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The first direct, model-independent measurement is presented of the modulus of the Cabibbo–
Kobayashi–Maskawa (CKM) matrix elements |V tb |, |V td |, and |V ts |, in final states enriched in single 
top quark t-channel events. The analysis uses proton-proton collision data from the LHC, collected during 
2016 by the CMS experiment, at a centre-of-mass energy of 13 TeV, corresponding to an integrated 
luminosity of 35.9 fb−1. Processes directly sensitive to these matrix elements are considered at both 
the production and decay vertices of the top quark. In the standard model hypothesis of CKM unitarity, 
a lower limit of |V tb | > 0.970 is measured at the 95% confidence level. Several theories beyond the 
standard model are considered, and by releasing all constraints among the involved parameters, the 
values |V tb | = 0.988 ± 0.024, and |V td |2 + |V ts |2 = 0.06 ± 0.06, where the uncertainties include both 
statistical and systematic components, are measured.

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A distinctive feature of the electroweak sector of top quark 
physics is the relative magnitude of the Cabibbo–Kobayashi–
Maskawa (CKM) [1] matrix element V tb with respect to V td and 
V ts , which leads to a strong suppression of processes involving 
mixing between the third and the first two quark families. This 
feature can be probed at the CERN LHC by studying the couplings 
of top quarks to d, s, and b quarks in electroweak charged-current 
interactions, where such couplings play a role at either the pro-
duction or decay vertices of the top quark. In general, top quarks 
are produced in proton-proton (pp) collisions through the strong 
interaction, predominantly via gluon fusion, creating a top quark-
antiquark (tt ) pair. Top quarks can also be singly produced via the 
electroweak interaction, in which case the dominant mechanism 
involves an exchange of a W boson in the t channel, a process 
which has been precisely measured at the LHC [2–11]. The dom-
inant decay process for a top quark is to a W boson and a b
quark via an electroweak charged-current interaction. All single 
top quark processes therefore allow the direct probing of the tWq
vertex, with q representing a b, d, or s quark, both in produc-
tion and decay of the top quark. In the t channel, a top quark is 
produced recoiling against a light quark, henceforth referred to as 
q′ . Fig. 1 shows typical Feynman diagrams at leading order (LO) 
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for the different production and decay modes considered in this 
analysis.

The elements V tb , V td , and V ts of the CKM matrix can be 
indirectly constrained from measurements in the B and K me-
son sectors [12], but those determinations rely crucially on model 
assumptions, such as the existence of only three generations of 
quarks and the absence of particles beyond the standard model 
(SM) [13]. This model dependence motivates alternative inferences 
based on different sets of hypotheses. In particular, given that 
these three CKM elements connect the top quark with down-type 
quarks, it is natural to use events enriched in top quarks to set 
constraints on them. Two complementary approaches have been 
pursued by the Tevatron and LHC experiments to extract |V tb |: 
the first method measures the branching fraction B(t → Wb) =
|V tb |2/(|V td |2 + |V ts |2 + |V tb |2) in tt events [14–17]. The B(t →
Wb) measurement is sensitive to the CKM elements of interest 
through the decay vertex of the top quark, and can be turned into 
a measurement of the value of |V tb | only under the hypothesis of 
the unitarity of the 3 ×3 CKM matrix. The second method is based 
on the single top quark production cross section and is sensitive 
in principle through both the production and decay of the top 
quark. To disentangle the effects of the two vertices in past mea-
surements at the Tevatron [18–27] and the LHC [2,3,5–10,28,29], 
|V tb | was extracted in the t channel by assuming that the val-
ues of |V ts | and |V td | are negligible. Some theoretical proposals 
have suggested the simultaneous extraction of the three CKM ma-
trix elements from a combination of measurements of B(t → Wb)

and either inclusive [13,30] or differential [31,32] cross sections of 
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Fig. 1. Leading-order Feynman diagrams for single top quark production via the t channel featuring: (a) a tWb vertex in production and decay, (b) a tWb vertex in production 
and a tWq in decay, with q being an s or d quark, (c) a tWq vertex in production and a tWb in decay, and (d) a process initiated by a d quark and enhanced due to 
contributions from these valence quarks. The � refers to e or μ leptons.

single top quark production in the t channel. Other studies specifi-
cally address the determination of |V td | [31,33] through a reliance 
on the reinterpretation of existing measurements, but they do not 
make use of full experimental detector simulations and do not ex-
ploit the discriminating power of multivariate analyses (see, for 
example, discussion in Ref. [34]).

The data used in this Letter come from pp collisions at 
√
s =

13 TeV, corresponding to an integrated luminosity of 35.9 fb−1 and 
collected by the CMS experiment with triggers requiring either one 
muon or electron in the final state. We present the first direct and 
model-independent simultaneous measurement of |V tb |, |V td |, and 
|V ts |, by considering their respective contributions to the top quark 
t-channel production and decay.

2. The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 6m internal diameter, providing a magnetic field 
of 3.8 T. Within the solenoid volume are a silicon pixel and strip 
tracker, a lead tungstate crystal electromagnetic calorimeter, and 
a brass and scintillator hadron calorimeter, each composed of a 
barrel and two endcap sections. Forward calorimeters extend the 
pseudorapidity (η) [35] coverage provided by the barrel and end-
cap detectors.

Events of interest are selected using a two-tiered trigger sys-
tem [36]. The first level, composed of custom hardware processors, 
uses information from the calorimeters and muon detectors to 
select events. The second level, known as the high-level trigger, 
consists of a farm of processors running a version of the full event 

reconstruction software optimised for efficient processing. A more 
detailed description of the CMS detector, together with a definition 
of the coordinate system used and the relevant kinematic variables, 
can be found in Ref. [35].

