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ABSTRACT

Genetic redundancy refers to a situation where an individual with a loss-of-function mutation 

in one gene (single mutant) does not show an apparent phenotype until one or more paralogs 

are also knocked out (double/higher-order mutant). Previous studies have identified some 

characteristics common among redundant gene pairs, but a predictive model of genetic 

redundancy incorporating a wide variety of features derived from accumulating omics and 

mutant phenotype data is yet to be established. In addition, the relative importance of these 

features for genetic redundancy remains largely unclear. Here, we establish machine learning 

models for predicting whether a gene pair is likely redundant or not in the model plant 

Arabidopsis thaliana based on six feature categories: functional annotations, evolutionary 

conservation including duplication patterns and mechanisms, epigenetic marks, protein 

properties including post-translational modifications, gene expression, and gene network 

properties. The definition of redundancy, data transformations, feature subsets, and machine 

learning algorithms used significantly affected model performance based on hold-out, testing 

phenotype data. Among the most important features in predicting gene pairs as redundant 

were having a paralog(s) from recent duplication events, annotation as a transcription factor, 

downregulation during stress conditions, and having similar expression patterns under stress 

conditions. We also explored the potential reasons underlying mispredictions and limitations 

of our studies. This genetic redundancy model sheds light on characteristics that may 

contribute to long-term maintenance of paralogs, and will ultimately allow for more targeted 

generation of functionally informative double mutants, advancing functional genomic studies.
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INTRODUCTION

 Genetic redundancy, which refers to multiple genes that perform the same function, 

has been defined in many ways since the mid-1900s (Gabriel 1960). An early study of genetic 

redundancy in Saccharomyces cerevisiae discussed it in the context of unlinked genes 

encoding enzymes catalyzing the same reaction (Mortimer 1969). A later study took a broader 

view of genetic redundancy, with the degree of redundancy ranging from “complete 

redundancy” among genes with housekeeping functions to “partial overlap of function” 

among genes with primarily regulatory functions (Pickett and Meeks-Wagner 1995). In 

studies from a number of model organisms, multiple examples of what is considered genetic 

redundancy have been given, including: genes derived from convergent evolution encoding 

enzymes that perform the same function (Pickett and Meeks-Wagner 1995); biochemical 

pathways that are redundant due to interconnected metabolic networks (Weintraub 1993); and 

genes from the same family (paralogs) that maintain some of the same functionality (Kempin 

et al. 1995). Discussions of genetic redundancy in recent literature mostly encompass this last 

definition, where a duplication event results in multiple copies of a gene that retain 

overlapping functions (e.g., Chen et al. 2010, Bolle et al. 2013, Rutter et al. 2017). Practically, 

genetic redundancy is commonly observed as a single gene knockout mutant that shows no 

phenotype or a mild phenotype compared with a wild-type organism, with a double or higher-

order mutant showing a more severe phenotype. 

After a gene is duplicated, selection may be relaxed on each copy, allowing 

accumulation of mutations, which can lead to pseudogenization of one of the duplicates 

(Brookfield 1992); thus, the presence of genetically redundant paralogs long after the 

duplication event would seem to be an evolutionary paradox (Nowak et al. 1997). In spite of 

this, the literature is replete with examples of genetic redundancy, and many redundant genes 

in species such as S. cerevisiae and Caenorhabditis elegans originated from duplication 

events that happened over 600 million years ago (Vavouri et al. 2008). At least two 

mechanisms may explain how this is possible. Redundant copies can be retained for a long 

time due to the slow pace of genetic drift in large populations. Based on a few key 

assumptions, it is estimated that a mutation deleterious to the function of a duplicate copy 

could take 0.75 to 5 million years to be fixed in Arabidopsis thaliana (Panchy et al. 2016). 

However, this cannot account for the apparent redundancy among paralogs from the most 

recent whole genome duplication (WGD) that occurred in the Arabidopsis lineage ~50 million 

years ago (Bowers et al. 2003). Another possibility is that genetic redundancy is selected for 

due to its ability to buffer the effect of a deleterious mutation in one paralog (Zhang 2012). 

The issue is that such a mechanism requires selection based on future needs, which is counter 

to our understanding of evolution. A mathematical model has been used to demonstrate that 

redundancy can be stably maintained over time (Nowak et al. 1997). However, the model 
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requirement for perfect equivalency in gene functions and in mutations between paralogs 

seems unrealistic. Due to the challenges in assessing functions of paralogs, the extent of 

genetic redundancy and the factors contributing to it remain largely unclear.  

Plants are an excellent resource for studying the fate of duplicated genes due to the 

relatively high rate of WGD events. While pseudogenization (loss of gene function) is the 

most common fate of duplicated genes in plants (Panchy et al. 2016), some duplicates are 

retained. Duplicates may persist without selection for a few million years simply due to 

genetic drift (Panchy et al. 2016). In other cases, duplicates may be retained due to selection 

on novel, adaptive function through neo-functionalization (Ohno 1970) or mechanisms 

relevant to escape from adaptive conflict (Des Marais and Rausher 2008), and/or due to 

selection on existing functions through gene dosage increase (Ohno 1970), Duplication-

Degeneration-Complementation (i.e., sub-functionalization; Force et al. 1999), gene balance 

(Freeling and Thomas 2006), or paralog interference (Baker et al. 2013). 

Beyond the mechanism of retention, by identifying and comparing characteristics of 

paralogous gene pairs and singleton genes, studies have revealed unique characteristics 

among retained duplicates. For example, there is a lower synonymous substitution rate among 

retained (i.e., not pseudogenized) paralogs derived from whole genome duplications (Jiang et 

al. 2013), suggesting that these gene pairs are relatively recent duplicates or that there is 

selective pressure to retain the ancestral (or a more recently evolved) function. Retention bias 

is also seen for some gene functions. For example, paralogous transcription factor and 

signaling genes are retained at a higher rate than DNA repair genes (Blanc and Wolfe 2004). 

Retention rates of paralogs also vary by duplication mechanism—tandem duplicates involved 

in stress responses are more frequently retained (Hanada et al. 2008), and genes involved in 

signaling processes are preferentially retained when derived from WGD rather than smaller 

duplication events (Maere et al. 2005). While these studies reveal some characteristics of 

genes that are retained after duplication, they do not directly address whether these retained 

paralogs maintain redundant functions. A landmark study in Arabidopsis addressed this 

question using machine learning to integrate 43 gene features related to sequence similarity 

and gene expression, and predicted that ~50% genes in the Arabidopsis genome have at least 

one redundant paralog (Chen et al. 2010). In this study, a gene whose single mutant showed 

no abnormal phenotype (or a mild phenotype) and its closest match in the genome based on 

sequence similarity were defined as a redundant pair. The most important features for 

predicting redundancy included differences in isoelectric point, molecular weight, and 

predicted protein domains between genes in a pair. While this pioneer study provided insights 

into the prevalence of genetic redundancy, redundancy was defined in only one way. Also, in 

the decade since that study substantially more functional genomic data have become 
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available; inclusion of these data in addition to sequence similarity and gene expression may 

improve the accuracy of redundancy predictions.

While the definition of redundancy presented above is prevalent, observation of 

unequal genetic redundancy, where the single mutant for one paralog shows a much more 

severe phenotype than the other and the double mutant has a still more severe phenotype 

(Briggs et al. 2006), promotes the idea that redundancy is more accurately conceptualized as a 

continuum. However, the time-consuming nature of precise phenotyping required to quantify 

redundancy in this manner means that such data are available for relatively few paralogs, and 

discussions of genetic redundancy frequently exclude single mutants with severe phenotypes. 

Here we build upon previous work by modeling genetic redundancy using multiple 

definitions of redundancy by including single mutants in multiple phenotypic categories, and 

incorporating over 4,000 gene features from six categories, including functional annotations, 

evolutionary properties, protein sequence properties, gene expression patterns, epigenetic 

modifications, and network properties. We compared several machine learning algorithms 

and feature selection methods to identify which of the features have the most predictive 

power with respect to redundancy. We additionally performed statistical analysis to identify 

features common among redundant gene pairs using nonredundant gene pairs as a contrast. 

To estimate the prevalence of genetic redundancy throughout the genome, we used two of the 

best-performing genetic redundancy definitions to predict whether ~18,000 gene pairs in the 

Arabidopsis genome are genetically redundant. Finally, to assess the accuracy of our model, 

we validated predictions using a “holdout” testing dataset and a handful of experimentally 

well-characterized gene pairs.  

RESULTS and DISCUSSION

Definitions of genetic redundancy

The designation of a gene pair as genetically redundant requires phenotype data for 

double mutants and the corresponding single mutants. To define a set of benchmark 

redundant and nonredundant gene pairs, we used phenotype data for 2,400 single and 347 

higher-order Arabidopsis mutants (including 271 double mutants) from a previous study 

(Lloyd and Meinke 2012) in which mutants were classified as having no phenotype, a less 

severe phenotype (i.e., conditional, cellular/biochemical, or morphological), or a severe 

phenotype (i.e., lethal, indicating the gene is essential) based on comparison with wild-type 

individuals. We assigned these categories phenotype class numbers: 0 (no phenotype), 1A 

(conditional), 1B (cellular/biochemical), 1C (morphological), and 2 (lethal) (Figure 1A) and 

applied this same phenotype classification to 29 additional gene pairs (Bolle et al. 2013), 

resulting in a final benchmark set of 300 single and double mutant trios (two single mutants 
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and one corresponding double mutant). Note that our data are from experiments generally not 

designed to assess genetic redundancy and typically conducted in one or a limited number of 

conditions and environments. Thus, it is more straightforward to identify an abnormal 

phenotype in a single mutant (i.e., phenotype distinct from wildtype, indicative of 

nonredundancy) than to prove the absolute absence of an abnormal phenotype (indicative of 

redundancy).  

