
Learning Generative Models for Rendering Specular Microgeometry

ALEXANDR KUZNETSOV, University of California, San Diego
MILOŠ HAŠAN, Adobe Research
ZEXIANG XU, University of California, San Diego
LING-QI YAN, University of California, Santa Barbara
BRUCE WALTER, Cornell University
NIMA KHADEMI KALANTARI, Texas A&M University
STEVE MARSCHNER, Cornell University
RAVI RAMAMOORTHI, University of California, San Diego

GAN NDF Dataset NDF

G
eom

etric
W

ave
M

easured

Fig. 1. Our technique renders specular microstructure by learning high-frequency angular patterns (which we term generalized NDFs) from synthetic or
measured examples. We utilize conditional generative adversarial networks (GANs). Left: the result with a GAN trained on a dataset synthetically generated
using a wave optics model. Right: different looks can be achieved by training from different datasets. The top two rows show materials based on synthetic data
(using geometric optics and wave optics) and the bottom row is an example trained with measurements of a real surface. The right two columns show example
NDF images from the dataset and the generator, to illustrate how the generator mimics the distribution of training data.

Rendering specular material appearance is a core problem of computer
graphics. While smooth analytical material models are widely used, the
high-frequency structure of real specular highlights requires considering
discrete, finite microgeometry. Instead of explicit modeling and simulation
of the surface microstructure (which was explored in previous work), we
propose a novel direction: learning the high-frequency directional patterns

Authors’ addresses: Alexandr Kuznetsov, University of California, San Diego,
a1kuznet@eng.ucsd.edu; Miloš Hašan, Adobe Research, milos.hasan@gmail.com; Zex-
iang Xu, University of California, San Diego, zexiangxu@cs.ucsd.edu; Ling-Qi Yan,
University of California, Santa Barbara, lingqi@cs.ucsb.edu; Bruce Walter, Cornell
University, bruce.walter@cornell.edu; Nima Khademi Kalantari, Texas A&M Univer-
sity, nimak@tamu.edu; Steve Marschner, Cornell University, srm@cs.cornell.edu; Ravi
Ramamoorthi, University of California, San Diego, ravir@cs.ucsd.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/11-ART225 $15.00
https://doi.org/10.1145/3355089.3356525

from synthetic or measured examples, by training a generative adversarial
network (GAN). A key challenge in applying GAN synthesis to spatially
varying BRDFs is evaluating the reflectance for a single location and direction
without the cost of evaluating the whole hemisphere. We resolve this using
a novel method for partial evaluation of the generator network. We are also
able to control large-scale spatial texture using a conditional GAN approach.
The benefits of our approach include the ability to synthesize spatially
large results without repetition, support for learning from measured data,
and evaluation performance independent of the complexity of the dataset
synthesis or measurement.

CCS Concepts: • Computing methodologies → Rendering.

Additional Key Words and Phrases: specular surface rendering, glints, mate-
rial appearance, wave optics

ACM Reference Format:
Alexandr Kuznetsov, Miloš Hašan, Zexiang Xu, Ling-Qi Yan, Bruce Walter,
Nima Khademi Kalantari, Steve Marschner, and Ravi Ramamoorthi. 2019.
Learning Generative Models for Rendering Specular Microgeometry. ACM
Trans. Graph. 38, 6, Article 225 (November 2019), 14 pages. https://doi.org/
10.1145/3355089.3356525

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356525
https://doi.org/10.1145/3355089.3356525
https://doi.org/10.1145/3355089.3356525

225:2 • A. Kuznetsov, M. Hašan, Z. Xu, L. Yan, B. Walter, N. K. Kalantari, S. Marschner, and R. Ramamoorthi

1 INTRODUCTION
When simulating the appearance of specular highlights, the widely
used material models are analytic, based on smooth averages over
unresolved statistical microgeometry. However, recent progress has
shown that utilizing discrete, finite sub-pixel microgeometry is able
to reproduce the high-frequency directional structure of real specu-
lar highlights. Previous work explored using various microstructure
types and either geometric or wave optics as the underlying phys-
ical model. Most of these existing methods are based on explicit
modeling and simulation of the microstructure, given either by
heightfields or normal maps [Yan et al. 2016, 2018], or by focusing
on a specific effect such as reflective flakes or scratches [Jakob et al.
2014; Raymond et al. 2016; Werner et al. 2017]. These methods are
either expensive in terms of performance and storage, or limited in
their supported set of appearances.
Our idea is to instead learn the required high-frequency direc-

tional patterns from synthetic or measured examples. Generative
learning models, such as GANs [Goodfellow et al. 2014; Radford
et al. 2015], are able to synthesize high-resolution, plausible results
in various domains, including images, audio, and video. Our paper
introduces GANs to appearance modeling: we learn a model from
training data that captures the complex directional distributions
induced by specular microstructure (Section 5). The functions we
learn resemble smooth microfacet NDFs but are not necessarily
proper distributions, can be functions of vectors other than the half
vector, and can even contain RGB colors; we term these learned
directional distributions generalized normal distribution functions
(GNDFs). At runtime, we evaluate the trained model, rather than
computing the result using explicit physical simulation like in previ-
ous work. This means we can use much smaller textures compared
to full microgeometry, or even eliminate textures entirely.
Larger-scale structures that induce correlations between pixels