3. Simulated samples

Monte Carlo (MC) event generators are used to simulate sig-
nal and background samples. Single top quark t-channel events 
are generated at next-to-leading-order (NLO) in quantum chro-
modynamics (QCD) with powheg 2.0 [37–39]. The four-flavour 
scheme [40] is used for events with the V tb vertex in production, 
while the five-flavour scheme [41] is used for events with one V td
or V ts vertex in production. Top quark decays are simulated with
madspin [42]. The tt background process [43], as well as double 
vector boson production [44,45] (VV, where V stands for either 
a W or a Z boson), are generated with powheg 2.0. Associated 
top quark and W boson production are simulated with powheg

in the five-flavour scheme [46]. Single top quark s-channel events 
(t, s-ch) are simulated with MadGraph5_amc@nlo 2.2.2 [47] at 
NLO. The value of the top quark mass used in the simulated sam-
ples is 172.5GeV. For all samples pythia 8.180 [48] with tune 
CUETP8M1 [49] is used to simulate the parton shower, quark 
hadronisation, and underlying event, except for tt , where the tune 
CUETPM2T4 is used [50]. Simulated event samples with W and Z
bosons in association with jets (W+jets, Z+jets) are generated using
MadGraph5_amc@nlo 2.2.2. For these processes, events with up 
to two additional partons emitted in the hard scattering are sim-
ulated, and the FxFx merging scheme [51] is used to avoid double 
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counting with parton emissions generated in the parton showering. 
Simulated QCD multijet events, generated at LO with pythia 8.180, 
are used to validate the estimation of this background with a tech-
nique based on control samples in data.

The default parametrisation of the parton distribution functions 
(PDFs) used in all simulations is NNPDF3.0 [52] at LO or NLO 
QCD, with the order matching that of the matrix element calcu-
lation. All generated events undergo a full simulation of the detec-
tor response according to the model of the CMS detector within
Geant4 [53]. Additional pp interactions within the same or nearby 
bunch crossings (pileup) are included in the simulation with the 
same distribution as observed in data. Except for the QCD multi-
jet process, which is determined from a fit to data, all simulated 
samples are normalised to the expected cross sections.

4. Event selection and reconstruction

The signal event selection is based on final states where the top 
quark decays to a b, s, or d quark, and a W boson, which then de-
cays to a lepton-neutrino pair. Events with exactly one muon or 
electron and at least two jets are considered in this analysis, as 
was done in the latest CMS single top quark cross section mea-
surement [10]. The neutrino accompanying the lepton cannot be 
directly detected, and manifests itself in the detector as a mea-
sured momentum imbalance in the event. Depending on the CKM 
matrix element involved in the decay, the final state may include 
a jet from the hadronisation of either a b, s, or d quark. A jet 
recoiling against the top quark is present, and it is produced usu-
ally at low angle with respect to the beam axis. A third jet can 
stem from the second quark produced in the gluon splitting (as 
shown in Fig. 1(c)). The quark from gluon splitting generates a jet 
that usually has a softer transverse momentum (pT) spectrum than 
that of the jet from the top quark decay products. Depending on 
the number of tWb vertices in the event process, one can have 
one jet coming from the hadronisation of a b quark (b jet) if the 
tWb vertex occurs in production or in decay but not in both, or 
two b jets if the tWb vertex occurs both in production and decay.

Events are retained for the offline analysis if they were selected 
online by requiring the presence of an isolated, high-pT lepton: ei-
ther a muon with pT > 24 GeV or an electron with pT > 32 GeV. 
From the sample of triggered events, only those with at least one 
primary vertex reconstructed from at least four tracks, with a lon-
gitudinal distance of less than 24 cm and a radial distance of less 
then 2 cm from the centre of the detector, are considered for the 
analysis. The candidate vertex with the largest value of summed 
physics-object p2

T is taken to be the primary pp interaction vertex. 
The physics objects are the jets, clustered using the jet-finding al-
gorithm [54,55] with the tracks assigned to candidate vertices as 
inputs, and the associated missing pT (pmiss

T ), taken as the magni-

tude of the negative vector sum of the �pmiss
T of those jets.

The particle-flow (PF) algorithm [56] is used to reconstruct and 
identify individual particles in the event using combined informa-
tion from the subdetectors of the CMS experiment, allowing iden-
tification of muons, electrons, photons, and charged and neutral 
hadrons. After triggering, muons are considered for further anal-
ysis if they have pT > 26 GeV and |η| < 2.4, while electrons are 
required to have pT > 35 GeV and |η| < 2.1. Additional isolation 
requirements are used to discriminate between prompt leptons 
and those coming from hadronic decays within jets, by defin-
ing Irel , as the scalar sum of the pT of charged hadrons, neutral 
hadrons, and photons divided by the pT of lepton in a cone of 
�R =

√
(�η)

2 + (�φ)
2 = 0.4 around the muon and 0.3 around the 

electron, where φ is the azimuthal angle in radians. The contri-
bution of hadrons from pileup interactions is subtracted from the 
scalar sum with the techniques detailed in Refs. [57,58]. The pa-

rameter Irel is required to be less than 6.0% for muons, 5.9% for 
barrel electrons, and 5.7% for endcap electrons.

Jets are reconstructed using the anti-kT clustering algorithm de-
scribed in Refs. [54,55] with a distance parameter of 0.4 on the 
collection of PF candidates. To be included, charged particle candi-
dates must be closer along the z axis to the primary vertex than 
to any other vertex.

A correction to account for pileup interactions is estimated on 
an event-by-event basis using the jet area method described in 
Ref. [58], and is applied to the reconstructed jet pT. Further jet 
energy corrections [59], derived from the study of dijet events 
and photon plus jet events in data, are applied. Two types of jets 
are defined: high-pT jets are defined by requiring |η| < 4.7 and 
pT > 40 GeV, and low-pT jets are defined by requiring |η| < 4.7
and 20 < pT < 40 GeV.

Once the jets have been selected according to the above crite-
ria, they can be further categorised using a b tagging discriminator 
variable in order to distinguish between jets stemming from the 
hadronisation of b quarks and those from the hadronisation of 
light partons. A multivariate (MVA) discriminator algorithm uses 
track-based lifetime information, together with secondary vertices 
inside the jet, to provide a MVA discriminator for b jet identifi-
cation [60,61]. For values of the discriminator above the chosen 
threshold, the efficiency of the tagging algorithm to correctly find 
b jets is about 45%, with a rate of 0.1% for mistagging light-parton 
jets [60,61].

Events are divided into mutually exclusive “categories” accord-
ing to the number of selected high-pT jets and b-tagged high-pT
jets. In the following, categories are labelled as “njmt”, referring to 
events with exactly n high-pT jets, m of which are tagged as b jets, 
regardless of the number of low-pT jets. The threshold on the jet 
momentum for high-pT jets lessens the impact on the categorisa-
tion of additional jets coming from initial- or final-state radiation, 
which is fully simulated and taken into account in the modelling 
systematic uncertainties.

