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Abstract

A new interface treating method is proposed to simulate compressible two-medium
problems with the Runge-Kutta discontinuous Galerkin (RKDG) method. In the
present work, both the Euler equation and the level-set equation are discretized with
the RKDG method which is compact and of high-order accuracy. The linearized
interface inside an interface cell is recovered by the level-set function. The new so-
lution of this cell is taken as a convex combination of two auxiliary solutions. One
is the solution obtained by the RKDG method for a single-medium cell with proper
numerical fluxes, and the other one is the intermediate state of the two-medium Rie-
mann problem constructed in the normal direction. The weights of the two auxiliary
solutions are carefully chosen according to the location of the interface inside the cell.
Thus, it ensures a smooth transition when the interface leaves one cell and enters a
neighboring cell. The entropy-fix technique is adopted to minimize the overshoots or
undershoots in problems with large entropy ratio across the interface. The scheme
is justified in a 1-dimensional situation and extended to 2-dimensional problems.
Several 1-dimensional two-medium problems, including both smooth and discon-
tinuous examples, are simulated and compared with exact solutions. Also, three
2-dimensional benchmark problems are simulated to validate the present method in
two-medium problems.
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1. Introduction

Multi-medium problems have always been a significant aspect of fluid dynamics.
The appearance of contact discontinuities at material interface always limits the
accuracy of the numerical scheme. Among the enormous amount of methods for
treating the multi-medium interface, they can be roughly classified as the diffusive
interface methods and the sharp interface methods.

In the diffusive interface methods, the interface is usually represented by a phase
function that transits from one fluid to another through a few layers of the grid.
Among them, the mixture theory with the interface reconstructed by the volume of
fluid (VOF) method [3, 18, 31, 38] is widely used in the commercial hydrodynamics
codes. It is robust and able to retain the phase transition within 3-4 cells. How-
ever, the accuracy of the interface advancement is usually limited to second-order
and interface reconstruction schemes with a higher order of accuracy are non-trivial
in multi-dimensional problems [3]. To achieve higher-order of accuracy, So et al.
[29] directly solved the convection equation of the volume fraction function with a
high-order finite difference method and the construction of the material interface
was avoided. To offset the diffusion effect introduced by the numerical scheme, an
anti-diffusion term was added in the convection equation of the volume fraction func-
tion. The scheme is conservative in the sense of total mass, momentum and energy,
but only the gas-gas interfaces with small density ratios were simulated. Shyue [28]
proposed the γ-based model which solved two convection equations for two func-
tions of γ and Pw, the two material constants in the Tammann equation of state
(EOS), instead of the volume fraction for the compressible Euler equation, which
improved the stability significantly. More recently, Cheng et al. [5] combined the
γ-based model with the weighted essential non-oscillation (WENO) scheme in the
framework of the discontinuous Galerkin method to formulate a uniformly high-order
interface resolving method. Their schemes were efficient and the results were promis-
ing. However, the γ-based model can only handle the fluids described by the ideal
gas or Tammann EOS. A significant feature of the diffusive interface methods is that
it is straightforward to apply them in the multi-medium problems containing more
than two fluid components. Anderson et al. [1] combined the Lagrangian high-order
finite-element approach and a remapping procedure to simulate multi-medium flows.
The volume fraction function’s remapping between the deformed and the original
mesh was implemented with the discontinuous Galerkin method over a fictitious
time interval. Aditya et al. [26] developed a reconstructed discontinuous Galerkin
method for multi-medium hydrodynamics. The underlying formulations were pre-
sented for the mixture cell containing several fluids. Although only 1-dimensional
numerical experiments were presented for validation, this method has great potential
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in multiple spatial dimensions.
On the other hand, the sharp interface methods have been developed extensively

in the past few decades. In these methods, the first task is to accurately advance the
interface in the Eulerian grid. One approach is the front-tracking method [13–15, 17]
which tracks the interface explicitly. It uses a lower-dimensional grid to represent
an interface in the flow such that the computational cost is reduced [15, 17]. How-
ever, it requires a complicated mesh reconstruction to deal with the difficulty of any
topological change of the fluid domain, which is non-trivial for multi-dimensional
problems. The other approach is the level-set method [25] which implicitly defines
the interface by the zero iso-surface of a level-set function. The interface is advanced
by solving the convection equation similar to that in the VOF methods. Compared
with the VOF methods, it is easy to be solved with high-order schemes because the
level-set function is smooth near the interface. However, in large deformation prob-
lems, the level-set function can be ill-defined after some time of advancing. Then, a
re-initialization procedure is introduced to reset the level-set function to the signed
distance function while keeping the interface position [10]. More recently, Wen [35]
and Nguyen et al. [24] coupled the level-set method and the VOF method in the
incompressible interfacial flow simulation to maintain high-order accuracy and con-
servation. For compressible problems, Hu et al. [2] combined interface description
and geometric operation to formulate a conservative interface method with a level-set
technique. After the interface position is advanced accurately, a scheme to treat the
interface cell is required. As one of the most popular methods in this field, the ghost
fluid method (GFM) was originally proposed in Fedkiw et al. [10] (referred to as the
original GFM (OGFM) in this paper), which is a method solving two single medium
problems separately instead of dealing with their direct interaction. For each medium
being solved, the fluid domain is expanded across the interface for several layers of
cells which are referred to as the ghost cells. The state variables of these ghost cells
are filled artificially by assuming the continuity of the normal velocity, pressure and
entropy across the interface. For smooth problems and discontinuous problems with-
out entropy jump for each fluid component, the OGFM presents promising results,
although the conservation at the interface cell is not ensured. The conservation error
is justified to be at the same order of the cell size if the interface instabilities are not
involved [10]. When the problem involves the interaction of a strong shock and an
interface, wrong results may be obtained with the OGFM since the assumption of
continuous entropy is not reasonable anymore. Thus, Liu et al. [22] proposed the
modified GFM (MGFM) which used the intermediate state of the two-fluid Riemann
problem to fill the interface cell instead of assuming any continuity. Then Qiu et al.
[27] coupled the MGFM and the discontinuous Galerkin method together to simulate
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multi-medium flows. In the sense of discontinuity, the fluid-structure interface is the
same as the fluid-fluid interface. Thus, the MGFM is also applicable to treat the
fluid-structure interfaces [12, 23]. To overcome the inaccurate interfacial condition
in shock impedance matching problems, Wang et al. [33] further defined the real
fluid nodes just next to the interface which led to the real-GFM. Another variant
of the MGFM is the practical GFM proposed in [37] that reduces the degrees of
freedom required for defining the ghost cells near the interface. The MGFM and
its variants provide simple and practical frameworks for the numerical simulation
of multi-medium problems with complex wave interactions, and are employed in a
wide range of applications. In these GFMs, the location of the interface is only used
to label the single-medium and multi-medium cells. The ghost cell state and final
solution are not related to the exact location of the interface inside a cell. As a
result, a sudden jump for the system property could arise when the interface leaves
one cell and enters its neighbor.