Using the benchmark phenotype data and the core idea for defining genetic 

redundancy based on comparison of the phenotype severity between single mutants and the 

corresponding double mutant, we established nine redundancy definitions (RDs; Figure 1B). 

These were intended to capture the heterogeneity in how genetic redundancy is viewed and 

defined, accounting for several different ways of thinking about what constitutes genetic 

redundancy and allowing us to examine less-studied types of redundancy (for example, where 

a single mutant has a severe phenotype, or where a double mutant has a relatively mild 

phenotype): 1) Clear and extreme examples of genetic redundancy, where single mutants have 

no apparent abnormal phenotype and the double mutant is lethal (RD4); 2) Classic genetic 

redundancy, where single mutants have no abnormal phenotype and the double mutant has 

any of a range of phenotype severities (RDs 1-5); 3) Subtle genetic redundancy, where single 

mutants have an abnormal phenotype that may be only slightly less severe than that of the 

double mutant (RDs 6-8); and 4) inclusive genetic redundancy, which encompasses all of the 

above in a single definition (RD9). Under our inclusive genetic redundancy definition, 190 of 

the gene trios in our dataset were classified as redundant. 

This use of multiple definitions offered insulation against errors due to the inherent 

challenges of classifying phenotypes into specific categories (e.g., some morphological 

phenotypes are much more severe than others; under specific conditions, conditional lethal is 

effectively the same as lethal). For example, while RD4 (extreme redundancy) excluded 

double mutants with conditional phenotypes (phenotype class 1A), both lethal and conditional 

lethal were included in the classic redundancy and inclusive redundancy definitions. While 

we acknowledge that this classification of phenotype severity has caveats, in the absence of 

quantitative phenotype data on a large scale, quantitative categories together with our multiple 

definitions of redundancy allow us to better utilize the dataset and begin addressing 

redundancy more as a continuum than as a binary problem.

To define nonredundant gene pairs, a single definition was used: two genes were 

considered nonredundant if the double mutant was in the same phenotype class as either 

single mutant or in a class with a lower number; that is, at least one single mutant had an 

equal or more severe phenotype than the double mutant (Figure 1B). The nonredundant set 

contained 110 gene trios. The nearly 2:1 ratio of redundant to nonredundant gene pairs may 

reflect a bias in the literature. In the case of single mutants, plants are generally examined for 
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phenotypes in large-scale screens in standard growth chamber conditions where they are not 

challenged, potentially masking conditional phenotypes. This would give the false impression 

that many single mutants have no abnormal phenotype, implying they are redundant. In the 

case of double mutants, the presence of a more severe phenotype would tend to be reported, 

with negative results less likely to appear in the literature. Because comparably fewer gene 

pairs for which the double mutant has no abnormal phenotype have been reported, our dataset 

likely contains comparably fewer nonredundant gene pairs (and conversely more redundant 

gene pairs) than there are in nature. Double mutants with much more dramatic phenotypes 

compared with the single mutants were also overrepresented in our dataset (Figure S1), likely 

for similar reasons. As a result, some definitions that included only double mutants with mild 

or no phenotypes had too few gene pairs (RDs 1, 2, and 6, which had 16, 10, and 13 gene 

pairs, respectively) to generate robust models and were therefore excluded from further 

analyses. 

Optimal parameters for prediction of genetic redundancy with machine learning

Machine learning allows integration of multiple data types to build a statistical model 

that can predict a specific outcome. In our case, we were interested in establishing a machine 

learning model that could predict whether a gene pair was redundant or not using six broad 

categories of data: functional annotations, evolutionary properties, protein properties, gene 

expression patterns, epigenetic modifications, and network properties (Table S1). The general 

approach we took is illustrated in Figure 2A. Here the input for the model consisted of 

benchmark gene pairs (instances), classified as redundant or nonredundant (labels) according 

to our nine definitions, and information about the genes and gene pairs from the six categories 

of data (referred to as features). Performance was measured using the Area Under the Curve-

Receiver Operating Characteristic (AUC-ROC); higher scores indicate a higher true positive 

rate (proportion of all redundant gene pairs correctly predicted) over the range of false 

positive rates (proportion of gene pairs incorrectly predicted as redundant). Performance was 

additionally measured using the Area Under the Precision Recall Curve (AU-PRC); higher 

scores here indicate greater precision (proportion of gene pair predictions that are correct) 

over the range of true positive rates ("recall"). Because we used a binary classification scheme 

(redundant or not) for machine learning, a model classifying gene pairs at random would have 

a score of 0.5 for both the AUC-ROC and AU-PRC measures, while a perfect model would 

have a score of 1. Comparing three commonly used machine learning algorithms, we 

determined that Support Vector Machines (SVM) performed the best on our data (see 

Methods and Figure S2A-B). Thus, only models built using SVM are discussed in the 

following sections. 
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We next explored how the number of features examined and feature value 

transformation affected model performance. While models using multiple features generally 

perform better than those based on single features, the presence of uninformative features can 

decrease model performance. Therefore, comparing two algorithms for feature selection, we 

tested model performance with different numbers of features. Additionally, we looked at the 

effect of transformation because transforming feature values (e.g., taking the square of values) 

can amplify small differences, allowing subtle patterns to be more readily identified. Using 

the inclusive redundancy definition (RD9), we tested 24 feature combinations (see Methods 

and Table S2) by asking how well the model based on each feature combination performed in 

predicting the benchmark gene pairs in a cross-validation scheme. We found that using 200 

features selected with Random Forest, using the best transformations of each, led to the best 

performing model (AUC-ROC = 0.74, Figure S2C and AU-PRC = 0.72, Figure S2D), with a 

15% and 18% improvement in performance over a model using all of the untransformed 

features (AUC-ROC = 0.64, Figure S2E and AU-PRC = 0.61, Figure S2F). 

The selected features included many that were different representations of the same, 

raw feature. For example, several features related to total synonymous substitution rate (Ks), 

namely maximum Ks, minimum Ks, average Ks, difference in Ks, and total (sum) Ks for 

genes in a pair (see Methods) were all among the features selected for the inclusive 

redundancy model, demonstrating that representing a characteristic such as Ks in a variety of 

ways provides distinct and useful information for building the model. Including multiple 

representations and transformations of some features as described above explicitly introduced 

collinearity among features as a potentially confounding factor; collinearity likely already 

existed in our dataset among different but related features, for example, duplication event and 

Ks. To determine whether this presented an issue for model performance (Dormann et al. 

2013), we used Principal Component Analysis (PCA) for the inclusive redundancy model to 

generate a new set of 10 features based on the top 10 PCs (explaining 53.4% of the total 

variance) from the selected 200 features. This model performed poorly (AUC-ROC = 0.65 

and AU-PRC = 0.63), demonstrating that, while the PCA approach controls for collinearity, 

the resulting model is underfitted (even after inclusion of a total of 20 PCs explaining 69.8% 

of the variance: AUC-ROC = 0.70 and AU-PRC = 0.67). 

Comparison of models built with different redundancy definitions 

We anticipated that the training sets established using some redundancy definitions 

would result in more accurate predictions than others. Therefore, we next identified the 

redundancy definition that resulted in the best predictions of redundancy using the optimal 

algorithm (SVM) and input feature set that we identified (200 features selected with Random 

Forest, using only the best transformation of each feature). When comparing how well each 

model performed on the cross-validation sets, the model built using the extreme redundancy 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab111/6237916 by guest on 04 M
ay 2021



definition (RD4; trained model referred to as the extreme redundancy model) had the best 

performance (AUC-ROC = 0.84, Figure 2B and Figure S3A; AU-PRC = 0.82, Figure 2C 

and Figure S3B; light blue lines). This redundancy definition had the highest contrast 

between phenotypes of the single mutants (phenotype class 0: no apparent phenotype) and 

double mutants (class 2: lethal). A likely reason for the better performance of the extreme 

redundancy model is that it was more straightforward to build a model to distinguish between 

redundant and nonredundant gene pairs when the phenotype differences were the most 

extreme. The second-best models were the ones with the largest training sample sizes, i.e., 

classic redundancy (RD5) and inclusive redundancy (RD9; yellow and green lines, 

respectively, Figure 2B-C and Figure S3). Thus, it appears that phenotype class contrast and 

sample size were the most important factors influencing model performance. We therefore 

focused on models built with the highest phenotype class contrast (extreme redundancy) and 

the largest sample sizes (classic redundancy and inclusive redundancy) for further model 

building. 

