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Heterotrophic bacteria have important roles in the Earth’s car-
bon and nutrient cycles, shaping natural and human ecosys-
tems through their metabolic and ecological functions. In 

the ocean, bacteria mediate flux between major carbon reservoirs, 
control nutrient availability and participate in marine food webs. 
Many environmental factors govern these activities, including sea-
water mixing, photosynthetically active irradiance levels1,2, organic 
resources3, nutrients3,4, and mutualistic and antagonistic interac-
tions with other species5,6. These factors form the dimensions of 
each bacterial species’ niche, a foundational ecological concept in 
which the abiotic and biotic variables that influence the birth and 
death rates of a species determine where it can exist in nature7,8.

Identifying the dimensions of marine bacterial niches promises 
to improve understanding and predictability of the processes that 
drive ocean biogeochemistry. Hutchinson defined the ‘fundamen-
tal’ niche as the full range of external conditions in which an organ-
ism is viable (that is, has an intrinsic growth rate, r0, ≥0) in the 
absence of interference from biotic interactions, and the ‘realized’ 
niche as the fundamental niche in the presence of other species. 
The realized niche is typically considered to be a more restricted 
ecological space than the fundamental niche due to negative 
interactions with competitors and predators8. Although the niche 
concept has long been a useful framework9,10, the myriad possible 
environmental influences controlling ecological success of a spe-
cies makes comprehensive analyses of niche dimensions difficult in 
practice. For marine bacteria, selected niche dimensions have been 
addressed by correlations to environmental factors11 and growth 
responses under defined laboratory conditions12. As basic rules 
of marine bacterial ecology are still being discovered, however, 
untargeted methodologies—those not limited to preselected fac-
tors—provide a more inclusive accounting of features determining 
a bacterium’s viability.

Shifts in bacterial messenger RNA pools in situ represent untar-
geted proxies for the realized niche dimensions invoking bacte-
rial sensing and phenotypic response13–15. In complex ecosystems,  

transcripts drawn simultaneously from multiple community mem-
bers make it challenging to characterize niche dimensions of coex-
isting taxa. Mapping transcripts to genomes assembled from single 
cells or community sequencing parses the aggregated response16,17, 
although these reference genomes are typically incomplete and, 
when derived from metagenomic data, can blur responses through 
aggregation of multiple populations18. The extent to which environ-
mental stimuli are manifested in transcriptomes also differs among 
taxa, with bacteria that harbour few regulatory elements exhibit-
ing only minor transcriptional shifts compared with those with 
well-regulated genomes experiencing identical perturbations14,19.

In the present study, we aim to characterize bacterial niche 
dimensions using a variation of an invasion study, an approach typi-
cally used to address ecological principles governing the outcome 
of invasion of an existing community by a foreign species20,21. Our 
variation made experimental invasions of a heterotrophic marine 
bacterium into an existing community to identify factors that make 
up the bacterium’s niche dimensions. Unlike in metatranscriptomic 
surveys, the genetic background and physiological state of the 
bacterium before introduction were standardized, providing the 
advantage of a single, well-characterized organism typical of model 
system studies, yet capturing the complexity of natural ecosystems. 
Over a 5-week period, the metabolically responsive marine bacte-
rium R. pomeroyi DSS-3 was added into surface seawater samples 
from Monterey Bay, in California (the ‘introduction’ step of the 
invasion21). The additions occurred during the progression of a 
massive bloom of the dinoflagellate Akashiwo sanguinea22, an eco-
logically relevant situation for R. pomeroyi given its cultivation from 
coastal waters where A. sanguinea occurs23–25. Transcriptome analy-
sis of the invading bacterium was conducted after 90 min to identify 
the abiotic and biotic factors of the shifting bloom that triggered 
phenotypic responses (the ‘establishment’ stage of the invasion)21. 
We report untargeted analyses of the dynamic factors affecting the 
viability of a heterotrophic bacterium, the life history strategy of 
which is tied to marine microphytoplankton26.