In the present paper, an interface treating method is proposed on the basis of the
GFM to resolve the interfacial problem of compressible fluids. The new method is
expected to be able to consider the exact position of the interface inside the cell to
achieve higher resolution and better robustness. The rest of this paper is organized
as follows. Firstly, a brief review is presented as the framework of the current scheme.
Secondly, MGFM for 1-dimensional two-medium problems is presented and justified
with the wave structure inside an interface cell. Thirdly, the scheme is extended to
2-dimensional problems. Then, some 1-dimensional and 2-dimensional benchmark
cases are simulated to test the present scheme. At last, some concluding remarks are
given.

2. Brief review of the RKDG method for two-medium Euler equations

2.1. Basic equations

The Euler equation in conservative form describing compressible fluids in 2-
dimensional domain reads

Ut + Fx + Gy = 0, (1)

where U, F and G are the vectors of the conservative quantities and fluxes in the
x and y directions, respectively. The subscripts of t, x and y indicate the partial
derivatives with respect to them. The three vectors are given by

U =


ρ
ρu
ρv
E

 , F =


ρu

ρu2 + p
ρuv

u(E + p)

 , G =


ρv
ρuv

ρv2 + p
v(E + p)

 ,
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where p is the pressure, ρ is the fluid density, u = [u, v] is the velocity vector and
E = ρe+ 1

2
ρ(u2+v2) is the total energy with e representing the specific internal energy.

The four equations in the system refer to the conservation of mass, momentums in
the x and y directions and total energy, respectively. For a 1-dimensional problem,
we just set v = 0 and remove the third component of each vector. The system is then
closed by the EOS of the fluid which relates the density ρ, pressure p and specific
internal energy e. In this paper, two kinds of EOS are adopted, i.e., the ideal gas
EOS

p = ρe(γ − 1), (2)

and the Tammann EOS [19]

p = ρe(γ − 1)− Pwγ. (3)

Herein, γ is the specific heat ratio and Pw is the reference pressure. By choosing
appropriate constants γ and Pw, they can be used to model a wide range of gases
and liquids.

In multi-medium problems, the evolution of the interface is required to be re-
solved. In the present work, the level-set method is used for this purpose which
solves a convection equation [10, 25] for the level-set function φ:

φt + uφx + vφy = 0. (4)

Usually, φ is initially defined as the signed distance function such that the two fluids
are separated by the iso-line where φ = 0. If φ is convected by the velocity of the
fluid, the interface can still be implicitly captured by finding the same iso-line. To
maintain the stability and resolution of the simulation, the reinitialization process is
adopted in this paper following Fedkiw et al. [10] to reset φ to the signed distance
function by solving the equation

φt′ + s
√
φ2
x + φ2

y = s (5)

to steady state, with t′ representing the pseudo time and

s =
φ√

φ2 + h2

representing the smoothed sign function. Herein, h is the cell size.
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2.2. Semi-discretization form of the RKDG method

The RKDG method adopted here follows the framework established in [7, 8].
Denote Th as an uniform rectangular partition of the computational domain Ω and
Ii,j represents the cell bounded by [xi, xi+1]× [yj, yj+1]. It should be noted that the
RKDG method allows arbitrary triangulations as shown in [7], and we are using the
rectangular meshes in this paper just as an example. The cell size in the x and y
directions are both taken as h, which is not necessary but is adopted for simplicity.
P k is the kth degree polynomial space and Ψ = {ψ`} is a complete set of orthogonal
basis functions for ` = 1, 2...Np, where Np = 1

2
(k + 1)(k + 2). In this paper, the

basis functions are chosen as the normalized 2-dimensional Legendre polynomials
such that ∫

Ī

ψ`ψmdξdζ = 4δ(`,m), (6)

where Ī is the reference cell bounded by [−1, 1] × [−1, 1] on the ξζ plane with ξ =
2
h
[x− 1

2
(xi+xi+1)] and ζ = 2

h
[y− 1

2
(yj +yj+1)], and δ(`,m) is the standard Kronecker

delta function. For example, the basis functions for the P 2 space are given by

Ψ =



1√
3ξ√
3ζ

3ξζ√
5

2
(3ξ2 − 1)√

5
2

(3ζ2 − 1)


. (7)

In the present paper, both the Euler equation and the level-set equation are
discretized by the RKDG method. For the Euler equation, we follow the procedure
of the DG method for conservation law systems in 2-dimensions [7]. The goal is to
find the numerical solution Uh ∈ P k satisfying the semi-discretization equation for
cell Ii,j:∫

Ii,j

Uh
t ψ`dxdy =

∫
Ii,j

[
F(Uh)(ψ`)x + G(Uh)(ψ`)y

]
dxdy+∫ yj+1

yj

[
F̂(Uh(xi, y))ψ`(xi, y)− F̂(Uh(xi+1, y))ψ`(xi+1, y)

]
dy+∫ xi+1

xi

[
Ĝ(Uh(x, yj))ψ`(x, yj)− Ĝ(Uh(x, yj+1))ψ`(x, yj+1)

]
dx (8)

where F̂ and Ĝ represent the numerical fluxes calculated with F and G on the shared
edges of the current cell and its immediate adjacent neighbors. In this paper, the

6



numerical fluxes are calculated with the HLLC Riemann solver [19]. When dealing
with the fluxes between fluids with widely different densities, the estimation of signal
speed can be critical in the HLLC solver. In the present paper, the pressure-based
wave speed estimates [32] is adopted to determine the intermediate state and the
signal speed. In the following sections, the superscript h is omitted to simplify the
notations.

Because the basis functions are normalized and are orthogonal to each other, by
expressing the numerical solution U =

∑Np

`=1 ψ`E` and Ut =
∑Np

`=1 ψ`(E`)t, Eq. (8)
can be expressed as the following ODEs about the polynomial coefficients E`,

h2

4
(E`)t =

∫
Ii,j

[F(U)(ψ`)x + G(U)(ψ`)y] dxdy−

+

∫ yj+1

yj

[
F̂(U(xi, y))ψ`(xi, y)− F̂(U(xi+1, y))ψ`(xi+1, y)

]
dy+∫ xi+1

xi

[
Ĝ(U(x, yj))ψ`(x, yj)− Ĝ(U(x, yj+1))ψ`(x, yj+1)

]
dx (9)

for ` = 1, 2...Np. Thus, the calculation of the original conservative state vector is
converted to the update of E`. As long as they are properly obtained, the conservative
state vector at any location of a cell can be recovered by the weighted summation of
the basis vector.