To reject events from QCD multijet background processes, a re-
quirement on the transverse mass of the W boson of mW

T > 50 GeV
is imposed, where

m
W
T =

√(
pT,� + pmiss

T

)2 −
(
px,� + pmiss

x

)2 −
(
py,� + pmiss

y

)2
.

(1)

Here, pmiss
T is defined as the magnitude of �pmiss

T , which is the neg-
ative of the vectorial �pT sum of all the PF particles. The pmiss

x and 
pmiss
y quantities are the �pT components along the x and y axes, 

respectively, and pT,� , px,� , and py,� are the corresponding lepton 
momentum components in the transverse, x, and y directions.

To analyse the kinematics of single top quark production, the 
four-momentum of a top quark candidate is reconstructed from 
the decay products: leptons, neutrinos, and b jet candidates. The 
pT of the neutrino can be inferred from pmiss

T . The longitudinal 
momentum of the neutrino, pz,ν , is calculated assuming energy-
momentum conservation at the W�ν vertex and constraining the 
W boson mass to mW = 80.4 GeV [12]:

p±
z,ν = �pz,�

p2
T,�

± 1

p2
T,�

√
�

2p2
z,� − p2

T,�(p
2
� p

2
T,ν − �

2
), (2)

where

� = m2
W

2
+ �pT,� · �pmiss

T , (3)

and p2
� = p2

T,� + p2
z,� denotes the square of the lepton momen-

tum. In most of the cases, this leads to two real solutions for 
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Table 1
Values of the third-row elements of the CKM matrix inferred from low-energy mea-
surements, taken from Ref. [12], with the respective values of the top quark decay 
branching fractions. The q in |V tq | and B(t → Wq) in the first column refers to b, 
s, and d quarks, according to the quark label shown in the header row.

Quark b s d

|V tq | 0.999119+0.000024
−0.000012 0.04108+0.00030

−0.00057 0.008575+0.000076
−0.000098

B(t → Wq) 0.998239+0.000048
−0.000024 0.0016876+0.0000025

−0.0000047 0.000074+0.000013
−0.000017

Table 2
For each of the production and decay vertices, the cross section times branching 
fraction for the corresponding signal process from simulation. The uncertainties 
shown include those from the factorisation and renormalisation scales, the PDFs, 
and any experimental uncertainties, where appropriate.
Production Decay Cross section × branching 

fraction (pb)
tWb tWb 217.0 ± 8.4
tWb (tWs + tWd) 0.41± 0.05
tWd tWb 0.102± 0.015
tWs tWb 0.92± 0.11

pz,ν and the solution with the smallest absolute value is cho-
sen [21,23]. For some events, the discriminant in Eq. (2) becomes 
negative, leading to complex solutions for pz,ν . In this case, the 
imaginary component is eliminated by modification of px,ν and 
py,ν so that mW

T = mW, while still respecting the mW constraint. 
This is achieved by requiring the determinant, and thus the square-
root term in Eq. (2), to equal zero. This condition gives a quadratic 
relation between px,ν and py,ν with two possible solutions and 
one remaining degree of freedom. The solution is chosen by find-
ing the �pT,ν that has the minimum vectorial distance from �pmiss

T

in the pmiss
x − pmiss

y plane.
A reconstructed top quark candidate is defined by associating 

one jet with an accompanying W boson, and the respective top 
quark four-momentum is evaluated as described above. For each 
of the signal categories selected, multiple top quark candidates can 
be defined in the same category, depending on the hypothesis for 
the origin of the jet in the event.

5. Signal description and event categorisation

The predicted branching fractions of top quarks to d, s, and b
quarks can be written as a function of the overall magnitude of 
B(t → Wq) = |V tq |2/(|V td |2 + |V ts |2 + |V tb |2). The values of |V tq |
and B(t → Wq) used to derive the initial normalisation of signal 
processes are taken from Ref. [12], and shown in Table 1.

The quantities reported in Table 1 come from low-energy mea-
surements that assume unitarity in the CKM matrix and no new 
loops in the relevant Feynman diagrams. This analysis will relax 
such assumptions and present different scenarios for interpretation 
of the provided results.

The signatures for t-channel processes involving V tb , V td , and 
V ts either in production or decay differ in three aspects: the num-
ber of reconstructed b-tagged jets, the features of the jet involved 
in the reconstruction of the correct top quark candidate, and the 
kinematic features of the events as a result of different PDF contri-
butions to production modes involving a b, s, or d quark. Hence-
forth, the t-channel process involving V tb in both production and 
decay will be referred to as STb,b , while t-channel processes in-
volving V tb in only production or decay will be referred to as 
STb,q and STq,b , respectively. The signal channels and their corre-
sponding cross sections times branching fractions from simulation 
are reported in Table 2. The cross sections are evaluated at NLO in 
the five-flavour scheme using powheg for σt-ch,d , σt-ch,s , and with
HATHOR [62] for σt-ch,b .

Multiple categories are defined in order to extract the contribu-
tion of the different t-channel processes, while at the same time 
discriminating against the background processes, mainly tt and 
W+jets production. The majority of t-channel events populate cat-
egories with 2 or 3 jets, as defined above. The main backgrounds 
arise from tt (all categories), W+jets (in the 2j1t and 3j1t cat-
egories), and QCD multijet (in the 2j1t category) processes. The 
signal processes taken into consideration give different contribu-
tions to the three categories, and it is possible to identify the 
most sensitive categories with respect to each process based on 
the respective signatures, as summarised in Table 3. The physics 
motivations leading to this strategy are described below.

Events from strong interaction tt production, where one top 
quark decays through the tWd or tWs vertex (tt b,q ), populate the 
2j1t and 3j1t categories. Their small contribution to the tt yield in 
such categories is covered by the b-tagging uncertainty. Their sig-
nature in those categories is also found to be indistinguishable, 
within systematic uncertainties, from that of tt when each top 
quark decays through the tWb vertex and one b jet does not pass 
either the kinematic or b tagging requirements. For those reasons, 
all top quark decay modes of tt pairs are treated as a single back-
ground source.

