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ABSTRACT

Genetic redundancy refers to a situation where an individual with a loss-of-function mutation
in one gene (single mutant) does not show an apparent phenotype until one or more paralogs
are also knocked out (double/higher-order mutant). Previous studies have identified some
characteristics common among redundant gene pairs, but a predictive model of genetic
redundancy incorporating a wide variety of features derived from accumulating omics and
mutant phenotype data is yet to be established. In addition, the relative importance of these
features for genetic redundancy remains largely unclear. Here, we establish machine learning
models for predicting whether a gene pair is likely redundant or not in the model plant
Arabidopsis thaliana based on six feature categories: functional annotations, evolutionary
conservation including duplication patterns and mechanisms, epigenetic marks, protein
properties including post-translational modifications, gene expression, and gene network
properties. The definition of redundancy, data transformations, feature subsets, and machine
learning algorithms used significantly affected model performance based on hold-out, testing
phenotype data. Among the most important features in predicting gene pairs as redundant
were having a paralog(s) from recent duplication events, annotation as a transcription factor,
downregulation during stress conditions, and having similar expression patterns under stress
conditions. We also explored the potential reasons underlying mispredictions and limitations
of our studies. This genetic redundancy model sheds light on characteristics that may

contribute to long-term maintenance of paralogs, and will ultimately allow for more targeted

generation of functionally informative double mutants, advancing functional genomic studies.
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INTRODUCTION

Genetic redundancy, which refers to multiple genes that perform the same function,
has been defined in many ways since the mid-1900s (Gabriel 1960). An early study of genetic
redundancy in Saccharomyces cerevisiae discussed it in the context of unlinked genes
encoding enzymes catalyzing the same reaction (Mortimer 1969). A later study took a broader
view of genetic redundancy, with the degree of redundancy ranging from “complete
redundancy” among genes with housekeeping functions to “partial overlap of function”
among genes with primarily regulatory functions (Pickett and Meeks-Wagner 1995). In
studies from a number of model organisms, multiple examples of what is considered genetic
redundancy have been given, including: genes derived from convergent evolution encoding
enzymes that perform the same function (Pickett and Meeks-Wagner 1995); biochemical
pathways that are redundant due to interconnected metabolic networks (Weintraub 1993); and
genes from the same family (paralogs) that maintain some of the same functionality (Kempin
et al. 1995). Discussions of genetic redundancy in recent literature mostly encompass this last
definition, where a duplication event results in multiple copies of a gene that retain
overlapping functions (e.g., Chen et al. 2010, Bolle et al. 2013, Rutter et al. 2017). Practically,
genetic redundancy is commonly observed as a single gene knockout mutant that shows no
phenotype or a mild phenotype compared with a wild-type organism, with a double or higher-
order mutant showing a more severe phenotype.

After a gene is duplicated, selection may be relaxed on each copy, allowing
accumulation of mutations, which can lead to pseudogenization of one of the duplicates
(Brookfield 1992); thus, the presence of genetically redundant paralogs long after the
duplication event would seem to be an evolutionary paradox (Nowak et al. 1997). In spite of
this, the literature is replete with examples of genetic redundancy, and many redundant genes
in species such as S. cerevisiae and Caenorhabditis elegans originated from duplication
events that happened over 600 million years ago (Vavouri et al. 2008). At least two
mechanisms may explain how this is possible. Redundant copies can be retained for a long
time due to the slow pace of genetic drift in large populations. Based on a few key
assumptions, it is estimated that a mutation deleterious to the function of a duplicate copy
could take 0.75 to 5 million years to be fixed in Arabidopsis thaliana (Panchy et al. 2016).
However, this cannot account for the apparent redundancy among paralogs from the most
recent whole genome duplication (WGD) that occurred in the Arabidopsis lineage ~50 million
years ago (Bowers et al. 2003). Another possibility is that genetic redundancy is selected for
due to its ability to buffer the effect of a deleterious mutation in one paralog (Zhang 2012).
The issue is that such a mechanism requires selection based on future needs, which is counter
to our understanding of evolution. A mathematical model has been used to demonstrate that

redundancy can be stably maintained over time (Nowak et al. 1997). However, the model
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requirement for perfect equivalency in gene functions and in mutations between paralogs
seems unrealistic. Due to the challenges in assessing functions of paralogs, the extent of
genetic redundancy and the factors contributing to it remain largely unclear.

Plants are an excellent resource for studying the fate of duplicated genes due to the
relatively high rate of WGD events. While pseudogenization (loss of gene function) is the
most common fate of duplicated genes in plants (Panchy et al. 2016), some duplicates are
retained. Duplicates may persist without selection for a few million years simply due to
genetic drift (Panchy et al. 2016). In other cases, duplicates may be retained due to selection
on novel, adaptive function through neo-functionalization (Ohno 1970) or mechanisms
relevant to escape from adaptive conflict (Des Marais and Rausher 2008), and/or due to
selection on existing functions through gene dosage increase (Ohno 1970), Duplication-
Degeneration-Complementation (i.e., sub-functionalization; Force et al. 1999), gene balance
(Freeling and Thomas 2006), or paralog interference (Baker et al. 2013).

Beyond the mechanism of retention, by identifying and comparing characteristics of
paralogous gene pairs and singleton genes, studies have revealed unique characteristics
among retained duplicates. For example, there is a lower synonymous substitution rate among
retained (i.e., not pseudogenized) paralogs derived from whole genome duplications (Jiang et
al. 2013), suggesting that these gene pairs are relatively recent duplicates or that there is
selective pressure to retain the ancestral (or a more recently evolved) function. Retention bias
is also seen for some gene functions. For example, paralogous transcription factor and
signaling genes are retained at a higher rate than DNA repair genes (Blanc and Wolfe 2004).
Retention rates of paralogs also vary by duplication mechanism—tandem duplicates involved
in stress responses are more frequently retained (Hanada et al. 2008), and genes involved in
signaling processes are preferentially retained when derived from WGD rather than smaller
duplication events (Maere et al. 2005). While these studies reveal some characteristics of
genes that are retained after duplication, they do not directly address whether these retained
paralogs maintain redundant functions. A landmark study in Arabidopsis addressed this
question using machine learning to integrate 43 gene features related to sequence similarity
and gene expression, and predicted that ~50% genes in the Arabidopsis genome have at least
one redundant paralog (Chen et al. 2010). In this study, a gene whose single mutant showed
no abnormal phenotype (or a mild phenotype) and its closest match in the genome based on
sequence similarity were defined as a redundant pair. The most important features for
predicting redundancy included differences in isoelectric point, molecular weight, and
predicted protein domains between genes in a pair. While this pioneer study provided insights
into the prevalence of genetic redundancy, redundancy was defined in only one way. Also, in

the decade since that study substantially more functional genomic data have become

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 Support: (434) 964-4100

1202 Ay #0 uo 1s8nB A 9162629/ | L GESW/ABGIOW/EB0 | 0 L/10P/d]o1IE-80UBAPE/OGL/WOD dNO"dIWaPEo.//:SA)Y WOy POPeojumMod



available; inclusion of these data in addition to sequence similarity and gene expression may
improve the accuracy of redundancy predictions.

While the definition of redundancy presented above is prevalent, observation of
unequal genetic redundancy, where the single mutant for one paralog shows a much more
severe phenotype than the other and the double mutant has a still more severe phenotype
(Briggs et al. 2006), promotes the idea that redundancy is more accurately conceptualized as a
continuum. However, the time-consuming nature of precise phenotyping required to quantify
redundancy in this manner means that such data are available for relatively few paralogs, and
discussions of genetic redundancy frequently exclude single mutants with severe phenotypes.
Here we build upon previous work by modeling genetic redundancy using multiple
definitions of redundancy by including single mutants in multiple phenotypic categories, and
incorporating over 4,000 gene features from six categories, including functional annotations,
evolutionary properties, protein sequence properties, gene expression patterns, epigenetic
modifications, and network properties. We compared several machine learning algorithms
and feature selection methods to identify which of the features have the most predictive
power with respect to redundancy. We additionally performed statistical analysis to identify
features common among redundant gene pairs using nonredundant gene pairs as a contrast.
To estimate the prevalence of genetic redundancy throughout the genome, we used two of the
best-performing genetic redundancy definitions to predict whether ~18,000 gene pairs in the
Arabidopsis genome are genetically redundant. Finally, to assess the accuracy of our model,
we validated predictions using a “holdout” testing dataset and a handful of experimentally

well-characterized gene pairs.

RESULTS and DISCUSSION

Definitions of genetic redundancy

The designation of a gene pair as genetically redundant requires phenotype data for
double mutants and the corresponding single mutants. To define a set of benchmark
redundant and nonredundant gene pairs, we used phenotype data for 2,400 single and 347
higher-order Arabidopsis mutants (including 271 double mutants) from a previous study
(Lloyd and Meinke 2012) in which mutants were classified as having no phenotype, a less
severe phenotype (i.e., conditional, cellular/biochemical, or morphological), or a severe
phenotype (i.e., lethal, indicating the gene is essential) based on comparison with wild-type
individuals. We assigned these categories phenotype class numbers: 0 (no phenotype), 1A
(conditional), 1B (cellular/biochemical), 1C (morphological), and 2 (lethal) (Figure 1A) and
applied this same phenotype classification to 29 additional gene pairs (Bolle et al. 2013),

resulting in a final benchmark set of 300 single and double mutant trios (two single mutants
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and one corresponding double mutant). Note that our data are from experiments generally not
designed to assess genetic redundancy and typically conducted in one or a limited number of
conditions and environments. Thus, it is more straightforward to identify an abnormal
phenotype in a single mutant (i.e., phenotype distinct from wildtype, indicative of
nonredundancy) than to prove the absolute absence of an abnormal phenotype (indicative of
redundancy).

