate the evaluation of u and f(u) on the ghost points, thus it allows us to

handle the case when f ′(u) vanishes on the boundary. The other is to make use of the multi-

resolution WENO procedure to obtain a new WENO type extrapolation, which preserves the

property of self-similarity. This is because we use the constants in the linear weights in

(2.13), thus it is independent of ∆x. Also, the second and higher order derivatives are

obtained by extrapolation, and we still need to use the new WENO type extrapolation when

the shock comes near the boundary.

2.2 One-dimensional systems

Consider the 1D compressible Euler equations

Ut + F (U)x = 0, x ∈ (a, b), t > 0, (2.16)

where U and F (U) are defined as

U =





U1

U2

U3



 =





ρ
ρu
E



 , F (U) =





F1

F2

F3



 =





ρu
ρu2 + p
u(E + p)



 .

ρ, u, p and E stand for density, velocity, pressure and total energy per unit volume, respec-

tively. The equation of state is

E = p/(γ − 1) + ρu2/2,

where γ is the heat capacity ratio and γ = 1.4 for air when the temperature is within a

suitable range. Notice that U1 no longer stands for the value of U at x = x1, but only stands

for the density ρ. So are U2 and U3. Thus, we take the notation (U1)j to stand for the value

of U1 at x = xj , and Uj = ((U1)j, (U2)j, (U3)j)
T . Similarly, (F1)j is the value of F1(U) at

x = xj , and Fj = (F1(Uj), F2(Uj), F3(Uj))
T . Without loss of generality, we consider the left

boundary x = a. Firstly, we rewrite the governing equation (2.16) into the following form.

Ut + F ′(U)Ux = 0,

where the Jacobian matrix F ′(U) is given as

F ′(U) =











0 1 0
1

2
(γ − 3)u2 (3− γ)u γ − 1

1

2
(γ − 1)u3 − uH H − (γ − 1)u2 γu











, (2.17)

11

with the enthalpy H = (E+p)/ρ. The number of the boundary conditions are determined by

the signs of the eigenvalues of the Jacobian matrix F ′(U). By the similarity transformation

F ′(U) = RΛR−1, we have

Vt +ΛVx = 0, (2.18)

where V = R−1U are characteristic variables, Λ = diag(u− c, u, u+ c), and c =
√

γp/ρ is

the speed of sound, and R and R−1 are given as

R =







1 1 1
u− c u u+ c

H − uc
1

2
u2 H + uc






,

R−1 =
1

c2













1

2
uc+

1

4
(γ − 1)u2 −1

2
(γ − 1)u− 1

2
c

1

2
(γ − 1)

c2 − 1

2
(γ − 1)u2 (γ − 1)u 1− γ

−1

2
uc+

1

4
(γ − 1)u2 −1

2
(γ − 1)u+

1

2
c

1

2
(γ − 1)













.

(2.19)

In the finite difference WENO scheme, it takes this characteristic decomposition when ob-

taining the numerical fluxes, and now we use this decomposition at x = a to determine the

inflow boundary conditions and outflow boundary conditions.

Now let us consider four cases in the following:

Case 1: u− c > 0 ;

Case 2: u− c ≤ 0, u > 0 ;

Case 3: u ≤ 0, u+ c > 0 ;

Case 4: u+ c ≤ 0.

Note that the above u and c in these four cases are obtained at x = a.

For the case 1, we have all eigenvalues positive, thus we need three inflow boundary

conditions. Our goal is to obtain both {∂(l)
x U}4l=0 and {∂(l)

x F (U)}4l=0 at x = a, then we can

use the Taylor expansion (2.4) to obtain U and F (U) on the ghost points {xj}−1
j=−3. For

simplicity, we denote (w)ilw if w is obtained from the boundary conditions and the governing

equations, and (w)ext if w is obtained from the extrapolation of the interior points. Similar to

the scalar case in (2.8), we first consider U = (U1, U2, U3)
T and use the boundary conditions

(∂
(0)
x U)ilw and {(∂(l)

x U)ext}4l=1 to obtain {∂(l)
x U}4l=0 at x = a.

∂(0)
x U = (U)ilw, ∂(l)

x U = (∂(l)
x U)ext, l = 1, · · · , 4. (2.20)

12

By the Taylor expansion (2.4), we obtain {Uj}−1
j=−3. Then we consider {∂(l)

x F (U)}4l=0. Sim-

ilar to the scalar case in (2.7), we use the boundary conditions ∂
(0)
x U to obtain ∂

(0)
x F (U),

obtain ∂
(1)
x F (U) by the ILW procedure, and obtain {∂(l)

x F (U)}4l=2 by extrapolation at x = a.

∂(0)
x F (U) = F (∂(0)

x U), ∂(1)
x F (U) = (∂(1)

x F (U))ilw,

∂(l)
x F (U) = (∂(l)

x F (U))ext, l = 2, 3, 4.
(2.21)

By the Taylor expansion (2.4), we obtain {Fj}−1
j=−3. Then case 1 is finished.

For the case 2, we have two positive eigenvalues and one negative eigenvalue, thus we

need two boundary conditions at x = a. For convenience, we assume that the two boundary

conditions are ρ(a, t) = g1(t), ρu(a, t) = g2(t). In fact, it is equivalent to prescribing the

incoming characteristic variable V2, V3 as a function of the outgoing characteristic variable

V1, where (V1, V2, V3)
T = V = R−1U [25].

As before, we shall obtain U on the boundary x = a firstly. With the extrapolation

and the prescribed boundary conditions, we can obtain U at x = a, i.e. U1 = g1(t), U2 =

g2(t), U3 = (U3)
ext. With U at x = a, we are able to perform the local characteristic

decomposition and obtain the incoming characteristic variables V2, V3 and outgoing variable

V1 in the interior domain. In particular, the outgoing characteristic variable V1 is used for

extrapolation. For simplicity we denote R = (rij)3×3, R
−1 = (r̃ij)3×3. Then at the left

boundary x = a, we have

∂(0)
x U1 = g1(t), ∂(0)

x U2 = g2(t), ∂(0)
x U3 =

(

(V1)
ext − r̃11g1(t)− r̃21g2(t)

)

/r̃23,

∂(l)
x U1 = (∂(l)

x U1)
ext, ∂(l)

x U2 = (∂(l)
x U2)

ext, l = 1, · · · , 4.
(2.22)

From (2.19) we know that r̃13 = (γ − 1)/(2c2) 6= 0, thus (2.22) is well-defined. In (2.22)

∂
(0)
x U3 obtained on the boundary is not for the Taylor expansion, but for computing F (U)

on the boundary. Now we assume {(U1)j}−1
j=−3 and {(U2)j}−1

j=−3 are obtained by (2.22) and

(2.4). To obtain {(U3)j}−1
j=−3 , with the relation V = R−1U we have

U3 =
(

(V1)
ext − r̃12U1 − r̃12U2

)

/r̃13. (2.23)

Notice that (2.22) is performed at the left boundary x = a while (2.23) is considered on the

ghost points {xj}−1
j=−3.

Now let us turn to the definitions of {∂(l)
x F (U)}4l=0. Since we have obtained ∂

(0)
x U at the

left boundary x = a, we immediately obtain ∂
(0)
x F (U) with the expression F (∂

(0)
x U). The

key step in this algorithm is to obtain ∂
(1)
x F (U) by the ILW procedure. By the boundary

conditions and the governing equations, we can obtain ∂
(1)
x F1(U) and ∂

(1)
x F2(U). To obtain

13

∂
(1)
x F3(U), we use the relation R−1F (U)x = ΛVx. The second order and higher order

derivatives are obtained by extrapolation. We summarize the procedure in the following.

∂(0)
x F (U) = F (∂(0)

x U),

∂(1)
x F1(U) = (∂(1)

x F1)
ilw = −g′1(t), ∂(1)

x F2(U) = (∂(1)
x F2)

ilw = −g′2(t),

∂(1)
x F3(U) =

(

(u− c)(∂(1)
x V1)

ext + r̃11g
′
1(t) + r̃12g

′
2(t)

)

/r̃13,

∂(l)
x F (U) = (∂(l)

x F (U))ext, l = 2, 3, 4.

(2.24)

By the Taylor expansion (2.4), we obtain {Fj}−1
j=−3. Then case 2 is finished.