While the extreme redundancy model performed the best in cross-validation, the 

majority of redundant gene pairs in the Arabidopsis genome do not have such a high 

phenotype class contrast. We therefore tested whether the extreme redundancy model would 

prove useful in predicting redundancy between gene pairs when there were less extreme 

phenotype differences between the single and double mutants. The extreme redundancy 

model was applied to a test set composed of inclusive redundancy gene pairs (after removing 

extreme redundancy pairs) and balanced nonredundant gene pairs. While the AUC-ROC was 

only 0.65 (Figure 2D), the high AU-PRC score (0.82, Figure 2E) indicated that, as expected 

from applying a model built with a more conservative definition of redundancy, this model 

errs on the side of having a higher number of false negatives rather than false positives. We 

also applied the extreme redundancy model to the RD3, RD5, RD7 and RD8 datasets and the 

result is summarized in Table S3; in several cases, the performance of the extreme 

redundancy model on these definitions was comparable to or better than the performance of 

the definitions in cross-validation. Similarly, the classic redundancy model (RD5) was applied 

to a test set composed of inclusive redundancy gene pairs (after removing classic redundancy 

pairs) and balanced nonredundant gene pairs. The performance of this model on the inclusive 

redundancy gene pairs was significantly worse (AUC-ROC = 0.57, Figure S2G; AU-PRC = 

0.59, Figure S2H) than the performance of the extreme redundancy model. Taken together, 

the best-performing models for predicting redundancy among gene pairs with all types of 

phenotype contrasts were those trained using the extreme redundancy and the inclusive 

redundancy definitions, but the extreme redundancy model can better predict redundancy 

based on other definitions. Therefore, these two models were used in the following analyses. 
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Important evolutionary features in predicting redundant and nonredundant gene pairs

Because the identification of features that are distinct between redundant and 

nonredundant gene pairs can provide insights about the biological underpinnings of 

redundancy, we next assessed whether the distribution of values for each feature among the 

six feature categories was significantly different between redundant and nonredundant gene 

pairs (i.e., statistically associated with redundancy) based on the extreme redundancy and 

inclusive redundancy definitions (see Methods). For both extreme redundancy and inclusive 

redundancy, evolutionary properties had the highest percentage of features statistically 

associated with redundancy (55% and 53% respectively, multiple testing-adjusted p-value (q) 

<0.05; Figure 3A-B), and evolutionary property features tended to be the most significantly 

correlated with redundancy (median q-value of significant features = 3.0 x 10-4 and 4.0 x 10-3 

respectively; Figure S4A-B). Overall, a shared set of 159 features were significantly 

associated with redundancy in models trained with both the extreme and inclusive redundancy 

definitions, and there was a correlation between -log(q-values) for each feature in the extreme 

and inclusive redundancy models (Spearman’s rank ρ = 0.75, p < 2.2 x 10-16; Figure 3C). 

This suggested that some features may be significantly associated with redundancy regardless 

of definition. However, among the top 200 features selected for building the extreme and 

inclusive models, we found that only 33% and 25%, respectively, were significantly 

associated with redundancy when considered individually (Figure S4C-D), highlighting the 

utility of considering features jointly using machine learning. 

We next looked into individual features that distinguished redundant gene pairs 

defined using extreme redundancy and inclusive redundancy from nonredundant gene pairs 

using feature importance scores output from the trained models (Table S4). In this case, an 

importance score represents the degree to which an individual feature contributes to the 

separation of redundant from nonredundant gene pairs by the algorithm, with features with a 

higher importance score having a larger contribution (see Methods). In total, 51 features were 

shared between the two models (Table S4) with well correlated importance ranks (Pearson’s 

correlation coefficient [PCC] = 0.63, Figure S5A), suggesting that a core set of features are 

important for predicting redundancy using multiple definitions. However, a shared set of 51 

features leaves ~75% of the 200 features selected for each model as unique, highlighting the 

significant effect of redundancy definition on the models and the types of important features 

recovered. 

The relative importance of the six feature categories—ranked from best to worst 

based on median importance ranks for features in those categories in extreme 

redundancy/inclusive redundancy-based models—was as follows: functional annotations 

(32/17), evolutionary properties (63.5/81.5), network properties (123/81.5), gene expression 

patterns (110.5/101.5), epigenetic modifications (108/140), and protein properties 
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(139/133.5). Note that the importance ranks do not mirror the findings in Figure 3A-B, 

indicating that, for example, while the distributions of  >50% of evolutionary property-based 

features significantly differed between redundant and nonredundant pairs, these features were 

not as important in predicting redundancy as functional annotation features. At first glance it 

may seem paradoxical that features significantly different between redundant and 

nonredundant gene pairs were not ranked as important by the model. However, this may 

occur when the difference is significant but the effect size is too small to reliably distinguish 

between the classes. The most important feature in both the extreme redundancy and the 

inclusive redundancy models, as determined by feature importance scores, was whether the 

gene pairs were duplicates from the ɑ-WGD event (for the importance scores of the top 20 

features, see Figure S5B-C), with ɑ-WGD-derived gene pairs more likely to be redundant 

(Figure 3D). The ɑ event is the most recent WGD event in the Arabidopsis lineage, and 

despite it having likely occurred ~50 million years ago, the importance of this feature 

suggests that gene pairs derived from this event have not diverged in sequence and function 

sufficiently to appear nonredundant. 

Two other evolutionary property features that were important for both definitions 

were whether two genes are reciprocal best matches (rank=7 and 15 for extreme redundancy 

and inclusive redundancy, respectively, Figure S5B-C) and a lethality score-derived feature 

(discussed below). Reciprocal best matches are paralogous gene pairs that do not have 

additional retained paralogs generated since their divergence; gene pairs that were reciprocal 

best matches were more likely to be redundant. As a pair of genes without more recent 

duplicates are themselves likely to be the product of a relatively recent duplication event 

(Figure S5D), they are expected to have had less time to diverge in sequence and function, 

explaining their enrichment among redundant gene pairs. Consistent with this, Ka-Ks-related 

features ranked as high as 30 and 32 in the extreme and inclusive redundancy models, 

respectively. Nonetheless, contrary to our expectations, these evolutionary rate-related 

features were not the most informative. Instead, other characteristics confounded with rates of 

evolution, such as mechanism/mode of duplication and, as discussed in the following 

sections, gene functions and expression profiles, played more important roles in the model. 

The difference in lethality score was an important feature in both models (reciprocal 

lethality score, defined as the reciprocal of the difference in lethality score between genes in a 

pair, rank=2 and 9 for extreme and inclusive redundancy, respectively, Figure S5B-C). 

Lethality score is the likelihood that mutation of a gene will lead to a lethal phenotype in 

Arabidopsis (Lloyd et al. 2015). Thus, we would expect that each gene in a redundant pair 

would have a low lethality score, and therefore a relatively small difference in lethality score 

for the gene pair. In contrast to our expectation, we found that redundant gene pairs generally 

had a smaller difference in reciprocal lethality scores (which equates to a larger difference in 
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raw lethality score) compared with nonredundant gene pairs, although the difference between 

redundant and nonredundant gene pairs was not significant (Wilcoxon test, q-value < 0.11). 

This unexpected result was likely an artifact of a bias in our data—lethality scores were 

predicted by Lloyd et al. (2015) for genes without known single mutant phenotypes, but 92% 

of the genes included in our benchmark dataset have known (nonlethal) phenotypes. In the 

absence of a predicted lethality score, we used a score of 0 for known nonlethal mutants, 

which likely artificially lowered the average lethality scores in our benchmark set. To 

determine whether the use of lethality score skewed the results, we ran the inclusive 

redundancy model with the lethality score-associated features excluded and found an 

insignificant difference in model performance: the model without lethality score-associated 

features had an AUC-ROC=0.74 and AU-ROC=0.73. We posit that the insignificant 

difference in model performance, despite the highly ranked importance of lethality score, is 

likely due to the presence of collinear features that would provide similar information.

Important gene expression, functional, and network features

Features related to gene expression made up the largest portion of features selected 

for extreme and inclusive redundancy model building, with a total of 126 gene expression 

features selected for one or both models. The predicted directionality of four features varied 

between the two definitions, meaning that for a given feature, redundant gene pairs according 

to one redundancy definition had higher values compared with nonredundant gene pairs, 

while the reverse was true for the other definition. For example, expression variation in the 

developmental expression dataset (after transforming average values reciprocally) was higher 

for redundant gene pairs according to the extreme redundancy definition than for 

nonredundant gene pairs, but lower for redundant gene pairs according to the inclusive 

redundancy definition. We also found that tissue-specific stress responses varied by 

redundancy definition; the mean rank of features related to abiotic stress response for extreme 

redundancy was higher for root tissue (97) than shoot tissue (120), while the opposite was 

true for inclusive redundancy (99 and 94, respectively). Features derived from the 

developmental dataset were not consistently informative across definitions; while there were 

four developmental gene expression features in the top 30 for inclusive redundancy, no such 

features ranked higher than 54 for extreme redundancy. The most important gene expression 

feature for inclusive redundancy was the maximum number of biotic stress conditions under 

which one or both genes in a pair was downregulated, with redundant gene pairs having a 

lower maximum than nonredundant gene pairs (Figure 3D). Thus, redundant gene pairs tend 

not to be downregulated under stress conditions. This is consistent with previous findings 

indicating that duplicate genes involved in stress responses are retained at a higher rate than 

genes involved in other processes (Maere et al. 2005). The most important gene expression 

feature for extreme redundancy was the maximum number of hormone treatments under 
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which one or both genes in a pair was differentially expressed compared with the control, 

with nonredundant gene pairs having a higher maximum (Figure 3D).