Using the benchmark phenotype data and the core idea for defining genetic
redundancy based on comparison of the phenotype severity between single mutants and the
corresponding double mutant, we established nine redundancy definitions (RDs; Figure 1B).
These were intended to capture the heterogeneity in how genetic redundancy is viewed and
defined, accounting for several different ways of thinking about what constitutes genetic
redundancy and allowing us to examine less-studied types of redundancy (for example, where
a single mutant has a severe phenotype, or where a double mutant has a relatively mild
phenotype): 1) Clear and extreme examples of genetic redundancy, where single mutants have
no apparent abnormal phenotype and the double mutant is lethal (RD4); 2) Classic genetic
redundancy, where single mutants have no abnormal phenotype and the double mutant has
any of a range of phenotype severities (RDs 1-5); 3) Subtle genetic redundancy, where single
mutants have an abnormal phenotype that may be only slightly less severe than that of the
double mutant (RDs 6-8); and 4) inclusive genetic redundancy, which encompasses all of the
above in a single definition (RD9). Under our inclusive genetic redundancy definition, 190 of
the gene trios in our dataset were classified as redundant.

This use of multiple definitions offered insulation against errors due to the inherent
challenges of classifying phenotypes into specific categories (e.g., some morphological
phenotypes are much more severe than others; under specific conditions, conditional lethal is
effectively the same as lethal). For example, while RD4 (extreme redundancy) excluded
double mutants with conditional phenotypes (phenotype class 1A), both lethal and conditional
lethal were included in the classic redundancy and inclusive redundancy definitions. While
we acknowledge that this classification of phenotype severity has caveats, in the absence of
quantitative phenotype data on a large scale, quantitative categories together with our multiple
definitions of redundancy allow us to better utilize the dataset and begin addressing
redundancy more as a continuum than as a binary problem.

To define nonredundant gene pairs, a single definition was used: two genes were
considered nonredundant if the double mutant was in the same phenotype class as either
single mutant or in a class with a lower number; that is, at least one single mutant had an
equal or more severe phenotype than the double mutant (Figure 1B). The nonredundant set
contained 110 gene trios. The nearly 2:1 ratio of redundant to nonredundant gene pairs may

reflect a bias in the literature. In the case of single mutants, plants are generally examined for
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phenotypes in large-scale screens in standard growth chamber conditions where they are not
challenged, potentially masking conditional phenotypes. This would give the false impression
that many single mutants have no abnormal phenotype, implying they are redundant. In the
case of double mutants, the presence of a more severe phenotype would tend to be reported,
with negative results less likely to appear in the literature. Because comparably fewer gene
pairs for which the double mutant has no abnormal phenotype have been reported, our dataset
likely contains comparably fewer nonredundant gene pairs (and conversely more redundant
gene pairs) than there are in nature. Double mutants with much more dramatic phenotypes
compared with the single mutants were also overrepresented in our dataset (Figure S1), likely
for similar reasons. As a result, some definitions that included only double mutants with mild
or no phenotypes had too few gene pairs (RDs 1, 2, and 6, which had 16, 10, and 13 gene
pairs, respectively) to generate robust models and were therefore excluded from further

analyses.

Optimal parameters for prediction of genetic redundancy with machine learning

Machine learning allows integration of multiple data types to build a statistical model
that can predict a specific outcome. In our case, we were interested in establishing a machine
learning model that could predict whether a gene pair was redundant or not using six broad
categories of data: functional annotations, evolutionary properties, protein properties, gene
expression patterns, epigenetic modifications, and network properties (Table S1). The general
approach we took is illustrated in Figure 2A. Here the input for the model consisted of
benchmark gene pairs (instances), classified as redundant or nonredundant (labels) according
to our nine definitions, and information about the genes and gene pairs from the six categories
of data (referred to as features). Performance was measured using the Area Under the Curve-
Receiver Operating Characteristic (AUC-ROC); higher scores indicate a higher true positive
rate (proportion of all redundant gene pairs correctly predicted) over the range of false
positive rates (proportion of gene pairs incorrectly predicted as redundant). Performance was
additionally measured using the Area Under the Precision Recall Curve (AU-PRC); higher
scores here indicate greater precision (proportion of gene pair predictions that are correct)
over the range of true positive rates ("recall"). Because we used a binary classification scheme
(redundant or not) for machine learning, a model classifying gene pairs at random would have
a score of 0.5 for both the AUC-ROC and AU-PRC measures, while a perfect model would
have a score of 1. Comparing three commonly used machine learning algorithms, we
determined that Support Vector Machines (SVM) performed the best on our data (see
Methods and Figure S2A-B). Thus, only models built using SVM are discussed in the

following sections.
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We next explored how the number of features examined and feature value
transformation affected model performance. While models using multiple features generally
perform better than those based on single features, the presence of uninformative features can
decrease model performance. Therefore, comparing two algorithms for feature selection, we
tested model performance with different numbers of features. Additionally, we looked at the
effect of transformation because transforming feature values (e.g., taking the square of values)
can amplify small differences, allowing subtle patterns to be more readily identified. Using
the inclusive redundancy definition (RD9), we tested 24 feature combinations (see Methods
and Table S2) by asking how well the model based on each feature combination performed in
predicting the benchmark gene pairs in a cross-validation scheme. We found that using 200
features selected with Random Forest, using the best transformations of each, led to the best
performing model (AUC-ROC = 0.74, Figure S2C and AU-PRC = 0.72, Figure S2D), with a
15% and 18% improvement in performance over a model using all of the untransformed
features (AUC-ROC = 0.64, Figure S2E and AU-PRC = 0.61, Figure S2F).

The selected features included many that were different representations of the same,
raw feature. For example, several features related to total synonymous substitution rate (Ks),
namely maximum Ks, minimum Ks, average Ks, difference in Ks, and total (sum) Ks for
genes in a pair (see Methods) were all among the features selected for the inclusive
redundancy model, demonstrating that representing a characteristic such as Ks in a variety of
ways provides distinct and useful information for building the model. Including multiple
representations and transformations of some features as described above explicitly introduced
collinearity among features as a potentially confounding factor; collinearity likely already
existed in our dataset among different but related features, for example, duplication event and
Ks. To determine whether this presented an issue for model performance (Dormann et al.
2013), we used Principal Component Analysis (PCA) for the inclusive redundancy model to
generate a new set of 10 features based on the top 10 PCs (explaining 53.4% of the total
variance) from the selected 200 features. This model performed poorly (AUC-ROC = 0.65
and AU-PRC = 0.63), demonstrating that, while the PCA approach controls for collinearity,
the resulting model is underfitted (even after inclusion of a total of 20 PCs explaining 69.8%

of the variance: AUC-ROC = 0.70 and AU-PRC = 0.67).

Comparison of models built with different redundancy definitions

We anticipated that the training sets established using some redundancy definitions
would result in more accurate predictions than others. Therefore, we next identified the
redundancy definition that resulted in the best predictions of redundancy using the optimal
algorithm (SVM) and input feature set that we identified (200 features selected with Random
Forest, using only the best transformation of each feature). When comparing how well each

model performed on the cross-validation sets, the model built using the extreme redundancy
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definition (RD4; trained model referred to as the extreme redundancy model) had the best
performance (AUC-ROC = 0.84, Figure 2B and Figure S3A; AU-PRC = 0.82, Figure 2C
and Figure S3B; light blue lines). This redundancy definition had the highest contrast
between phenotypes of the single mutants (phenotype class 0: no apparent phenotype) and
double mutants (class 2: lethal). A likely reason for the better performance of the extreme
redundancy model is that it was more straightforward to build a model to distinguish between
redundant and nonredundant gene pairs when the phenotype differences were the most
extreme. The second-best models were the ones with the largest training sample sizes, i.e.,
classic redundancy (RD5) and inclusive redundancy (RD9; yellow and green lines,
respectively, Figure 2B-C and Figure S3). Thus, it appears that phenotype class contrast and
sample size were the most important factors influencing model performance. We therefore
focused on models built with the highest phenotype class contrast (extreme redundancy) and
the largest sample sizes (classic redundancy and inclusive redundancy) for further model
building.