The discrimination between the three signals STb,q , STq,b , and 
STb,b is based on three characteristics. First, for STb,q events, only 
a single b quark is present in the final state stemming from gluon 
splitting, thus resulting in a low-energy b-tagged jet, while the 
jet coming from the top quark decay is usually not b tagged. For 
STq,b events, a single b-tagged jet is produced in the top quark 
decay, and additional jets from gluon splitting are usually not 
b tagged. Both STq,b and STb,q processes therefore differ from 
STb,b by having a single b quark in the final state, as opposed 
to two for the latter process. However, this feature can only be 
exploited when the jet from gluon splitting is energetic enough 
to be reconstructed. Second, further discrimination is achieved by 
exploiting the features of the reconstructed top quark candidates. 
The kinematic and angular properties of the decay products ex-
hibit significant differences depending on whether the correct jet 
is chosen, or if the jet that originated from the quark produced 
in the gluon splitting is used. For STb,q events, the top quark re-
constructed with the correct jet assignment usually does not use 
the b-tagged jet in the event, while for STb,b and STq,b , the top 
quark candidate is reconstructed by using the b-tagged jet in the 
majority of cases. It is therefore possible to differentiate between 
the STb,b and STb,q processes by comparing the features of top 
quark candidates reconstructed with or without b-tagged jets. Fi-
nally, different PDFs are involved in STb,b and STq,b processes, 
the latter drawing contributions from valence d quarks as well. 
Therefore, the kinematic properties of final-state particles may dif-
fer from the other channels. The second characteristic, related to 
the correctness of the top quark reconstruction hypothesis, proves 
to be the strongest amongst the three mentioned criteria. While 
the STb,q and the STb,b processes can be differentiated by using 
this characteristic, the STq,b and the STb,b productions cannot, be-
cause their final-state signatures exhibit the same features.

The 2j1t category is populated by events that depend on V tb
in both production and decay, where the single reconstructed b jet 
comes in the majority of cases (85%) from top quark decays, and 
for the remaining cases from the second b jet from gluon split-
ting. This means that the jet from the second b quark fails either 
the jet pT requirement or the b tag requirement, or both. Events 
coming from a process for which V td or V ts are involved, either in 
production or in decay, populate this category as well, with either 
the b-tagged jet coming from top quark decay or the secondary b
quark from gluon splitting.

For t-channel signal events from all four processes in Fig. 1, 
the most distinctive features that allow the discrimination against 
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Table 3
For each category, the corresponding signal process, the cross section times branching fraction expression, and 
the specific Feynman diagram from Fig. 1 are shown.

Category Enriched in Cross section × branching fraction Feynman diagram

2j1t STb,b σt-ch,bB(t → Wb) 1a
3j1t STb,q , STq,b σt-ch,bB(t → Wq), σt-ch,qB(t → Wb) 1b, 1c, 1d
3j2t STb,b σt-ch,bB(t → Wb) 1a

backgrounds in the 2j1t category rely on the fact that the second 
jet stems from the recoiling quark. For this reason the non-b-
tagged jet is not used for the top quark reconstruction. This cat-
egory is the one where the highest discrimination power for STb,b
against backgrounds is achieved by making use of the features of 
the top quark decay products, such as the reconstructed top quark 
mass and mW

T , and of the recoiling jet. However, the discrimina-
tion power with respect to other t-channel mechanisms is poor 
since jets from gluon splitting are typically not energetic enough 
to pass the pT threshold, making it impossible to reconstruct two 
different top quark candidates.

The 3j1t category is also populated by all t-channel processes 
of interest, but it differs from 2j1t in the fact that it accommodates 
events in which the jet from gluon splitting has a higher pT on av-
erage. For both the 2j1t and 3j1t categories, when the top quark 
decays through tWd,s vertices, the jet coming from the top quark 
usually does not pass the b tagging requirement since it stems 
from the hadronisation of a light quark. In all other cases, this jet 
passes the b tagging requirement, given the efficiency of the tag-
ging algorithm.

The 3j1t category is enriched in t-channel events by requiring 
|ηj′ | > 2.5, where ηj′ is the pseudorapidity of the most forward jet. 
The two jets other than the most forward one are used to recon-
struct the two top quark candidates. If the event is from the STb,q
process, the b-tagged jet in the 3j1t category will stem from gluon 
splitting, and the additional jet will have a higher chance of being 
the one coming from the top quark decay to an s or d quark. Vari-
ables of interest in this case are constructed by making use of the 
b jet and the least forward jet of the remaining two, referred to as 
the extra jet. Such variables include the invariant mass of the lep-
ton plus jet system (either the b jet or the extra jet), and several 
top quark kinematic variables constructed using a combination of 
the extra jet, the lepton, and pmiss

T .

In both the 2j1t and the 3j1t categories, mW
T is also used to 

discriminate between the QCD multijet background and other pro-
cesses. An event category depleted of QCD multijet background is 
defined by adding the requirement mW

T > 50 GeV. Fig. 2 shows the 
m

W
T distribution from data and simulations in the 2j1t and 3j1t 

categories for the muon (upper plots) and electron (lower plots) 
channels, where the QCD multijet background is normalised to the 
result of the fit.

In the 3j2t category, there are two b jets, one produced from 
the top quark decay and another from gluon splitting. Both b jets 
are used to reconstruct a top quark candidate and its correspond-
ing variables. In this case, the mW

T > 50 GeV requirement is un-
necessary since the QCD multijet contamination is negligible and 
the dominant background process is tt . No requirement on ηj′ is 
needed either since the category is dominated by the STb,b pro-
cess and the combinatorial top quark background is small.

Multivariate analyses are then performed by using boosted de-
cision trees (BDT) in order to obtain appropriate discriminating 
variables, henceforth referred to as BDT discriminators, in the three 
categories, for both muons and electrons. The processes used as 
signal or background in the training are the following:

• In the 2j1t category, the single top quark STb,b process is con-
sidered as signal and tt and W+jets processes as background.

• In the 3j1t category, the single top quark STq,b process is con-
sidered as signal and the STb,b , tt , and W+jets processes as 
background.

• In the 3j2t category, the single top quark STb,b process is con-
sidered as signal and tt as background.

The variables used in the 2j1t category training are: the |η| of 
the non-b-tagged jet, the reconstructed top quark mass, the cosine 
of the angle between the W boson momentum in the top quark 
rest frame and the momentum of the lepton in the W boson rest 
frame, the cosine of the polarisation angle defined as the angle 
between the direction of the lepton and the light-quark momenta 
in the top quark rest frame, the invariant mass of the lepton and 
b-tagged jet system, and the invariant mass of the lepton and for-
ward jet system.