Among 2,627 functional annotation features, 19 and 13 were among the top 200 for 

the extreme redundancy and inclusive redundancy models, respectively. While only one of 

these features was selected for both models, given that functional enrichment among 

redundant gene pairs varies by redundancy definition (Figure S6), it was expected that 

different functional annotation features would be important for predicting redundancy using 

different redundancy definitions. The most important gene function feature for the extreme 

redundancy model was the number of genes in a pair (0, 1 or 2) annotated as DNA-dependent 

transcription factors (referred to as transcription factors). In the trained extreme redundancy 

model, gene pairs in which both genes had this annotation were more frequently predicted as 

nonredundant, consistent with the feature value distributions (Figure 3D). This was 

somewhat unexpected as previous studies have shown that transcription factors are more 

likely to be retained after gene duplication than other types of genes (Blanc and Wolfe 2004). 

The most important functional annotation feature for the inclusive redundancy model was the 

number of genes in the pair having the annotation “other biological processes” (Figure 3D). 

This term, which encompasses a broad range of processes including responses to stressors or 

hormones, ion transport, circadian rhythm, aging, and cell growth, among many others, was 

an important predictor of nonredundant gene pairs.

Finally, while no network properties or protein properties were among the 20 most 

important features in predicting extreme redundancy, two network property features were in 

the top 20 important features for inclusive redundancy: presence in the same gene co-

expression clusters, with gene pairs in the same cluster more likely to be redundant (Figure 

3D). Consistent with this, Chen et al. (2010) found that gene co-expression during pathogen 

infection was one of the most important features for predicting redundancy in Arabidopsis. In 

that study, isoelectric point, overlap in protein domain annotations, and sequence similarity 

were also among the features found to be important predictors of redundancy. While these 

features were included in our model building based on extreme and inclusive redundancy, 

they ranked between 26 and 166 depending on the redundancy definition (Table S4). The 

minimal overlap in features found to be important in predicting redundancy is likely due to 

the difference in how redundant gene pairs were defined; in Chen et al. they were “paralogous 

genes whose single mutants show little or no phenotypic defects but whose double and higher 

order mutant combination, when available, show a significant phenotype”. Our extreme 

redundancy definition is more stringent, encompassing only gene pairs whose double mutants 

are lethal. Our inclusive redundancy definition takes into account phenotype severity in the 

context of the single and corresponding double mutant trios; that is, we include gene pairs 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab111/6237916 by guest on 04 M
ay 2021



whose double mutants have relatively mild phenotypes so long as the single mutant 

phenotypes are less severe.     

We also examined the potential causes of the mis-prediction of nonredundant gene 

pairs as redundant (the reverse case was rare and therefore not analyzed in detail) in the 

inclusive redundancy model, by comparing feature values between correctly and incorrectly 

predicted pairs and generating a score representing whether mis-predicted nonredundant pairs 

had feature values similar to inclusive redundancy pairs (Figure 4A, see Methods). We also 

identified features likely contributing to mis-predictions by considering the feature 

importance; while features with high importance scores generally aid in correct classification, 

they can contribute to mispredictions in specific cases. This is because features with high 

importance scores are weighted more heavily in generating predictions; therefore, if a 

nonredundant pair happens to have a value similar to those commonly seen in redundant gene 

pairs, the pair could be incorrectly predicted as redundant. We identified several features for 

which incorrectly predicted nonredundant pairs had values more like redundant gene pairs 

(using the inclusive redundancy definition) than correctly predicted nonredundant pairs, and 

that also had high feature importance scores, suggesting they may play a role in mis-

predictions (Figure 4B). Additionally, in a principal component analysis of correctly and 

incorrectly predicted nonredundant pairs (Figure 4C), the top 24 features contributing to the 

first principal component were related to CpG methylation (Table S5), implicating this type 

of methylation as a major contributor to mis-prediction. 

Given the enrichment of some GO categories in gene pairs comprising the extreme 

redundancy and inclusive redundancy definitions (Figure S6), one consideration is that our 

models may be biased toward features distinguishing genes in the enriched GO categories and 

thus are not generalizable to the whole genome, particularly to genes not in the enriched 

categories. To address this, we compared performance of the model on gene pairs in enriched 

and unenriched categories and found that there is no significant difference (Table S6). We 

therefore do not find evidence that any such enrichment in functions for our paralogs would 

lead to less accurate predictions on gene pairs without these annotations.

Redundancy predictions for Arabidopsis gene pairs not in the benchmark dataset

With the predictive model of redundancy in place, we sought to answer two questions 

about genetic redundancy in Arabidopsis more broadly: (1) given the models, to what extent 

are paralogs in the genome redundant, and (2) whether paralogs derived from different 

duplication mechanisms and events differ in redundancy. As it was extremely 

computationally intensive to generate predictions for every paralogous gene pair in the 

Arabidopsis genome, we selected a subset of paralogous gene pairs to address these two 
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questions: (1) all of the WGD and tandem duplicate (TD) pairs in the Arabidopsis genome 

(7,764 total, collectively referred to as the WG/TD set; Supplemental Data); (2) paralogs in 

a large gene family. The second dataset was used because a gene family consists of a group of 

paralogs derived from a variety of duplication mechanisms and with differing evolutionary 

distances, it offers a wide spectrum of relatedness among gene pairs. For this analysis, we 

used the protein kinase (Kin) superfamily to generate all possible combinations of gene pairs, 

then randomly selected 10,000 pairs for analysis (Supplemental Data). We expected that 

applying our model to both datasets would provide information about genetic redundancy at 

the genome-wide scale and at the more fine-grained gene family level. While both the 

extreme and inclusive redundancy models showed high accuracy in predicting redundant gene 

pairs in cross-validation (87% and 92% of redundant gene pairs correctly predicted, 

respectively; Figure S7A-B), the extreme redundancy model predicted nonredundant gene 

pairs with much higher accuracy than the inclusive redundancy model (75% and 36%, 

respectively; Figure S7A-B). Because of the high error rate in predicting nonredundant pairs 

with the inclusive redundancy model, we focused on using the extreme redundancy model to 

estimate the prevalence of genetic redundancy in the Arabidopsis genome.

Although we analyzed machine learning results primarily as a binary variable (gene 

pairs were classified as either redundant or nonredundant), these binary predictions were 

generated from likelihood scores output by the machine learning pipeline. The likelihood 

score, referred to as a “redundancy score”, ranges on a continuum from 0-1, with 0 being 

most likely nonredundant and 1 most likely redundant. Using this redundancy score, a 

threshold score was determined (as part of the machine learning pipeline) that would 

maximize the harmonic mean of precision (in this case, the proportion of true redundant pairs 

to predicted redundant pairs) and recall (proportion of redundant pairs predicted correctly), 

and this threshold was used to generate the binary predictions for the WG/TD and Kin 

datasets. Using the extreme redundancy model, the majority of the 17,764 WG/TD and Kin 

gene pairs were predicted as redundant with redundancy scores well above the threshold 

(Figure 5). Among the WG/TD set as a whole, 80% were predicted as redundant (Figure 

5A), with gene pairs derived from the ɑ-WGD event more likely to be predicted as redundant 

(83%; Figure 5B) compared with those derived from the β-WGD event (71%; Figure 5C) 

and the γ and more ancient WGD events (73%, Figure 5D). As duplicate pairs evolve over 

time, it is expected that the degree of genetic redundancy would continue to decline. While 

this is true when comparing the ɑ-WGD to older events, similar proportions of duplicate pairs 

from the β and more ancient events were predicted as redundant based on RD4. This may be 

because gene pairs derived from the more ancient γ-WGD look similar to those derived from 

the β-WGD in terms of Ks (Maere et al. 2005). However, it is surprising that so many 

seemingly redundant gene pairs (based on the extreme redundancy definition) that duplicated 
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50 MYA (ɑ-WGD), 80 MYA (β-WGD; Edger et al. 2015) or longer would be retained. 

Similarly, 83% of tandem duplicates and 87% of kinases were predicted as redundant based 

on the extreme redundancy definition (Figure 5E and Figure 5F, respectively).

This percentage of redundant pair predictions was higher than previous estimates in 

the literature (e.g., Chen et al. 2010). It is important to note that in our WG/TD and Kin 

datasets, gene pairs are likely being predicted as redundant because they more closely 

resemble redundant gene pairs with respect to features that have the highest weight in our 

predictive model (e.g., WGD event). However, the model is built on experimental data that 

have much more power when calling a gene pair as nonredundant than calling them as 

redundant; demonstrating that mutants have a severe abnormal phenotype is simpler than 

definitively stating that a mutant has no abnormal phenotype. As previously proposed 

(Bouché and Bouchez 2001; Bolle et al. 2013), the lack of an observed severe phenotype in a 

single mutant may be because phenotypes are conditional, tissue-specific, and/or subtle rather 

than masked by genetic redundancy. Many large-scale phenotyping studies are not able to 

take these factors into account, and it would therefore be expected that a model built with data 

from such studies overestimate genetic redundancy in the genome. This is reflected in our 

result showing that misclassifications by our model on the benchmark dataset were 

overwhelmingly nonredundant pairs predicted as redundant, with very few instances of the 

reverse. 