As for the level-set function φ, the convection equation and the reinitialization
equation are also discretized with the RKDG method to keep the uniformity of the
solver. These two equations can both be written in the form of Hamilton-Jacobi
equations, and the direct DG method proposed in Cheng & Shu [6] is adopted.

2.3. Time discretization

The standard third-order strong stability-preserving Runge-Kutta method [16] is
adopted in this paper to discretize the time domain for both the Euler equation and
the level-set equation. Denote L(U, t) as the spatial discretization operator with the
DG method, the new solution at tn+1 can be expressed as

U(tn+1) =
1

3
U(tn) +

2

3
U(2) +

2

3
∆tL(U(2), tn +

1

2
∆t), (10)

with

U(1) =
3

4
U(tn) +

1

4
∆tL(U(tn), tn), and

U(2) =
3

4
U(tn) +

1

4
U(1) +

1

4
∆tL(U(1), tn + ∆t),
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where ∆t is the time increment controlled by the Courant-Friedrichs-Lewy (CFL)
condition.

3. New algorithm for two-medium problems

When dealing with interface cells, the GFM solves two single-fluid problems in-
stead of the motion of their mixture. The cells on the other side of and adjacent to
the interface are denoted as the ghost cells and filled properly to match the interface
condition. In the OGFM [10], the fluid state of the ghost cells is determined by the
entropy of the currently concerned fluid, and the velocity and pressure of the other
one. The MGFM [22] constructs a Riemann problem and uses the intermediate state
to fill the ghost cells such that the interaction of a strong shock and a material inter-
face could be correctly resolved. However, in these GFMs, the ghost cell state is not
related to the exact location of the interface inside the cell, and this will result in a
stiff jump and loss of accuracy when the interface moves from one cell to its adja-
cent neighbor. Besides, when the MGFM is combined with the RKDG method, the
interface cells are also treated as ghost cells [27, 34]. Thus, their material states are
overwritten at every time step, which introduces more conservation errors in smooth
problems with the interface moving in a ramping pressure field (see the comparison
in section 5.1.1).

In this paper, the GFM is modified to get a continuous transition when the
interface moves between cells, and we are trying to establish a new GFM which has
both a high conservation accuracy and the accuracy in treating state jumps as the
MGFM.

3.1. 1-dimensional problem

For 1-dimensional problems, Eq. (1) is simplified by setting v = 0 and removing
the third components from U and F. The multi-medium interface can be represented
by a single point location separating the two fluid components, and can be updated
with the material velocity explicitly instead of employing the level-set method. The
computational domain is partitioned into uniform cells with cell length h and cell i
is defined by [xi, xi+1]. Denote x = a as the spatial coordinate of the interface in cell
i at tn, i.e., xi < a < xi+1. The state vector of the left hand side fluid is denoted by
Ui
L and the right hand side fluid is denoted by Ui

R, with the superscript representing
the cell number. Typically, they are controlled by different EOSs. Without losing
any generality, we only consider the evolution of UL, as UR can be obtained by
symmetry. Limited by the CFL condition, the interface can never pass over a whole
cell during a single time increment. Thus, over the whole computational domain,
cells can be classified as the following 3 types:
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Figure 1: Configuration of a 1-dimensional Riemann problem inside an interface cell

(1) If cell i still remains single-medium from tn to tn+1, the ordinary single-medium
RKDG method is used to discretize the Euler equation and to update the state
vector Ui

L. The details will not be repeated here;

(2) If cell i contains the interface at tn, which is referred as an interface cell, it is
solved with the algorithm described in section 3.1.1;

(3) If cell i is single-medium at tn but changes to an interface cell at tn+1, which is
referred to as a prepared interface cell, it is updated with the algorithm described
in section 3.1.2.

3.1.1. Algorithm for the update of an interface cell

Firstly, the Riemann problem inside the interface cell should be explained. The
interface between the two fluids in the cell i forms a Riemann problem, in which
the space-time domain is divided into 4 regions with 3 characteristic lines and the
corresponding slopes SL, S

∗ and SR, as shown in Fig. 1. From left to right, the state
vectors are Ui

L, U∗L, U∗R and Ui
R, respectively. As long as Ui

L and Ui
R are given, all

these state vectors and signal speeds can be obtained with an exact or approximate
Riemann solver. In this paper, the HLLC solver is used. Following the treatment
proposed in Qiu et al. [27], the high-order moments in the polynomials of the state
vector of the interface cells are trimmed such that only the average values remain to
maintain the stability. Then, if the interface is still inside cell i, we claim that the
average state vector of cell i at the time level n+ 1 can be expressed as

Ūi
L(tn+1) = k1Ũ

i
L(tn+1) + k2Û

i
L(tn+1) (11)
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and the position of the interface can be updated with the contact discontinuity speed
S∗. Ũi

L is the result obtained by an explicit ODE solver resolving{
dŨi

L

dt
= 1

h

[
FRm(Ūi−1

L , Ūi
L)− FRm(Ūi

L, Ū
i+1
R )
]
,

Ũi
L(tn) = Ūi

L(tn),
(12)

with FRm(U1,U2) representing the numerical flux given by the Riemann problem
with inputs of U1 and U2. As for Ûi

L(tn+1), it is taken as the intermediate state of
the Riemann problem constructed by f1Ū

i−1
L (tn) + (1 − f1)Ūi

Ltn and Ūi+1
R . Herein,

f1 = 1
h
(a − xi) is the volume fraction of fluid L in cell i at tn. Similarly, we define

f2 = 1
h
(∆tS∗) and f3 = 1

h
(∆tSL) such that the coefficients in Eq. (11) are given by

[k1, k2] =


[1, 0] if f1 + f3 ≥ 1− ε
[0, 1] else if f1 + f3 ≤ ε

1
f1+f2

[f1 + f3, f2 − f3] for else,

(13)

where ε is a small and positive constant for stability which is taken as 10−9 in our
computation. Since k1 and k2 are both bounded by 0 and 1, the resulting Ūi

L(tn+1)
is a convex combination of the two solutions Ũi

L and Ûi
L. This ensures good stability

such as the maintenance of positivity for density and internal energy.