The variables used in the 3j1t category training are: the |η|
of the most forward non-b-tagged jet, the mass of the top quark 
when it is reconstructed with the b-tagged jet (b-top quark), the 
cosine of the angle between the W boson momentum in the b-
top quark rest frame and the momentum of the lepton in the W
boson rest frame, the cosine of the polarisation angle defined as 
the angle between the direction of the lepton and the light-quark 
momenta in the b-top quark rest frame, pmiss

T , mW
T , the invariant 

mass of the lepton and b-tagged jet system, the invariant mass of 
the lepton and extra jet system, the invariant mass of the lepton 
and forward jet system, the number of low-pT jets, the mass of 
the top quark when it is reconstructed with the non-b-tagged jet 
(non-b-top quark), the cosine of the angle between the W boson 
momentum in the non-b-top quark rest frame and the momen-
tum of the lepton in the W boson rest frame, the cosine of the 
polarisation angle defined as the angle between the direction of 
the lepton and the light-quark momenta in the non-b-top quark 
rest frame, and the value of the MVA b tagger discriminator when 
applied to the non-b-tagged jet.

The variables used in the 3j2t category training are: the |η| of 
the non-b-tagged jet, the mass of the top quark when it is recon-
structed with the highest-pT b-tagged jet (leading top quark), the 
cosine of the angle between the W boson momentum in the lead-
ing top quark rest frame and the momentum of the lepton in the 
W boson rest frame, the cosine of the polarisation angle defined as 
the angle between the direction of the lepton and the light-quark 
momenta in the leading top quark rest frame, pmiss

T , mW
T , the in-

variant mass of the lepton and the highest-pT b-tagged jet system, 
the invariant mass of the lepton and lower-pT b-tagged jet system, 
the invariant mass of the lepton and light-jet system, the number 
of low-pT jets, the mass of the top quark when it is reconstructed 
with the lower-pT b-tagged jet (non-leading top quark), the cosine 
of the angle between the W boson momentum in the non-leading 
top quark rest frame and the momentum of the lepton in the W
boson rest frame, the cosine of the polarisation angle defined as 
the angle between the direction of the lepton and the light-quark 
momenta in the non-leading top quark rest frame, and the differ-
ence in η between the two b-tagged jets.
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Fig. 2. The mW
T distribution from data (points) and simulation (shaded histograms) in the 2j1t (left) and 3j1t (right) categories for the muon (upper) and electron (lower) 

channels. The vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the 
STq,b + STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

Figs. 3–5 show the distributions of the most discriminating 
variables in the 2j1t, 3j1t, and 3j2t categories, respectively.

6. Systematic uncertainties

Several sources of systematic uncertainties are considered in 
the analysis, divided in two groups depending on the treatment: 
uncertainties labelled as “profiled” are treated as nuisance param-
eters and profiled in the fit procedure described in Section 7, while 
those labelled as “nonprofiled” are estimated as the difference be-
tween the result of the fit procedure by varying the systematic 
scenario. These latter uncertainties include the sources related to 
the modelling of the signal process, which cannot be constrained 
from the measurement since they apply to the full phase space and 
not only to the region in which the measurement is performed. 
Also included are the jet energy scale and resolution uncertain-
ties, which play a major role in events featuring hadronic activity 
in the high-pseudorapidity region of the detector. They are also 
intertwined with the uncertainties in the modelling of the hadro-
nisation and cause a larger uncertainty in the signal acceptance, 
which was not the case for previous measurements [10,11]. For 
these reasons, a more conservative approach is preferred and these 
uncertainties are not profiled in the fit.

The impact of nonprofiled uncertainties is determined by re-
peating the analysis using varied templates according to the sys-
tematic uncertainty sources under study in the fit, instead of the 
nominal templates. The uncertainty due to a certain source is then 
taken as half the difference between the results for up and down 

variations of the effect. In the following, the different uncertainty 
sources that are considered in the analysis are briefly described. 
For the sake of simplicity and better readability, they are grouped 
into profiled and nonprofiled uncertainties.

Profiled uncertainties

• Limited size of simulated event samples: The statistical uncer-
tainty due to the limited size of the simulated event sam-
ples is evaluated for each bin with the Barlow–Beeston “light” 
method [63,64].

• Lepton trigger and reconstruction: Single-muon and single-
electron trigger and reconstruction efficiencies are estimated 
with a “tag-and-probe” method [65] from Drell–Yan events 
with the dilepton invariant mass in the Z boson peak.

• Pileup: The uncertainty in the average expected number of 
pileup interactions is propagated as a source of systematic un-
certainty by varying the total pp inelastic cross section by 
±4.6% [66].

• tt̄ modelling: The following uncertainty sources cover potential 
mismodelling of the tt process. Their effect is considered on 
both the acceptance and the cross section.
– tt̄ renormalisation and factorisation scale uncertainties (μR/μF): 

The uncertainties caused by variations in the renormalisa-
tion and factorisation scales are considered by reweighting 
the BDT response distributions with different combinations 
of doubled/halved renormalisation and factorisation scales 
with respect to the nominal value of 172.5GeV.
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Fig. 3. Distributions of the two most discriminating variables from data (points) and simulation (shaded histograms) in the 2j1t category: the |η| of the non-b-tagged jet ηj′
(left) and the invariant mass of lepton and b jet momenta system (right), shown for the muon (upper) and electron (lower) channels, respectively. The vertical lines on the 
points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b + STb,q processes (multiplied 
by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

– Matching of matrix element and parton shower (ME-PS match-
ing): The parameter that controls the matching between the 
matrix element level calculation and the parton shower, and 
that regulates the high-pT radiation in the simulation is var-
ied within its uncertainties.

– Initial- and final-state radiation: The impact of variations in 
the initial-state and final-state radiation is studied by com-
paring the nominal sample with dedicated tt samples.

– Underlying event: The effect of uncertainties in the modelling 
of the underlying event is studied by comparing the nominal 
sample with dedicated tt samples.

• QCD multijet background process normalisation: The QCD multi-
jet background yield is assigned a 50% uncertainty, which is 
chosen conservatively to be much larger than the uncertainty 
from the mW

T fit.
• W+jets composition: A separate uncertainty is dedicated to the 

fraction of W+jets events where the forward jet is generated 
by the parton showering.

• Other backgrounds μR/μF: In addition to tt , the uncertain-
ties due to variations in the renormalisation and factorisa-
tion scales are studied for the tW and W+jets processes by 
reweighting the distributions with weights corresponding to 
different combinations of halved or doubled factorisation and 
renormalisation scales. The effect is estimated for each process 
separately.