While the binary classification of gene pairs as redundant or nonredundant was 

possible with the available data and straightforward to interpret, it is an over-simplification of 

the complex nature of genetic redundancy. The threshold-based definition of genetic 

redundancy may be convenient, but the landscape of genetic redundancy is far more 

nuanced—there are gene pairs with various degrees of genetic redundancy, not simply 

redundant or not. Nonetheless, these data still allowed us to gain valuable insights into the 

mechanistic underpinnings of genetic redundancy by revealing important features as 

discussed in the earlier sections. In addition, we anticipate the models can be iteratively 

improved with the future availability of more phenotype data, particularly quantitative data.   

Validation of predictions

To validate predictions, we used a “holdout” testing set (10%, 16 and 30 pairs for 

RD4 and RD9, respectively, randomly selected and proportionally divided between redundant 

and nonredundant pairs, Figure 2A) of the benchmark data. This testing set was not included 

in the model building process and serves to illustrate how well the model will perform on new 

data. Applying the extreme and inclusive redundancy models on the testing sets for those 

definitions, we obtained AUC-ROC scores of 0.73 and 0.68, respectively (Figure 6A) and 

AU-PRC scores of 0.62 and 0.82, respectively (Figure 6B). Although there was a decrease in 
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performance compared with cross-validation results (Figure 2B-C), 80% (4/5) and 68% 

(13/19) of redundant pairs were predicted correctly based on the extreme and inclusive 

redundancy models, respectively, and 36% (4/11) of nonredundant pairs were predicted 

correctly by each of these models (Figure 6C-D). Thus, the holdout testing set generally 

supported the utility of the extreme and inclusive redundancy models, but the current 

threshold score was more conservative toward calling gene pairs as nonredundant. The small 

sample size of the testing sets likely contributed to the decreased performance of the models 

compared with their performance in cross-validation, as bias in such a small sample could 

easily impact the results. However, due to the relatively small size of the benchmark dataset 

as a whole, withholding more than 10% of gene pairs from the training step may have 

introduced bias to the trained models and therefore would not have been an efficient use of 

the available data.

Further validation was performed by identifying single and double mutants in the 

literature that have specifically been studied as mutant trios and have very well documented 

and characterized phenotypes. We selected ten of these gene pairs: five that meet our criteria 

for redundancy under the inclusive definition and five we would classify as nonredundant 

(Table S7). Half of the pairs were present in our inclusive redundancy benchmark training 

dataset, while the other half were present in the WG/TD and/or kinase test datasets. We 

examined the predictions of these known gene pairs from the literature in the cross-validation 

and testing sets, and found that the inclusive redundancy model correctly predicted four of 

five redundant pairs but mis-predicted all five of the nonredundant pairs as redundant. The 

predictions of the same gene pairs were also examined for the extreme redundancy model; 

however, three of the gene pairs defined as redundant using the inclusive definition could not 

be defined as redundant using the extreme redundancy definition because the double mutants 

were not lethal. Thus, this testing set for the extreme redundancy model included only two 

redundant gene pairs. The extreme redundancy model correctly predicted one out of the two 

redundant pairs and four out of the five nonredundant pairs. This was consistent with our 

expectations and prior results showing that the inclusive redundancy model tends to err on the 

side of predicting false positives while the extreme redundancy model is much more 

conservative and prone to generating false negative predictions (Table S8).

To determine why mis-predictions may have occurred in these specific cases, we 

revisited features previously identified as likely contributors to mis-prediction in general in 

the benchmark dataset (e.g., Figure 4A-B). For the inclusive redundancy (RD9) model, one 

such feature was reciprocal best match. Although this feature was more strongly associated 

with nonredundant gene pairs in the benchmark dataset (Figure S8A), the one redundant pair 

predicted by the RD9 model as nonredundant (RD9/nonredundant) comprised paralogs that 

were not reciprocal best matches, making this a likely reason for mis-prediction. Derivation of 
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paralogs from the ɑ-WGD event was another such feature (Figure S8B); three nonredundant 

pairs predicted as redundant (nonredundant/RD9) were derived from the ɑ-WGD event, 

indicating that this feature was a likely contributor to their mis-prediction. Another important 

feature was related to the number of biotic stress conditions under which genes were 

downregulated (referred to as biotic downregulation breadth). For this feature, the distribution 

of feature values among the actual/predicted classes demonstrated that all five 

nonredundant/RD9 pairs had values more similar to the correctly predicted RD9 pairs than to 

the correctly predicted nonredundant pairs (Figure S8C). For the extreme redundancy (RD4) 

model, the one redundant pair that was predicted as nonredundant (RD4/nonredundant) had 

values for features related to CpG methylation (Figure S8D), gene family size (Figure S8E) 

and CHH methylation (Figure S8F) that were more similar to those of nonredundant pairs. 

Additionally, all four of the nonredundant pairs predicted as redundant (nonredundant/RD4) 

had CHH methylation in embryo tissue values that were more similar to those of RD4 gene 

pairs (Figure S8F). 

In total, we identified several types of features that were likely contributors to 

mispredictions, including duplication event (ɑ-WGD or not), downregulation under biotic 

stress conditions, and gene methylation patterns. Importantly, we were thus able to identify 

one or more features that likely contributed to each instance of mis-prediction of both the 

extreme redundancy and the inclusive redundancy models on the gene pairs used for 

validation, an important step in improving future iterations of the model. For example, 

depending on the definition being used and the importance of the accuracy of predictions 

(precision) compared with the importance of identifying all redundant gene pairs in a dataset 

(recall), certain features could be excluded from the model.

Conclusions
In this study, we optimized and utilized a machine learning approach to predict 

genetic redundancy among paralogs in Arabidopsis using multiple definitions of redundancy. 

We identified two biologically relevant and well-performing definitions of redundancy and 

the optimal 200 features for each definition that allowed us to best model redundancy. Several 

features related to evolutionary properties, including lethality score, whether genes in a pair 

were reciprocal best matches, and the type of duplication event from which a gene pair was 

derived, were consistently ranked as important in generating predictions across redundancy 

definitions. Interestingly, evolutionary rates, such as Ka and Ks, were statistically different 

between redundant and nonredundant gene pairs but not highly ranked in the models, 

indicating that multiple factors contribute to redundancy, as revealed by machine learning 

models integrating multiple features. Analysis of these evolutionary-related features 

demonstrated that redundant gene pairs tend to be more recent duplicates than nonredundant 

pairs. While it may be tempting to explain redundancy as gene pairs having not had enough 
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time to diverge in function, many redundant pairs are derived from a WGD event estimated to 

have occurred ~50 million years ago, offering plenty of time for pseudogenization. This 

suggests that there may be some selective pressure to maintain redundancy. In general, we 

found feature importance to be highly variable by redundancy definition, underscoring the 

need for testing multiple definitions depending on the biological question being addressed. 

For example, if one is interested in predicting which genes are lethal or have severe 

phenotypes a stricter definition is required than when a broader view of redundancy is being 

used, whereby less extreme phenotype contrasts between single and double mutants would be 

appropriate. 

While the models provide useful information about gene features related to genetic 

redundancy, the models are far from perfect and there remains room for improvement in 

terms of prediction accuracy. Performance on testing gene pairs withheld from model 

building was generally not as good as model performance in cross-validation, which may be 

due to the unavoidably small size of the testing sets. In addition, our more conservative 

trained model predicted 84% of 17,764 paralogs throughout the genome to be redundant, 

which is a much higher estimate than has been shown previously (Chen et al. 2010). This is 

likely a result of the underlying data used for model building; our models are expected to be 

biased towards categorization of gene pairs as redundant for the following reasons. We 

classified redundancy using phenotype data from the literature, including experiments that 

were not specifically designed to identify redundancy; there are expected to be substantial 

differences between experiments in how phenotypes were scored. For example, conditional or 

particularly subtle phenotypes may not have been examined. This likely results in 

misclassification of single mutants as not having an abnormal phenotype. Because genetic 

redundancy was defined as a double mutant having a more severe phenotype than the 

corresponding single mutants, this bias will therefore lead to overestimation of genetic 

redundancy. 