While the extreme redundancy model performed the best in cross-validation, the
majority of redundant gene pairs in the Arabidopsis genome do not have such a high
phenotype class contrast. We therefore tested whether the extreme redundancy model would
prove useful in predicting redundancy between gene pairs when there were less extreme
phenotype differences between the single and double mutants. The extreme redundancy
model was applied to a test set composed of inclusive redundancy gene pairs (after removing
extreme redundancy pairs) and balanced nonredundant gene pairs. While the AUC-ROC was
only 0.65 (Figure 2D), the high AU-PRC score (0.82, Figure 2E) indicated that, as expected
from applying a model built with a more conservative definition of redundancy, this model
errs on the side of having a higher number of false negatives rather than false positives. We
also applied the extreme redundancy model to the RD3, RD5, RD7 and RDS datasets and the
result is summarized in Table S3; in several cases, the performance of the extreme
redundancy model on these definitions was comparable to or better than the performance of
the definitions in cross-validation. Similarly, the classic redundancy model (RD5) was applied
to a test set composed of inclusive redundancy gene pairs (after removing classic redundancy
pairs) and balanced nonredundant gene pairs. The performance of this model on the inclusive
redundancy gene pairs was significantly worse (AUC-ROC = 0.57, Figure S2G; AU-PRC =
0.59, Figure S2H) than the performance of the extreme redundancy model. Taken together,
the best-performing models for predicting redundancy among gene pairs with all types of
phenotype contrasts were those trained using the extreme redundancy and the inclusive
redundancy definitions, but the extreme redundancy model can better predict redundancy

based on other definitions. Therefore, these two models were used in the following analyses.
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Important evolutionary features in predicting redundant and nonredundant gene pairs

Because the identification of features that are distinct between redundant and
nonredundant gene pairs can provide insights about the biological underpinnings of
redundancy, we next assessed whether the distribution of values for each feature among the
six feature categories was significantly different between redundant and nonredundant gene
pairs (i.e., statistically associated with redundancy) based on the extreme redundancy and
inclusive redundancy definitions (see Methods). For both extreme redundancy and inclusive
redundancy, evolutionary properties had the highest percentage of features statistically
associated with redundancy (55% and 53% respectively, multiple testing-adjusted p-value (g)
<0.05; Figure 3A-B), and evolutionary property features tended to be the most significantly
correlated with redundancy (median g-value of significant features = 3.0 x 10-*and 4.0 x 10-3
respectively; Figure S4A-B). Overall, a shared set of 159 features were significantly
associated with redundancy in models trained with both the extreme and inclusive redundancy
definitions, and there was a correlation between -log(g-values) for each feature in the extreme
and inclusive redundancy models (Spearman’s rank p = 0.75, p < 2.2 x 10°!6; Figure 3C).
This suggested that some features may be significantly associated with redundancy regardless
of definition. However, among the top 200 features selected for building the extreme and
inclusive models, we found that only 33% and 25%, respectively, were significantly
associated with redundancy when considered individually (Figure S4C-D), highlighting the
utility of considering features jointly using machine learning.

We next looked into individual features that distinguished redundant gene pairs
defined using extreme redundancy and inclusive redundancy from nonredundant gene pairs
using feature importance scores output from the trained models (Table S4). In this case, an
importance score represents the degree to which an individual feature contributes to the
separation of redundant from nonredundant gene pairs by the algorithm, with features with a
higher importance score having a larger contribution (see Methods). In total, 51 features were
shared between the two models (Table S4) with well correlated importance ranks (Pearson’s
correlation coefficient [PCC] = 0.63, Figure S5A), suggesting that a core set of features are
important for predicting redundancy using multiple definitions. However, a shared set of 51
features leaves ~75% of the 200 features selected for each model as unique, highlighting the
significant effect of redundancy definition on the models and the types of important features
recovered.

The relative importance of the six feature categories—ranked from best to worst
based on median importance ranks for features in those categories in extreme
redundancy/inclusive redundancy-based models—was as follows: functional annotations
(32/17), evolutionary properties (63.5/81.5), network properties (123/81.5), gene expression
patterns (110.5/101.5), epigenetic modifications (108/140), and protein properties
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(139/133.5). Note that the importance ranks do not mirror the findings in Figure 3A-B,
indicating that, for example, while the distributions of >50% of evolutionary property-based
features significantly differed between redundant and nonredundant pairs, these features were
not as important in predicting redundancy as functional annotation features. At first glance it
may seem paradoxical that features significantly different between redundant and
nonredundant gene pairs were not ranked as important by the model. However, this may
occur when the difference is significant but the effect size is too small to reliably distinguish
between the classes. The most important feature in both the extreme redundancy and the
inclusive redundancy models, as determined by feature importance scores, was whether the
gene pairs were duplicates from the a-WGD event (for the importance scores of the top 20
features, see Figure S5B-C), with a-WGD-derived gene pairs more likely to be redundant
(Figure 3D). The a event is the most recent WGD event in the Arabidopsis lineage, and
despite it having likely occurred ~50 million years ago, the importance of this feature
suggests that gene pairs derived from this event have not diverged in sequence and function
sufficiently to appear nonredundant.

Two other evolutionary property features that were important for both definitions
were whether two genes are reciprocal best matches (rank=7 and 15 for extreme redundancy
and inclusive redundancy, respectively, Figure SSB-C) and a lethality score-derived feature
(discussed below). Reciprocal best matches are paralogous gene pairs that do not have
additional retained paralogs generated since their divergence; gene pairs that were reciprocal
best matches were more likely to be redundant. As a pair of genes without more recent
duplicates are themselves likely to be the product of a relatively recent duplication event
(Figure S5D), they are expected to have had less time to diverge in sequence and function,
explaining their enrichment among redundant gene pairs. Consistent with this, Ka-Ks-related
features ranked as high as 30 and 32 in the extreme and inclusive redundancy models,
respectively. Nonetheless, contrary to our expectations, these evolutionary rate-related
features were not the most informative. Instead, other characteristics confounded with rates of
evolution, such as mechanism/mode of duplication and, as discussed in the following
sections, gene functions and expression profiles, played more important roles in the model.

The difference in lethality score was an important feature in both models (reciprocal
lethality score, defined as the reciprocal of the difference in lethality score between genes in a
pair, rank=2 and 9 for extreme and inclusive redundancy, respectively, Figure S5B-C).
Lethality score is the likelihood that mutation of a gene will lead to a lethal phenotype in
Arabidopsis (Lloyd et al. 2015). Thus, we would expect that each gene in a redundant pair
would have a low lethality score, and therefore a relatively small difference in lethality score
for the gene pair. In contrast to our expectation, we found that redundant gene pairs generally

had a smaller difference in reciprocal lethality scores (which equates to a larger difference in
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raw lethality score) compared with nonredundant gene pairs, although the difference between
redundant and nonredundant gene pairs was not significant (Wilcoxon test, g-value <0.11).
This unexpected result was likely an artifact of a bias in our data—Ilethality scores were
predicted by Lloyd et al. (2015) for genes without known single mutant phenotypes, but 92%
of the genes included in our benchmark dataset have known (nonlethal) phenotypes. In the
absence of a predicted lethality score, we used a score of 0 for known nonlethal mutants,
which likely artificially lowered the average lethality scores in our benchmark set. To
determine whether the use of lethality score skewed the results, we ran the inclusive
redundancy model with the lethality score-associated features excluded and found an
insignificant difference in model performance: the model without lethality score-associated
features had an AUC-ROC=0.74 and AU-ROC=0.73. We posit that the insignificant
difference in model performance, despite the highly ranked importance of lethality score, is

likely due to the presence of collinear features that would provide similar information.

Important gene expression, functional, and network features

Features related to gene expression made up the largest portion of features selected
for extreme and inclusive redundancy model building, with a total of 126 gene expression
features selected for one or both models. The predicted directionality of four features varied
between the two definitions, meaning that for a given feature, redundant gene pairs according
to one redundancy definition had higher values compared with nonredundant gene pairs,
while the reverse was true for the other definition. For example, expression variation in the
developmental expression dataset (after transforming average values reciprocally) was higher
for redundant gene pairs according to the extreme redundancy definition than for
nonredundant gene pairs, but lower for redundant gene pairs according to the inclusive
redundancy definition. We also found that tissue-specific stress responses varied by
redundancy definition; the mean rank of features related to abiotic stress response for extreme
redundancy was higher for root tissue (97) than shoot tissue (120), while the opposite was
true for inclusive redundancy (99 and 94, respectively). Features derived from the
developmental dataset were not consistently informative across definitions; while there were
four developmental gene expression features in the top 30 for inclusive redundancy, no such
features ranked higher than 54 for extreme redundancy. The most important gene expression
feature for inclusive redundancy was the maximum number of biotic stress conditions under
which one or both genes in a pair was downregulated, with redundant gene pairs having a
lower maximum than nonredundant gene pairs (Figure 3D). Thus, redundant gene pairs tend
not to be downregulated under stress conditions. This is consistent with previous findings
indicating that duplicate genes involved in stress responses are retained at a higher rate than
genes involved in other processes (Maere et al. 2005). The most important gene expression

feature for extreme redundancy was the maximum number of hormone treatments under
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which one or both genes in a pair was differentially expressed compared with the control,
with nonredundant gene pairs having a higher maximum (Figure 3D).

Among 2,627 functional annotation features, 19 and 13 were among the top 200 for
the extreme redundancy and inclusive redundancy models, respectively. While only one of
these features was selected for both models, given that functional enrichment among
redundant gene pairs varies by redundancy definition (Figure S6), it was expected that
different functional annotation features would be important for predicting redundancy using
different redundancy definitions. The most important gene function feature for the extreme
redundancy model was the number of genes in a pair (0, 1 or 2) annotated as DNA-dependent
transcription factors (referred to as transcription factors). In the trained extreme redundancy
model, gene pairs in which both genes had this annotation were more frequently predicted as
nonredundant, consistent with the feature value distributions (Figure 3D). This was
somewhat unexpected as previous studies have shown that transcription factors are more
likely to be retained after gene duplication than other types of genes (Blanc and Wolfe 2004).
The most important functional annotation feature for the inclusive redundancy model was the
number of genes in the pair having the annotation “other biological processes” (Figure 3D).
This term, which encompasses a broad range of processes including responses to stressors or
hormones, ion transport, circadian rhythm, aging, and cell growth, among many others, was
an important predictor of nonredundant gene pairs.