• PDF for background processes: The uncertainty due to the choice 
of PDF is estimated using reweighted histograms derived from 
all PDF sets of NNPDF 3.0 [67].

• b tagging: The uncertainties in the b tagging and mistagging 
efficiency measurements are split into different components 
and propagated to the efficiency of tagging b jets.

Nonprofiled uncertainties

• Luminosity: The integrated luminosity is known with a relative 
uncertainty of ±2.6% [68].

• Jet energy scale (JES): All reconstructed jet four-momenta in 
simulated events are simultaneously varied according to the 
η- and pT-dependent uncertainties in the JES [59]. This varia-
tion in jet four-momenta is also propagated to pmiss

T .
• Jet energy resolution (JER): A smearing is applied to account for 

the difference in the JER between simulation and data [59], 
and its uncertainty is estimated by increasing or decreasing 
the resolutions by their uncertainties.

• Signal modelling: The following uncertainty sources cover po-
tential mismodelling of the single top quark t-channel signal 
processes. The effect of those uncertainties on the acceptance, 
and not on the cross section, is considered. In the fit proce-
dure, the uncertainties are not considered as nuisance parame-
ters in the fit but evaluated by repeating the full analysis using 
samples of simulated signal events that feature variations in 
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Fig. 4. Distributions of the two most discriminating variables from data (points) and simulation (shaded histograms) in the 3j1t category: the pmiss
T in the transverse plane 

(left) and the value of the MVA b tagger discriminator when applied to the extra jet (right) are shown for the muon (upper) and electron (lower) channels, respectively. The 
vertical lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b + STb,q
processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

the modelling parameters covering the systematic uncertainty 
sources under study.
– Signal μR/μF: The uncertainties caused by variations in the 

renormalisation and factorisation scales are considered by 
reweighting the BDT response distributions according to 
weights corresponding to doubling/halving the nominal val-
ues of the scales [40,41].

– Matching of matrix element and parton shower (ME-PS match-
ing): The parameter that controls the matching between the 
matrix element level calculation and the parton shower, and 
that regulates the high-pT radiation in the simulation is var-
ied within its uncertainties.

– Parton shower factorisation scale: The renormalisation scales 
of the initial- and final-state parton shower are varied by 
factors of two and one half with respect to the nominal 
value of 172.5GeV.

– PDF for signal process: The uncertainty due to the choice of 
PDF is estimated using reweighted histograms derived from 
all PDF sets of NNPDF 3.0. The measurements in the fol-
lowing report only the experimental uncertainties, while the 
uncertainties on the predicted cross sections are reported in 
Table 2. Effects on the fit due to correlation between PDFs 
are considered negligible.

7. Fit procedure

The three CKM matrix elements are extracted by measuring 
the production cross sections and branching fractions of single 

top quark t-channel processes that depend on V tb , V td , and V ts
in production and decay. The vast majority of single top quark 
t-channel events come from the STb,b process, while STb,q and 
STq,b constitute subdominant production mechanisms. The tt b,q
contribution is taken into account in the background estimation.

The fit procedure is divided into two steps. In the first step, a 
maximum likelihood (ML) fit to the mW

T distribution is performed 
separately for the 2j1t and 3j1t categories in order to extract the 
QCD multijet contribution. The QCD multijet normalisation and the 
relative uncertainty are extrapolated to the QCD multijet depleted 
categories and used as an input to the second step. In the second 
step, in order to discriminate between STb,b , STq,b , and STb,q , 
the multivariate discriminators described in Section 5 are used in 
a simultaneous ML fit to the three event categories, while the QCD 
multijet prior uncertainty and central value are taken from the first 
step.

The t-channel single top quark signals are parametrised with 
a flat prior representing the coupling strength, and all systematic 
uncertainties are treated as described in Section 6. The smaller 
background yields are allowed to vary in the fit, along with the 
respective scale uncertainties. The QCD multijet background is fit-
ted with a flat prior nuisance, while tt and W+jets backgrounds 
are left floating within the respective systematic uncertainties. The 
t-channel STb,q and tt b,q processes do not distinguish between 
topologies depending on V td or V ts in the decay, while STq,b is 
sensitive to the different PDFs contributing to the processes. Fig. 6
shows the distributions after the fit procedure has been applied for 
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Fig. 5. Distributions of the two most discriminating variables from data (points) and simulation (shaded histograms) in the 3j2t category: the |η| of the non-b-tagged jet 
ηj′ (left) and the invariant mass of lepton and non-b-tagged jet system (right) are shown for the muon (upper) and electron (lower) channels, respectively. The vertical 
lines on the points and the hatched bands show the experimental and MC statistical uncertainties, respectively. The expected distribution from the STq,b + STb,q processes 
(multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of the data to the MC prediction.

Table 4
The sources and relative values in percent of the systematic uncertainty in the mea-
surement of the STb,b cross section. The uncertainties are broken up into profiled 
and nonprofiled sources.
Treatment Uncertainty �σSTb ,b

/σ (%)

Profiled Lepton trigger and reconstruction 0.50
Limited size of simulated event samples 3.13
tt modelling 0.66
Pileup 0.35
QCD background normalisation 0.08
W+jets composition 0.13
Other backgrounds μR/μF 0.44
PDF for background processes 0.42
b tagging 0.73

Total profiled 3.4

Nonprofiled Integrated luminosity 2.5
JER 2.8
JES 8.0
PDF for signal process 3.8
Signal μR/μF 2.4
ME-PS matching 3.7
Parton shower scale 6.1

Total nonprofiled 11.5

Total uncertainty 12.0

the muon (left) and the electron (right) channels. The partial and 
total contributions of the profiled and nonprofiled uncertainties are 
given in Table 4.

8. Results and interpretation

The contributions of each of the three CKM matrix elements to 
the different STb,b , STb,q , and STq,b cross sections, extracted from 
the fit procedure, are considered. In the SM, top quarks only decay 
to W bosons plus b, s, or d quarks, and their branching fractions 
are proportional to the magnitude squared of the respective matrix 
element, as given in Table 2. The fit results are given in terms of 
two signal strength parameters: the first, μb , refers to the STb,b
process, and the second, μsd , to the sum of the STq,b and STb,q
contributions.