For the case 3, we have one inflow boundary condition and two outflow boundary con-

ditions. Assume we have the boundary condition for ρ(x, t) = g1(t). Firstly we use the

extrapolation and boundary condition to obtain U at x = a. Then we perform the charac-

teristic decomposition at x = a and obtain the characteristic variables V , and V1 and V2 are

outgoing characteristic variables and V3 is incoming characteristic variable. By the relation

V = R−1U , we have

∂(0)
x U = RV , where V1 = (V1)

ext, V2 = (V2)
ext, V3 =

(

g1(t)− r11(V1)
ext − r12(V2)

ext
)

/r13,

∂(l)
x U1 = (∂(l)

x U1)
ext, l = 1, · · · , 4,

(2.25)

where r13 = 1 6= 0 thus V3 is well-defined in (2.25). By the Taylor expansion (2.4), we

obtain {(U1)j}−1
j=−3 . To obtain {(U2)j}−1

j=−3 and{(U3)j}−1
j=−3 , we have {(∂(l)

x V1)
ext}4l=0 and

{(∂(l)
x V2)

ext}4l=0 at the boundary and we use Taylor expansion (2.4) to obtain {(V1)j}−1
j=−3

and {(V2)j}−1
j=−3 . Then we use the relation V = R−1U to obtain U2 and U3.

U = RV , where V1 = (V1)
ext, V2 = (V2)

ext, V3 =
(

U1 − r11(V1)
ext − r12(V2)

ext
)

/r13.
(2.26)

Notice that (2.25) is performed at the left boundary x = a while (2.26) is considered on the

ghost points {xj}−1
j=−3.

In the following we consider {∂(l)
x F (U)}4l=0. In the case 2 we have elaborated on how

to obtain {∂(l)
x F (U)}4l=0 and case 3 follows almost in the same way. Thus we present the

algorithm in the following directly.

∂(0)
x F (U) = F (∂(0)

x U),

∂(1)
x F (U) = RΛVx, where (u− c)∂(1)

x V1 = (u− c)(∂(1)
x V1)

ext, u∂(1)
x V2 = u(∂(1)

x V2)
ext,

(u+ c)∂(1)
x V3 = (−g′1(t)− r11(u− c)∂(1)

x V1 − r12u∂
(1)
x V2)/r13,

∂(l)
x F (U) = (∂(l)

x F (U))ext, l = 2, 3, 4.

(2.27)

14

The ILW procedure in (2.27) is in the third line, in which we use the relation ∂
(1)
x F1(U) =

(∂
(1)
x F1)

ilw = −g′1(t) in obtaining (u + c)∂
(1)
x V3. By the Taylor expansion (2.4), we obtain

{Fj}−1
j=−3. Then case 3 is finished.

For the case 4, we have three outflow boundary conditions. The treatment of this case is

very simple. Firstly, we have the characteristic decomposition at x = a and we can obtain

the characteristic variables {∂(l)
x V }4l=0 at x = a. With Taylor expansion (2.4), we then obtain

V and transform V into U by the relation U = RV , therefore we obtain {Uj}−1
j=−3.

U = R(V)ext. (2.28)

After we obtain the {Uj}−1
j=−3, we substitute them into F (U) and obtain {Fj}−1

j=−3, thus

case 4 is finished.

We summarize our algorithm of the boundary treatment at the left boundary as follows.

Assume we have obtained {Uj}Nj=0 at time level tn. Our goal is to obtain {Uj}−1
j=−3, {Fj}−1

j=−3.

1. Firstly, obtain U with the extrapolation and boundary conditions at the boundary.

Perform the characteristic decomposition, and decide the prescribed inflow boundary

conditions according to the signs of the eigenvalues of Λ in (2.18).

2. There are four cases of the different signs of eigenvalues of Λ and they need different

treatments.

• Case 1: u − c > 0. We have three inflow boundary conditions at the boundary

x = a. We obtain {∂(l)
x U}4l=0 by (2.20), then we can obtain {Uj}−1

j=−3 by the

Taylor expansion (2.4). Also, we have {∂(l)
x F (U)}4l=0 by (2.21), and we can obtain

{Fj}−1
j=−3 by the Taylor expansion (2.4).

• Case 2: u − c ≤ 0, u > 0. We have two inflow boundary conditions and one

outflow boundary condition at the boundary x = a. We firstly obtain {∂(l)
x U1}4l=0

and {∂(l)
x U2}4l=0 by (2.22), then we can obtain U1 and U2 at x = x−3, x−2, x−1 by

the Taylor expansion (2.4). With the extrapolation of V1, we can obtain U3 at

x = x−3, x−2, x−1 by (2.23). Then we have {∂(l)
x F (U)}4l=0 by (2.24), and we can

obtain {Fj}−1
j=−3 by the Taylor expansion (2.4).

• Case 3: u ≤ 0, u+c > 0. We have one inflow boundary condition and two outflow

boundary conditions at the boundary x = a. We firstly obtain {∂(l)
x U1}4l=0 by

(2.25), then we can obtain U1 at x = x−3, x−2, x−1 by the Taylor expansion (2.4).

With extrapolation of V1 and V2, we can obtain U2 and U3 at x = x−1, x−2, x−3

15

by (2.26). We then have {∂(l)
x F (U)}4l=0 by (2.27), and we can obtain {Fj}−1

j=−3 by

the Taylor expansion (2.4).

• Case 4: u + c ≤ 0. We have three outflow boundary conditions at the boundary

x = a. by the extrapolation of V , we can obtain U at {xj}−1
j=−3 by (2.28). And

we can obtain {Fj}−1
j=−3 by substitute U into F (U) at {xj}−1

j=−3.

Remark 2.2. Many physical problems are described by the compressible inviscid Euler

equations with the no-penetration boundary condition at solid walls. In the computation,

the most popular way to impose the no-penetration boundary condition is the reflection

technique, that all interior solution components are reflected symmetrically to the values of

the ghost points, except for the normal velocity whose sign is reversed. For the treatment of

the solid wall boundary condition u = 0, we would like to use the boundary condition ρu = 0

on the boundary and adopt the case 3 in the above algorithm. In this case, the algorithm

needs some changes because we prescribe the boundary condition for ρ as an illustration

example in the above algorithm. We now show the modifications of the case 3 for treating

the solid wall boundary condition and briefly write them down as follows.

Assume we have the boundary condition ρu = 0 at x = a. We obtain {∂(l)
x U1}4l=0 by the

following equations.

∂(0)
x U = RV , where V1 = (V1)

ext, V2 = (V2)
ext, V3 =

(

− r21(V1)
ext − r22(V2)

ext
)

/r23,

∂(l)
x U2 = (∂(l)

x U2)
ext, l = 1, · · · , 4.

(2.29)

By the Taylor expansion, we obtain {(U2)j}−1
j=−3 . With the extrapolation of V1 and V2, we

can obtain U1 and U3 on the ghost points {xj}−1
j=−3 by the following equations.

U = RV , where V1 = (V1)
ext, V2 = (V2)

ext, V3 =
(

U2 − r21(V1)
ext − r22(V2)

ext
)

/r23.
(2.30)

After we obtain ∂
(0)
x U on the ghost points {xj}−1

j=−3, we then have {∂(l)
x F (U)}4l=0 at x = a

by the following equations.

∂(0)
x F (U) = F (∂(0)

x U),

∂(1)
x F (U) = RΛVx, where (u− c)∂(1)

x V1 = (u− c)(∂(1)
x V1)

ext, u∂(1)
x V2 = u(∂(1)

x V2)
ext,

(u+ c)∂(1)
x V3 = (−r21(u− c)∂(1)

x V1 − r22u∂
(1)
x V2)/r23,

∂(l)
x F (U) = (∂(l)

x F (U))ext, l = 2, 3, 4.

(2.31)

16

With the derivatives {∂(l)
x F (U)}4l=0 at x = a, we can obtain {Fj}−1

j=−3 by the Taylor expan-

sion.

Remark 2.3. If the solution is smooth near the boundary, then we can use Lagrange

extrapolation in the above algorithm. But if there is a shock near the boundary, then in the

above algorithm we recommend to use the WENO type extrapolation given in the 1D scalar

case, which makes the algorithm more robust.

2.3 Two-dimensional problems

In this subsection, we generalize the approach to the two-dimensional problems. The two-

dimensional compressible Euler equations are given as

Ut + F (U)x +G(U)y = 0, (x, y) ∈ Ω, t > 0, (2.32)

where

U =









ρ
ρu
ρv
E









, F (U) =









ρu
ρu2 + p
ρuv

u(E + p)









, G(U) =









ρv
ρuv

ρv2 + p
v(E + p)









,

with suitable boundary conditions and initial conditions. ρ, u, v, p and E stand for the

density, x-velocity, y-velocity, pressure and total energy per unit volume, respectively. The

equation of state is

E = p/(γ − 1) + ρ(u2 + v2)/2,

where γ is the heat capacity ratio and γ = 1.4 for air when the temperature is within a

suitable range.

Assume we have a Cartesian mesh for Ω and the boundary ∂Ω may not be aligned with

the grid points. Then the grid points inside the domain Ω are called the interior grid points.