Finally, while no network properties or protein properties were among the 20 most
important features in predicting extreme redundancy, two network property features were in
the top 20 important features for inclusive redundancy: presence in the same gene co-
expression clusters, with gene pairs in the same cluster more likely to be redundant (Figure
3D). Consistent with this, Chen et al. (2010) found that gene co-expression during pathogen
infection was one of the most important features for predicting redundancy in Arabidopsis. In
that study, isoelectric point, overlap in protein domain annotations, and sequence similarity
were also among the features found to be important predictors of redundancy. While these
features were included in our model building based on extreme and inclusive redundancy,
they ranked between 26 and 166 depending on the redundancy definition (Table S4). The
minimal overlap in features found to be important in predicting redundancy is likely due to
the difference in how redundant gene pairs were defined; in Chen et al. they were “paralogous
genes whose single mutants show little or no phenotypic defects but whose double and higher
order mutant combination, when available, show a significant phenotype”. Our extreme
redundancy definition is more stringent, encompassing only gene pairs whose double mutants
are lethal. Our inclusive redundancy definition takes into account phenotype severity in the

context of the single and corresponding double mutant trios; that is, we include gene pairs
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whose double mutants have relatively mild phenotypes so long as the single mutant
phenotypes are less severe.

We also examined the potential causes of the mis-prediction of nonredundant gene
pairs as redundant (the reverse case was rare and therefore not analyzed in detail) in the
inclusive redundancy model, by comparing feature values between correctly and incorrectly
predicted pairs and generating a score representing whether mis-predicted nonredundant pairs
had feature values similar to inclusive redundancy pairs (Figure 4A, see Methods). We also
identified features likely contributing to mis-predictions by considering the feature
importance; while features with high importance scores generally aid in correct classification,
they can contribute to mispredictions in specific cases. This is because features with high
importance scores are weighted more heavily in generating predictions; therefore, if a
nonredundant pair happens to have a value similar to those commonly seen in redundant gene
pairs, the pair could be incorrectly predicted as redundant. We identified several features for
which incorrectly predicted nonredundant pairs had values more like redundant gene pairs
(using the inclusive redundancy definition) than correctly predicted nonredundant pairs, and
that also had high feature importance scores, suggesting they may play a role in mis-
predictions (Figure 4B). Additionally, in a principal component analysis of correctly and
incorrectly predicted nonredundant pairs (Figure 4C), the top 24 features contributing to the
first principal component were related to CpG methylation (Table S5), implicating this type
of methylation as a major contributor to mis-prediction.

Given the enrichment of some GO categories in gene pairs comprising the extreme
redundancy and inclusive redundancy definitions (Figure S6), one consideration is that our
models may be biased toward features distinguishing genes in the enriched GO categories and
thus are not generalizable to the whole genome, particularly to genes not in the enriched
categories. To address this, we compared performance of the model on gene pairs in enriched
and unenriched categories and found that there is no significant difference (Table S6). We
therefore do not find evidence that any such enrichment in functions for our paralogs would

lead to less accurate predictions on gene pairs without these annotations.

Redundancy predictions for Arabidopsis gene pairs not in the benchmark dataset

With the predictive model of redundancy in place, we sought to answer two questions
about genetic redundancy in Arabidopsis more broadly: (1) given the models, to what extent
are paralogs in the genome redundant, and (2) whether paralogs derived from different
duplication mechanisms and events differ in redundancy. As it was extremely
computationally intensive to generate predictions for every paralogous gene pair in the

Arabidopsis genome, we selected a subset of paralogous gene pairs to address these two
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questions: (1) all of the WGD and tandem duplicate (TD) pairs in the Arabidopsis genome
(7,764 total, collectively referred to as the WG/TD set; Supplemental Data); (2) paralogs in
a large gene family. The second dataset was used because a gene family consists of a group of
paralogs derived from a variety of duplication mechanisms and with differing evolutionary
distances, it offers a wide spectrum of relatedness among gene pairs. For this analysis, we
used the protein kinase (Kin) superfamily to generate all possible combinations of gene pairs,
then randomly selected 10,000 pairs for analysis (Supplemental Data). We expected that
applying our model to both datasets would provide information about genetic redundancy at
the genome-wide scale and at the more fine-grained gene family level. While both the
extreme and inclusive redundancy models showed high accuracy in predicting redundant gene
pairs in cross-validation (87% and 92% of redundant gene pairs correctly predicted,
respectively; Figure S7TA-B), the extreme redundancy model predicted nonredundant gene
pairs with much higher accuracy than the inclusive redundancy model (75% and 36%,
respectively; Figure S7A-B). Because of the high error rate in predicting nonredundant pairs
with the inclusive redundancy model, we focused on using the extreme redundancy model to
estimate the prevalence of genetic redundancy in the Arabidopsis genome.

Although we analyzed machine learning results primarily as a binary variable (gene
pairs were classified as either redundant or nonredundant), these binary predictions were
generated from likelihood scores output by the machine learning pipeline. The likelihood
score, referred to as a “redundancy score”, ranges on a continuum from 0-1, with 0 being
most likely nonredundant and 1 most likely redundant. Using this redundancy score, a
threshold score was determined (as part of the machine learning pipeline) that would
maximize the harmonic mean of precision (in this case, the proportion of true redundant pairs
to predicted redundant pairs) and recall (proportion of redundant pairs predicted correctly),
and this threshold was used to generate the binary predictions for the WG/TD and Kin
datasets. Using the extreme redundancy model, the majority of the 17,764 WG/TD and Kin
gene pairs were predicted as redundant with redundancy scores well above the threshold
(Figure 5). Among the WG/TD set as a whole, 80% were predicted as redundant (Figure
5A), with gene pairs derived from the a-WGD event more likely to be predicted as redundant
(83%; Figure 5B) compared with those derived from the B-WGD event (71%; Figure 5C)
and the y and more ancient WGD events (73%, Figure 5D). As duplicate pairs evolve over
time, it is expected that the degree of genetic redundancy would continue to decline. While
this is true when comparing the a-WGD to older events, similar proportions of duplicate pairs
from the § and more ancient events were predicted as redundant based on RD4. This may be
because gene pairs derived from the more ancient y-WGD look similar to those derived from
the B-WGD in terms of Ks (Maere et al. 2005). However, it is surprising that so many

seemingly redundant gene pairs (based on the extreme redundancy definition) that duplicated
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50 MYA (a-WGD), 80 MYA (B-WGD; Edger et al. 2015) or longer would be retained.
Similarly, 83% of tandem duplicates and 87% of kinases were predicted as redundant based
on the extreme redundancy definition (Figure SE and Figure 5F, respectively).

This percentage of redundant pair predictions was higher than previous estimates in
the literature (e.g., Chen et al. 2010). It is important to note that in our WG/TD and Kin
datasets, gene pairs are likely being predicted as redundant because they more closely
resemble redundant gene pairs with respect to features that have the highest weight in our
predictive model (e.g., WGD event). However, the model is built on experimental data that
have much more power when calling a gene pair as nonredundant than calling them as
redundant; demonstrating that mutants have a severe abnormal phenotype is simpler than
definitively stating that a mutant has no abnormal phenotype. As previously proposed
(Bouché and Bouchez 2001; Bolle et al. 2013), the lack of an observed severe phenotype in a
single mutant may be because phenotypes are conditional, tissue-specific, and/or subtle rather
than masked by genetic redundancy. Many large-scale phenotyping studies are not able to
take these factors into account, and it would therefore be expected that a model built with data
from such studies overestimate genetic redundancy in the genome. This is reflected in our
result showing that misclassifications by our model on the benchmark dataset were
overwhelmingly nonredundant pairs predicted as redundant, with very few instances of the
reverse.

While the binary classification of gene pairs as redundant or nonredundant was
possible with the available data and straightforward to interpret, it is an over-simplification of
the complex nature of genetic redundancy. The threshold-based definition of genetic
redundancy may be convenient, but the landscape of genetic redundancy is far more
nuanced—there are gene pairs with various degrees of genetic redundancy, not simply
redundant or not. Nonetheless, these data still allowed us to gain valuable insights into the
mechanistic underpinnings of genetic redundancy by revealing important features as
discussed in the earlier sections. In addition, we anticipate the models can be iteratively

improved with the future availability of more phenotype data, particularly quantitative data.

Validation of predictions

To validate predictions, we used a “holdout” testing set (10%, 16 and 30 pairs for
RD4 and RD9, respectively, randomly selected and proportionally divided between redundant
and nonredundant pairs, Figure 2A) of the benchmark data. This testing set was not included
in the model building process and serves to illustrate how well the model will perform on new
data. Applying the extreme and inclusive redundancy models on the testing sets for those
definitions, we obtained AUC-ROC scores of 0.73 and 0.68, respectively (Figure 6A) and
AU-PRC scores of 0.62 and 0.82, respectively (Figure 6B). Although there was a decrease in
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performance compared with cross-validation results (Figure 2B-C), 80% (4/5) and 68%
(13/19) of redundant pairs were predicted correctly based on the extreme and inclusive
redundancy models, respectively, and 36% (4/11) of nonredundant pairs were predicted
correctly by each of these models (Figure 6C-D). Thus, the holdout testing set generally
supported the utility of the extreme and inclusive redundancy models, but the current
threshold score was more conservative toward calling gene pairs as nonredundant. The small
sample size of the testing sets likely contributed to the decreased performance of the models
compared with their performance in cross-validation, as bias in such a small sample could
easily impact the results. However, due to the relatively small size of the benchmark dataset
as a whole, withholding more than 10% of gene pairs from the training step may have
introduced bias to the trained models and therefore would not have been an efficient use of
the available data.