Niche dimensions of a marine bacterium are 
identified using invasion studies in coastal 
seawater
Brent Nowinski    and Mary Ann Moran    ✉

Niche theory is a foundational ecological concept that explains the distribution of species in natural environments. Identifying 
the dimensions of any organism’s niche is challenging because numerous environmental factors can affect organism viability. 
We used serial invasion experiments to introduce Ruegeria pomeroyi DSS-3, a heterotrophic marine bacterium, into a coastal 
phytoplankton bloom on 14 dates. RNA-sequencing analysis of R. pomeroyi was conducted after 90 min to assess its niche 
dimensions in this dynamic ecosystem. We identified ~100 external conditions eliciting transcriptional responses, which 
included substrates, nutrients, metals and biotic interactions such as antagonism, resistance and cofactor synthesis. The peak 
bloom was characterized by favourable states for most of the substrate dimensions, but low inferred growth rates of R. pome-
royi at this stage indicated that its niche was narrowed by factors other than substrate availability, most probably negative 
biotic interactions with the bloom dinoflagellate. Our findings indicate chemical and biological features of the ocean environ-
ment that can constrain where heterotrophic bacteria survive.
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Results
Invasion manipulation. The surface waters of Monterey Bay, in 
California, hosted a large bloom of the dinoflagellate A. sanguinea 
in the autumn of 2016 with chlorophyll a (Chl a) levels >50 μg l−1  
(ref. 22). The gene sequencing of 18S ribosomal RNA showed the 
protist community shifting over the study period to a mixture of 
diatoms and dinoflagellates, including dinoflagellate parasites. A. 
sanguinea accounted for >99% of phytoplankton biomass in late 
September but <20% in late October (Fig. 1a and Extended Data Fig. 
1). A rapid decrease of A. sanguinea biomass in mid-October high-
lighted a distinct water mass moving through the sampling station, 
evident from salinity and temperature shifts (Extended Data Fig. 2).

On 14 dates over 5 weeks, the heterotrophic marine bacterium 
R. pomeroyi was pre-grown under a standard protocol and intro-
duced into bloom seawater (Fig. 1b; n = 3) to approximate a 1:1 
ratio of introduced:native bacteria. After incubation under iden-
tical temperature (24 °C) and light (ambient laboratory) condi-
tions for 90 min, the seawater transcriptome was sequenced, with 
R. pomeroyi accounting for 48.5 ± 13.4% of bacterial mRNA reads 
(Supplementary Table 1). The sensitivity of R. pomeroyi to ecologi-
cal signals under this invasion protocol was assessed by preparing 
cells as for the field samples, but inoculating into defined minimal 
medium with 10 mM glucose or without substrate (Fig. 1b). These 
controls verified robust R. pomeroyi expression responses 90 min 
post-introduction and confirmed gene expression responses consis-
tent with medium conditions (Fig. 1c). Principal component analy-
sis (PCA) of genome-wide expression patterns indicated that the R. 
pomeroyi profiles from the bloom diverged from those in defined 
medium and were distinctly non-random. Transcriptome compo-
sition largely tracked with the date of sample collection (Fig. 2a) 
and shifts in protist community composition (Fig. 2b). A growth 
rate index for R. pomeroyi (ribosomal protein transcript abundance 
as percentage of transcriptome) was elevated in glucose controls 
(9.6%) compared with no-glucose controls (3.0%), and was lowest 
in the seawater invasion experiments (1.0–2.7%).