Assume we have the fifth order finite difference WENO method as our interior scheme and

the values on the interior grid points are obtained already. Our goal is to obtain the values

on the ghost points, denoted as P in Figure 1. Following [25], we first find the P0 on ∂Ω so

that the outward normal n to ∂Ω at P0 goes through P .

We set up a local coordinate system at P0 by

(

x̂
ŷ

)

= T

(

x
y

)

, T =

(

T11 T12

T21 T22

)

=

(

cos θ sin θ
− sin θ cos θ

)

, (2.33)

17

Figure 1: The local coordinate at P0 in 2D problems: the ghost point P marked in green
and its projection point P0 ∈ ∂Ω marked in red.

P

P0

θ

∂Ω

nx̂

ŷ

where θ is the angle between the outward normal n to ∂Ω at P0 and the x-axis, and T is the

rotation matrix. Through this rotation, x̂-axis is aligned with the outward normal n. Now

we denote

Û = (Û1, Û2, Û3, Û4)
T = (ρ, ρû, ρv̂, E)T ,

where û and v̂ are given as
(

û
v̂

)

= T

(

u
v

)

,

then the Euler equations (2.32) can be transformed into the following form

Ût + F (Û)x̂ +G(Û)ŷ = 0. (2.34)

We still use the following notations without causing any ambiguities.

F (Û) = (F1, F2, F3, F4)
T , G(Û) = (G1, G2, G3, G4)

T .

Thus, at P0 we will consider the transformed Euler equations (2.34) instead of the original

one for convenience. Once we obtain Û , we can transform back to U without any difficulties.

We now show the transformation of F (U) and G(U) from F (Û) and G(Û) as follows.

F1(U) = T11F1 + T21G1,

F2(U) = (T11)
2F2 + 2 T11T21F3 + (T21)

2G3,

F3(U) = T11T12(F2 −G3) + (T11T22 + T12T21)F3,

F4(U) = T11F4 + T21G4.

(2.35)

18

G1(U) = T12F1 + T22G1,

G2(U) = T11T12(F2 −G3) + (T11T22 + T12T22)F3,

G3(U) = (T12)
2F2 + 2 T12T22F3 + (T22)

2G3,

G4(U) = T12F4 + T22G4.

(2.36)

In the following we show how to obtain the values of F (Û) and G(Û) on the ghost point

P . First we need the normal derivatives, i.e. the x̂-directional derivatives, up to 4-th order.

Now we rewrite the transformed Euler equations (2.34) into the following form.

Ût + F ′(Û)Ux̂ +G(Û)ŷ = 0,

where the Jacobian matrix F ′(Û) is given as

F ′(Û) =















0 1 0 0
1

2
(γ − 1)(û2 + v̂2)− û2 (3− γ)û (1− γ)v̂ γ − 1

−ûv̂ v̂ û 0
1

2
(γ − 1)û(û2 + v̂2)− ûH H + (1− γ)û2 (1− γ)ûv̂ γû















(2.37)

and H = (E + p)/ρ is the enthalpy as in the one-dimensional case. With the similarity

transformation F ′(Û) = RΛR−1, we perform the characteristic decomposition and obtain

Vt +ΛVx̂ +R−1G(Û)ŷ = 0, (2.38)

where the characteristic variables V = R−1Û , Λ = diag(û− c, û, û, û+ c), c =
√

γp/ρ and

R =











1 0 1 1
û− c 0 û û+ c
v̂ 1 v̂ v̂

H − ûc v̂
1

2
(û2 + v̂2) H + ûc











,

R−1 =
1

c2















1

2
(b1 + ûc) −1

2
((γ − 1)û+ c) −1

2
(γ − 1)v̂

1

2
(γ − 1)

−v̂c2 0 c2 0
c2 − b1 (γ − 1)û (γ − 1)v̂ 1− γ

1

2
(b1 − ûc) −1

2
((γ − 1)û− c) −1

2
(γ − 1)v̂

1

2
(γ − 1)















,

(2.39)

with b1 = (γ − 1)(û2 + v̂2)/2. The number of boundary conditions depends on the signs of

the eigenvalues û and û± c. We also have four cases in the following:

Case 1: û+ c < 0 ;

19

Case 2: û < 0, û+ c ≥ 0 ;

Case 3: û− c < 0, û ≥ 0 ;

Case 4: û− c ≥ 0.

Note that û and c are obtained at the boundary point P0 in Figure 1. In the 1D case, we

consider the above four cases at the left boundary x = a, and since we have set up a local

coordinate, the x̂-direction is the outward normal direction, then we reverse the order of

the four cases. We will briefly elucidate the algorithm in the following, and one can refer

to the 1D case for more detailed description of the idea. For convenience, we still take the

notations (w)ilw and (w)ext respectively standing for w obtained by the ILW procedure and

by extrapolation, and R = (rij)4×4, R
−1 = (r̃ij)4×4.

For the case 1, all eigenvalues are positive so we have four inflow boundary conditions.

We now show the approaches to obtain {∂(l)
x̂ Û}4l=0 and {∂(l)

x̂ F (Û)}4l=0 at P0. To obtain

{∂(l)
x̂ Û}4l=0 , we have the following equations.

∂
(0)
x̂ Û = (Û)ilw, ∂

(l)
x̂ Û = (∂

(l)
x̂ Û)ext, l = 1, · · · , 4. (2.40)

After we obtain {∂(l)
x̂ Û}4l=0, then we have the following equations to obtain {∂(l)

x̂ F (Û)}4l=0.

∂
(0)
x̂ F (Û) = F (∂

(0)
x̂ Û), ∂

(1)
x̂ F (Û) = (∂

(1)
x̂ F (Û))ilw,

∂
(l)
x̂ F (Û) = (∂

(l)
x̂ F (Û))ext, l = 2, 3, 4.

(2.41)

By the Taylor expansion, we can obtain Û and F (Û) at P . The case 1 is finished.

For the case 2, we have one positive eigenvalue and three negative eigenvalues, thus we

have three boundary conditions. Assume we have the boundary conditions for ρ, ρu, ρv at P0,

then we transform the boundary conditions into Ûk(x̂, ŷ, t) = gk(x̂, ŷ, t), k = 1, 2, 3, (x̂, ŷ) ∈
∂Ω. With the extrapolation and boundary conditions, we can obtain Û and matricesR, R−1,

Λ at P0. We then perform the characteristic decomposition and obtain the characteristic

variables V = R−1Û . Since û+ c > 0 and û < 0, the outgoing characteristic variable is V4

where (V1, V2, V3, V4)
T = V . We have the following equations to obtain {∂(l)

x̂ Û}4l=0 at P0.

∂
(0)
x̂ Ûk = gk(t), k = 1, 2, 3, ∂

(0)
x̂ Û4 =

(

(V4)
ext −

3
∑

k=1

r̃1kgk(t)
)

/r̃4k,

∂
(l)
x̂ Ûk = (∂

(l)
x̂ Uk)

ext, k = 1, 2, 3, l = 1, · · · , 4.
(2.42)

20

With Taylor expansion, we obtain {Ûk}3k=1 at P . Then by V = R−1Û at P we have

Û4 =
(

(V4)
ext −

3
∑

k=1

r̃4kÛk

)

/r̃44. (2.43)

To obtain {∂(l)
x̂ F (Û)}4l=0 at P0, we have the following equations.

∂
(0)
x̂ F (Û) = F (∂

(0)
x̂ Û),

∂
(1)
x̂ Fk(Û) = (∂

(1)
x̂ Fk)

ilw, k = 1, 2, 3,

∂
(1)
x̂ F4(Û) =

(

(û+ c)(∂
(1)
x̂ V4)

ext −
3

∑

k=1

r̃4k∂
(1)
x̂ Fk(Û)

)

/r̃44,

∂
(l)
x̂ F (Û) = (∂

(l)
x̂ F (Û))ext, l = 2, 3, 4.

(2.44)

By the Taylor expansion, we can obtain F (Û) at P . The case 2 is finished.

For the case 3, we have one inflow boundary condition and three outflow boundary

conditions. Assume we have the boundary condition for Û1(x̂, ŷ, t) = g1(x̂, ŷ, t), (x̂, ŷ) ∈ ∂Ω.

With the extrapolation and boundary conditions, we can obtain Û and matrices R, R−1,

Λ at P0. With the characteristic decomposition, we have the characteristic variables V =

R−1Û , and V2, V3, V4 are outgoing variables. Then we have the following equations to obtain

{∂(l)
x̂ Û}4l=0.