By neglecting terms proportional to |V td |4, |V ts |4, the STq,b

term can be written as proportional to |V td |2 + |V ts |2, with a con-
tribution of order 5% that depends on |V td |2/|V ts |2. We consider 
variations on the latter contribution as negligible in the analy-
sis. These assumptions can be justified because of the hierarchy 
observed in the first two rows of the CKM matrix. The signal 
strengths thus become:

μb = σ
obs
t-ch,bB(t → Wb)

obs

σt-ch,bB(t → Wb)

μsd = σ
obs
t-ch,bB(t → Ws,d)

obs + σ
obs
t-ch,s,dB(t → Wb)

obs

σt-ch,bB(t → Ws,d) + σt-ch,s,dB(t → Wb)
,

(4)

where B(t → Ws, d) is the branching fraction for a top quark to 
decay to a W boson and either an s or d quark. Henceforth, the 
“obs” label will refer to the measured value of a quantity, and the 



10 The CMS Collaboration / Physics Letters B 808 (2020) 135609

Fig. 6. Distribution of the multivariate discriminators, comparing data to simulation normalised after the fit procedure, for the muon channel on the left and for the electron 
channel on the right, for 2j1t (upper), 3j1t (middle), and 3j2t (lower). The vertical lines on the points and the hatched bands show the experimental and fit uncertainties, 
respectively. The expected distribution from the STq,b + STb,q processes (multiplied by a factor of 1000) is shown by the solid blue line. The lower panels show the ratio of 
the data to the fit.

absence of this label will mean the expected value. Equation (4)
shows that the signal strengths are the ratios of the measured 
value of a quantity to the expected value.

One can write Eq. (4) more generally in terms of the top 
quark decay amplitudes or partial widths. We factorise out the 
modulus of the matrix element from the partial width for each 
quark. Thus, the top quark partial width to Wq can be written 
as 	q = 	̃q |V tq |2, where 	̃q is the top quark partial width for 
|V tq | = 1. We further assume that 	̃q = 	̃b , i.e. that any differ-

ences other than the CKM elements are negligible. Using this and 
the total width 	t of the top quark, we can write Eq. (4) as:

μb = |V tb |4obs	̃obs
q 	t

|V tb |4	̃q	
obs
t

μsd = |V tb |2obs
(|V ts |2obs + |V td |2obs

)
	̃
obs
q 	t

|V tb |2
(|V ts |2 + |V td |2)	̃q	

obs
t

.

(5)
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The first fit extracts the signal strengths μb and μsd , whose 
values can be interpreted under different model assumptions. The 
signal strengths obtained are:

μb = 0.99± 0.03 (stat+prof) ± 0.12 (nonprof)

μsd < 87 at 95% confidence level (CL),
(6)

with a correlation factor of ρμb ,μsd
= −0.25. The first uncertainty 

on μb is the combination of the statistical and profiled systematic 
uncertainties, while the second is due to the nonprofiled system-
atic components. The upper limit on μsd takes into account both 
profiled and nonprofiled systematic uncertainties.

In the following, we describe the signal extraction using the 
values of the CKM elements directly as parameters in the fit and 
applying constraints from the SM scenario and then two possible 
beyond-the-SM (BSM) extensions.

8.1. Measurement in the SM scenario

One can simplify Eq. (4) by assuming the SM unitarity con-
straint |V tb |2 + |V td |2 + |V ts |2 = 1. The fit is repeated, taking |V tb |
as the single free parameter and replacing |V td |2 + |V ts |2 with 
1 − |V tb |2. In this case, Eq. (4) becomes:

μb = |V tb |4obs
|V tb |4

μsd = |V tb |2obs
(
1− |V tb |2obs

)
|V tb |2(1− |V tb |2) .

(7)

The fit is only allowed to return values of |V tb | ≤ 1, and the 
constraint |V td |2 +|V ts |2 = 1 −|V tb |2 is imposed. Because of these 
constraints, Gaussian behaviour of the uncertainties cannot be as-
sumed. Instead, pseudo-experiments are generated to evaluate the 
impact of nonprofiled uncertainties on the measurement, and the 
following confidence intervals are measured at 95% CL:

|V tb | > 0.970

|V td |2 + |V ts |2 < 0.057.
(8)

This measurement is comparable with the previous most precise 
estimate using tt events from Ref. [17], and with the result of the 
combination of single top quark measurements in Ref. [29].

8.2. Measurements for two BSM scenarios

Any BSM contribution potentially enhancing |V tb |2, |V ts |2, or 
|V td |2 can affect top quark production, decay, or both. Some BSM 
scenarios predict the presence of additional quark families. In this 
case, the CKM matrix is extended due to the mixing between the 
SM quarks and the new hypothesised ones. This would imply that 
the CKM matrix elements |V tb |, |V ts |, and |V td | would not neces-
sarily satisfy the unitarity constraint of |V tb |2 +|V ts |2 +|V td |2 = 1. 
If these BSM quarks are heavier than the top quark, they would 
alter the CKM matrix elements without appearing as top quark de-
cay products. They would thus not contribute directly to the top 
quark decay width 	t , but only indirectly because of the reduc-
tion in the absolute values of the corresponding SM CKM matrix 
elements.

For the first BSM scenario, we assume the top quark decays 
through the same channels as in the SM case, and that the partial 
width of each decay only varies because of a modified CKM matrix 

element. In this case, by writing 	t and 	̃q as a function of |V tb |2
and |V td |2 + |V ts |2, Eq. (5) becomes:

μb = |V tb |4obs
|V tb |4(|V tb |2obs + |V ts |2obs + |V td |2obs

)
μsd = |V tb |2obs

(|V ts |2obs + |V td |2obs
)

(|V ts |2 + |V td |2)(|V tb |2obs + |V ts |2obs + |V td |2obs
) .

(9)

In this scenario, the measurement is performed leaving |V tb |
and |V td |2 +|V ts |2 as free parameters in the fit, resulting in:

|V tb | = 0.988± 0.027 (stat+prof) ± 0.043 (nonprof)

|V td |2 + |V ts |2 = 0.06± 0.05 (stat+prof)+0.04
−0.03 (nonprof).

(10)

In the second BSM scenario, the top quark partial width is 
unchanged, but the total width increases due to additional, un-
detected decays. In the fit, the partial widths for decays to known 
quarks are fixed, and the total width is a free parameter and al-
lowed to vary. The effects on 	t due to variations in |V tb |2, |V td |2, 
and |V ts |2 are neglected.