Gene expression patterns. The 4,278 protein-encoding genes in the 
R. pomeroyi genome were categorized into 17 expression modules 

based on transcriptional patterns across the 14 independent intro-
ductions to bloom seawater (Fig. 2c). The largest module contained 
1,417 genes with maximum relative expression in the initial samples 
corresponding to the peak of the bloom and decreases as the bloom 
aged (turquoise module); four additional modules positively corre-
lated with this module (Pearson’s r = 0.70–0.98, P < 0.01, degrees of 
freedom (d.f.) = 12) were merged to create a supermodule of 2,087 
genes with the highest expression in the peak-bloom stages. The 
second largest module contained 915 genes with the opposite pat-
tern—minimum relative expression under peak-bloom conditions 
and increases over time (orange module); two additional mod-
ules that positively correlated with this module (r = 0.75 and 0.76; 
P < 0.01) were merged to create a supermodule of 1,423 genes with 
expression maxima in the late-bloom stages (Fig. 2c). Together, the 
two supermodules accounted for 82% of the R. pomeroyi genome 
(49% peak-bloom and 33% late-bloom genes) and were negatively 
correlated with each other (Pearson’s r = -0.91, P < 0.001, d.f. = 12). 
Genes with maxima during the peak bloom correlated positively 
with A. sanguinea biomass and Chl a concentration; late-bloom 
genes correlated positively with diatom biomass and a dinoflagellate 
parasite (Extended Data Fig. 3).

Niche dimension analysis. We considered the aspects of niche 
theory that can be informed by sequential microbial invasion 
experiments. Hutchinson8 defined the niche as the conditions in a 
specific geographical space that allow an organism to ‘survive and 
reproduce’27, a criterion formalized as an intrinsic growth rate ≥0 
(ref. 28). Although niches are genetically determined29,30, neither a 
genome nor a transcriptome can delineate the Hutchinsonian niche 
because neither indicates whether growth is possible under existing 
conditions. For example, genomic data might indicate a microbe’s 
capability of metabolizing a substrate, but not whether the supply 
of this substrate is sufficient to support growth. Genomes and tran-
scriptomes do, however, indicate niche dimensions—the factors 
that influence a species’ growth in a given environmental space; 
genomes provide insights into the functions an organism could 
invoke in reaction to a dimension, and transcriptomes indicate 
whether these functions are currently invoked31. Niche theory also 
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Fig. 1 | Conditions and methods for invasion studies. a, Chemical and biological features of the 2016 Monterey Bay autumn bloom. Top panel: Chl a, 
n = 3 ± 1 s.d. (error bars fall within the symbols); bacterial cell counts, n = 2. Bottom panel: n = 1. Note that different scales are used on the left and right 
axes of the bottom panel. b, Protocol for invasion experiments carried out for three independent biological replicates. c, Relative expression of five R. 
pomeroyi glucose catabolism genes in 14 invasion studies compared with controls incubated in MBM without a substrate or with glucose. Small black 
symbols and error bars represent the mean ± 1 s.d. Treatments differ significantly from each other (analysis of variance P < 0.0001, d.f. = 2), with different 
lower case letters indicating significant differences in post-hoc analysis (two-sided Tukey’s honestly significant difference; P = 0.0010 for MBM glucose 
versus invasion studies and P = 0.0010 for MBM + glucose versus MBM with no substrate).
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distinguishes between the ‘fundamental’ and ‘realized’ niches8, the 
former referring to the conditions in which a species grows without 
consideration of interference from other organisms, and the latter to 
the (typically narrower) set of conditions in which a species grows 
in the presence of other organisms, reflecting the outcome of com-
petition for substrates or space, for example. Invasion experiments 
in which introductions are made into intact natural systems, as 
done here, include dimensions imposed by biotic interactions and 
therefore address realized niche dimensions of the invader.

The realized niche dimensions influencing the viability of R. 
pomeroyi in the Monterey Bay phytoplankton bloom in the autumn 
of 2016 were operationally defined from the functional annotation 
of genes with significant relative expression changes through time. 
We focused first on the 3,510 genes of the peak- and late-bloom 
supermodules because of their clear temporal patterns. A statisti-
cally significant difference in relative expression between the two 

initial and two final time points was considered a measurable tran-
scriptional response to an environmental signal (DeSeq2, adjusted 
P < 0.05) and was found for 1,382 genes. Of R. pomeroyi genes, 
18% were not included in the supermodules. For these, a statisti-
cally significant difference in relative expression between the two 
highest and the two lowest time points was considered a measurable 
response to an environmental signal, and was found for 423 genes.