∂
(0)
x̂ Û = RV , where Vk = (Vk)

ext, k = 2, 3, 4, and V1 =
(

g1(t)−
4

∑

k=2

r1k(Vk)
ext

)

/r11,

∂
(l)
x̂ Û1 = (∂

(l)
x̂ Û1)

ext, l = 1, · · · , 4.
(2.45)

By the Taylor expansion, we can obtain Û1 at P , and we then have

Û = RV , where Vk = (Vk)
ext, k = 2, 3, 4, and V1 =

(

Û1 −
4

∑

k=2

r1k(Vk)
ext

)

/r11. (2.46)

Therefore, we obtain Û at P . We again emphasize that (2.45) is performed at P0 while

21

(2.46) is performed at P . To obtain {∂(l)
x̂ F (Û)}4l=0, we have the equations as follows.

∂
(0)
x̂ F (Û) = F (∂

(0)
x̂ Û),

∂
(1)
x̂ F (Û) = RΛVx̂, where û∂

(1)
x̂ V2 = û(∂

(1)
x̂ V2)

ext,

û∂
(1)
x̂ V3 = û(∂(1)

x V3)
ext, (û+ c)∂

(1)
x̂ V4 = (û+ c)(∂(1)

x V4)
ext,

and (û− c)∂
(1)
x̂ V1 =

(

(∂(1)
x F1)

ilw − r12û∂
(1)
x V2 − r13û∂

(1)
x̂ V3 − r14(û+ c)∂

(1)
x̂ V4

)

/r11,

∂
(l)
x̂ F (Û) = (∂

(l)
x̂ F (Û))ext, l = 2, 3, 4.

(2.47)

By the Taylor expansion, we obtain F (Û) at P . The case 3 is finished.

For the case 4, with the extrapolation we obtain Û at P0, thus obtain the matrices R,

R−1 and Λ. Then we perform the characteristic decomposition and obtain the characteristic

variables V = R−1Û and {∂(l)
x̂ V }4l=0. With Taylor expansion, we obtain V at P and then

transform it back to Û by Û = RV , given by

Û = R (V)ext. (2.48)

After we obtain Û at P , we just plug it into F (Û) and obtain F (Û) at P . The case 4 is

finished.

We summarize the algorithm for 2D problems as follows. Assume we have obtained U

on the interior points at time level tn, and our goal is to define U and F (U) on the ghost

point P .

1. For the ghost point P , find the corresponding boundary point P0 ∈ ∂Ω. Set up the local

coordinate (2.33) and obtain the transformed system (2.34). With the extrapolation

and boundary conditions we obtain Û at P0. Perform the characteristic decomposition

at P0, and decide the prescribed inflow boundary conditions according to the signs of

the eigenvalues of Λ in (2.38).

2. There are four cases of the different signs of eigenvalues of Λ in the following:

• Case 1: û + c < 0. We have four inflow boundary conditions at P0. We obtain

{∂(l)
x̂ Û}4l=0 by (2.40), then we can obtain Û at P by the Taylor expansion. Also,

we have {∂(l)
x̂ F (Û)}4l=0 by (2.41), and we can obtain F (Û) at P by the Taylor

expansion.

• Case 2: û + c ≥ 0, û < 0. We have three inflow boundary conditions and one

outflow boundary condition at P0. We firstly obtain {∂(l)
x̂ Ûk}4l=0, k = 1, 2, 3 by

22

(2.42), then we can obtain {Ûk}3k=1 at P by the Taylor expansion. With the

extrapolation of V4, we obtain Û4 at P by (2.43). Then we have {∂(l)
x F (Û)}4l=0

by (2.44), and then we can obtain F (Û) at P by the Taylor expansion.

• Case 3: û ≥ 0, û−c < 0. We have one inflow boundary condition and three outflow

boundary conditions at P0. We firstly obtain {∂(l)
x̂ Û1}4l=0 by (2.45), then we can

obtain Û1 at P by the Taylor expansion. With the extrapolation of {Vk}4k=2, we

can obtain {Ûk}4k=2 at P by (2.46). We then have {∂(l)
x̂ F (Û)}4l=0 by (2.47), and

we can obtain F (Û) by the Taylor expansion.

• Case 4: û− c ≥ 0. We have four outflow boundary conditions. By the extrapola-

tion of V , we can obtain Û at P by (2.48). And we can obtain F (Û) by plugging

Û into it.

3. After we obtain Û , we plug it into G(Û) and obtain F and G. With the equations

(2.35) and (2.36), we finally obtain F (U) and G(U).

We remark that for the no-penetration boundary condition (u, v)·n = 0 at solid walls, we

would like to use the boundary condition ρû = 0 and apply the case 3 in the above algorithm.

In this situation, the formula needs some modifications since in the above algorithm we only

consider the boundary condition of ρ for illustration purposes. In the following, we show

the modifications in the case 3 in the above algorithm for treating the solid wall boundary

condition.

Assume we have the boundary condition for ρû = 0 at the boundary point P0. We obtain

{∂(l)
x̂ Û1}4l=0 by the following equations.

∂
(0)
x̂ Û = RV , where Vk = (Vk)

ext, k = 2, 3, 4, and V1 =
(

−
4

∑

k=2

r2k(Vk)
ext

)

/r21,

∂
(l)
x̂ Û2 = (∂

(l)
x̂ Û2)

ext, l = 1, · · · , 4.
(2.49)

Then we can obtain Û2 at P by the Taylor expansion. With the extrapolation of {Vk}4k=2,

we can obtain {Û1, Û3, Û4} at P by the following equations.

Û = RV , where Vk = (Vk)
ext, k = 2, 3, 4, and V1 =

(

Û2 −
4

∑

k=2

r2k(Vk)
ext

)

/r21. (2.50)

23

We then obtain {∂(l)
x̂ F (Û)}4l=0 by the following equations.

∂
(0)
x̂ F (Û) = F (∂

(0)
x̂ Û),

∂
(1)
x̂ F (Û) = RΛVx̂, where û∂

(1)
x̂ V2 = û(∂

(1)
x̂ V2)

ext,

û∂
(1)
x̂ V3 = û(∂(1)

x V3)
ext, (û+ c)∂

(1)
x̂ V4 = (û+ c)(∂(1)

x V4)
ext,

and (û− c)∂
(1)
x̂ V1 =

(

− r22û∂
(1)
x V2 − r23û∂

(1)
x̂ V3 − r24(û+ c)∂

(1)
x̂ V4

)

/r21,

∂
(l)
x̂ F (Û) = (∂

(l)
x̂ F (Û))ext, l = 2, 3, 4.

(2.51)

Then we can obtain F (Û) at P by the Taylor expansion.

2.4 Two-dimensional extrapolation

In this subsection, we consider the two-dimensional extrapolation. Unlike the one-dimensional

case, the extrapolation becomes complicated in 2D because the points are usually not well-

ordered in the normal direction. Our treatment is to construct the 1D polynomials in the

normal direction, then we follow the algorithm of 1D extrapolation to obtain the normal

derivatives. To this end, we adopt the least squares method to obtain an interpolating poly-

nomial in 2D, then we can obtain the approximating values along the normal direction and

the 1D polynomials are obtained. If the solution is smooth near the boundary, we could just

use the high order interpolating polynomial to obtain the normal derivatives and tangential

derivatives. However, if there is a discontinuity near the boundary, then we need to do more

efforts in constructing the polynomial to make the algorithm more robust. In this subsection,

we mainly introduce the two-dimensional WENO type extrapolation.

Assume we have the values {fij} on the grid points of a function f(x, y) in the in-

terior domain. Our goal is to obtain the normal derivatives and tangential derivative, i.e.
{

∂m

∂x̂m f
}4

m=0
and fŷ at the boundary point P0. Since we may not have the well-ordered points

to do the Lagrange extrapolation, we construct the interpolating polynomials by the least

squares method. To this end, we just take a stencil E to obtain the high order approximating

polynomial as follows.

E =
{

(xi, yj) ∈ Ω,
√

(xi − xP0
)2 + (yj − yP0

)2 ≤ R
}

(2.52)

where R is a positive constant, and we take R = 5 h, h = max{∆x,∆y} in the numerical tests

if not noted otherwise. With the least squares method, we can obtain the 2D polynomial

Q(x, y) ∈ P 4 on the stencil E , where P k = span{xlym, l + m ≤ k} is a set of polynomials

whose degree of freedom are not greater than k. Thus, near the boundary point P0 we have

24

the polynomial Q(x, y) that is a fifth order approximation to f(x, y). When the function

f(x, y) is smooth, we can obtain the normal derivatives and tangential derivative at P0 from

the constructed high order polynomial Q(x, y). But when there is a discontinuity near the

boundary, special treatment is needed in obtaining
{

∂m

∂x̂m f
}4

m=0
and fŷ. In the following

we describe the two-dimensional WENO type extrapolation based on the multi-resolution

WENO method in [32].