Furthermore, classification of gene pairs as redundant or nonredundant, as we were 

able to do using the broad phenotype categories currently available on a large scale, overly 

simplifies a complex phenomenon. Redundancy as it exists in nature is not an all-or-nothing 

binary state, but rather a continuum with a wide range of biologically relevant states. In our 

modeling exercise, redundancy scores derived from the model allow an approximation of this 

continuum, which can be further tested. One approach for testing the degree of genetic 

redundancy is by obtaining lifetime fitness data for single and double mutant sets. Because 

lifetime fitness in a mutant reflects the totality of phenotypic effects due to the introduced 

mutation over the entire life cycle of the individual, subtle and conditional phenotypes are 

likely better captured. Importantly, our current model predicts redundancy as defined by 

differences in some phenotypes under some specific conditions. It remains unclear the extent 

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/advance-article/doi/10.1093/m
olbev/m

sab111/6237916 by guest on 04 M
ay 2021



to which such a model is relevant to predicting redundancy when it is defined based on single 

and double mutant fitness, the phenotypic outcome that has the most bearing on the 

evolutionary fate of a gene pair. Thus, in future studies the generation of lifetime fitness data 

would allow for a machine learning regression model that more accurately predicts degrees of 

genetic redundancy between genes in a pair rather than simply classifying genes as redundant 

or not. Such a model could be applied to gene pairs within a large gene family to compare 

predicted redundancy scores and reveal patterns related to redundancy maintenance and loss 

through evolutionary time. Analysis of features important for building the model would be 

expected to yield additional useful insights about mechanisms related to the evolutionary fate 

of gene duplicates and the long-term retention of genetic redundancy. 

Despite these limitations, the prediction models can distinguish redundant and 

nonredundant genes as defined here with reasonable accuracies. In addition, we view this 

work as an initial step in an ongoing effort to accurately model genetic redundancy that 

provides a framework for future modeling, in which better phenotype data can be included. 

Taken together, our results demonstrate the utility of machine learning in combining features 

to generate accurate predictions of genetic redundancy and identify several evolutionary 

features that are important in predicting genetic redundancy across several definitions. 

MATERIALS AND METHODS

Definitions of redundant and nonredundant gene pairs

Arabidopsis mutant phenotype data were collected from Lloyd and Meinke (2012) 

and Bolle et al. (2013). Our benchmark dataset comprised gene trios for which a double 

mutant phenotype and both corresponding single mutant phenotypes were reported, with a 

total of 300 gene trios. A numeric phenotypic severity value was assigned to each single and 

double mutant (Figure 1A), with 0 representing no abnormal phenotype; 1A, a conditional 

phenotype of any kind; 1B, a cell or biochemical phenotype; 1C, a morphological phenotype; 

and 2, a lethal phenotype. Redundancy was classified using nine redundancy definitions 

(RDs) of varying stringency (Figure 1B). The least stringent definition was inclusive 

redundancy (RD9), in which any gene pair for which the double mutant phenotype severity 

score was higher than that of both the single mutants was defined as redundant. With this 

definition, the dataset contained 190 redundant gene pairs. Gene pairs were classified as 

nonredundant if at least one single mutant had a phenotype severity score greater than or 

equal to the double mutant score; the dataset contained 110 nonredundant gene pairs. 

Feature value generation

For predictive modeling, data from six general categories were collected for each 

gene: functional annotations such as GO terms; evolutionary properties such as synonymous 
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substitution rate; protein sequence properties such as posttranslational modifications; gene 

expression patterns; epigenetic modifications such as histone methylation; and network 

properties such as gene interactions based on functional gene network data (Table S1). These 

data were processed to generate feature values for each gene pair (Supplemental Data), and 

the method used for processing depended on the data type: binary (e.g., whether or not a gene 

had a given protein domain), categorical (e.g., all the names of protein domains present in a 

given gene product) and continuous (e.g., gene expression level). 

Features such as protein domain and functional annotations were treated as binary 

and/or categorical input data for feature generation. For processing as binary input data, each 

gene was assigned a value of 0 (does not have the annotation/property) or 1 (has the 

annotation/property); gene pair feature values were then generated by taking the number of 

genes in the pair (0, 1, or 2) having that annotation/property. For example, if Gene1 was 

annotated as having DNA binding activity but Gene2 was not, the feature value for DNA 

binding activity for that gene pair would be 1. Additional features were generated by taking 

the square, log10, and reciprocal value of features processed in this way. For processing as 

categorical input data, all annotations of a specific type (e.g., GOslim terms) were listed for 

each gene. These were then used to represent similarity between genes in a pair. For example, 

if Gene1 had functional annotations of “DNA binding activity” and “signal transduction” and 

Gene2 had functional annotations of “signal transduction” and “protein binding”, the number 

of overlapping annotations would be 1, the total number of unique annotations between the 

gene pair would be 3, and the percent overlap would be 33. For continuous data, gene pair 

feature values were generated by calculating the difference, average, maximum, minimum, 

and total of the values for the gene pair. For example, if Gene1 had an isoelectric point of 10 

and Gene2 had an isoelectric point of 9, the difference would be 1, the average 9.5, the 

maximum 10, the minimum 9, and the total value would be 19. Additional features were 

generated by taking the square, log10, and reciprocal of features processed as categorical and 

continuous data, and by assigning each value to one of four quartile bins generated from the 

untransformed feature data. Additionally, principal component analysis was conducted using 

all transformed and untransformed feature data, and the top five components included as 

features.

Functional annotation and evolutionary property features

Functional annotations included GO biological process, molecular function and 

cellular component annotations (The Gene Ontology Consortium et al. 2000; The Gene 

Ontology Consortium 2017), metabolic pathway annotations from AraCyc v.15 (Mueller et 

al. 2003), and predicted protein domain annotations from Pfam (Finn et al. 2016). These 

annotations were processed as binary and categorical data as described above. There were 
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2,627 features related to functional annotations after transformations were applied (Table S1 

and Supplemental Data). 

Broadly, evolutionary properties included duplication mechanism and timing, and 

relationship to other genes in the genome. There were 171 features related to evolutionary 

properties after transformations were applied (Table S1 and Supplemental Data). 

To get the evolutionary rate for each gene in a pair, protein sequences (collected from 

NCBI; Pruitt et al. 2007) of each A. thaliana gene pair were searched against protein 

sequences from Theobroma cacao, Populus trichocarpa, Glycine max and Solanum 

lycopersicum, using the Basic Local Alignment Search Tool for protein sequences (BLASTP; 

Altschul et al. 1990). Protein sequences of the gene pair and the best hits in these four species 

were first aligned using MUSCLE (Edgar 2004), and then were compared to their coding 

nucleotide sequences to generate the corresponding coding sequence (CDS) alignment. CDS 

alignments were used to build gene trees using RAxML/8.0.6 (Stamatakis 2014) with 

parameters: -f a -x 12345 -p 12345 -# 1000 -m PROTGAMMAJTT. Ka, Ks and the Ka/Ks 

ratio on branches leading to each gene of a gene pair were calculated using the free-ratio 

model of the codeml program in PAML v. 4.9d (Yang 2007). Gene family size and lethality 

scores were obtained from Lloyd et al. (2015). Where lethality scores were not available, a 

score of 0 was assigned to known nonlethal genes and 1 was assigned to known lethal genes. 

Nucleotide and amino acid sequence similarity were calculated using EMBOSS Needle 

(McWilliam et al. 2013). Ka, Ks, Ka/Ks, gene family size, functional likelihood, lethality 

scores, and sequence similarity were processed as continuous data. 

Gene pairs were determined to have been derived from one of four types of gene 

duplication events using MCScanX-transposed (Wang et al. 2013): 1) segmental duplicates—

paralogs located in corresponding intra-species collinear blocks; 2) tandem duplicates—

paralogs next to each other; 3) proximal duplicates—paralogs close to each other, but 

separated by ≤ 10 non-homologous genes; 4) transposed duplicates—one of the paralogs 

located in inter-species collinear blocks, the other not. Segmental duplicates were additionally 

noted as being derived or not derived from the α- or β-WGD events.  Protein sequences of A. 

thaliana were searched against protein sequences of A. thaliana (intra-species), Arabidopsis 

lyrata, Brassica rapa, Carica papaya, P. trichocarpa, and Vitis vinifera (inter-species) using 

BLASTP, with a cutoff E-value of 1x10-10. Five different sets of parameters were evaluated 

for MCScanX-transposed: 1) -k 50 -s 5 -m 25; 2) -k 50 -s 2 -m 25;  3) -k 25 -s 2 -m 25; 4) -k 

25 -s 2 -m 50; 5) -k 25 -s 5 -m 25; where -k indicates the cutoff score of collinear blocks, -s 

specifies the number of matched genes required for the calling of a collinear block, and -m 

means the maximum number of genes allowed for the gap between two genes. The 

duplication mechanisms inferred using these five different sets of parameters were consistent 

with one another for the majority of gene pairs; 78 pairs had discrepant results, representing 
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0.4% of the total dataset. In these cases, the mechanism that occurred most frequently in the 

results for that gene pair was assigned; if there was no majority, the mechanism was listed as 

N/A. Each gene pair was assigned a binary value indicating whether or not the genes were 

reciprocal best matches (i.e., they were one another’s best hit based on nucleotide BLAST 

searches) and whether or not they were derived from each type of duplication mechanism 

(e.g., a gene pair derived from the α-WGD event would have a value of 1 for the WGD 

feature and for the α-WGD feature, and a value of 0 for all other duplication mechanisms). 