Chemical niche dimensions. Invasions into the phytoplankton 
bloom identified at least 43 substrate-based niche dimensions for 
R. pomeroyi, recognized from transcriptional responses of genes 
transporting organic molecules supporting growth. Another 13 
potential substrate dimensions were suggested from transcriptional 
response of genes catabolizing organic molecules, although these 
are potentially counted among the transporters that lack definitive 
substrate annotations. Nitrogen-containing compounds made up a 
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surprising 67% of the substrate-based niche dimensions (29 com-
pounds), and all but two invoked the highest expression levels dur-
ing invasions of the A. sanguinea-dominated peak bloom (Fig. 3). 
Peak-bloom, nitrogen-containing substrate dimensions included 
N-methyl compounds (trimethylamine N-oxide, carnitine, choline, 
glycine betaine), amino acids and related molecules (polyamines, 
peptides), and sulfonated organic nitrogen compounds (taurine, 
N-acetyltaurine, cysteate). Two N-containing substrate dimensions 
elicited the highest expression later in the bloom (ectoine and a puta-
tive branched-chain amino acid; Fig. 3). R. pomeroyi reacted to five 
sulfur-containing substrates, including the three sulfonated nitro-
gen compounds above plus dimethylsulfoniopropionate (DMSP) 
and isethionate; these also elicited the strongest responses when the 
bacterium invaded peak-bloom samples. Niche dimensions based 
on organic compounds with carbon-only backbones included the 
C1 molecules carbon monoxide and formate, six carboxylic acids 
including lactate, three sugars including ribose, and the aromatic 
compounds ferulate, catechol and protocatechuate (Fig. 3 and 
Supplementary Table 2); again, R. pomeroyi reacted to these most 
strongly during the peak bloom. The carbon-only compounds 
with highest influence in late-bloom samples were those processed 
through the ethylmalonyl-CoA pathway for C2 substrate catabolism. 
Ramping up of carbon storage as polyhydroxybutanoate in the late 
bloom indicated that organic carbon accumulation in the bloom 
environment was relevant to R. pomeroyi’s ecological success (Fig. 3).

Other chemical dimensions of R. pomeroyi’s niche in the 
Monterey Bay bloom were related to nutrient and metal concen-
trations. The bacterium had high uptake responses for ammo-
nium and urea at the earliest two sample dates, suggesting nitrogen 
limitation during the peak bloom32 (Fig. 3). A. sanguinea biomass 
was positively correlated with expression of these genes (Pearson’s 
r = 0.95, P < 0.01, d.f. = 12; Extended Data Fig. 4) and, given the 
dinoflagellate’s high affinity for inorganic nitrogen and preference 
for ammonium33, probably drew down nitrogen concentrations at 
the bloom peak. Indeed, R. pomeroyi cannot assimilate nitrate and 
relies on ammonium for inorganic nitrogen34. R. pomeroyi also dif-
ferentially expressed genes for acquisition of sulfate, phosphonate 
and phosphate (Fig. 3). Bacterial initiation of phosphorus storage in 
the late-bloom environment pointed to phosphate availability as an 
important niche dimension. R. pomeroyi responded to the availabil-
ity of four metals, increasing expression for magnesium transport 
when introduced into the peak bloom, and for manganese, iron and 
zinc transport later on (Fig. 3).