Justifications:

Consider 3 situations based on f1 + f3:

(i) f1 + f3 approaching 0 from the right hand side;

(ii) f1 + f3 approaching 1 from the left hand side;

(iii) A general situation for f1 + f3 between 0 and 1.

Case (i) means that cell i is almost occupied by fluid R at tn+1. The leftward
signal SL of the Riemann problem will propagate over the whole area of fluid L. Then
the coefficients will make sure that the new solution of Ūi

L equals to the intermediate
state of the Riemann problem.

Case (ii) means that cell i is almost occupied by fluid L at tn+1. Thus, it is
reasonable to treat it as a single medium cell with a right side neighbor of fluid R.
Then the coefficients will make sure that the new solution of Ūi

L is updated with the
original RKDG method in a single medium cell.

As for Case (iii), the coefficients in Eq. (11) make sure that the solution of Ūi
L

linearly transits between the two cases above by their convex combination. To derive
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Figure 2: Riemann problems inside the interface cell

the coefficients k1 and k2, we shall firstly divide the region occupied by fluid L in cell
i at tn+1 into partition A and partition B, as shown in Fig. 2, which are separated
by the point reached by the slowest wave SL. The lengths of the two partitions are
xL−xi = h(f1 +f3) and x∗−xL = h(f2−f3), respectively. Herein, xL and x∗ are the
locations of the slowest wave and the material interface at tn+1. At tn+1, Ūi

L should
be the average value of the two partitions weighted by their lengths, i.e.,

Ūi
L(tn+1) =

f1 + f3

f1 + f2

Ũi
L +

f2 − f3

f1 + f2

ÛL, (14)

with

Ũi
L = Ui

L(tn) +
∆t

f1 + f3

(
F̂(xi)− F̂(xL)

)
(15)

referring to the state vector of partition A at tn+1. If F̂(xi) and F̂(xL) are directly
given by the real values of UL at these two positions, the solution could be unstable
since the cell length is scaled by f1+f3 which is smaller than 1, and the CFL condition
is not satisfied anymore. Thus, based on the fact that, when f1 + f3 is approaching
0 and 1, F̂(a) should also be approaching F̂(xi) and F̂(xi+1), respectively, a linear
interpolation is established to approximate F̂(xL) as below

F̂(xL) = (1− f1 − f3)F̂(xi) + (f1 + f3)F̂(xi+1). (16)

Plug Eq. (15) and (16) into Eq. (14), we have

Ūi
L(tn+1) =

f1 + f3

f1 + f2

Ũi
L +

f2 − f3

f1 + f2

Ûi
L. (17)

Eq. (17) shows that the new state value of the interface cell can be returned by a
convex combination of ŨL and ÛL.

To calculate Ûi
L, a multi-medium Riemann problem is formulated. It would

be natural to choose the input states of the Riemann problem as UL = ŪL and
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UR = ŪR. However, this choice is not consistent with the calculation of Ũi
L. Thus,

the input state vector for the Riemann problem should also be changed according
to f1 + f3 instead of taking ŪL directly. Thus, UL and UR are calculated with the
following interpolation formulas for the in-cell Riemann problem:

UL = (1− f1 − f3)UL(x−i ) + (f1 + f3)ŪL, (18)

and
UR = (1− f1 − f3)ŪR + (f1 + f3)ŪR(x+

i+1). (19)

A significant advantage of this interpolation of UL and UR is that it ensures the
continuity of the solution of Ūi

L when moving the interface across the edge of cell i.
An alternative approach is to recover UL from the interpolated numerical flux F̂(xL)
with

UL = J−1
(
F̂L(xL)− F̄L

)
+ ŪL, (20)

where J is the Jacobian matrix of the Euler equation, and F̄L is the flux vector
corresponding to ŪL.

3.1.2. Algorithm to update a prepared-interface cell

In this section, a single medium cell of fluid R at tn which turns into a two-medium
one at tn+1 is considered. As for the state vector of fluid R, it can be updated as
a single-medium cell. As for the state vector of fluid L, we simply fill it with ÛL

calculated during solving the adjacent two-medium cell. Then, the polynomials for
both fluid L and fluid R are trimmed to be constants over the cell.

3.2. 2-dimensional problems

A significant advantage of the GFMs is that they are easy to be extended to
multi-dimensional problems. This section presents some special treatments in 2-
dimensional problems that should be mentioned for our new approach. For 3-
dimensional problems, these treatments could be properly generalized without con-
ceptual difficulties.

For consistency with the 1-dimensional algorithm, we still use the subscripts L
and R to denote the two fluids inside a 2-dimensional cell, although they are not
referring to the labels of the left and right fluid components. As φ represents the
level-set function, the unit normal vector of the interface is taken as n = ∇φ

|∇φ| at the
interface, which is assumed to point at fluid R from fluid L. We only discuss the
update of fluid L of an interface cell Ii,j.
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3.2.1. Interface construction from the level-set function

For 2-dimensional problems, the first difficulty is to judge whether a cell is a
single-medium or interface cell and locate the interface inside it with a given level-
set function φ(x, y). The interface should be a curve defined by φ(x, y) = 0. Then,
the fluid fraction f1 of fluid L can be expressed as

α =

∫
Ii,j

(1−H(φ))dxdy, (21)

where H is the Heaviside function

H(φ) =

{
0, when φ > 0,

1, for else.
(22)

If φ is an arbitrary polynomial with degree 2 or higher, it is non-trivial to calculate
the integration above inside a given cell accurately. Thus, the main idea is to truncate
the arbitrary polynomial to a linear one such that the interface can be expressed by
a line implicitly defined by

F(x) = x · n̄ + c = 0. (23)

Herein, x = (x, y) represents the 2-dimensional coordinate vector, n̄ is the normalized
normal vector of the linearized interface and can be approximated by the average
gradient of φ inside the cell:

n̄ =

∫
Ii,j
∇φdxdy∣∣∣∫Ii,j ∇φdxdy

∣∣∣ , (24)

and c is determined with the least square method such that

∂

∂c

∫
Ii,j

(x · n̄ + c− φ)2dxdy = 0. (25)

Once n̄ and c are obtained, we can label cell Iij with the following criterion:
Ii,j is a single-medium cell of fluid L, if max(F) ≤ 0;

Ii,j is a single-medium cell of fluid R, if min(F) ≥ 0;

Ii,j is an interface cell for else.

Herein, the maximum and minimum of F should be evaluated at the entire cell.
Because F is a linear function of x, it is enough to evaluate at the cell’s four corners.
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Figure 3: 3 basic configurations to calculate the area of an interface cell cut by the linearized
interface.