Retention rate was based on the presence or absence of a paralog in 15 species: A. 

lyrata, Capsella rubella, B. rapa, T. cacao, P. trichocarpa, Medicago truncatula, V. vinifera, 

S. lycopersicum, Aquilegia coerulea, Oryza sativa, Amborella trichopoda, Picea abies, 

Selaginella moellendorffii, Physcomitrella patens, and Marchantia polymorpha. The retention 

rate for each gene was calculated as the number of genomes in which a paralog was present 

divided by the total number of genomes analyzed (16: A. thaliana plus the 15 additional 

species). Genome data were collected from Phytozome (Goodstein et al. 2012) for P. patens 

318 v3.3, M. polymorpha 320 v3.1, S. moellendorffii 91 v1.0, A. trichopoda 291 v1.0, O. 

sativa 323 v7.0, B. rapa 277 v1.3, C. rubella 183 v1.0, A. thaliana 167 TAIR10, A. lyrata 

v2.1, M. truncatula 285 Mt4.0 v1, V. vinifera 145 Genoscope 12x, A. coerulea v3.1, P. 

trichocarpa 210 v3.0, and T. cacao 233 v1.1; from NCBI for S. lycopersicum v2.5; and from 

PlantGenIE (Sundell et al. 2015) for P. abies v1.0. 

Gene expression and epigenetic modification features 

Processed microarray gene expression datasets were obtained from Moore et al. 

(2019) and contained gene expression levels under biotic (Wilson et al. 2012) and abiotic 

stress (Kilian et al. 2007; Wilson et al. 2012), under hormone treatment (Goda et al. 2008), at 

different developmental stages (Schmid et al. 2005), and at different times of day (Mockler et 

al. 2007). In addition to these gene expression levels, we also considered expression breadth, 

which represents the number of tissues and conditions under which each gene is expressed. 

Gene expression levels and ribosome occupancy from RNA-seq and Ribo-Seq experiments in 

root tissue were obtained from Hsu et al. (2016) and processed along with the microarray 

gene expression data as continuous data. There were 450 features related to gene expression 

after transformations were applied (Table S1 and Supplemental Data). 

Epigenetic modifications included DNA methylation, chromatin accessibility, and 

histone modifications. Percent CHH, CHG, and CpG methylation, gene body methylation, 

and histone modification data were obtained from Lloyd et al. (2015). Percent methylation 

values were treated as continuous data, and gene body methylation and histone modification 

data as binary data. Chromatin accessibility data were from Sullivan et al. (2014) and were 

treated as binary features, with each gene receiving a value of 1 if it contained a DNase peak 
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site and a value of 0 if it did not. There were 565 features related to epigenetic modifications 

after transformations were applied (Table S1 and Supplemental Data). 

Protein sequence and network property features

Protein sequence properties included amino acid length, isoelectric point, and 

posttranslational modifications. Amino acid lengths were obtained from Lloyd et al. (2015). 

Isoelectric points and myristoylation data were from The Arabidopsis Information Resource 

(Berardini et al. 2015). Amino acid length and isoelectric point were processed as continuous 

data. Acetylation, deamination, formylation, hydroxylation, oxidation, and propionylation 

data were obtained from The Plant Proteome Database (Sun et al. 2009). Posttranslational 

modifications were processed as binary data: whether or not the protein product was predicted 

or known to have the modification. In total, 93 features were related to protein sequence 

properties after transformations were applied (Table S1 and Supplemental Data). 

Network properties were related to known or potential interactions of genes or protein 

products. Gene interactions based on functional gene network data (AraNet, Lee et al. 2010) 

and protein-protein interactions (AtPIN, Brandão et al. 2009) were processed as categorical 

data. Gene co-expression-related features were calculated from the microarray datasets 

referenced above using multiple clustering algorithms, namely k-means, c-means and 

hierarchical clustering at k=5, 10, 25, 50, 100, 200, 300, 400, 500, 1000, and 2000 as 

described in Moore et al. (2019). These data were processed as categorical data, with each 

combination of clustering algorithm, dataset and k-value included as a feature; a gene pair 

received a value of 1 if both genes were in the same cluster and a value of 0 if they were not. 

There were 205 features related to network properties after transformations were applied 

(Table S1 and Supplemental Data). 

Identification of features distinguishing redundant and nonredundant pairs 

To identify features that could distinguish between gene pairs from the redundant and 

nonredundant classes, we applied statistical tests to determine if feature values were 

significantly different between the classes. Binary gene pair features (e.g., duplication type, 

presence in a gene co-expression cluster) were analyzed using two-sided Fisher’s exact tests 

with multiple testing correction using the Benjamini-Hochberg method (Benjamini and 

Hochberg 1995). To determine whether feature value transformations improved the ability to 

distinguish between classes, the reciprocal, square, and log10 of continuous features were 

included as separate features. Continuous values were also binned into four quartiles of equal 

size and bin values were included as features. Transformed and untransformed continuous 

feature values between redundant and nonredundant gene pairs were analyzed using a 

Wilcoxon rank sum test (Wilcoxon 1945) with multiple test correction performed using the 
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Benjamini-Hochberg method. Features were considered to be able to distinguish between 

redundant and nonredundant gene pairs if q < 0.05 after multiple testing correction (Table 

S1). Continuous feature effect sizes are the standardized z statistic (calculated from the p-

values given by the Wilcoxon rank sum test) divided by the square root of the sample size. 

Binary feature effect sizes correspond to the odds ratio calculated from the enrichment table 

for each feature.    

Redundancy prediction model building and optimization with machine learning 

Models for predicting genetic redundancy between gene pairs were built with 

Random Forest, Gradient Boosting and Support Vector Machines (SVM) algorithms 

implemented in the scikit-learn machine learning package (Pedregosa et al. 2011) in Python; 

scripts used for model building are available at 

https://github.com/ShiuLab/Manuscript_Code/tree/master/2021_Arabidopsis_redundancy_mo

deling. Before establishing any model, 10% of the benchmark dataset was held out as the test 

dataset, which was used to evaluate the performance of the final models. The remaining 90% 

of the dataset was used to establish the models. To balance the numbers of redundant and 

nonredundant gene pairs when building the model, nonredundant gene pairs were randomly 

down-sampled to the same number as that of redundant gene pairs, and this down-sampling 

was repeated 100 times to prevent any potential sample bias in the models, resulting in 100 

balanced datasets. For Random Forest and Gradient Boosting, a grid search was performed 

with 10-fold cross-validation for parameter optimization: redundant and nonredundant gene 

pairs in a balanced dataset were randomly and proportionally divided into 10 folds, nine of 

which were used to train the model (training set, 90%) and one was used to evaluate the 

model performance (validation set, 10%). This scheme was repeated 10 times to ensure that 

each of the 10 folds were used as the validation set once, thus 10 models were built and the 

average performance for 10 validation sets was reported; this 10-fold cross-validation scheme 

was conducted for the first 10 balanced data, and hyperparameters with the highest average 

cross-validation performance were selected to build the final models using the 100 balanced 

datasets. Hyperparameters optimized were learning rate for Gradient Boosting; maximum 

depth and maximum features for Gradient Boosting and Random Forest; number of trees (“N 

estimators”) for Random Forest; and C parameter for SVM. Hyperparameter values used for 

models discussed in this study are shown in Table S9. Performance in cross-validation was 

also used to set a threshold score for the trained model in calling gene pairs as redundant or 

nonredundant. Thresholds are selected within our machine learning pipeline to maximize F1 

score, i.e., the harmonic mean of precision (in this case, the proportion of true redundant pairs 

to predicted redundant pairs) and recall (proportion of redundant pairs predicted correctly), 
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for a total of 100 models. The 10-fold cross-validation was also used when building those 100 

models. 

Parameters tested for optimal model performance were the machine learning 

algorithm, the number of features included in the model, the feature selection algorithm, and 

the type of data transformations used. We first compared the performance of Gradient 

Boosting, Random Forest and SVM using different numbers of features from one to 4117. 

SVM was on average the best-performing algorithm when using the inclusive redundancy 

model (RD9, Figure S2A-B; ANOVA, p-value < 2 x 10-16, and Tukey’s Honestly Significant 

Difference test, q-values < 0.008). Further optimization consisted of identifying the number of 

features to be included in the final model (narrowed down in the previous step to 50, 100, 

200, or 500), the algorithm with which those features should be selected (Random Forest or 

Elastic Net [EN)), and whether data transformation improved model performance (log10, 

square, reciprocal of each value, and binning as described above). Specifically, we tested the 

effect on model performance of using only features with no transformations applied (“NT”), 

allowing multiple transformations of the same original feature to be included (“MT”), or the 

best transformation for each feature (as determined by feature importance scores from the 

trained models; “BT”). Twenty-four models varying these parameters were tested (Figure 

S2C-D). The optimal combination was 200 features selected with Random Forest and only 

the best transformation of a feature allowed; these parameters were used in further model 

building. A comparison of the optimal feature combination with the 200 features selected 

with Elastic Net when the best transformation of a feature was allowed is in Table S10.

Models trained on the extreme redundancy and inclusive redundancy datasets were 

used to determine features that were important in predicting gene pairs as redundant or 

nonredundant. When SVM is performed with a linear kernel and normalized feature values, 

the model-learned weights associated with each feature can be used to determine feature 

importance. The greater the absolute magnitude of the feature weight, the more important that 

feature in the model’s predictions. We used the absolute value of the feature weights output 

by the model to determine feature importance. The performance of the model on new data 

was evaluated using the testing dataset (10% held out from model building as described 

above). 