Biotic interaction niche dimensions. On about half the invasion 
dates, a feature of the environment induced R. pomeroyi to synthe-
size indole acetic acid, a molecule enhancing growth of co-occurring 
phytoplankton35. On two dates, R. pomeroyi ramped up transcrip-
tion of genes encoding a diffusible killing mechanism that targets 
diverse bacterial taxa36 (Fig. 3). The specific dimensions that drive 
transcription of these non-trophic biotic interaction genes after 
90 min in the bloom are likely to include specific protist or bacterial 
taxa in the invaded microbial community (Extended Data Fig. 1). In 
the case of the killing mechanism genes, expression was positively 
correlated with relative abundance of two bacterial taxa (out of the 
top 100): a member of the SUP05 clade of Gammaproteobacteria 
and an uncharacterized Flavobacteriaceae (Pearson’s r = 0.53, 
P < 0.05, d.f. = 12). Antagonistic genes encoded type I secretion and 
efflux systems for toxins and antibiotics, whereas resistance genes 
encoded antibiotic resistance and detoxification. Whether such 
gene products result in positive or negative interactions is unclear, 
for example, toxin and polyketide export can provide defence for 
associated organisms37,38.

Positive biotic interaction dimensions were suggested by vari-
able expression for synthesis or utilization of three cofactors and 
six B vitamins through the bloom stages. R. pomeroyi had elevated  

transcription of genes linked to pyrroloquinoline quinone (coen-
zyme PQQ) in the peak-bloom invasions and thiamine, nicotin-
amide, vitamin B3, riboflavin, pyridoxal phosphate, pantothenate, 
biotin, molybdopterin and folate in the late invasions (Fig. 3). The B 
vitamins cannot be synthesized by many marine phytoplankton and 
yet are required for key enzymatic reactions, a deficit that can be 
relieved by bacterial release39,40. The vitamin responses by R. pome-
royi may reflect shifts in exogenous availability of these molecules 
or their precursors, or biotic interactions that affect the bacterium’s 
synthesis rates.

Differences in transcription of motility-related genes suggested 
a patchy distribution of deterrents or resources during the bloom. 
R. pomeroyi made the greatest investment in building motility 
machinery when invading the bloom peak, and less as it aged. The 
bacterium also invested in pilus assembly genes, for attachment 
or conjugation, and quorum-sensing genes, for cell-to-cell chemi-
cal signalling, with increased importance of both in peak-bloom 
invasions. R. pomeroyi harbours a gene transfer agent system34 that 
packages random ~5-kb genome fragments into virus-like parti-
cles released extracellularly to initiate intraspecific gene transfer41. 
Transcription of the gene transfer agent was invoked on six con-
secutive invasions in mid-October, suggesting a persistent environ-
mental condition triggering initiation of DNA transfer. Expression 
of this system highlights a mechanism by which niche dimensions 
could evolve over relatively few generations42,43, particularly for bac-
teria that have specific genetic mechanisms that enhance rates of 
horizontal gene transfer44.

Stress niche dimensions. On both peak- and late-bloom dates, R. 
pomeroyi encountered environmental conditions eliciting enhanced 
transcription of genes for repair and recombination of DNA, refold-
ing damaged proteins45 and responding to oxidative stress (Fig. 3 
and Supplementary Table 2). The R. pomeroyi genome contains two 
σ-32 genes that were invoked on introduction into the late-bloom 
environment and may be master regulators of stress responses45–47. 
Light exposure and temperature were at ambient laboratory condi-
tions (with incubation temperature differing by 4–7 °C from in situ) 
for all invasion experiments, and salinity differences between sam-
ples were minor (33.4–33.6 PSU); these factors were therefore not 
likely to have differentially affected bacterial viability. Influence 
from exposure to reactive oxygen species, formed from either dis-
solved organic matter or the microbial community48,49, is a potential 
driver of these responses.