(e.g. scratches on metals or weave patterns on fabrics) pose a chal-
lenge for basic GANs, which simply generate samples resembling
the training set without any addditional control. We solve this by
defining a low-dimensional feature vector that has the right corre-
lation, making it an additional input to a conditional GAN (cGAN)
[Mirza and Osindero 2014]. This feature vector can itself be learned
using an autoencoder network (Section 5.4).

One challenge is that evaluating the full network for synthesizing
the entire GNDF at a given pixel is wasteful. Instead, at each surface
location, we are only interested in evaluating a single GNDF value,
to obtain the reflectance for a specific light direction.We address this
efficiency issue by introducing partial evaluation of convolutional
neural networks. Given a small range of interest in the generator
output (say, a single element or a small block), we find corresponding
ranges in the internal layers of the network that influence the values
of interest, and compute only these values (Section 6 and Figure 8).

An advantage of generative models is that they can be trained on
any data, real or synthetic, geometric or wave optics. We demon-
strate results trained on synthetic BRDF data computed using both
geometric and wave optics, and on data captured using a spherical
gantry. The key novel contributions of our approach are thus:

• The first method to use GANs and cGANs (or deep learning in
general) to render complex sub-pixel specular microstructure.

• A novel partial evaluation algorithm, allowing for point or
range queries of generator network output.

We make several additional technical contributions, including the
reformulation of wave-optics glints [Yan et al. 2018] in a GNDF
framework and computing the wave GNDFs efficiently using FFTs,
mapping fiber-based cloth models into the GNDF framework, and
hole filling in measured data during training. Our solution has the
following advantages over previous work:

• Evaluation performance and rendering algorithm complexity
are independent of the training dataset. This allows for ex-
pensive synthesis or measurement methods without slowing
down the rendering.

• Ability to synthesize results without obvious spatial repeti-
tion, which is difficult to achieve for previous methods work-
ing from explicit microstructures. In our cGAN results, the fea-
ture texture can have much lower spatial resolution than the
microstructure itself; therefore, it can cover a much larger spa-
tial area with the same storage. Note that our non-conditional
results are naturally infinite and non-repeating.

• Ability to learn the model from a measured dataset. While
measuring appearance data is not the primary goal of our
paper, we include one example dataset to illustrate this pos-
sibility. Using measured data for rendering directly is theo-
retically possible, but impractical due to massive storage and
artifacts due to tiling and holes; our solution is much more
convenient.

• The storage requirement of the trained generator network is
just over 1 megabyte (∼300,000 weights using 32-bit floats),
regardless of the size of the microstructure description or the
training dataset, which can be arbitrarily large. The network
thus becomes a convenient material representation and ex-
change format; the rendering system using it does not need
to know about the advanced optics models, measurement or
training techniques that went into producing it.

Figure 1 shows a result generated with our method; please refer
to the supplementary video for animated results. We demonstrate
the generality of our approach by showing a diverse set of results
including several isotropic glinty metallic materials (synthesized
using geometric and wave optics, and measured), an anisotropic
brushed metal, as well as scratched ceramic and fabric examples
(the latter two using a cGAN controlled with feature textures).

We believe our work is a step towards appearance models that
achieve or surpass the quality of explicit microstructure rendering,
without the run-time algorithmic complexity and storage cost.

2 RELATED WORK
In this section, we review previous work on rendering detailed spec-
ular microgeometry, followed by related work on material capture,
generative models in machine learning, and more.

Explicit heightfields. Several previous methods target spatially-
varying fine-scale details and “glints.” Yan et al. [2014; 2016] pre-
sented glint integrators for rendering surfaces defined by explicit
high-resolution heightfields (or normal maps), under geometric

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

Learning Generative Models for Rendering Specular Microgeometry • 225:3

optics. These approaches are successful at simulating very high-
resolution, spatially varying glinty behavior. The key idea is to
extend the NDF from standard microfacet models [Cook and Tor-
rance 1982; Walter et al. 2007] to a patch-based P-NDF, essentially
replacing the large-area average for the whole surface by a unique
BRDF per given small patch of the surface. Lately, Yan et al. pro-
posed an approach that addresses the same problem using wave
optics models instead [2018]. Our method succeeds in replicating
the results of these methods with much lower storage requirements
and (in most cases) faster performance, but also allows a broader
range of input data (measured GNDFs, fabric microgeometry).