First, on the boundary point P0 we have a segment P0P4 which is along the normal

direction, and P0P1 = · · · = P3P4 = h, see Figure 2. Since we have already obtained the

high order approximating polynomial Q(x, y), we can obtain the approximating values of f

and fŷ on the points {Pm}4m=0. Now we have five stencils Sr = {P0, · · · , Pr}, r = 0, · · · , 4
and the approximating values of f and fŷ on them, then we can perform the 1D WENO

type extrapolation.

P
P0

P1

P2

P3

P4

∂Ω

n

ŷ

Figure 2: Illustrative sketch for 2D ex-
trapolation: the ghost point P marked in
green and its projection point P0 ∈ ∂Ω.
The interpolating points P0, · · · , P4 dis-
tributed uniformly along the normal di-
rection and they are marked in blue. The
stencils for 2D extrapolation are marked
by square symbol in black.

To obtain the normal derivatives
{

∂m

∂x̂mf
}4

m=0
, we first construct the corresponding 1D

polynomials qr(x̂) on Sr, r = 0, · · · , 4. Different from the 1D WENO type extrapolation,

we construct the q0(x̂) and qr(x̂), r = 1, · · · , 4 from different 2D interpolating polynomials.

Without loss of generality, we assume x̂ = −mh at Pm, m = 0, · · · , 4. For the constant

approximating polynomial q0(x̂), instead of using the the polynomial Q(x, y) to obtain the

approximating value on P0, we construct a polynomial Q0(x, y) ∈ P 0 by using the following

stencil E0 with the least squares method.

E0 =
{

(xi, yj) ∈ Ω,
√

(xi − xP0
)2 + (yj − yP0

)2 ≤ R0

}

,

where R0 is a positive constant, and we take R0 = 1.1 h in the numerical tests if not noted

otherwise. Now we take q0(x̂) = Q0(x, y). Next, with the approximating polynomial Q(x, y)

25

obtained previously, we then get the approximating values of f on {Pm}4m=0. With these

approximating values, we can construct the interpolating polynomials qr(x̂) ∈ P r(P0P4) on

Sr, r = 1, · · · , 4, where P k(P0P4) is a set of polynomials whose degree is not greater than

k on P0P4. So far, we have obtained qr(x̂) on Sr, r = 0, · · · , 4, then the 1D WENO type

extrapolation can apply and the normal derivatives can be obtained. Here we just briefly

write down the procedure of obtaining the normal derivatives
{

∂m

∂x̂m f
}4

m=0
.

We first present the expressions of pr(x̂) as follows.

p0(x̂) = q0(x̂), pr(x̂) =

r
∑

m=0

dm
dr

qr(x̂)−
r−1
∑

m=0

dm
dr

pm(x̂), r = 1, · · · , 4, (2.53)

where {dr}4r=0 are the linear weights defined in (2.12). Then the nonlinear weights are given

as follows.

ωr =
αr

∑4
s=0 αs

, αr = dr

(

1 +
(τ

ε+ βr

)4)

, r = 0, · · · , 4,

τ =
(

max
1≤l≤3

{(βl − β4)
2}
)

1

2

+ max
1≤l≤4

{‖q0(x̂)− ql(x̂)‖3}
(2.54)

where the ‖ · ‖ is the standard L2-norm on (−h, h), and the smoothness indicators {βr}4r=0

are defined as follows.

β0 = c0β1,

βr =
r

∑

l=1

h2l−1

∫ h

−h

(dl

dx̂l
qr(x̂)

)2

dx̂, r = 1, · · · , 4, (2.55)

with ε = 10−4 and c0 is a positive constant, and we take c0 = 0.1 throughout this paper.

Then we have a combination of polynomials {pr(x̂)}4r=0.

p(x̂) =

4
∑

r=0

ωrpr(x̂).

With the polynomial p(x̂), we have the desired normal derivatives {∂(r)
x̂ u}4r=0 at P0.

∂
(r)
x̂ u =

dr

dx̂r
p(x̂), r = 0, · · · , 4. (2.56)

In the algorithm for 2D problems in the previous subsection, we have not written down

the explicit formula of the ILW method, but only use the notation (·)ilw instead. In fact, the

main difference of the formula between 1D and 2D is that we have the tangential derivatives

26

in 2D case. If we have the enough boundary conditions, then we could obtain the tangential

derivatives with the explicit expressions, but this situation may not always be true. A

common way to obtain the tangential derivatives is by extrapolation.

We now proceed to obtain the tangential derivative ∂
∂ŷ
f . With the 2D approximating

polynomial Q(x, y), we can obtain the approximating values of ∂
∂ŷ
f on {Pm}4m=0. To obtain

∂
∂ŷ
Q(x, y), with the chain rule we have

Qŷ = Qx
∂x

∂ŷ
+Qy

∂y

∂ŷ
= T21Qx + T22Qy. (2.57)

where (Tij)2×2 = T is the rotation matrix in (2.33). Then we are able to construct the 1D

polynomials q̃r(x̂) on Sr, and q̃r is r-th order approximation to ∂
∂ŷ
f , r = 1, · · · , 4. Also, we

take q̃0(x̂) = 0. Note that it would destroy the self-similarity property if we apply the above

procedure to {q̃r(x̂)}4r=0 directly. Thus, we adopt the nonlinear weights {ωr}4r=0 obtained in

(2.54) , then we have

q(x̂) =

4
∑

r=0

ωrq̃r(x̂).

where q(x̂) is an approximating polynomial of ∂
∂ŷ
f , Then we obtain the tangential derivative

∂
∂ŷ
f = q(0), since we have x̂ = 0 at P0.

3 Numerical tests

In this section, we show the numerical results of one- and two-dimensional problems. We

adopt the third order TVD Runge-Kutta method [21] as the time-stepping method. When

testing the order of accuracy, to match the order of spatial discretization we take the CFL

condition as ∆t = O(h5/3), where h is maximum spatial step size. For the cases containing

shocks, we take the CFL condition as ∆t = O(h). In 1D case, we take the parameter

δ1 = 10−1, δ2 = 10−6 in (2.2) if not noted otherwise.

3.1 One-dimensional problems

Example 3.1. Consider the one-dimensional linear scalar conservation laws with variable

coefficient in the following:

{

ut +
(

cos(π(x+ t))u
)

x
= fs, 0 < x < 1, t > 0,

u(x, 0) = sin(πx), 0 < x < 1,
(3.1)

27

with the appropriate boundary condition and fs is the additional source term. The sign of

cos(π(x+t)) will affect the type of the boundary conditions. In fact, when cos(π(x+t)) > 0,

then we have inflow boundary condition at x = 0, and outflow boundary condition at x = 1.

And when cos(π(x+ t)) < 0, we then have inflow boundary condition at x = 1, and outflow

boundary condition at x = 0. If cos(π(x + t)) = 0, the equation (3.1) degenerates and we

consider it as outflow boundary. We take a suitable source term function fs so that the

exact solution is

u(x, t) = sin(π(x− t)).

We take the final time T = 1.2 to test our algorithm.

From Table 3.1, we can see the designed fifth order convergence in l1−, l2− and l∞−norms.

Table 3.1: Errors and orders of accuracy for solving one-dimensional linear scalar conser-
vation laws (3.1) with final time T = 1.2 in Example 3.1.

N l1 error order l2 error order l∞ error order

16 7.71E-04 – 9.66E-04 – 2.76E-03 –
32 1.68E-05 5.52 2.61E-05 5.21 9.90E-05 4.80
64 4.50E-07 5.22 6.51E-07 5.32 2.48E-06 5.32
128 1.34E-08 5.07 1.92E-08 5.08 7.34E-08 5.08
256 4.03E-10 5.06 5.71E-10 5.07 2.18E-09 5.07
512 1.13E-11 5.16 1.56E-11 5.20 6.00E-11 5.18

Example 3.2. Consider the Burgers equation in the following:






ut + (
u2

2
)x = 0, 0 < x < 3/2, t > 0,

u(x, 0) = 1 + 2 sin(πx),
(3.2)

with an appropriate boundary condition. At x = 0, when u > 0 we have the inflow boundary

condition; When u ≤ 0, we have the outflow boundary condition. At x = 3/2, When u < 0,

we have inflow boundary condition; When u ≥ 0, we have the outflow boundary condition.

We take the final time T = 0.12 and t = 1.5 to test our algorithm, which represent the

smooth case and non-smooth case respectively. Note that u changes its sign at the right

boundary before final time t = 1.5 .

From Table 3.2, we can see the designed fifth order when the exact solution is smooth

at time T = 0.12. Before time T = 1.5, u changes its sign at x = 3/2, and we can see the

shock is well captured and no instability occurs in Figure 3.

28

Table 3.2: Errors and orders of accuracy for solving one-dimensional Burgers equation (3.2)
with final time T = 0.12 in Example 3.2.