Niche boundaries. The sequential invasion experiments char-
acterized features of a coastal phytoplankton bloom eliciting 
responses from a bacterium, but not whether the values of those 
features allowed its survival and reproduction; thus transcrip-
tomic data addressed niche dimensions but not niche space. We 
looked for attributes of R. pomeroyi’s transcriptome that indi-
cate when the bacterium would have succeeded in the ‘growth 
and spread’ stage21 had the invasion been carried to completion. 
Transcription of ribosomal proteins was maximum in late-bloom 
invasions (Fig. 4a), accounting for a twofold greater share of the 
transcript pool in late versus peak experiments (2.3% versus 1.2% 
for the two final versus two initial experiments; Mann–Whitney 
U-test, P < 0.01, two tailed). As up to 40% of a bacterium’s energy 
is allocated to protein synthesis, cells strictly regulate ribosomal 
protein transcripts to match available resources50–52; experimental 
studies have confirmed that this is the case for R. pomeroyi19,53. The 
bacterium’s transcription of σ-70, the major regulator of house-
keeping gene expression during growth54, was also maximum in 
late-bloom invasions, accounting for a more than fourfold greater 
share of the transcriptome in late versus peak experiments (0.83% 
versus 0.20%; Mann–Whitney U-test, P < 0.01, two tailed) (Fig. 
4a). Experimental studies have similarly confirmed that the R. 
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pomeroyi rpoD transcript inventory correlates with growth rate53. 
A third growth proxy was based on abundance in the pre-invasion 
community 16S rRNA gene pool of the Rhodobacteraceae sub-
clade to which R. pomeroyi belongs (Fig. 4b), an index inde-
pendent of transcription patterns. This revealed that late-bloom 
conditions supported >100-fold higher Ruegeria clade popula-
tions compared with peak bloom (Fig. 4a) (2.22% versus 0.02% of 
Rhodobacteraceae 16S rRNA sequences; Mann–Whitney U-test, 
P < 0.05, two tailed). Yet agreement among these three indices 
that growth potential was actually higher for invading R. pomeroyi 
during the late bloom is counter to indications from transporter 
expression that substrates supporting the bacterium’s growth were 
maximally available at the peak bloom (Fig. 3).

One explanation for asynchrony between the opportunity for 
substrate acquisition and the ability to grow, signalling a narrow-

ing of the niche, is that the bacterium’s transport/catabolism tran-
scripts are unreliable reporters of substrate availability because they 
do not track closely with substrate supply. Countering this, mea-
sures of the concentration of the substrate DMSP at each invasion 
date22 were strongly correlated with relative expression levels of the 
DMSP catabolism gene dmdA in invading R. pomeroyi (Pearson’s 
r = 0.87, P < 0.0001, d.f. = 12) (Fig. 4c). Thus, for a key substrate in 
the Akashiwo bloom55, gene expression patterns were synchronized 
with substrate supply, agreeing with previous demonstrations of 
substrate-induced transporter expression in this bacterium14,56–60. 
Alternatively, the bacterium may have been limited by inorganic 
nitrogen availability at the peak of the bloom and unable to capital-
ize on substrate supply. Transcription patterns suggest that a vari-
ety of alternative organic nitrogen molecules was being targeted for 
uptake during the peak bloom (Fig. 3).
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A third possible explanation for the mismatch in timing of sub-
strate transporter expression and growth is that R. pomeroyi’s abil-
ity to capitalize on substrate availability was inhibited by negative 
biotic interactions at the bloom peak. Secondary metabolite release 
by the red tide species A. sanguinea is linked to toxicity in seabirds, 
fish and invertebrates61–63, and potentially narrowed the realized 
niche space of R. pomeroyi. Measures of native bacterial commu-
nity uptake of DMSP were unusually low on peak-bloom dates, with 
turnover of dissolved DMSP averaging 10% per day compared with 
typical bloom values of 30–100% per day22,64,65. The native bacte-
rial community therefore processed DMSP from bloom seawater at 
low rates despite high availability, and R. pomeroyi may have been 
similarly affected. Thus, despite the presence of growth-supporting 
substrates recognized by transporter-binding proteins (a permissive 
condition in one realized niche dimension of the bacterium), inhib-
itory metabolites may have depressed its growth (a constraining 
condition in another dimension). Expression of bacterial genes for 
the synthesis of an RTX toxin, a secreted protein with cytotoxic and 
haemolytic activities towards eukaryotic cells66, and two polyketides 
was also highest at the peak bloom. An indication that biotic 
dimensions imposed by co-occurring microbes can be as impor-
tant as resource dimensions supporting growth in the niche space 
of phytoplankton-associated bacteria was unexpected, because 
resource-driven assembly of bacterial communities is common in 
coastal phytoplankton blooms67–71. Recognition of the importance 
of non-trophic biotic interactions in determining surface ocean 
microbial viability is increasing72,73.