In this scenario, Eq. (5) is modified to:

μb = |V tb |4obs	t

|V tb |4	obs
t

μsd = |V tb |2obs
(|V ts |2obs + |V td |2obs

)
	t

|V tb |2(|V ts |2 + |V td |2)	obs
t

.

(11)

Using |V tb |2, |V td |2 + |V ts |2, and R	 = 	
obs
t /	t as the free pa-

rameters in the fit, we obtain:

|V tb | = 0.988± 0.011 (stat+prof) ± 0.021 (nonprof)

|V td |2 + |V ts |2 = 0.06± 0.05 (stat+prof) ± 0.04 (nonprof)

R	 = 0.99± 0.42 (stat+prof) ± 0.03 (nonprof).

(12)

The measured correlation factors between the three parameters 
are ρ|V tb |,|V td |2 = −0.19, ρ|V tb |,R	

= −0.78, and ρ
R	,|V td |2 = −0.21. 

This measurement is in good agreement with the other measure-
ments from Refs. [17,29,69,70], which however make use of the 
SM assumptions. The results for the second BSM scenario have a 
higher statistical precision than those for the first scenario because 
of the weaker dependence of the signal strength on |V tb | for the 
first scenario.

As mentioned in Section 1, constraints on |V td | and |V ts | from 
precision low-energy measurements do not necessarily hold when 
BSM particles are present in the relevant Feynman diagram loops. 
Theoretical studies have shown that values of |V ts | up to about 
0.2 are possible in some BSM scenarios [13]. The measurements 
presented here establish a model-independent upper limit on |V td |
and |V ts | by removing any assumed theoretical hypotheses. This 
will now allow new interpretations for possible mixing of SM and 
BSM processes.

Alternative approaches interpret the available single top quark 
measurements in terms of different scenarios for modifying the 
CKM matrix elements (see, for example, Ref. [32]), obtaining re-
sults that are comparable with the measurements presented in 
this Letter. Such approaches, however, do not allow changes in 
the decay vertex of the top quark, and do not consider possible 
similarities in the features of the STb,q signal and background pro-
cesses.

The current analysis improves the precision on |V tb | by 50% 
with respect to previous studies [10] by exploiting the tWb vertex 
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in the top quark decay, and is more precise than the combined 
ATLAS and CMS measurement using data at 

√
s = 7 and 8 TeV [29].

9. Summary

A measurement of the Cabibbo–Kobayashi–Maskawa (CKM) ma-
trix elements |V tb |, |V td |, and |V ts | has been performed in an 
event sample enriched in t-channel single top quark events, featur-
ing one muon or electron and jets in the final state. The data are 
from proton-proton collisions at 

√
s = 13 TeV, acquired at the LHC 

by the CMS experiment and correspond to an integrated luminos-
ity of 35.9 fb−1. The contributions from single top quark processes 
featuring all three matrix elements in the production vertex have 
been considered as separate signal processes, as well as contribu-
tions from decays of single top quarks involving all three quark 
families. The yields of the signal processes have been extracted 
through a simultaneous fit to data in different selected event cat-
egories, and the values of the CKM matrix elements have been 
inferred from the signal strengths, which are the ratios of the mea-
sured top quark t-channel cross sections times branching ratios to 
the expected values. The signal strengths obtained from the fit are 
μb = 0.99 ± 0.12, where the uncertainty includes both the statis-
tical and systematic components, and μsd < 87 at 95% confidence 
level (CL).

Under the standard model assumption of CKM unitarity, the 
values are found to be |V tb | > 0.970 and |V td |2 + |V ts |2 < 0.057, 
both at 95% CL.

Fits were also performed under two different beyond-the-
standard-model scenarios. In the first, we assume the presence 
of additional quark families that are heavier than the top quark. 
The unitarity constraint for the three CKM matrix elements no 
longer holds, but the top quark decays through the same channels 
as in the standard model. We assume the partial width of each 
top quark decay only varies because of a modified CKM matrix 
element. The fit gives:

|V tb | = 0.988± 0.051

|V td |2 + |V ts |2 = 0.06± 0.06,

where the uncertainties include both the statistical and systematic 
components.

In the second scenario, the top quark width is left uncon-
strained under the assumption that the contributions to the total 
width from the mixing of the three families are negligible. The cor-
responding measured values are:

|V tb | = 0.988± 0.024,

|V td |2 + |V ts |2 = 0.06± 0.06,

	
obs
t

	t
= 0.99± 0.42,

where again, both the statistical and systematic uncertainties are 
included. The differences among the uncertainties in the presented 
scenarios are driven by the difference in the functional depen-
dence of the observed event yields from the CKM matrix ele-
ments. This results in smaller uncertainties in |V tb | for the case 
where a fourth–power dependence is considered with respect to 
the second–power dependence case.

All results are consistent with each other, and show no devia-
tion with respect to extrapolations of low-energy measurements. 
These results are the first direct, model-independent measure-
ments of the CKM matrix elements for the third-generation quarks, 
and provide the best determination of these fundamental SM pa-
rameters via single top quark measurements.
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52 Also at Şırnak University, Sirnak, Turkey.
53 Also at Department of Physics, Tsinghua University, Beijing, China.
54 Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey.
55 Also at Beykent University, Istanbul, Turkey.
56 Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey.
57 Also at Mersin University, Mersin, Turkey.
58 Also at Piri Reis University, Istanbul, Turkey.
59 Also at Ozyegin University, Istanbul, Turkey.
60 Also at Izmir Institute of Technology, Izmir, Turkey.
61 Also at Bozok Universitetesi Rektörlügü, Yozgat, Turkey.
62 Also at Marmara University, Istanbul, Turkey.
63 Also at Milli Savunma University, Istanbul, Turkey.
64 Also at Kafkas University, Kars, Turkey.



The CMS Collaboration / Physics Letters B 808 (2020) 135609 31

65 Also at Istanbul Bilgi University, Istanbul, Turkey.
66 Also at Hacettepe University, Ankara, Turkey.
67 Also at Adiyaman University, Adiyaman, Turkey.
68 Also at Vrije Universiteit Brussel, Brussel, Belgium.
69 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
70 Also at IPPP Durham University, Durham, United Kingdom.
71 Also at Monash University, Faculty of Science, Clayton, Australia.
72 Also at Bethel University, St. Paul, Minneapolis, USA.
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