Further validation was performed by identifying single and double mutants in the
literature that have specifically been studied as mutant trios and have very well documented
and characterized phenotypes. We selected ten of these gene pairs: five that meet our criteria
for redundancy under the inclusive definition and five we would classify as nonredundant
(Table S7). Half of the pairs were present in our inclusive redundancy benchmark training
dataset, while the other half were present in the WG/TD and/or kinase test datasets. We
examined the predictions of these known gene pairs from the literature in the cross-validation
and testing sets, and found that the inclusive redundancy model correctly predicted four of
five redundant pairs but mis-predicted all five of the nonredundant pairs as redundant. The
predictions of the same gene pairs were also examined for the extreme redundancy model;
however, three of the gene pairs defined as redundant using the inclusive definition could not
be defined as redundant using the extreme redundancy definition because the double mutants
were not lethal. Thus, this testing set for the extreme redundancy model included only two
redundant gene pairs. The extreme redundancy model correctly predicted one out of the two
redundant pairs and four out of the five nonredundant pairs. This was consistent with our
expectations and prior results showing that the inclusive redundancy model tends to err on the
side of predicting false positives while the extreme redundancy model is much more
conservative and prone to generating false negative predictions (Table S8).

To determine why mis-predictions may have occurred in these specific cases, we
revisited features previously identified as likely contributors to mis-prediction in general in
the benchmark dataset (e.g., Figure 4A-B). For the inclusive redundancy (RD9) model, one
such feature was reciprocal best match. Although this feature was more strongly associated
with nonredundant gene pairs in the benchmark dataset (Figure S8A), the one redundant pair
predicted by the RD9 model as nonredundant (RD9/nonredundant) comprised paralogs that

were not reciprocal best matches, making this a likely reason for mis-prediction. Derivation of
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paralogs from the a-WGD event was another such feature (Figure S8B); three nonredundant
pairs predicted as redundant (nonredundant/RD9) were derived from the a-WGD event,
indicating that this feature was a likely contributor to their mis-prediction. Another important
feature was related to the number of biotic stress conditions under which genes were
downregulated (referred to as biotic downregulation breadth). For this feature, the distribution
of feature values among the actual/predicted classes demonstrated that all five
nonredundant/RD9 pairs had values more similar to the correctly predicted RD9 pairs than to
the correctly predicted nonredundant pairs (Figure S8C). For the extreme redundancy (RD4)
model, the one redundant pair that was predicted as nonredundant (RD4/nonredundant) had
values for features related to CpG methylation (Figure S8D), gene family size (Figure S8E)
and CHH methylation (Figure S8F) that were more similar to those of nonredundant pairs.
Additionally, all four of the nonredundant pairs predicted as redundant (nonredundant/RD4)
had CHH methylation in embryo tissue values that were more similar to those of RD4 gene
pairs (Figure S8F).

In total, we identified several types of features that were likely contributors to
mispredictions, including duplication event (a-WGD or not), downregulation under biotic
stress conditions, and gene methylation patterns. Importantly, we were thus able to identify
one or more features that likely contributed to each instance of mis-prediction of both the
extreme redundancy and the inclusive redundancy models on the gene pairs used for
validation, an important step in improving future iterations of the model. For example,
depending on the definition being used and the importance of the accuracy of predictions
(precision) compared with the importance of identifying all redundant gene pairs in a dataset

(recall), certain features could be excluded from the model.

Conclusions
In this study, we optimized and utilized a machine learning approach to predict

genetic redundancy among paralogs in Arabidopsis using multiple definitions of redundancy.
We identified two biologically relevant and well-performing definitions of redundancy and
the optimal 200 features for each definition that allowed us to best model redundancy. Several
features related to evolutionary properties, including lethality score, whether genes in a pair
were reciprocal best matches, and the type of duplication event from which a gene pair was
derived, were consistently ranked as important in generating predictions across redundancy
definitions. Interestingly, evolutionary rates, such as Ka and Ks, were statistically different
between redundant and nonredundant gene pairs but not highly ranked in the models,
indicating that multiple factors contribute to redundancy, as revealed by machine learning
models integrating multiple features. Analysis of these evolutionary-related features
demonstrated that redundant gene pairs tend to be more recent duplicates than nonredundant

pairs. While it may be tempting to explain redundancy as gene pairs having not had enough
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time to diverge in function, many redundant pairs are derived from a WGD event estimated to
have occurred ~50 million years ago, offering plenty of time for pseudogenization. This
suggests that there may be some selective pressure to maintain redundancy. In general, we
found feature importance to be highly variable by redundancy definition, underscoring the
need for testing multiple definitions depending on the biological question being addressed.
For example, if one is interested in predicting which genes are lethal or have severe
phenotypes a stricter definition is required than when a broader view of redundancy is being
used, whereby less extreme phenotype contrasts between single and double mutants would be
appropriate.

While the models provide useful information about gene features related to genetic
redundancy, the models are far from perfect and there remains room for improvement in
terms of prediction accuracy. Performance on testing gene pairs withheld from model
building was generally not as good as model performance in cross-validation, which may be
due to the unavoidably small size of the testing sets. In addition, our more conservative
trained model predicted 84% of 17,764 paralogs throughout the genome to be redundant,
which is a much higher estimate than has been shown previously (Chen et al. 2010). This is
likely a result of the underlying data used for model building; our models are expected to be
biased towards categorization of gene pairs as redundant for the following reasons. We
classified redundancy using phenotype data from the literature, including experiments that
were not specifically designed to identify redundancy; there are expected to be substantial
differences between experiments in how phenotypes were scored. For example, conditional or
particularly subtle phenotypes may not have been examined. This likely results in
misclassification of single mutants as not having an abnormal phenotype. Because genetic
redundancy was defined as a double mutant having a more severe phenotype than the
corresponding single mutants, this bias will therefore lead to overestimation of genetic
redundancy.

Furthermore, classification of gene pairs as redundant or nonredundant, as we were
able to do using the broad phenotype categories currently available on a large scale, overly
simplifies a complex phenomenon. Redundancy as it exists in nature is not an all-or-nothing
binary state, but rather a continuum with a wide range of biologically relevant states. In our
modeling exercise, redundancy scores derived from the model allow an approximation of this
continuum, which can be further tested. One approach for testing the degree of genetic
redundancy is by obtaining lifetime fitness data for single and double mutant sets. Because
lifetime fitness in a mutant reflects the totality of phenotypic effects due to the introduced
mutation over the entire life cycle of the individual, subtle and conditional phenotypes are
likely better captured. Importantly, our current model predicts redundancy as defined by

differences in some phenotypes under some specific conditions. It remains unclear the extent
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to which such a model is relevant to predicting redundancy when it is defined based on single
and double mutant fitness, the phenotypic outcome that has the most bearing on the
evolutionary fate of a gene pair. Thus, in future studies the generation of lifetime fitness data
would allow for a machine learning regression model that more accurately predicts degrees of
genetic redundancy between genes in a pair rather than simply classifying genes as redundant
or not. Such a model could be applied to gene pairs within a large gene family to compare
predicted redundancy scores and reveal patterns related to redundancy maintenance and loss
through evolutionary time. Analysis of features important for building the model would be
expected to yield additional useful insights about mechanisms related to the evolutionary fate
of gene duplicates and the long-term retention of genetic redundancy.

Despite these limitations, the prediction models can distinguish redundant and
nonredundant genes as defined here with reasonable accuracies. In addition, we view this
work as an initial step in an ongoing effort to accurately model genetic redundancy that
provides a framework for future modeling, in which better phenotype data can be included.
Taken together, our results demonstrate the utility of machine learning in combining features
to generate accurate predictions of genetic redundancy and identify several evolutionary

features that are important in predicting genetic redundancy across several definitions.

MATERIALS AND METHODS

Definitions of redundant and nonredundant gene pairs

Arabidopsis mutant phenotype data were collected from Lloyd and Meinke (2012)
and Bolle et al. (2013). Our benchmark dataset comprised gene trios for which a double
mutant phenotype and both corresponding single mutant phenotypes were reported, with a
total of 300 gene trios. A numeric phenotypic severity value was assigned to each single and
double mutant (Figure 1A), with 0 representing no abnormal phenotype; 1A, a conditional
phenotype of any kind; 1B, a cell or biochemical phenotype; 1C, a morphological phenotype;
and 2, a lethal phenotype. Redundancy was classified using nine redundancy definitions
(RDs) of varying stringency (Figure 1B). The least stringent definition was inclusive
redundancy (RD9), in which any gene pair for which the double mutant phenotype severity
score was higher than that of both the single mutants was defined as redundant. With this
definition, the dataset contained 190 redundant gene pairs. Gene pairs were classified as
nonredundant if at least one single mutant had a phenotype severity score greater than or

equal to the double mutant score; the dataset contained 110 nonredundant gene pairs.

Feature value generation
For predictive modeling, data from six general categories were collected for each

gene: functional annotations such as GO terms; evolutionary properties such as synonymous
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substitution rate; protein sequence properties such as posttranslational modifications; gene
expression patterns; epigenetic modifications such as histone methylation; and network
properties such as gene interactions based on functional gene network data (Table S1). These
data were processed to generate feature values for each gene pair (Supplemental Data), and
the method used for processing depended on the data type: binary (e.g., whether or not a gene
had a given protein domain), categorical (e.g., all the names of protein domains present in a
given gene product) and continuous (e.g., gene expression level).