Discussion
The mRNA pools of a marine bacterium introduced into an ongoing 
coastal phytoplankton bloom in a standardized physiological state 
served as a proxy for the environmental factors making up its niche 
dimensions. Transcriptional responses by R. pomeroyi, including 
regulating substrate and nutrient uptake and invoking hormone and 
antimicrobial production, identified chemical and biotic features of 
the environment, both positive and negative, that affected viability.

Negative biotic interactions are included in classic niche theory 
as features that narrow an organism’s niche from fundamental to 
realized, for example, by competition for resources or toxicity from 
secondary metabolites8,27 (Fig. 4d). The inclusion in niche theory 
of positive biotic interactions (that is, ‘facilitation’74) such as public 
goods dimensions (for example, vitamins75) or mutualism dimen-
sions (for example, cross-feeding75,76) implies that, absent from early 
formulations, the realized niche can extend beyond the fundamen-
tal niche when interacting species broaden conditions under which 
a microbe can survive27,74 (Fig. 4d). This perspective is not necessar-
ily counter to Hutchinson’s conceptualizations27, and can be recon-
ciled if the Hutchinsonian fundamental niche concept is defined to 
include positive biotic interactions, whereas the realized niche con-
cept includes only negative ones. It is an aspect of niche theory that 
may be particularly important in highly interconnected microbial 
communities such as coastal blooms.

The niche dimensions determining a species’ success in natural 
environments are notoriously difficult to identify. This is because 
there are a vast number of environmental features to consider, many 
of which are not yet recognized77, and because correlated signals 
between inventoried features and microbial responses do not resolve 
causal relationships. Ecological invasion studies, in their simplest 
form, add taxa to extant natural communities to uncover principles 
governing the ability of invading species to successfully exploit the 
invaded community’s resources20. We leveraged this approach to 
capture niche dimensions experimentally by introducing a meta-
bolically responsive species representative of marine bacteria with 
life history strategies linked to phytoplankton-derived metabo-
lites26,78 into an environment that it might reasonably invade. Each 
experimental invasion reported the species’ de novo detection of  

environmental conditions, with transcriptional responses spotlight-
ing multiple substrates and non-trophic biotic interactions that 
influenced ecological success in a dinoflagellate-dominated phyto-
plankton bloom. Invasion experiments with well-studied microor-
ganisms can bridge the gap between ecologically relevant field studies 
and mechanistically informative model organism studies, thereby 
improving understanding of the factors that determine where bacte-
rial species survive and function in the seawater environment.

Methods
Experimental setup. The pre-incubation protocol for R. pomeroyi DSS-3 began 
2 d before each invasion experiment. The bacterium was inoculated into ½ YTSS 
liquid medium and grown overnight to exponential phase at 30 °C. Cells were then 
washed twice, inoculated into marine basal medium (MBM)79 with 10 mM glucose, 
and incubated at 30 °C for ~26 h. After washing three times and resuspending in 
artificial seawater (28 g l−1; Sigma sea salts), the bacterium was added into triplicate 
350-ml aliquots of unfiltered Monterey Bay surface seawater collected at Station 
M0 (ref. 80) at approximately 10:00 Pacific Standard Time, which achieved a ratio 
of ~1:1 R. pomeroyi cells:native bacteria. Incubations were stirred at 120 rev min−1 
at ambient temperature (24 °C) and light for 90 min and then filtered sequentially 
through 2-μm polycarbonate filters to remove most non-bacterial community 
members and 0.2-μm polycarbonate filters to collect the bacterial size fraction. 
Filters were flash frozen in liquid nitrogen. Two control experiments were set up 
in which R. pomeroyi cells were prepared, as described above, for the field studies, 
but inoculated into defined media consisting of MBM with either no substrate or 
10 mM glucose (Fig. 1b).