N l1 error order l2 error order l∞ error order

16 2.09E-02 – 3.81E-02 – 9.46E-02 –
32 2.93E-03 2.83 8.49E-03 2.16 3.87E-02 1.29
64 3.38E-04 3.12 1.34E-03 2.66 8.11E-03 2.25
128 2.07E-05 4.03 8.84E-05 3.92 5.89E-04 3.78
256 7.27E-07 4.83 3.36E-06 4.72 2.48E-05 4.57
512 2.32E-08 4.97 1.06E-07 4.99 7.95E-07 4.96

Figure 3: Plots of the numerical solution of one-dimensional Burgers equation at t = 1.5 in
Example 3.2. Solid line: exact solution. Red circles: numerical solution with our boundary
treatments.

x

u

0 0.5 1 1.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

exac

N=256

(a) N = 256

x

u

0 0.5 1 1.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

exac

N=512

(b) N = 512

Example 3.3. Consider the 1D Euler equation (2.16) with an additional source term fs.

With appropriately chosen fs, we have the exact solution as follows:

ρ(x, t) = 1 + 0.2 sin(x− sin(πt)t), u(x, t) = sin(πt), p(x, t) = 2.

The computational domain is Ω = (0, 2π), and we take the final time as T = 1.4.

For simplicity, we only show the errors and orders of accuracy for the density ρ in Table

3.3. The number of boundary conditions are determined by the signs of the three eigenvalues

of F ′(U), i.e. {u − c, u, u + c}, c =
√

γp/ρ. At the left boundary x = 0, if u − c > 0, we

have three boundary conditions; If u − c ≤ 0 and u > 0, we have two boundary conditions;

29

If u ≤ 0 and u + c > 0, we have one boundary condition; If u + c ≤ 0, then no boundary

conditions are imposed. At the right boundary x = 2π, if u − c ≥ 0, then we do not have

any boundary conditions; If u ≥ 0 and u − c < 0, then we have one boundary condition; If

u + c ≥ 0 and u < 0, we have two boundary conditions; If u + c < 0, then we have three

boundary conditions. In Example 3.3, we only consider the case u − c < 0, u + c > 0 and

u changes sign at the boundary as time evolves. Note that when u = 0, we only have one

boundary condition on the boundary. On the boundaries x = 0 and x = 2π, we prescribe the

boundary condition for ρ if one boundary condition is required, and for ρ, ρu if two boundary

conditions are required. Table 3.3 show that our algorithm achieves the optimal order of

convergence in l1−, l2− and l∞−norms.

Table 3.3: Density errors and orders of accuracy in Example 3.3. On the boundaries, the
eigenvalues of F ′(U) are u− c < 0, u+ c > 0, and u changes sign as time evolves.

N l1 error order l2 error order l∞ error order

16 3.91E-04 – 6.97E-04 – 9.78E-04 –
32 1.98E-05 4.30 2.52E-05 4.30 6.34E-05 3.95
64 7.42E-07 4.74 9.58E-07 4.72 2.19E-06 4.86
128 2.51E-08 4.88 3.36E-08 4.83 1.16E-07 4.23
256 8.01E-10 4.97 1.09E-09 4.95 4.61E-09 4.65
512 2.53E-11 4.98 3.40E-11 5.00 1.63E-10 4.82

Example 3.4. Consider the interaction of two blast waves problem. The governing equa-

tions are 1D Euler equations (2.16) with the initial conditions given as

ρ = 1, u = 1, p =











103, 0 < x < 0.1,

10−2, 0.1 < x < 0.9,

102, 0.9 < x < 1.

The computational domain is (0, 1), and the final time is t = 0.038.

In Figure 4, we show the numerical result of the Example 3.4, indicating that our algo-

rithm works well when considering the solid wall boundary condition. The reference solution

is computed on the spatial grid N = 5120 with the reflecting technique on the boundaries.

30

Figure 4: Plots of the density profile at t = 0.038 in Example 3.4. Solid line: reference
solution is computed by the fifth order WENO scheme with ∆x = 1/5120, together with
the reflecting boundary conditions. Red circles: numerical solutions, together with the new
ILW boundary treatment.

(a) Numerical solution with ∆x = 1/640 (b) Numerical solution with ∆x = 1/1280

3.2 Two-dimensional problems

Example 3.5. We now test our method for two-dimensional linear scalar hyperbolic con-

servation laws with variable coefficients in the following:







ut +
((x

6
+ t

)

u
)

x
+ 0.2 uy = fs in Ω, t > 0,

u(x, y, 0) = sin(x+ y) inΩ,
(3.3)

with Ω = (−1, 1)× (−1, 1). We choose suitable boundary conditions and a source function

fs such that the exact solution is

u(x, y, t) = sin(x+ y − 0.3 t).

We divide the domain with the uniform Cartesian mesh as follows.

xi = (i+ δ1)∆x, i = −3, · · · , Nx + 3, yj = (j + δ3)∆y, j = −3, · · · , Ny + 3, (3.4)

with the mesh step size ∆x = 2/(Nx + δ1 + δ2), ∆y = 2/(Ny + δ3 + δ4). Then we have

x0 = −1+δ1∆x, xNx
= 1−δ2∆x, y0 = −1+δ3∆y, yNy

= 1−δ4∆y. We take δ1 = δ3 = 10−1,

δ2 = δ4 = 10−6. The final time is T = 0.8.

31

In Example 3.5, when x/6 + t > 0, we have inflow boundary condition at y = −1 and

outflow boundary condition at y = 1. Similarly, When x/6+t < 0, we have outflow boundary

condition at y = −1 and inflow boundary condition at y = 1. When x/6 + t = 0 at y = ±1,

we impose the outflow boundary condition. From Table 3.4, we can see that our method

achieves the designed fifth order convergence.

Table 3.4: Errors and orders of accuracy in Example 3.5. δ1 = δ3 = 10−1, δ2 = δ4 = 10−6.
The final time is T = 0.8.

Nx ×Ny l1 error order l2 error order l∞ error order
8× 10 1.58E-04 – 2.23E-04 – 8.30E-04 –
16× 20 3.79E-06 5.38 6.61E-06 5.08 3.66E-05 4.50
32× 40 9.93E-08 5.25 1.92E-07 5.11 1.06E-06 5.11
64× 80 2.92E-09 5.09 6.29E-09 4.93 3.81E-08 4.80
128× 160 8.25E-11 5.15 1.77E-10 5.15 1.17E-09 5.03
256× 320 2.35E-12 5.14 5.25E-12 5.08 3.62E-11 5.01

Example 3.6. We now test our method for two-dimensional linear scalar hyperbolic con-

servation laws on a disk in the following:
{

ut + ux + uy = 0 in Ω, t > 0,

u(x, y, 0) = u0(x, y) in Ω,
(3.5)

with appropriate boundary conditions. The computational domain Ω is a disk centered at

origin with radius 1. We test the following two initial conditions separately:

(a) u0(x, y) = sin(x+ y),

(b) u0(x, y) =

{

0.25 + 0.5 sin(x+ y), x+ y ≤ −1.2,

1.25 + 0.5 sin(x+ y), elsewhere.

In Example 3.6, we consider the linear scalar conservation laws (3.5) on a disk and test

two kinds of initial boundary conditions. For the initial condition (a), the exact solution

is smooth and we have the expected fifth order convergence in Table 3.5. For the initial

condition (b), there is a discontinuity in the domain, and we show the contour and cut at

y = 0.2 of the numerical solution. In [25], it needs a special care when impose the inflow

boundary condition on the ghost points near the intersection of the inflow and outflow

boundary. By our method, we do not need to treat this case separately and we can see no

instability occurring at the boundary.

32

Table 3.5: Errors and orders of accuracy in Example 3.6 with initial condition (a). The
final time is T = 1.2.

Nx ×Ny l1 error order l2 error order l∞ error order
8× 10 1.20E-04 – 2.01E-04 – 7.75E-04 –
16× 20 4.98E-06 4.59 9.27E-06 4.44 4.40E-05 4.14
32× 40 1.64E-07 4.93 4.39E-07 4.40 4.78E-06 3.20
64× 80 5.39E-09 4.92 1.88E-08 4.55 3.18E-07 3.91
128× 160 1.56E-10 5.11 7.38E-10 4.67 1.84E-08 4.11
256× 320 3.69E-12 5.40 1.64E-11 5.50 6.90E-10 4.74

Figure 5: Plots of the numerical solution in Example 3.6 with initial condition (b). Nx =
256, Ny = 320. The final time is T = 0.8. Left figure: the contour of the numerical
solution. Right figure: the cut of the numerical solution at y = 0.2. Solid line in black is
the exact solution, and the cut of the numerical solution is shown with the red circles.