Some models were trained using one definition of redundancy and applied to a 

dataset of a different definition, for example, applying the trained extreme redundancy model 

to the inclusive redundancy dataset. In this case, the training set consisted of the extreme 

redundancy gene pairs and a randomly selected half of the nonredundant gene pairs; the test 

set to which the model was applied consisted of the other half of the nonredundant gene pairs 

and the redundant gene pairs in the inclusive redundancy dataset that were non-overlapping 
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with the gene pairs in the extreme redundancy dataset. This process was the same for all 

models where the training and testing sets used different definitions of redundancy. 

The trained extreme redundancy and inclusive redundancy models were used to 

predict redundancy among all tandem and WGD pairs in Arabidopsis (Supplemental Data) 

and among a random sample of Arabidopsis kinase gene pairs. Using kinase family 

classifications from Lehti-Shiu and Shiu (2012), all possible within-family combinations of 

gene pairs were generated. Ten thousand of these pairs were then randomly selected for 

predictions (Supplemental Data). 

DATA AVAILABILTY

Supplemental data are available on Zenodo at http://doi.org/10.5281/zenodo.3987384.
Scripts and sample data are available at 
https://github.com/ShiuLab/Manuscript_Code/tree/master/2021_Arabidopsis_redundancy_mo
deling.
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FIGURE LEGENDS

Fig. 1. (A) Phenotype severity classification from Lloyd and Meinke (2012) and our 

corresponding phenotype classes. (B) Definitions of redundancy and nonredundancy (NR) 

based on phenotype classes of both single mutants (SM1 and SM2) and the double mutant 

(DM) for each gene pair. Descriptive definition names as well as a definition number and the 

number of gene pairs assigned to the definition are shown for each. RD5 (classic redundancy) 

is RD1-4 combined and RD9 (inclusive redundancy) is RD1-8 combined. 

Fig. 2. (A) Machine learning pipeline workflow. Input data consisted of instances (gene pairs) 

with labels (redundant or nonredundant) and values of features (characteristics of gene pairs). 

Example features, as shown in the table, include DNA sequence similarity, the number of 

genes in a pair annotated as having transcription factor (TF) activity, maximum gene 

expression level, and the average level of CpG methylation among genes in the pair. The full 

input data are provided in Supplemental Data. Instances were first split into training and 
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testing sets. The training set was further split into a training subset (90%) and validation 

subset (10%) in a 10-fold cross validation scheme. The optimal model after tuning the model 

parameters was used to provide performance metrics based on cross-validation, predict labels 

in the testing set for model evaluation purposes, and to obtain feature importance scores. (B-

C) Cross-validation performance of models built using six of the nine redundancy definitions 

based on (B) Area Under the Curve - Receiver Operating Characteristic (AUC-ROC) and (C) 

Area Under the Precision-Recall Curve (AU-PRC) for each redundancy definition. RD1, 2, 

and 6 were not included due to small training data sizes. A model classifying gene pairs 

perfectly would have AUC-ROC and AU-PRC scores of 1.0; black dotted lines represent the 

performance of a model classifying at random, in which AUC-ROC and AU-PRC scores 

would be 0.5 given that we used balanced data (i.e., equal number of redundant and 

nonredundant instances). These curves represent the average scores from 100 iterations of 

model building; curves including standard deviation from this process are shown in Figure 

S3. (D) AUC-ROC and (E) AU-PRC for a model trained using extreme redundancy (RD4) 

gene pairs and balanced nonredundant pairs was applied to inclusive redundancy (RD9) gene 

pairs (excluding RD4) and nonredundant pairs that did not overlap with those used in training 

the RD4 model.

Fig. 3. (A-B) Percentage of features in each feature category that were significantly associated 

with redundancy (Wilcoxon rank-sum test for continuous features; Fisher’s exact test for 

binary features; all multiple-test corrected with Benjamini-Hochberg method) when using (A) 

the extreme redundancy definition (RD4) and (B) the inclusive redundancy definition (RD9). 

(C) Correlation between RD4 and RD9 -log(q-values) obtained using the statistical tests as 

described in (A) and (B) for each feature. (D) Distribution of values among redundant and 

nonredundant gene pairs for selected features using the extreme redundancy and inclusive 

redundancy definitions (separated by a dotted line). For each model, a feature is shown here if 

the importance score ranked between 1 and 20, was the highest in its feature category, and 

was significantly associated with redundancy using the statistical tests described in (A) and 

(B), with those q-values inset in each graph. For transformed continuous features, 

untransformed feature values are shown, with transformed values shown as inserts. In the 

cases shown here, the q-values were the same for transformed and untransformed features. 

Abbreviations: “Number of TF genes sq.” is the square of the number of genes in the pair 

with the annotation DNA-dependent transcription factor; “Max. breadth, hormone treatment” 

is the maximum number of hormone treatments in which a gene in the pair is differentially 

expressed. “# genes, other bio.” is the number of genes in a pair with the GO annotation 

“other biological function”. “Max. breadth, biotic down” is the maximum number of genes in 

a pair downregulated under biotic stress. “Stress co-expression, hierarchical:25” and “Stress 
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co-expression, k-means:5” refer to co-expression clusters generated from stress datasets with 

hierarchical (split into 25 clusters) and k-means (k=5) clustering, respectively; plots indicate 

the number of gene pairs in our dataset for which genes in a pair are in the same cluster.

 Fig. 4. (A) Distribution of feature separation scores for features used to build the inclusive 

redundancy (RD9) model. To identify features that may contribute to mis-predictions, feature 

values were compared between (1) nonredundant gene pairs predicted as nonredundant 

(NR/NR), (2) nonredundant pairs predicted as redundant (NR/RD9), and (3) redundant pairs 

predicted as redundant (RD9/RD9). Redundant pairs predicted as nonredundant (RD9/NR) 

were not included in this analysis due to the small sample size. Using the median value (Med) 

in each class/predicted class category, we calculated a normalized feature separation score as 

follows: . For each feature, the (𝑀𝑒𝑑𝑁𝑅/𝑅𝐷9 ― 𝑀𝑒𝑑𝑁𝑅/𝑁𝑅) / (𝑀𝑒𝑑𝑅𝐷9/𝑅𝐷9 ― 𝑀𝑒𝑑𝑁𝑅/𝑁𝑅)

feature separation score represents the difference in feature values between correctly and 

incorrectly predicted nonredundant gene pairs, with a score of 0 meaning that correctly and 

incorrectly predicted pairs had same values and a score of 1 meaning that incorrectly 

predicted pairs had values same as redundant gene pairs. Close to 20% of the features had a 

separation score of 1. (B) Distribution of values for selected features among the three 

categories of actual and predicted redundancy described in (A). Horizontal bars indicate the 

median. “Min. dev. expr.” is the minimum number of tissues and developmental stages in 

which a gene in the pair is differentially expressed. “Recip. (max. b. expr. down)” is the 

reciprocal of the maximum number of biotic stress conditions in which one or both genes in 

the pair are downregulated. “Recip. (min. CpG root)” is the reciprocal of the minimum level 

of CpG methylation in root tissue for genes in the pair. “Recip. (diff. CpG sperm)” is the 

reciprocal of the difference in CpG methylation level in sperm cells for genes in the pair. 

These four features had a feature separation score close to 1 and had feature importance 

scores in the top 10 for the inclusive redundancy model, implicating them in mis-predictions. 

(C) Dimensions 1 and 2 of a principal component analysis performed to identify features that 

were different between correctly and incorrectly predicted nonredundant pairs. Dimension 1 

explains 18.1% of the variance and Dimension 2 explains 10.0% of the variance. The top 24 

features contributing to Dimension 1 were related to CpG methylation levels (Table S5). 

Fig. 5. (A) Predicted redundancy scores from the extreme redundancy (RD4) model for gene 

pairs in the genome derived from whole genome or tandem duplication (WGD and TD, 

respectively). The results grouped specifically by duplication event/type are shown in (B-E): 

(B) Gene pairs derived from the α-WGD event, (C) gene pairs derived from the β-WGD 

event, (D) gene pairs derived from the γ-WGD event, (E) gene pairs derived from tandem 

duplication (TD). (F) Predicted redundancy scores of 10,000 randomly-selected gene pairs 

from the kinase superfamily (Kin). A majority of gene pairs in all of these datasets were 
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predicted as redundant using the extreme redundancy definition. Predictions as redundant or 

nonredundant are based on a threshold score selected within our machine learning pipeline to 

maximize F1 score, i.e., the harmonic mean of precision (in this case, the proportion of true 

redundant pairs to predicted redundant pairs) and recall (proportion of redundant pairs 

predicted correctly), with gene pairs having a score above the threshold being called 

redundant and gene pairs with a score below the threshold being predicted as nondredundant.

Fig. 6. (A) AUC-ROC and (B) AU-PRC values for the holdout testing sets for models built 

with each redundancy definition. RDs 1, 2 and 6 were not included in the analysis due to 

small sample size. Performance of the models on testing sets was lower compared with 

performance in cross-validation (Figure 2B-C and Figure S3), likely due to the small sizes of 

the testing sets. (C-D) Heat map of the confusion matrix for (C) extreme redundancy (RD4) 

and (D) inclusive redundancy (RD9) models showing the number of correctly and incorrectly 

predicted redundant and nonredundant gene pairs in the respective testing sets. 
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