Features such as protein domain and functional annotations were treated as binary
and/or categorical input data for feature generation. For processing as binary input data, each
gene was assigned a value of 0 (does not have the annotation/property) or 1 (has the
annotation/property); gene pair feature values were then generated by taking the number of
genes in the pair (0, 1, or 2) having that annotation/property. For example, if Genel was
annotated as having DNA binding activity but Gene2 was not, the feature value for DNA
binding activity for that gene pair would be 1. Additional features were generated by taking
the square, log;,, and reciprocal value of features processed in this way. For processing as
categorical input data, all annotations of a specific type (e.g., GOslim terms) were listed for
each gene. These were then used to represent similarity between genes in a pair. For example,
if Genel had functional annotations of “DNA binding activity” and “signal transduction” and
Gene?2 had functional annotations of “signal transduction” and “protein binding”, the number
of overlapping annotations would be 1, the total number of unique annotations between the
gene pair would be 3, and the percent overlap would be 33. For continuous data, gene pair
feature values were generated by calculating the difference, average, maximum, minimum,
and total of the values for the gene pair. For example, if Genel had an isoelectric point of 10
and Gene2 had an isoelectric point of 9, the difference would be 1, the average 9.5, the
maximum 10, the minimum 9, and the total value would be 19. Additional features were
generated by taking the square, log;,, and reciprocal of features processed as categorical and
continuous data, and by assigning each value to one of four quartile bins generated from the
untransformed feature data. Additionally, principal component analysis was conducted using
all transformed and untransformed feature data, and the top five components included as

features.

Functional annotation and evolutionary property features

Functional annotations included GO biological process, molecular function and
cellular component annotations (The Gene Ontology Consortium et al. 2000; The Gene
Ontology Consortium 2017), metabolic pathway annotations from AraCyc v.15 (Mueller et
al. 2003), and predicted protein domain annotations from Pfam (Finn et al. 2016). These

annotations were processed as binary and categorical data as described above. There were
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2,627 features related to functional annotations after transformations were applied (Table S1
and Supplemental Data).

Broadly, evolutionary properties included duplication mechanism and timing, and
relationship to other genes in the genome. There were 171 features related to evolutionary
properties after transformations were applied (Table S1 and Supplemental Data).

To get the evolutionary rate for each gene in a pair, protein sequences (collected from
NCBI; Pruitt et al. 2007) of each A. thaliana gene pair were searched against protein
sequences from Theobroma cacao, Populus trichocarpa, Glycine max and Solanum
lycopersicum, using the Basic Local Alignment Search Tool for protein sequences (BLASTP;
Altschul et al. 1990). Protein sequences of the gene pair and the best hits in these four species
were first aligned using MUSCLE (Edgar 2004), and then were compared to their coding
nucleotide sequences to generate the corresponding coding sequence (CDS) alignment. CDS
alignments were used to build gene trees using RAXML/8.0.6 (Stamatakis 2014) with
parameters: -f a -x 12345 -p 12345 -# 1000 -m PROTGAMMAIJTT. Ka, Ks and the Ka/Ks
ratio on branches leading to each gene of a gene pair were calculated using the free-ratio
model of the codeml program in PAML v. 4.9d (Yang 2007). Gene family size and lethality
scores were obtained from Lloyd et al. (2015). Where lethality scores were not available, a
score of 0 was assigned to known nonlethal genes and 1 was assigned to known lethal genes.
Nucleotide and amino acid sequence similarity were calculated using EMBOSS Needle
(McWilliam et al. 2013). Ka, Ks, Ka/Ks, gene family size, functional likelihood, lethality
scores, and sequence similarity were processed as continuous data.

Gene pairs were determined to have been derived from one of four types of gene
duplication events using MCScanX-transposed (Wang et al. 2013): 1) segmental duplicates—
paralogs located in corresponding intra-species collinear blocks; 2) tandem duplicates—
paralogs next to each other; 3) proximal duplicates—paralogs close to each other, but
separated by < 10 non-homologous genes; 4) transposed duplicates—one of the paralogs
located in inter-species collinear blocks, the other not. Segmental duplicates were additionally
noted as being derived or not derived from the a- or f-WGD events. Protein sequences of A4.
thaliana were searched against protein sequences of A. thaliana (intra-species), Arabidopsis
lyrata, Brassica rapa, Carica papaya, P. trichocarpa, and Vitis vinifera (inter-species) using
BLASTP, with a cutoff E-value of 1x10-'°. Five different sets of parameters were evaluated
for MCScanX-transposed: 1) -k 50 -s 5 -m 25; 2) -k 50 -s 2 -m 25; 3) -k 25 -s 2 -m 25; 4) -k
25 -s2 -m 50; 5) -k 25 -s 5 -m 25; where -k indicates the cutoff score of collinear blocks, -s
specifies the number of matched genes required for the calling of a collinear block, and -m
means the maximum number of genes allowed for the gap between two genes. The
duplication mechanisms inferred using these five different sets of parameters were consistent

with one another for the majority of gene pairs; 78 pairs had discrepant results, representing
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0.4% of the total dataset. In these cases, the mechanism that occurred most frequently in the
results for that gene pair was assigned; if there was no majority, the mechanism was listed as
N/A. Each gene pair was assigned a binary value indicating whether or not the genes were
reciprocal best matches (i.e., they were one another’s best hit based on nucleotide BLAST
searches) and whether or not they were derived from each type of duplication mechanism
(e.g., a gene pair derived from the a-WGD event would have a value of 1 for the WGD
feature and for the a-WGD feature, and a value of 0 for all other duplication mechanisms).

Retention rate was based on the presence or absence of a paralog in 15 species: 4.
lyrata, Capsella rubella, B. rapa, T. cacao, P. trichocarpa, Medicago truncatula, V. vinifera,
S. lycopersicum, Aquilegia coerulea, Oryza sativa, Amborella trichopoda, Picea abies,
Selaginella moellendorffii, Physcomitrella patens, and Marchantia polymorpha. The retention
rate for each gene was calculated as the number of genomes in which a paralog was present
divided by the total number of genomes analyzed (16: 4. thaliana plus the 15 additional
species). Genome data were collected from Phytozome (Goodstein et al. 2012) for P. patens
318 v3.3, M. polymorpha 320 v3.1, S. moellendorffii 91 v1.0, A. trichopoda 291 v1.0, O.
sativa 323 v71.0, B. rapa 277 v1.3, C. rubella 183 v1.0, A. thaliana 167 TAIR10, A. lyrata
v2.1, M. truncatula 285 Mt4.0 v1, V. vinifera 145 Genoscope 12x, 4. coerulea v3.1, P.
trichocarpa 210 v3.0, and T. cacao 233 v1.1; from NCBI for S. lycopersicum v2.5; and from
PlantGenlE (Sundell et al. 2015) for P. abies v1.0.

Gene expression and epigenetic modification features

Processed microarray gene expression datasets were obtained from Moore et al.
(2019) and contained gene expression levels under biotic (Wilson et al. 2012) and abiotic
stress (Kilian et al. 2007; Wilson et al. 2012), under hormone treatment (Goda et al. 2008), at
different developmental stages (Schmid et al. 2005), and at different times of day (Mockler et
al. 2007). In addition to these gene expression levels, we also considered expression breadth,
which represents the number of tissues and conditions under which each gene is expressed.
Gene expression levels and ribosome occupancy from RNA-seq and Ribo-Seq experiments in
root tissue were obtained from Hsu et al. (2016) and processed along with the microarray
gene expression data as continuous data. There were 450 features related to gene expression
after transformations were applied (Table S1 and Supplemental Data).

Epigenetic modifications included DNA methylation, chromatin accessibility, and
histone modifications. Percent CHH, CHG, and CpG methylation, gene body methylation,
and histone modification data were obtained from Lloyd et al. (2015). Percent methylation
values were treated as continuous data, and gene body methylation and histone modification
data as binary data. Chromatin accessibility data were from Sullivan et al. (2014) and were

treated as binary features, with each gene receiving a value of 1 if it contained a DNase peak
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site and a value of 0 if it did not. There were 565 features related to epigenetic modifications

after transformations were applied (Table S1 and Supplemental Data).

Protein sequence and network property features

Protein sequence properties included amino acid length, isoelectric point, and
posttranslational modifications. Amino acid lengths were obtained from Lloyd et al. (2015).
Isoelectric points and myristoylation data were from The Arabidopsis Information Resource
(Berardini et al. 2015). Amino acid length and isoelectric point were processed as continuous
data. Acetylation, deamination, formylation, hydroxylation, oxidation, and propionylation
data were obtained from The Plant Proteome Database (Sun et al. 2009). Posttranslational
modifications were processed as binary data: whether or not the protein product was predicted
or known to have the modification. In total, 93 features were related to protein sequence
properties after transformations were applied (Table S1 and Supplemental Data).

Network properties were related to known or potential interactions of genes or protein
products. Gene interactions based on functional gene network data (AraNet, Lee et al. 2010)
and protein-protein interactions (AtPIN, Branddo et al. 2009) were processed as categorical
data. Gene co-expression-related features were calculated from the microarray datasets
referenced above using multiple clustering algorithms, namely k-means, c-means and
hierarchical clustering at /=5, 10, 25, 50, 100, 200, 300, 400, 500, 1000, and 2000 as
described in Moore et al. (2019). These data were processed as categorical data, with each
combination of clustering algorithm, dataset and k-value included as a feature; a gene pair
received a value of 1 if both genes were in the same cluster and a value of 0 if they were not.
There were 205 features related to network properties after transformations were applied

(Table S1 and Supplemental Data).