SRS*

SL

Figure 4: Calculation of f2 and f3 in the 2-dimensional problem.

Another significant difference between the 1-dimensional and 2-dimensional prob-
lems is the calculation of f1, f2 and f3. In 2-dimensional problems, they represent
the ratios between the corresponding areas instead of lengths. Inspired by the VOF
method, only the 3 situations shown in Fig. 3 are expected with proper rotating
manipulation. Then, the area of cell Ii,j cut by the linearized interface is calculated
geometrically to obtain f1. By moving the interface at tn along the normal direction
with the distance of ∆tS∗ and ∆tSL, f2 and f3 are approximated by the ratios of the
areas swept by the moving interface over the area of the cell, respectively, as shown
by the shadowed area in Fig. 4. It should be noted that these areas can be negative
with negative signal speeds SL and S∗.

It should be noted that Eq. (24) and Eq. (25) are also applicable to an arbitrary
triangular cell, for which there will be only one basic geometrical configuration with
proper rotating manipulation to calculate the volume fractions f1, f2 and f3.
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3.2.2. Algorithm to update an interface cell

Similar to the 1-dimensional problem, Eq. (11) is also used in 2-dimensional
problems to compute the new state variables of the interface cells with the convex
combination of ŨL and Ûi,j

L . The difficulties are how to calculate Ũi,j
L and Ûi,j

L ,
which are going to be discussed in this section.

As for Ũi,j
L , we still use the ordinary RKDG solver with proper numerical fluxes.

Taking the numerical flux F̂(xi+ 1
2
, y) on the right side edge of cell Ii,j as an example,

the input state vector on the left-hand side of the Riemann problem is naturally taken
as Ūi,j

L . As for the choice of the right-hand side input vector, we might encounter
with the following 3 situations according to the label of its right-hand side neighbor:

(i). Cell Ii+1,j is a single-fluid cell of fluid L;

(ii). Cell Ii+1,j is a single-fluid cell of fluid R;

(iii). Cell Ii+1,j is an interface cell.

For case (i), the flux is calculated with the ordinary procedure of the single-
medium RKDG method, with the numerical flux in the x direction computed with
the single-medium approximate Riemann solver.

As for case (ii), the flux on the shared edge is taken as

F̂(xi+ 1
2
,y) =

{
F(Ūi,j

L ) SL > 0,

F(U∗L(Ūi,j
L , Ū

i+1,j
R , n̄)) SL ≤ 0,

(26)

where F(U) is the flux defined by the material state U, U∗L(UL,UR, n̄) is the inter-
mediate state of fluid L in the Riemann problem with the input states of UL and
UR in the direction of n̄, and SL is the slowest signal speed.

As for case (iii), the total flux at the shared edge is calculated with a convex
combination of two fluxes calculated in case (i) and case (ii)

F̂(xi+1, y) = kLF(i) + kRF(ii), (27)

where kL and kR are coefficients given by

(kL, kR) =

{
(1, 0) if lc ≥ lo
1
lo

(lc, lo − lc) otherwise.
(28)

Herein, lc and lo are the intercepts of the interface with the current and opposite
cell edges, as shown in Fig. 5 for the example that the right side edge is considered.
This choice is based on the assumption that the cell is filled with the fluid L when
calculating Ũi,j

L . Thus, the original space occupied by the fluid L (lighter color in the
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left-hand side figure in Fig. 5) is firstly scaled proportionally to the shape shown by
the right-hand side figure in Fig. 5, and then we fill the whole cell with the fluid L.
If the interface is assumed to be continuous across the cell edge, the total flux on the
right-hand side edge can be expressed by Eq. (27). This choice of the numerical flux
is consistent with the 1-dimensional scheme when the interface becomes horizontal
or vertical.

When calculating Ûi,j
L , the procedure is the same as the 1-dimensional algorithm

except that the Riemann problem is constructed in the direction of n̄ with the input
states of UL and UR. Following the treatment in the 1-dimensional problem, convex
combinations of the material states of cell Ii,j, and its neighbors are used as the
Riemann problem’s two input states:

UL = (1− f1 − f3)Unbs
L + (f1 + f3)Ūi,j

L , (29)

and
UR = (f1 + f3)Unbs

R + (1− f1 − f3)Ūi,j
R , (30)

where Unbs
L and Unbs

R are the material states of the properly chosen neighbors of cell
Ii,j. Taking Unbs

L as an example, the two neighbors of cell Ii,j are used to calculate
Unbs
L according to the normal vector n̄:

Unbs
L = kxU

nx
L + kyU

ny
L , (31)

where

Unx
L =

{
Ūi−1,j
L , nx > 0

Ūi+1,j
L , nx ≤ 0

,Uny
L =

{
Ūi,j−1
L , ny > 0

Ūi,j+1
L , ny ≤ 0

, and (kx, ky) =
(|nx|, |ny|)
|nx|+ |ny|

with nx and ny representing the components of n̄ in x and y directions, respectively.
Eq. (29) reduces to Eq. (18) when the interface is aligned with the y axis, and
the consistency between the 1 and 2-dimensional algorithms is ensured. We might
encounter the situation that a neighbor of cell Ii,j that we require above is a single-
medium one of fluid R. Then we set the corresponding coefficient in Eq. (31) to zero
to avoid using ŪL of this cell. In even worse situations where the interface is highly
under-resolved, states for fluid L of immediate neighbors in both directions might
become unavailable. Then, each neighboring cell’s material state is approximated
by averaging its surrounding cells containing fluid L with the weight calculated with
the distances between cell centers. The detailed procedure follows Wang & Shu [34]
and will not be repeated here.
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Figure 5: Configuration of the original (left) and the scaled (right) cells for the flux calculation on
the right side edge.

3.3. Entropy-fix for interface cells

The convex combination of 2 solutions could lead to entropy problems at the
interface cell because the entropy is not linearly dependent on the coefficients. Take
a simple example with Ũ = [ρ, ρu,E] and Û = [ρ,−ρu,E]. Any convex combination
of Ũ and Û with nonzero coefficients will result in a pressure and entropy greater
than the same combination of those from the two input fluids. Thus, the isobaric fix
technique is adopted to alter the resulting conservative quantities to get a reasonable
entropy at interface cells. We define the physical entropy [10] as

S =
p+ Pw
ργ

(32)

for the fluid described by the Tammann EOS. In the OGFM [10], the entropy is
assumed to be continuous near the interface. Thus, all the conservative fluid quanti-
ties of the interface cell are altered without modifying the values of the pressure and
velocity according to the entropy of the adjacent single medium cell. However, it has
been proved that this treatment may not work well for the case with a strong shock
impacting on an interface because the entropy across the shock front can also be
discontinuous [22]. Thus, a more reliable prediction of the entropy for the interface
cell must be carried out. Given that the MGFM can handle such problems, we take
the entropy from the intermediate state of the Riemann problem constructed by the
two adjacent single-phase cells. Then, all the following procedures are the same as
the entropy-fix in the OGFM.