(a) Circular domain (b) Cut at y = 0.2

Example 3.7. We next consider the 2D Burgers equation






ut + (
u2

2
)x + (

u2

2
)y = 0 in Ω, t > 0,

u(x, y, 0) = 1 + 0.5 sin(π(x+ y)) in Ω,
(3.6)

with appropriate boundary conditions. We consider both the square domain Ω = (−1, 1)×
(−1, 1) and the circular domain Ω = {(x, y) : x2 + y2 ≤ 1}. For the square domain, the

partition is similar as (3.4).

In Example 3.7, we take R = 4.3 h in (2.52) for the square domain and R = 5.5 h in

33

(2.52) for the circular domain when performing the 2D extrapolation. We can see the fifth

order convergence at least in l1− and l2−norms in Table 3.6 for both square and circular

domains. When we take the final time T = 1.2, there is a shock developed in the interior

domain, and from Figure 6 we can see the shock is well captured and no instability occurs.

Table 3.6: Errors and orders of accuracy in Example 3.7. The final time is T = 0.2.

Nx ×Ny l1 error order l2 error order l∞ error order

Square

8× 10 6.51E-04 – 1.15E-03 – 4.94E-03 –
16× 20 3.80E-05 4.10 1.17E-04 3.30 1.52E-03 1.70
32× 40 1.70E-06 4.48 6.01E-06 4.28 9.87E-05 3.94
64× 80 6.94E-08 4.61 3.05E-07 4.30 6.03E-06 4.03
128× 160 2.39E-09 4.74 1.14E-08 4.74 2.54E-07 4.57
256× 320 7.59E-11 5.10 3.71E-10 4.94 9.09E-09 4.81

Disk

8× 10 3.47E-04 – 4.93E-04 – 1.46E-03 –
16× 20 2.70E-05 3.69 6.87E-05 2.84 6.79E-04 1.11
32× 40 1.41E-06 4.26 4.03E-06 4.09 4.46E-05 3.93
64× 80 5.85E-08 4.59 1.91E-07 4.40 3.97E-06 3.49
128× 160 2.15E-09 4.86 7.97E-09 4.55 3.85E-07 3.37
256× 320 5.82E-11 5.11 2.50E-10 5.02 1.46E-08 4.72

Example 3.8. Consider the two-dimensional Euler equations (2.32) with appropriate source

terms, boundary conditions and initial conditions, such that the exact solutions are given

as

ρ(x, y, t) = 1 + 0.2 sin(x− u(x, y, t)t) cos(y − v(x, y, t)t),

u(x, y, t) = 0.7 sin(2πt), v(x, y, t) = 0.3 cos(2πt), p(x, y, t) = 1,

The computational domain is Ω = (0, 2π)×(0, 2π), and we take the partition of the domain

similar as (3.4). The final time is T = 0.6.

In Example 3.8, u and v change their signs on the boundary as the time evolves. We take

the R = 4.9 h in 2D extrapolation (2.52). In Table 3.7, we report the density errors and we

can see the designed fifth order is achieved at least in l1−norm.

Example 3.9. Consider the vortex evolution problem for two-dimensional Euler equation

(2.32) (see e.g. [10, 19]). We set the mean flow as ρ = 1, p = 1, and (u, v) = (1, 1). An

isentropic vortex perturbation is added to the mean flow and centered at (x0, y0) initially

34

Figure 6: Plots of the numerical solution in Example 3.7. Nx = 256, Ny = 320. The
final time is T = 1.2. Top left figure: the contour of the numerical solution on the square
domain. Top right figure: the cut of the numerical solution on the square domain at
y = 0.2. Bottom left figure: the contour of the numerical solution on the disk. Bottom
right figure: the cut of the numerical solution on the disk at y = 0.2. Solid line in black is
the exact solution, and the cut of the numerical solution is shown with the red circles.

(a) Square domain (b) The cut at y = 0.2

(c) Circular domain (d) The cut at y = 0.2

(perturbation in (u, v) and temperature, no perturbation in the entropy p/ργ):

(δu, δv) =
ε

2π
e0.5(1−r2)(−ȳ, x̄),

δT = −(γ − 1)ε2

8γπ2
e(1−r2),

35

Table 3.7: Density errors and orders of accuracy in Example 3.8. On the left and right
boundaries, the eigenvalues of F ′(U) are u− c < 0, u+ c > 0, and u changes sign as time
evolves. On the bottom and upper boundaries, the eigenvalues of G′(U) are v − c < 0,
v + c > 0, and v changes sign as time evolves.

Nx ×Ny l1 error order l2 error order l∞ error order
8× 10 3.12E-03 – 3.99E-03 – 1.33E-02 –
16× 20 1.64E-04 4.25 2.54E-04 3.98 1.03E-03 3.68
32× 40 6.14E-06 4.74 9.17E-06 4.79 4.64E-05 4.48
64× 80 1.89E-07 5.02 2.89E-07 4.99 1.62E-06 4.83
128× 160 6.20E-09 4.93 1.04E-08 4.80 1.01E-07 4.01
256× 320 2.02E-10 4.94 3.66E-10 4.83 3.65E-09 4.79

δS = 0,

where (x̄, ȳ) = (x − x0, y − y0), r2 = x̄2 + ȳ2. An simple calculation shows that the

exact solution of the vortex evolution problem is that the vortex convected with the mean

velocity, and we denote it as Ue. The number of boundary conditions is determined by

the signs of four eigenvalues of F ′(U) or G′((U)) on the boundaries, and we take the

boundary conditions from Ue whenever needed. Since the mean flow moves with the velocity

(1, 1), the vortex movement is not aligned with the mesh direction. In the computation,

we take the vortex strength ε = 5, and (x0, y0) = (0, 0). The computational domain is

Ω = (−0.5, 1)× (−0.5, 1), and the partition of the domain is similar as (3.4). We take the

final time is T = 1.

In Table 3.8, we report the errors, convergence orders of the density in the vortex evolution

in Example 3.9. The eigenvalues change their sign on the boundaries, and we can see the

convergence order is around 5 at least in l1−norm.

Example 3.10. Consider the double Mach reflection problem [30]. The problem describes

a Mach 10 shock horizontally impinges on a ramp inclined by a 30◦ angle. In order to

impose the solid wall boundary condition on the ramp, people usually consider an equivalent

problem that a Mach 10 shock initially makes a 60◦ angle with the horizontal wall and use

the reflection technique [10]. With the ILW approach, we are able to solve the original

problem with the Cartesian mesh in a single domain. The computational domain is the

same as in [25]. We have the initial conditions as follows.

(ρ, u, v, p) =

{

(8, 10, 0, 116.5), x ≤ 0,

(1.4, 0, 0, 1), x > 0.

36

Table 3.8: Density errors and orders of accuracy for the vortex evolution problem in Ex-
ample 3.9.

Nx ×Ny l1 error order l2 error order l∞ error order
8× 10 9.84E-04 – 1.42E-03 – 4.95E-03 –
16× 20 3.21E-05 4.94 4.26E-05 5.06 1.34E-04 5.21
32× 40 1.34E-06 4.58 1.82E-06 4.55 6.00E-06 4.48
64× 80 5.12E-08 4.71 6.68E-08 4.77 2.13E-07 4.82
128× 160 1.81E-09 4.82 2.46E-09 4.76 1.02E-08 4.38
256× 320 6.53E-11 4.80 9.73E-10 4.66 5.90E-10 4.11

The left and bottom boundary condition is set to be the post-shock condition, and the outflow

boundary condition is imposed on the right boundary. On the upper boundary y = 23/12+√
3/2, we have the post-shock condition when x ≤ 10t and pre-shock condition when x >

10t. On the ramp, we use our proposed ILW procedure and the WENO type extrapolation.

The final time is taken to be 0.2.

In Figure 7, we show the numerical solution for both ∆x = ∆y =
√
3/480 and ∆x =

∆y =
√
3/960, and their zoomed-in region near the double Mach stem at time t = 0.2 in

Example 3.10. It indicates our algorithm works well for treating the solid wall boundary

condition.

Example 3.11. Our last example is an inviscid, compressible Mach 3 flow moving towards

a circular cylinder from the left. The cylinder locates at the origin with radius 1, and the

solid wall boundary condition is imposed on the surface of the cylinder. In [10], a body-

fitted curvilinear mesh is used, and it can be transformed to the Cartesian mesh, then the

reflection technique can be applied on the surface. With the ILW approach presented in

[25], we can solve this problem on the Cartesian grids directly. Different from [25], we take

a larger computational domain is Ω = (−3, 9)× (−6, 6). At the left boundary x = −3, we

have supersonic inflow boundary condition, and we have free-stream boundary conditions

at the boundaries x = 9, y = ±6. On the surface of the cylinder, the solid wall boundary

condition is imposed, i.e. (u, v) · n = 0.