Identification of features distinguishing redundant and nonredundant pairs

To identify features that could distinguish between gene pairs from the redundant and
nonredundant classes, we applied statistical tests to determine if feature values were
significantly different between the classes. Binary gene pair features (e.g., duplication type,
presence in a gene co-expression cluster) were analyzed using two-sided Fisher’s exact tests
with multiple testing correction using the Benjamini-Hochberg method (Benjamini and
Hochberg 1995). To determine whether feature value transformations improved the ability to
distinguish between classes, the reciprocal, square, and log;, of continuous features were
included as separate features. Continuous values were also binned into four quartiles of equal
size and bin values were included as features. Transformed and untransformed continuous
feature values between redundant and nonredundant gene pairs were analyzed using a

Wilcoxon rank sum test (Wilcoxon 1945) with multiple test correction performed using the
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Benjamini-Hochberg method. Features were considered to be able to distinguish between
redundant and nonredundant gene pairs if ¢ < 0.05 after multiple testing correction (Table
S1). Continuous feature effect sizes are the standardized z statistic (calculated from the p-
values given by the Wilcoxon rank sum test) divided by the square root of the sample size.
Binary feature effect sizes correspond to the odds ratio calculated from the enrichment table

for each feature.

Redundancy prediction model building and optimization with machine learning

Models for predicting genetic redundancy between gene pairs were built with
Random Forest, Gradient Boosting and Support Vector Machines (SVM) algorithms
implemented in the scikit-learn machine learning package (Pedregosa et al. 2011) in Python;
scripts used for model building are available at
https://github.com/ShiuLab/Manuscript_Code/tree/master/2021 Arabidopsis_redundancy mo
deling. Before establishing any model, 10% of the benchmark dataset was held out as the test
dataset, which was used to evaluate the performance of the final models. The remaining 90%
of the dataset was used to establish the models. To balance the numbers of redundant and
nonredundant gene pairs when building the model, nonredundant gene pairs were randomly
down-sampled to the same number as that of redundant gene pairs, and this down-sampling
was repeated 100 times to prevent any potential sample bias in the models, resulting in 100
balanced datasets. For Random Forest and Gradient Boosting, a grid search was performed
with 10-fold cross-validation for parameter optimization: redundant and nonredundant gene
pairs in a balanced dataset were randomly and proportionally divided into 10 folds, nine of
which were used to train the model (training set, 90%) and one was used to evaluate the
model performance (validation set, 10%). This scheme was repeated 10 times to ensure that
each of the 10 folds were used as the validation set once, thus 10 models were built and the
average performance for 10 validation sets was reported; this 10-fold cross-validation scheme
was conducted for the first 10 balanced data, and hyperparameters with the highest average
cross-validation performance were selected to build the final models using the 100 balanced
datasets. Hyperparameters optimized were learning rate for Gradient Boosting; maximum
depth and maximum features for Gradient Boosting and Random Forest; number of trees (“N
estimators”) for Random Forest; and C parameter for SVM. Hyperparameter values used for
models discussed in this study are shown in Table S9. Performance in cross-validation was
also used to set a threshold score for the trained model in calling gene pairs as redundant or
nonredundant. Thresholds are selected within our machine learning pipeline to maximize F1
score, i.e., the harmonic mean of precision (in this case, the proportion of true redundant pairs

to predicted redundant pairs) and recall (proportion of redundant pairs predicted correctly),
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for a total of 100 models. The 10-fold cross-validation was also used when building those 100
models.

Parameters tested for optimal model performance were the machine learning
algorithm, the number of features included in the model, the feature selection algorithm, and
the type of data transformations used. We first compared the performance of Gradient
Boosting, Random Forest and SVM using different numbers of features from one to 4117.
SVM was on average the best-performing algorithm when using the inclusive redundancy
model (RD9, Figure S2A-B; ANOVA, p-value <2 x 10°'¢, and Tukey’s Honestly Significant
Difference test, g-values < 0.008). Further optimization consisted of identifying the number of
features to be included in the final model (narrowed down in the previous step to 50, 100,
200, or 500), the algorithm with which those features should be selected (Random Forest or
Elastic Net [EN)), and whether data transformation improved model performance (log10,
square, reciprocal of each value, and binning as described above). Specifically, we tested the
effect on model performance of using only features with no transformations applied (“NT”),
allowing multiple transformations of the same original feature to be included (“MT”), or the
best transformation for each feature (as determined by feature importance scores from the
trained models; “BT”). Twenty-four models varying these parameters were tested (Figure
S2C-D). The optimal combination was 200 features selected with Random Forest and only
the best transformation of a feature allowed; these parameters were used in further model
building. A comparison of the optimal feature combination with the 200 features selected
with Elastic Net when the best transformation of a feature was allowed is in Table S10.

Models trained on the extreme redundancy and inclusive redundancy datasets were
used to determine features that were important in predicting gene pairs as redundant or
nonredundant. When SVM is performed with a linear kernel and normalized feature values,
the model-learned weights associated with each feature can be used to determine feature
importance. The greater the absolute magnitude of the feature weight, the more important that
feature in the model’s predictions. We used the absolute value of the feature weights output
by the model to determine feature importance. The performance of the model on new data
was evaluated using the testing dataset (10% held out from model building as described
above).

Some models were trained using one definition of redundancy and applied to a
dataset of a different definition, for example, applying the trained extreme redundancy model
to the inclusive redundancy dataset. In this case, the training set consisted of the extreme
redundancy gene pairs and a randomly selected half of the nonredundant gene pairs; the test
set to which the model was applied consisted of the other half of the nonredundant gene pairs

and the redundant gene pairs in the inclusive redundancy dataset that were non-overlapping

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 Support: (434) 964-4100

1202 Ay #0 uo 1s8nB A 9162629/ | L GESW/ABGIOW/EB0 | 0 L/10P/d]o1IE-80UBAPE/OGL/WOD dNO"dIWaPEo.//:SA)Y WOy POPeojumMod



with the gene pairs in the extreme redundancy dataset. This process was the same for all
models where the training and testing sets used different definitions of redundancy.

The trained extreme redundancy and inclusive redundancy models were used to
predict redundancy among all tandem and WGD pairs in Arabidopsis (Supplemental Data)
and among a random sample of Arabidopsis kinase gene pairs. Using kinase family
classifications from Lehti-Shiu and Shiu (2012), all possible within-family combinations of
gene pairs were generated. Ten thousand of these pairs were then randomly selected for

predictions (Supplemental Data).

DATA AVAILABILTY

Supplemental data are available on Zenodo at http://doi.org/10.5281/zen0d0.3987384.
Scripts and sample data are available at
https://github.com/ShiuLab/Manuscript Code/tree/master/2021 Arabidopsis redundancy mo

deling.
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FIGURE LEGENDS

Fig. 1. (4) Phenotype severity classification from Lloyd and Meinke (2012) and our
corresponding phenotype classes. (B) Definitions of redundancy and nonredundancy (NR)
based on phenotype classes of both single mutants (SM1 and SM2) and the double mutant
(DM) for each gene pair. Descriptive definition names as well as a definition number and the
number of gene pairs assigned to the definition are shown for each. RDS5 (classic redundancy)

is RD1-4 combined and RD9 (inclusive redundancy) is RD1-8 combined.

Fig. 2. (4) Machine learning pipeline workflow. Input data consisted of instances (gene pairs)
with labels (redundant or nonredundant) and values of features (characteristics of gene pairs).
Example features, as shown in the table, include DNA sequence similarity, the number of
genes in a pair annotated as having transcription factor (TF) activity, maximum gene
expression level, and the average level of CpG methylation among genes in the pair. The full

input data are provided in Supplemental Data. Instances were first split into training and
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testing sets. The training set was further split into a training subset (90%) and validation
subset (10%) in a 10-fold cross validation scheme. The optimal model after tuning the model
parameters was used to provide performance metrics based on cross-validation, predict labels
in the testing set for model evaluation purposes, and to obtain feature importance scores. (B-
() Cross-validation performance of models built using six of the nine redundancy definitions
based on (B) Area Under the Curve - Receiver Operating Characteristic (AUC-ROC) and (C)
Area Under the Precision-Recall Curve (AU-PRC) for each redundancy definition. RD1, 2,
and 6 were not included due to small training data sizes. A model classifying gene pairs
perfectly would have AUC-ROC and AU-PRC scores of 1.0; black dotted lines represent the
performance of a model classifying at random, in which AUC-ROC and AU-PRC scores
would be 0.5 given that we used balanced data (i.e., equal number of redundant and
nonredundant instances). These curves represent the average scores from 100 iterations of
model building; curves including standard deviation from this process are shown in Figure
S3. (D) AUC-ROC and (E) AU-PRC for a model trained using extreme redundancy (RD4)
gene pairs and balanced nonredundant pairs was applied to inclusive redundancy (RD9) gene
pairs (excluding RD4) and nonredundant pairs that did not overlap with those used in training

the RD4 model.