4. Overall procedures

The overall procedures have the following steps,

(1). Initialize the program;
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(2). Linearize the level-set function in each cell to label it as interface cell or single-
medium cell, and reconstruct the interface inside each interface cell;

(3). Calculate the numerical fluxes on each cell edge using the HLLC Riemann solver.
For interface cells, modify the fluxes based on the criterion given in section 3.2.2;

(4). Calculate Ũ for interface cells and U for single-medium cells using the ordinary
RKDG method;

(5). Construct the Riemann problem and solve it with the HLLC Riemann solver to
get Û for interface cells with the fluxes given in step (4);

(6). Calculate the convex combination of Ũ and Û with the weights given by Eq. (13)
for interface cells;

(7). Apply the entropy-fix to the old interface cells, and fill the new interface cells
following section 3.1.2;

(8). Go back to step.(2) to start the next time increment if the stop criterion is not
met.

5. Results and discussion

5.1. 1-dimensional examples

5.1.1. Test for smooth problem

Firstly, a 1-dimensional smooth problem is taken from Fu & Shu [11] and analyzed
with the two-medium methods. The initial conditions are given by

ρ(x, 0) = 1 + 0.2 sin(πx)

u(x, 0) =
√
γρ(x, 0)

p(x, 0) = ρ(x, 0)γ
(33)

where γ = 3 such that the Euler equation of density ρ reduces to a Burgers equation

ρt + (
√
γρ2)x = 0. (34)

Although this is a single-medium problem, we can solve it as a two-medium one by
putting an imaginary interface inside the fluid that splits the flow domain into two
parts. These two parts are occupied by two identical fluid components. Theoreti-
cally, it represents the same problem as the original one. Since the results are smooth
before a certain time, the error of the numerical scheme can be evaluated easily. This
example is used to test the stability and accuracy of the procedure when computing
smooth solutions without medium jumps. Admittedly this example cannot be used
to test difficulties associated with medium jumps, however it is still a good starting
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Figure 6: Comparison of density results from the exact solution (solid line), the current scheme
(red cross), OGFM (green dots) and MGFM (blue dashed line) with γ = 3 and initial conditions
given by Eq. (33).

point to test the performance of an interface treating procedure. The computational
domain is taken as I = [−1, 1] with the periodic boundary condition in the simula-
tion. The interface is initially located at x = −0.8, and both of the two fluids’ initial
conditions are given by Eq. (33). P 2 space is used, and the computational domain is
discretized into 100 uniform cells. No limiter is used in this case since the problem
is still smooth during the simulation. It should be noted that the entropy-fix proce-
dure may lead to extra artificial density jump at the interface. Thus, the entropy-fix
procedure is disabled in this case.

The results from different schemes are compared together at Fig. 6 for t = 0.2 and
0.4, respectively. The implementation of the MGFM follows [27] because the same
RKDG method was used to discretize the Euler equation. Also, the HLLC Riemann
solver is used for consistency in comparison with the current method. The results
show that both of the current method and the OGFM can simulate the problem
well except that there are small numerical fluctuations near the interface. These
fluctuations comes from the loss of accuracy in the interface cell, and they have little
influence on the overall performance. On the contrary, the results from the MGFM
present more obvious conservative error and the error propagates with the maximum
speed of the signal.

The errors ||ρ − ρh||L2 and the orders of accuracy of the total mass at t = 0.2
obtained with different methods are compared in Table 1. Because of the truncation
of the high-order moments of the numerical solution in the interface cell and its
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Table 1: Comparison of errors and accuracy orders of mass for the smooth problem discussed in
section 5.1.1 with different cell numbers at t = 0.2.

Cell number
OGFM MGFM current scheme

error/10−3 order error/10−3 order error/10−3 order
25 18.37 - 29.15 - 18.99 -
50 6.90 1.41 14.82 0.98 7.09 1.42
100 2.02 1.77 7.13 1.06 2.14 1.73
200 0.70 1.53 3.45 1.05 0.83 1.36

immediate neighbors, all the three methods should theoretically only have the order
accuracy between 1 and 2 for smooth problems. However, we can observe significantly
smaller errors on the same mesh for the current method and the OGFM than for the
MGFM, as well as slightly higher order of accuracy.

5.1.2. Tests for discontinuous problems

(a) Sod problem
Now we consider a discontinuous problem proposed in [30] with the initial con-

dition:

[ρ, u, p, γ] =

{
[1, 0, 1, 1.4] for x ≤ 0,

[0.125, 0, 0.1, 1.4] for x > 0.
(35)

This is a simple 1-dimensional Riemann problem conducted by two polytropic gas
with the same entropy. Due to the presence of the discontinuity, the entropy-fix
procedure is essential to get desirable results. Besides, we have used the positivity-
preserving limiter [39] to keep the simulation stable. The computational domain is
I =[-5,5] and the results obtained with the current method, the OGFM and the
MGFM at t = 2.0 are presented in Fig. 7 and compared with the exact solution.
In this case, each wave in the Riemann problem is well simulated with all the three
methods and agrees with the exact solution excellently. With the entropy-fix tech-
nique, even the density distribution near the contact discontinuity is quite good.

(b) Riemann problem between gas and water
The second 1-dimensional example is taken from Liu et al. [22] to test the treat-

ments of the interface between two mediums with larger density and stiffness ratios.
It represents a 1-dimensional underwater explosion problem. The computational
domain is I = [0, 1] and the initial conditions are non-dimensionalized as follows

[ρ, u, p, γ, Pw] =

{
[1.63, 0, 7.81× 104, 1.4, 0] for x ≤ 0.5,

[1, 0, 1, 7.15, 3309] for x > 0.5.
(36)

20



-5 -4 -3 -2 -1 0 1 2 3 4 5
x

0

0.2

0.4

0.6

0.8

1

1.2
Exact solution
MGFM
OGFM
Current method

(a) Density

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

0

0.2

0.4

0.6

0.8

1

1.2

p

Exact solution
MGFM
OGFM
Current method

(b) Pressure

-5 -4 -3 -2 -1 0 1 2 3 4 5
x

-0.2

0

0.2

0.4

0.6

0.8

1

u

Exact solution
MGFM
OGFM
Current method

(c) Velocity

Figure 7: Comparison of density(a), pressure(b) and velocity (c) results from the exact solution
(solid line), the current scheme (cross symbols), OGFM (circles) and MGFM (dash line) for the
Sod problem at t = 2.0.
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The results of simulated density, pressure and velocity at t = 1 × 10−3 obtained
with the current method, the OGFM and MGFM are shown in Fig. 8 with the solid
lines indicating the exact solutions. The present method successfully captures the
evolution of the shock wave in water, the rarefaction wave in gas, and the material
interface. Since we have not used any slope limiter such as the TVB limiter, there
are small oscillations on the curves in water. Besides, the current method performs
better in the density distribution near the contact discontinuity than the MGFM.