Scratches and flakes. Raymond et al. [2016] represents the surface
as a collection of one-dimensional scratches over a smooth BRDF.
Werner et al. [2017] take a similar approach based on wave optics,
rendering surfaces with collections of randomly oriented scratches
using a Harvey-Shack-based model. In each of these approaches,
the solution for a single scratch can be found analytically or pre-
computed. Jakob et al. [2014] also simulated glinty surfaces but used
a statistical distribution of tiny mirror-like flakes rather than an
explicit surface. The locations of the flakes are defined implicitly
through a procedural hierarchy in position-normal space. How-
ever, this algorithm only generates a specific kind of microstructure
similar to metallic paint flakes.

Material capture. A broad area of computer graphics focuses on
acquisition of materials from physical measurements; here we only
mention recent work that uses deep learning. Aittala et al. [2016] cap-
tured stationary spatially-varying SVBRDFs from a single flash-lit
photograph using a neural texture descriptor. Further work [De-
schaintre et al. 2018; Li et al. 2017, 2018] has been able to capture
some non-stationary SVBRDFs with an end-to-end deep convo-
lutional architecture. However, only parameters of smooth BRDF
models are captured with a single estimate per pixel at relatively low
resolution, unlike our focus on complex specular microstructure
within a pixel.

Microgeometry capture. Dong et al. [2015] acquired the surface
microgeometry of real metallic surfaces using interferometry, and
applied wave optics theory to successfully predict their smooth,
large-area average BRDFs. We considered using their captured mi-
crogeometry data, but found we would need larger spatial area to
provide sufficiently varied training data for our method. Note that
Dong et al. do not render directly from the measured microgeometry.
Instead, they generate textures from their sparse data by relying on
two simplifying assumptions: the NDFs fit a simple analytic model
(ellipsoid NDF, essentially a generalization of GGX) and the spatial
patterns are 1D separable products. However, these assumptions do
not hold for our datasets and our method does not use them.

Another line of previous research focuses on capturing microge-
ometry explicitly using visible light [Graham et al. 2013; Nagano
et al. 2015; Nam et al. 2016]. Unlike this prior work, we do not try to
explicitly reconstruct the microgeometry of the surface, but instead
measure a slice of the local BRDF which is then used to infer the
GNDF. As such we need more light positions but less spatial resolu-
tion. However, microgeometry scanned using these methods could
be used as input to our GNDF synthesis.

Generativemodels. Generative adversarial networks (GANs) [Good-
fellow et al. 2014] have become widely used to synthesize plausible
results in various domains, including image [Radford et al. 2015],
video [Tulyakov et al. 2018], and audio [Donahue et al. 2018]. A
GAN typically consists of two competing networks; a generator and
a discriminator. The generator is trained to produce results that are
indistinguishable from the real data, while the discriminator learns
to identify them.

Extensive research has been conducted to improve the quality of
the synthesized results through better network architectures (e.g.,
DCGAN [Radford et al. 2015]), more powerful loss functions [Ar-
jovsky et al. 2017], and training strategies [Karras et al. 2018]. Be-
cause of these developments, GANs have been used to handle a vari-
ety of applications such as image-to-image translation [Wang et al.
2018], image inpainting [Iizuka et al. 2017], and super-resolution
[Ledig et al. 2017]. In this paper, we utilize GANs for appearance
modeling, a rather different application. We use a network architec-
ture similar to DCGAN [Radford et al. 2015] and introduce point-
wise and range evaluations to improve the efficiency. To our knowl-
edge, none of the previous work on GANs or related generative
models considered the problem of point-wise and/or range evalua-
tion of the models, but this operation is critical in our application.

Other related work. Recent work on neural BTF compression
[Rainer et al. 2019] uses an autoencoder framework to compress
BTFs, which is a different but related appearance representation to
our GNDFs. However, they do not focus on detailed glinty microge-
ometry rendering. We also use autoencoders to control the feature
vectors in our cGAN; we find the decoder produces smooth blurry
results compared to GANs, so it is likely that a GAN framework
like ours is required to generate high-frequency results in the direc-
tional domain. Galerne et al. [2012] proposed a system to synthesize
Gabor noise from examples; this is in a sense a generative model
as well, and could be considered as an alternative to GANs in our
framework.

3 OVERVIEW
Several existing methods for rendering specular microstrucure can
be seen as using a microfacet BRDF with modified (generalized)
normal distribution functions (GNDFs). The high-level idea of our
approach is to generate examples of these GNDFs, learn a GAN (or
cGAN) model to synthesize GNDFs indistinguishable from the ones
in the dataset, and design an efficient way to use the generator at
rendering time to produce final pixel values.