RNA extraction and sequencing. RNA was extracted from filters using the 
ZymoBIOMICS RNA Miniprep Kit (Zymo Research), treated with Turbo DNase 
(Invitrogen) and cleaned using RNA Clean & Concentrator (Zymo Research). 
Ribosomal RNA was removed using the Ribo-Zero Bacteria Kit (Illumina). 
Stranded RNA-sequencing libraries were prepared and sequenced using an 
Illumina Next-Seq SE75 High Output flow cell at the Georgia Genomics and 
Bioinformatics Core (University of Georgia).

Bioinformatic analysis. The FASTX toolkit was used to retain reads with a 
minimum quality score of 20 over 80% of read length. Reads were mapped to the 
R. pomeroyi genome using BWA81 and counted using HTSeq82. Genes with zero 
reads mapping in more than 10% of samples were removed from further analysis. 
Counts were converted to transcripts per million. Weighted transcriptomic 
correlation network analysis was performed on z-score-transformed transcripts 
per million to cluster genes based on their expression across sample dates into 
modules within a correlation network, using the blockwiseModules function from 
the R package WGCNA with parameters power = 16, minModuleSize = 20 and 
networkType = ‘signed’83. Differential expression of genes between sample dates 
was calculated using DESeq2 (ref. 84). PCA was carried out on mean-normalized 
transcripts per million using the R program prcomp.

Environmental data. Bacteria were counted by flow cytometry, and eukaryotic 
microbes and cyanobacteria by epifluorescence microscopy80. Cells were assigned 
to taxonomic groups during epifluorescence counting, and carbon content was 
calculated for eukaryotic and cyanobacterial taxa based on cell size, shape and 
volume. Total particulate + dissolved DMSP concentrations and bacterial uptake 
rates were measured in triplicate at each sample date22. The 16S and 18S rRNA 
gene libraries were analysed from seawater collected from Station M0 at the 
time of each R. pomeroyi addition as described previously80. The SILVA v.132 
rRNA gene database (16S)85 and the Protist Ribosomal Reference database (PR2; 
18S)86 were used to classify sequences. Heterotrophic protist amplicon sequence 
variants (ASVs) were removed before community analysis. UPGMA clustering of 
unweighted UniFrac distances was run in Qiime2 (ref. 87).

Ruegeria clade abundance. The 16S rRNA gene ASVs from the pre-invasion 
16S rRNA gene libraries classified as Rhodobacteraceae were aligned using 
blastn to the Joint Genome Institute IMG/M All Isolates database. Top hits to a 
marine Rhodobacteraceae genome were used to construct a phylogenomic tree 
using GToTree v.1.4.1 (ref. 88) based on hidden Markov model profiles of 117 
alphaproteobacterial single-copy genes. ASV counts were mapped on to the tree, 
and relative abundance of a well-supported clade that included the R. pomeroyi 
genome was calculated as a percentage of all Rhodobacteraceae ASV hits.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data that support the findings of the present study have been deposited in the 
National Center for Biotechnology Information‘s Sequence Read Archive with 
BioProject nos. PRJNA641119 (RNA-seq) and PRJNA511156–PRJNA511331 
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(16S and 18S rRNA data), and the Biological and Chemical Oceanography Data 
Management Office under https://doi.org/10.1575/1912/bco-dmo.756413.2 at 
https://www.bco-dmo.org/dataset/756413/data (environmental data). Source data 
are provided with this paper.
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