(c) Shock-interface interaction
The final 1-dimensional example is also taken from Liu et al. [22] which is in-

tended to show the superiority of the MGFM over OGFM. A strong shock with
pL/pR = 100 impacts on a gas-gas interface. As shown in Liu et al. [22], the OGFM
failed in simulating the movement of the interface because of its inappropriate as-
sumptions. Thus, we only compare the results from the current method and the
MGFM. The computational domain is I = [0, 1] and the initial conditions are as
follows

[ρ, u, p, γ] =


[0.3884, 27.1123, 100, 5/3] for 0 < x < 0.3,

[0.1, 0, 1.0, 5/3] for 0.3 ≤ x < 0.4,

[1.0, 0, 1.0, 1.4] for 0.4 ≤ x < 1.0.

(37)

This case formulated the situation of a strong shock impacting on a gas-gas interface
from the lighter gas. Similar to the previous case, only the positivity-preserving
limiter is used here. The comparisons of simulated results obtained with the current
method, the MGFM, and exact solution are shown in Fig. 9. Good agreement can be
observed for both of the numerical results. Compared with the MGFM, the current
method predicts better the right shock, while the left shock speed is lower than that
of the exact solution and the MGFM. These mismatches can also be found in Qiu et
al. [27] and might be attributed to the large entropy ratio across the incident shock.

5.2. 2-dimensional examples

5.2.1. Air bubble expanding in water

The first 2-dimensional case is to simulate an air bubble expanding in water. The
3-dimensional case of this problem has a lot of applications, such as the underwater
explosion and cavitation bubbles. The case is taken from Shyue [28] and the 1-
dimensional results with fine enough mesh are extracted as the reference solution.
The computational domain is taken as I = [0, 0.5] × [0, 0.5] and is discretized into
100× 100 cells. The results of the other three quadrants are obtained by symmetry.
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Figure 8: Density (a), pressure (b) and velocity (c) obtained with the current method (cross sym-
bols) and comparison to the exact solution (solid line) for the 1-dimensional underwater explosion
problem at t = 0.001.
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Figure 9: Comparison of density(a), pressure(b) and velocity (c) results from the exact solution
(solid line), the current scheme (cross symbols) and MGFM (dash line) for the shock-interface
interaction problem at t = 0.03.
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Table 2: Comparison of errors and accuracy orders of mass for the internal air for the problem
discussed in section 5.2.1 with different cell numbers at t = 0.058.

Cell number
MGFM current scheme

error/10−4 order error/10−4 order
25× 25 11.84 - 4.71 -
50× 50 5.77 1.04 2.31 1.03

100× 100 2.84 1.02 1.10 1.07
200× 200 1.45 0.97 0.55 1.01

Table 3: Comparison of errors and accuracy orders of mass for the surrounding water for the
problem discussed in section 5.2.1 with different cell numbers at t = 0.058.

Cell number
MGFM current scheme

error/10−4 order error/10−4 order
25× 25 13.54 - 4.79 -
50× 50 7.00 0.98 2.40 0.99

100× 100 3.56 0.98 1.21 0.99
200× 200 1.81 0.98 0.61 0.99

The initial conditions are given by

(ρ, u, v, p, γ, Pw) =

{
(1.241, 0, 0, 2.753, 1.4, 0) for x2 + y2 ≤ 0.22,

(0.991, 0, 0, 3.059e−4, 5.5, 1.505) otherwise.
(38)

The impenetrable boundary conditions are applied to all four boundaries. The den-
sity and pressure results are compared with the convergence results reproduced from
Shyue [28] in Fig. 10 at t = 0.058. This problem is difficult since there is a continuous
pressure gradient pointing to the bubble center near the material interface while the
bubble is expanding. Thus, the material interface is always subject to a ramping
wave, which makes the simulation more complicated. The two sets of results agree
well except for the small numerical oscillations behind the shock wave. To evaluate
the conservativeness of the current method, we compare the conservative errors of
two fluid components with different mesh refinements with those obtained with the
MGFM in Tab. 2 and Tab. 3, respectively. We can see that both the current method
and the MGFM have the first order of accuracy, but the current method can obtain
smaller conservative errors with the same grid. Compared with the smooth problem
discussed in section 5.1.1, the reason for losing accuracy is because of the presence
of “real” discontinuity and the employment of the level-set method.
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(a) (b)

Figure 10: Results of the 2-dimensional underwater explosion problem taken from Shyue [28] at
t = 0.058 for the density and pressure. Subfigure (a) shows the color contours of density (upper
half) and pressure (lower half) while subfigure (b) shows the comparisons of the present results and
those from Shyue [28].

5.2.2. Air-helium bubble impacted by a shock

In this case, a 2-dimensional helium bubble immersed in air is impacted by a air
shock with a Mach number of 1.22. The case has been well simulated to evaluate
the numerical schemes by several authors, e.g. [22, 29, 34]. The initial conditions for
the problem is taken from Wang & Shu [34] and is given by

(ρ, u, v, p, γ) =


(1, 0, 0, 1, 5/3) for (x− 10)2 + y2 ≤ 2.52,

(1.3764, 0.394, 0, 1.5698, 1.4) for x ≤ 6,

(1, 0, 0, 1, 1.4) for else.

(39)

In this paper, the computational domain is taken as I = [0, 20] × [0, 5] with the
inlet boundary condition applied on the left boundary, the impenetrable boundary
condition applied on the upper and lower boundaries, and the non-reflecting bound-
ary condition is applied on the right boundary. In this and the next 2-dimensional
examples, only the positivity-preserving limiter [39] is used to stabilize the simu-
lation. The computational domain is discretized into 600 × 150 mesh cells. The
lower half fluid domain is recovered by symmetry. The results are given in Fig. 11
for t = 2, 2.5, 3, 4, 8, and 13 in which the upside half figures represent the numerical
Schlieren images and the lower half figures show the pressure distributions.