In Example 3.11 we take the final time as T = 40, and the numerical solution reaches

the steady state in the subregion (−3, 0)× (−6, 6). In Figure 8, we can see the bow shock is

well-captured with the mesh ∆x = ∆y = 1/40 and ∆x = ∆y = 1/80.

37

Figure 7: Density contour of double Mach reflection at t = 0.2 in Example 3.10. 30
contours from 1.731 to 20.92.

(a) Density contour, ∆x = ∆y =
√
3/480 (b) Zoomed-in of the double Mach stem in (a)

(c) Density contour, ∆x = ∆y =
√
3/960 (d) Zoomed-in of the double Mach stem in (c)

4 Concluding remarks

In this paper we consider a high order boundary treatment for solving hyperbolic conservation

laws with high order finite difference methods on a Cartesian mesh. The boundary treatment

is very challenging because of the wide stencil of the interior scheme and the domain boundary

intersects with the Cartesian mesh in an arbitrary fashion. We propose a new inverse Lax-

Wendroff procedure to handle the boundary condition, which could be used for the case

when the eigenvalues of the Jacobian matrix are close to zero. Different from [25, 26],

38

Figure 8: Pressure contour of flow past a cylinder in Example 3.11. 20 contours from 2 to
13.

(a) Pressure contour, ∆x = ∆y = 1/40 (b) Density contour, ∆x = ∆y = 1/80

we perform the inverse Lax-Wendroff procedure on the evaluation of the flux values, thus

it avoids the eigenvalues appearing in the denominators. We also propose a new WENO

type extrapolation, which will be evoked when there is shock near the boundary. The new

WENO type extrapolation can preserve the property of self-similarity, which is desirable

in the computation of hyperbolic conservation laws. The idea of the new WENO type

extrapolation comes from the multi-resolution WENO schemes [32]. We present extensive

numerical examples to validate the good performance of the proposed method, especially

for the problems with solid wall boundary condition and the eigenvalues of the Jacobian

matrix changing their signs on the boundary. The computational cost of the boundary

treatment is not negligible, especially when the extrapolation occupies a large proportion of

the boundary treatment in two-dimensional problems. We will consider this issue and try to

reduce the computational cost in our future work. Also, we can see that this approach only

evaluates the first order derivatives by the inverse Lax-Wendroff procedure, and all other

higher order derivatives are obtained by extrapolation. Thus from [13], stability may be an

issue when extending this approach to higher order, which will be investigated in our future

work. Third, this approach may provide another way to treat the boundary conditions for

convection-diffusion problems in [12], since the flux values are evaluated independently.

39

References

[1] R. Borges, M. Carmona, B. Costa and W.S. Don, An improved weighted essentially

non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys. 227 (2008),

3191 – 3211.

[2] G. Baruch, G. Fibich and S. Tsynkov, A high-order numerical method for the nonlinear

Helmholtz equation in multidimensional layered media, J. Comput. Phys. 228 (2009),

3789 – 3815.

[3] M.J. Berger, C. Helzel and R.J. LeVeque, H-box methods for the approximation of

hyperbolic conservation laws on irregular grids, SIAM J. Numer. Anal. 41 (2003), 893

– 918.

[4] S. Britt, S. Tsynkov and E. Turkel, Numerical simulation of time-harmonic waves in

inhomogeneous media using compact high order schemes, Commun. Comput. Phys.

(2011), 520 – 541.

[5] F. Filbet and C. Yang, An inverse Lax-Wendroff method for boundary conditions

applied to Boltzmann type models , J. Comput. Phys. 245 (2013), 43 – 61.

[6] B. Gustafsson H.-O. Kreiss and A. Sundström, Stability theory of difference approxi-

mations for mixed initial boundary value problem. II, Math. Comp. 26 (1972), 649 –

686.

[7] M. Goldberg and E. Tadmor, Scheme-independent stability criteria for difference ap-

proximations of hyperbolic initial-boundary value problems. I, Math. Comp. 32 (1978),

1097 – 1107.

[8] M. Goldberg and E. Tadmor, Scheme-independent stability criteria for difference ap-

proximations of hyperbolic initial-boundary value problems. II, Math. Comp. 36 (1981),

603 – 626.

[9] L. Huang, C.-W. Shu and M. Zhang, Numerical boundary conditions for the fast

sweeping high order WENO methods for solving the Eikonal equation, J. Comput.

Math. 26 (2008), 336 – 346.

[10] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J.

Comput. Phys. 126 (1996), 202 – 228.

40

[11] H.-O. Kreiss, N.A. Petersson and J. Yström, Difference approximations for the second

order wave equation, SIAM J. Numer. Anal. 40 (2002), 1940 – 1967.

[12] J. Lu, J. Fang, S. Tan, C.-W. Shu and M. Zhang, Inverse Lax-Wendroff procedure for

numerical boundary conditions of convection-diffusion equations, J. Comput. Phys.

317 (2016), 276 – 300.

[13] T. Li, C.-W. Shu and M. Zhang, Stability analysis of the inverse Lax-Wendroff bound-

ary treatment for high order upwind-biased finite difference schemes, J. Comput. Appl.

Math. 299 (2016), 140 – 158.

[14] K. Mattsson and M. Almquist, A high-order accurate embedded boundary method for

first order hyperbolic equations, J. Comput. Phys. 334 (2017), 255 – 279.

[15] R. Mittal and G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37

(2005), 239 – 261.

[16] M. Medvinsky, S. Tsynkov and E. Turkel, The method of difference potentials for the

Helmholtz equation using compact high order schemes, J. Sci. Comput. (2012), 150 –

193.

[17] C.S. Peskin, The immersed boundary method, Acta Numer. 11 (2002), 479 – 517.

[18] V.S. Ryaben’kii, Method of Difference Potentials and Its Applications, Springer Series

in Computational Mathematics, volume 30, Springer-Verlag, Berlin, 2002.

[19] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory

schemes for hyperbolic conservation laws, in “Advanced Numerical Approximation

of Nonlinear Hyperbolic Equations”, Springer, Berlin, Heidelberg, 1998, 325 – 432.

[20] C.-W. Shu, High order WENO and DG methods for time-dependent convection-

dominated PDEs: a brief survey of several recent developments, J. Comput. Phys.

316 (2016), 598 – 613.

[21] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-

capturing schemes, J. Comput. Phys. 77 (1988), 439 – 471.

[22] B. Sjögreen and N. A. Petersson, A Cartesian embedded boundary method for hyper-

bolic conservation laws, Commun. Comput. Phys. 2 (2007), 1199 – 1219.

41

[23] I. Singer and E. Turkel, High-order finite difference methods for the Helmholtz equa-

tion, Comput. Methods Appl. Mech. Engrg. 163 (1998), 343 – 358.

[24] E. Turkel, D. Gordon, R. Gordon and S. Tsynkov, Compact 2D and 3D sixth order

schemes for the Helmholtz equation with variable wave number, J. Comput. Phys.

(2013), 272 – 287.

[25] S. Tan and C.-W. Shu, Inverse Lax-Wendroff procedure for numerical boundary con-

ditions of conservation laws, J. Comput. Phys. 229 (2010), 8144 – 8166.

[26] S. Tan and C.-W. Shu, A high order moving boundary treatment for compressible

inviscid flows, J. Comput. Phys. 230 (2011), 6023 – 6036.

[27] S. Tan and C.-W. Shu, Inverse Lax-Wendroff procedure for numerical boundary condi-

tions of hyperbolic equations: survey and new developments, in “Advances in Applied

Mathematics, Modeling and Computational Science”, R. Melnik and I. Kotsireas, Ed-

itors, Fields Institute Comm. 66, Springer, New York, 2013, 41 – 63.

[28] S. Tan, C. Wang, C.-W. Shu and J. Ning, Efficient implementation of high order

inverse Lax-Wendroff boundary treatment for conservation laws, J. Comput. Phys.

231 (2012), 2510 – 2527.

[29] F. Vilar and C.-W. Shu, Development and stability analysis of the inverse Lax-

Wendroff boundary treatment for central compact schemes, ESAIM: Math. Model.

Numer. Anal. 49 (2015), 39 – 67.

[30] P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow

with strong shocks, J. Comput. Phys. 54 (1984), 115 – 173.

[31] T. Xiong, M. Zhang, Y.-T. Zhang and C.-W. Shu, Fifth order fast sweeping WENO

scheme for static Hamilton-Jacobi equations with accurate boundary treatment, J. Sci.

Comput. 45 (2010), 514 – 536.

[32] J. Zhu and C.-W. Shu, A new type of multi-resolution WENO schemes with increas-

ingly higher order of accuracy, J. Comput. Phys. 375 (2018), 659 – 683.

42