Fig. 3. (4-B) Percentage of features in each feature category that were significantly associated
with redundancy (Wilcoxon rank-sum test for continuous features; Fisher’s exact test for
binary features; all multiple-test corrected with Benjamini-Hochberg method) when using (4)
the extreme redundancy definition (RD4) and (B) the inclusive redundancy definition (RD9).
(C) Correlation between RD4 and RD9 -log(g-values) obtained using the statistical tests as
described in (4) and (B) for each feature. (D) Distribution of values among redundant and
nonredundant gene pairs for selected features using the extreme redundancy and inclusive
redundancy definitions (separated by a dotted line). For each model, a feature is shown here if
the importance score ranked between 1 and 20, was the highest in its feature category, and
was significantly associated with redundancy using the statistical tests described in (4) and
(B), with those g-values inset in each graph. For transformed continuous features,
untransformed feature values are shown, with transformed values shown as inserts. In the
cases shown here, the g-values were the same for transformed and untransformed features.
Abbreviations: “Number of TF genes sq.” is the square of the number of genes in the pair
with the annotation DNA-dependent transcription factor; “Max. breadth, hormone treatment”
is the maximum number of hormone treatments in which a gene in the pair is differentially
expressed. “# genes, other bio.” is the number of genes in a pair with the GO annotation
“other biological function”. “Max. breadth, biotic down” is the maximum number of genes in

a pair downregulated under biotic stress. “Stress co-expression, hierarchical:25” and “Stress
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co-expression, k-means:5” refer to co-expression clusters generated from stress datasets with
hierarchical (split into 25 clusters) and £-means (k=5) clustering, respectively; plots indicate

the number of gene pairs in our dataset for which genes in a pair are in the same cluster.

Fig. 4. (4) Distribution of feature separation scores for features used to build the inclusive
redundancy (RD9) model. To identify features that may contribute to mis-predictions, feature
values were compared between (1) nonredundant gene pairs predicted as nonredundant
(NR/NR), (2) nonredundant pairs predicted as redundant (NR/RD?9), and (3) redundant pairs
predicted as redundant (RD9/RD9). Redundant pairs predicted as nonredundant (RD9/NR)
were not included in this analysis due to the small sample size. Using the median value (Med)
in each class/predicted class category, we calculated a normalized feature separation score as
follows: (Medyg/rp9 — Medyr/nr) / (Medrpo/rpo — Medygr/nr). For each feature, the
feature separation score represents the difference in feature values between correctly and
incorrectly predicted nonredundant gene pairs, with a score of 0 meaning that correctly and
incorrectly predicted pairs had same values and a score of 1 meaning that incorrectly
predicted pairs had values same as redundant gene pairs. Close to 20% of the features had a
separation score of 1. (B) Distribution of values for selected features among the three
categories of actual and predicted redundancy described in (4). Horizontal bars indicate the
median. “Min. dev. expr.” is the minimum number of tissues and developmental stages in
which a gene in the pair is differentially expressed. “Recip. (max. b. expr. down)” is the
reciprocal of the maximum number of biotic stress conditions in which one or both genes in
the pair are downregulated. “Recip. (min. CpG root)” is the reciprocal of the minimum level
of CpG methylation in root tissue for genes in the pair. “Recip. (diff. CpG sperm)” is the
reciprocal of the difference in CpG methylation level in sperm cells for genes in the pair.
These four features had a feature separation score close to 1 and had feature importance
scores in the top 10 for the inclusive redundancy model, implicating them in mis-predictions.
(C) Dimensions 1 and 2 of a principal component analysis performed to identify features that
were different between correctly and incorrectly predicted nonredundant pairs. Dimension 1
explains 18.1% of the variance and Dimension 2 explains 10.0% of the variance. The top 24

features contributing to Dimension 1 were related to CpG methylation levels (Table S5).

Fig. 5. (4) Predicted redundancy scores from the extreme redundancy (RD4) model for gene
pairs in the genome derived from whole genome or tandem duplication (WGD and TD,
respectively). The results grouped specifically by duplication event/type are shown in (B-E):
(B) Gene pairs derived from the a-WGD event, (C) gene pairs derived from the B-WGD
event, (D) gene pairs derived from the y-WGD event, (£) gene pairs derived from tandem
duplication (TD). (¥) Predicted redundancy scores of 10,000 randomly-selected gene pairs

from the kinase superfamily (Kin). A majority of gene pairs in all of these datasets were
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predicted as redundant using the extreme redundancy definition. Predictions as redundant or
nonredundant are based on a threshold score selected within our machine learning pipeline to
maximize F1 score, i.e., the harmonic mean of precision (in this case, the proportion of true
redundant pairs to predicted redundant pairs) and recall (proportion of redundant pairs
predicted correctly), with gene pairs having a score above the threshold being called

redundant and gene pairs with a score below the threshold being predicted as nondredundant.

Fig. 6. (4) AUC-ROC and (B) AU-PRC values for the holdout testing sets for models built
with each redundancy definition. RDs 1, 2 and 6 were not included in the analysis due to
small sample size. Performance of the models on testing sets was lower compared with
performance in cross-validation (Figure 2B-C and Figure S3), likely due to the small sizes of
the testing sets. (C-D) Heat map of the confusion matrix for (C) extreme redundancy (RD4)
and (D) inclusive redundancy (RD9) models showing the number of correctly and incorrectly

predicted redundant and nonredundant gene pairs in the respective testing sets.
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Figure 3

A. Rp4

Evolutionary
properties
Gene
expression
Functional
annotation
Epigenetic
modifications
Network
properties
Protein
properties

= >0.05

q-value g _5os

168
429
547
586

204

Feature category

89

O

50 75

% features

25 100

B. RD9

Evolutionary
properties
Gene
expression
Functional
annotation
Epigenetic
modifications
Network
properties
Protein
properties

171
429
763

| 586

205

Feature category

O

50 75

% features

25

o

rho=0.75
q<22x10

-log(q-value), RD4
N

16

0 1 2 3
-log(q-value), RD9

D. RD4 M NR MRD4

|w)
9]
2
3
o
Q
Q.
@
o
=
E|
80 —
q=4.0x103 q=0.02 =
60 60 ) ®
=
3 40 40 @ o
o @ o
qQ 1 3
20 I 20 =
I o
C
0 0 R - 0 T
Other a-WGD 0 1 4 00 25 50 %
Duplication event Number of TF genes sq. Max. breadth, =
hormone treatm
RD9  mNR mRD
100| g= 3.4 x 1073 100 q=005 05 015
.,3- 0.10
75 75 0.4 g 0.05
- > Q
< =03
3 50 50 2
o S o2
25 25
0 0 0.0 -~
Other a-WGD -1 0 0301 0 5 10 © 15
Duplication event Log(# genes, other bio.) Max. breadth, bioticgown
100 g
q=1.0 q=1.0 <
90 3
75 7}
&
-
60 =
3 50 =
© 2
30
I 25 (\*‘)
©
=
D
0 0 2
Different Same Different Same <
Stress co-expression Stress co—expression Q
hierachical:25 k-means:5 2
o
]
o
=
=
D
<
N
o
]
=

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901 Support: (434) 964-4100



Figure 4
A. C. o

]
. Actual vs. predicted
50 .NR/RD%
o . «  INRNR ©
. . Q
40 e el @
Y oo, . o
= o~ | . AERRAY SR B
S0 S0 c*, a4 .0
) Q * Cshey o o 3,
© e . Z
20 % ° 5
=
10 4 >
I . 8
. 1-nEEREEN ., 2
]
00 02 04 06 08 1.0 _10 5 0 5 1§ 15
Feature separation score PC1 ;c:>
B ©
. Q
<]
=~10.0
<
S Y
g ] S s
o QS
340 X
~°. g 5.0
S X
S20 © i
§__ 25
2
S
0 & 00 5 5 =
NR/NR  NR/RD9 RD9/RD9 NR/NR  NR/RD9 RB_kQIRDQ
Actual vs. predicted Actual vs. predicted
3 & 25y _ _ 2
x - b
= X £
- 3
g g 2.0 3
2 o o
4] Q a
8' w15 g
g 9 7
£, & 10 8
& g
s £ Y
E '\a_ 5.0 +
3 g R
0 @ 00 T
NR/NR  NR/RD9 RD9/RD9 x NRINR NR/RD9 RBS/RD9
Actual vs. predicted Actual vs. predicted

1202 Ae|n 0 uo 1senb Aq

5 Greenbrier Drive, Charlottesville, VA, 22901 Support: |



Figure 5

A. B. g
0 =
weprp 8% a-WGD
600 I Redundant
[ Nonredundant 200
‘E lonredundant
§ 400
8
1
200 0
0 | 0 |
0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75%- 1.00
RD4 redundancy score RD4 redundancy %core
C D I
. . PS
1719 1 73% g
B-WGD |71 % y-WGD o s
60 | 50 and older | s
| | oy
Q
| <
T 40 40 I S
3 ! 8
o )
20 20 &
0 | 0 |
0.00 025 050 075 100 000 025 050 0.75% 1.00
RD4 redundancy score RD4 redundancy $gore
E. F. L
150 Kin : 87%
600 :
100 |
§ 400 !
5] [
O
50
200
0 0 | @
0.00 025 050 075 100 000 025 050 0.75 1.00
RD4 redundancy score RD4 redundancy ég:ore

120Z Re 0 u

’5 Greenbrier Drive, Charlottesville, VA, 22901 Support: |



/.Sy Woly papeojumoq

Figure 6
A. B.
0.75 0.75
(&)
S &
X450 Q. 0.50 :
8 S
2 5§
<
0.25 0.25
0.00 0.00
RD3 RD4 RD5 RD7 RD8 RD9 RD3 RD4 RD5 RD7 ROf§ RD9
Redundancy definition Redundancy deﬁ@'tion
C. D.
3 7 S RD9
g~} g-]
2 2
L L
i) 4 T NR
£ £
RD4 NR RD9 NR¥
Annotated class Annotated clés
o

1202 Aey 10 uo 1senb Aq 916/£29/1 L Laesw/Ae

’5 Greenbrier Drive, Charlottesville, VA, 22901 Support: |