The current scheme captures all the features reported in the papers mentioned
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(a) t = 2 (b) t = 2.5

(c) t = 3 (d) t = 4

(e) t = 8 (f) t = 13

Figure 11: Numerical Schlieren image (upper parts) and pressure distributions (lower parts) of an
air-helium bubble impacted by a shock at t = 2, 2.5, 3, 4, 8, and 13, which are discussed in section
5.2.2.
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above, e.g. the reflection and transmission of incident waves on the bubble interface,
the jet development of the bubble and so on. It should be noted that the bubble
surface is not smooth anymore and the oscillation grows after t = 8.0. It should be
attributed to amplification of the numerical error by the Kelvin-Helmholtz instability,
which has also been shown by the results of [5] and [29].

Another comparison is made for the early interactions between the shock and
the bubble obtained with the MGFM and our weighted GFM. The contour plots
of the x-component velocity u at t = 1.11 and 1.58 are shown in Fig. 12. Firstly,
it is observed that there are velocity fluctuations along the bubble interface in the
results obtained with the MGFM at t = 1.11 when the shock wave just impacts on
the bubble. Subsequently it leads to the oscillation of the interface, as shown in the
results at t = 1.58. By contrast, the horizontal velocity distribution is quite smooth
when calculated with the current method, which can be attributed to the ability
of the current method in considering the exact location of the interface inside the
interface cell and to transit the system properties smoothly. The other difference
between the two sets of results is that the horizontal velocity near the interface is
smeared to generate a band of 4-5 cells in the MGFM results, while our method gives
sharper results.

We also examine the conservativeness of the current method by plotting the
error curve of the total helium mass inside the bubble in Fig. 13, and the results
from the MGFM is added for comparison. There are two regions that the history
curves increase suddenly for both methods and are denoted as region A and region
B, respectively, as shown in the figure. Region A corresponds to the period when
the shock impacts the left side of the bubble, and strong interaction between them
leads to the sharp increase of the conservative error. Similarly, region B corresponds
to when the reflected shock from the upper boundary reaches the bubble. During
these two regions, the current method performs similarly to the MGFM. However,
for the residual regions, the error curve’s increase rate from the current method is
observably lower than that of the MGFM, because most bubble interface moves in a
smooth pressure field where our new method has a better performance.

5.2.3. Underwater air bubble impacted by a strong shock

The final 2-dimensional case is similar to the previous one with a much higher
density ratio at the fluid interface, which poses significant challenges to the method’s
robustness. A circular gas bubble is initially immersed in water and then impacted
by a strong shock. This problem has been investigated in [4, 20, 22, 27]. Similar
to the air-helium bubble case, only half of the flow domain is simulated here. The
computational domain is taken as I = [0, 15]× [0, 5], and is discretized into 600×240
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Figure 12: Comparison between the early interaction of a shock and an air-helium bubble obtained
with the current method (left) and the MGFM (right) for the case discussed in section 5.2.2 at
t = 1.11 and 1.58. The color contour represents the velocity component in the x direction.
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Figure 13: Comparison of the conservativeness errors of the mass of helium bubble obtained with
the current method and the MGFM.

square cells. The left boundary is taken as non-reflecting while the other three
boundaries are set to be impenetrable. The non-dimensionalized initial state for the
water and the internal air is given by

(ρ, u, v, p, γ, Pw) =


(0.001, 0, 0, 1, 1.4, 0) for (x− 6)2 + y2 ≤ 32,

(1, 60.3267, 0, 19000, 7, 3319) for x ≤ 2,

(1, 0, 0, 1, 7, 3319) for else.

(40)

The simulated results are given in Fig. 14, with the lower half of the flow domain
recovered by symmetry. We can observe the nonlinear interaction of the strong
shock and the air bubble, including the reflected rarefaction wave (Fig. 14(a)), the
development of high-speed jet (Fig. 14(c)), and jet impact and shock formation
(Fig. 14(d)). Because of the absence of the TVB limiter, some numerical oscillations
can be found in the results, but more evolution details are reserved. For example, a
re-entrant jet forms due to the main jet impact pressure, and then it impacts on the
bubble surface again to form another shock in water, as shown in Fig. 14(d) – (f).

6. Concluding remarks

In this paper, a new sharp interface treating method is implemented to resolve the
compressible two-medium problem with the RKDG method. By analyzing the wave
structure in a multi-medium Riemann problem inside an interface cell, the different
portions are solved with different methods, and the new cell state vector is taken as
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(a) t = 0.016 (b) t = 0.025

(c) t = 0.035 (d) t = 0.041

(e) t = 0.043 (f) t = 0.045

Figure 14: Numerical Schlieren image (upper parts) and pressure distributions (lower parts) of
a water-air bubble impacted by a strong shock at t = 0.016, 0.025, 0.035, 0.041, 0.043, and 0.045,
which are discussed in section 5.2.3.
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their convex combination with carefully chosen weights. Then, the proposed method
is extended to a 2-dimensional problem with the linear interface recovered from the
level-set function that determines the Riemann problem. The steps to calculate the
cell edge fluxes are presented in detail with explanations. Even though we considered
only rectangular meshes in this paper, it is straightforward to extend the proposed
method to arbitrary triangulation because of the flexibility of the RKDG method.
With a well-developed RKDG solver for the Euler equations and the level-set equa-
tion in triangular meshes, the only point that one should pay further attention is to
make an analogy to volume/area and flux calculation of interface cells described in
section 3.2.2.

The proposed method is an extension of the GFM and inherits its simplicity in
implementation in multi-dimensional problems. It could be regarded as a combi-
nation of the OGFM and the MGFM. With the simulations of several benchmark
problems, the proposed method exhibits better accuracy for smooth problems and
better capability in resolving the interaction of a strong shock and the material inter-
face. Besides, a smooth transition of the system property is ensured in the proposed
method by considering the exact location of the interface inside an interface cell,
which reduces the interface oscillations where the shock front is almost parallel to
the interface in the shock-interface interaction problem. When the problem involves
three or more fluid components, the present method requires additional efforts. For
example, there exist multiple level-set functions that need to be resolved, and the
interface cells may encounter a multi-cut situation in the construction of in-cell Rie-
mann problems and the area calculation. At last, similar to the GFMs [9, 12, 21, 36],
the present method is potentially applicable to the fluid-solid interface problem with
proper modifications.
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