3.1 Our material model
Recall the standard microfacet BRDF [Cook and Torrance 1982;
Walter et al. 2007]:

fr (i,o) =
F (i · h) G(i,o) D(h̄)

4 (i · n) (o · n)
(1)

Definitions of all symbols can be found in Table 1. We use i , o,h, and
n to refer to input, output, half vector, and macrosurface normal,
respectively. We use h̄ to denote the projected half vector (dropping
the z-coordinate of the unit vector h). The key term that determines

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

225:4 • A. Kuznetsov, M. Hašan, Z. Xu, L. Yan, B. Walter, N. K. Kalantari, S. Marschner, and R. Ramamoorthi

Table 1. Notation used in the paper.

symbol domain definition
H hemisphere
D unit disk (projected hemisphere)
n H macrosurface normal
i H incoming direction
o H outgoing direction
ψ R3 sum vector,ψ = i + o
h H half vector, h =ψ/∥ψ∥
h̄ D projected half vector (drop 3rd coord.)
ψ̄ R2 projected sum vector (drop 3rd coord.)
u R2 surface position
d D or R2 projected direction (either h̄ or ψ̄)
z R100 latent random vector (generator input)
n(u) R2 → D microsurface normal function
Gp (u) R2 → R pixel footprint Gaussian
Gc (s) R2 → R coherence kernel Gaussian
D(h̄) D → R normal distribution function (NDF)
D∗(u,d) R2 × R2 → R generalized NDF
F (i · h) R→ R Fresnel term (accurate or Schlick)
G(i,o) H ×H → R shadowing/masking term
G∗(i,o) H ×H → R extra term (14 (ψ · n)2 for wave optics,

G(i,o) for geometric optics)
the shape of the specular highlight is the normal distribution func-
tion (NDF) D(h̄), giving the probability distribution of microfacet
normals describing the surface. The NDF is indeed a pdf on the pro-
jected hemisphere D (it integrates to 1 on this domain, but would
need an additional cosine term on H).

Most previous work on specular glints can be thought of as replac-
ing the smooth, global NDF D(h̄) by a different function D∗(u, h̄) or
D∗(u,ψ̄), whereψ = i +o and ψ̄ is the projectedψ; u is a 2D spatial
location. In this paper we will therefore consider spatially varying
BRDFs in the following microfacet-like form:

fr (u, i,o) =
F (i · h) G∗(i,o) D∗(u,d)

4 (i · n) (o · n)
(2)

The main difference from equation (1) is in the NDF term, which
we replaced by a generalized NDF D∗(u,d). For brevity we use a d
parameter in the definition, which stands for any projected direction,
h̄ or ψ̄. We also introduce an extra term G∗(i,o), which is defined
differently for geometric optics and wave optics models (see Table 1
and next section). Therefore, this single definition encapsulates both
the geometric optics and wave optics models used in this paper.
The function D∗(u,d) depends on the surface location u and

typically contains high directional frequencies. In a slight abuse of
terminology, we still call these functions generalized NDFs, even
though they are not necessarily distributions of normals anymore,
and may even contain color variation. In other words, we use the
term GNDFs in a broad sense, to mean directional functions that
resemble (or fit into) the NDF component of the microfacet model.
(In previous work, the term P-NDFs is sometimes used.)

3.2 Learning generalized NDFs
While several previous methods compute values of the generalized
NDF precisely from an explicit surface heightfield or normal map,

Fig. 2. Examples of geometric optics GNDF images, computed by binning.

we take a different approach: we learn a GAN that generates these
complex GNDF distributions, by providing a training set. We define
a GNDF image to be the discretized directional variation of D∗(u,d),
for a fixed u, discretizing the projected directions d in the plane.
The training set is simply a collection of such GNDF images for
different surface locations u.

The surface microstrucure types we are considering in this paper
have very limited spatial coherence (i.e., small patches that are
tens of microns apart exhibit largely unrelated microstrucure). This
allows us to design an approach consisting of the following steps:

(1) Generate a training dataset of example GNDF images, either
synthetically (by covering a given heightfield texture or fiber-
lever fabric model with footprints and computing the corre-
sponding GNDFs) or by measurement on a spherical gantry.
The number of training images in our experiments is between
65 and 75 thousand. For isotropic microstructures (where the
microstructure is rotationally invariant), the dataset can be
augmented by random rotation.

(2) Learn a GAN that produces GNDF images indistinguishable
from the ones in the dataset, parameterized by a latent random
vector z. We use a network structure inspired by DCGAN,
with transposed convolution operations used in the generator.

(3) For examples with large-scale spatial structure (scratched
ceramic and fabric), we use an additional feature texture
defining f at each spatial location, which is produced by
autoencoder learning and texture synthesis.

(4) To be able to evaluate the BRDF from equation (2), we need
to define the corresponding D∗(u,d). This is done by either
assigning a different latent vector z to each pixel, or by defin-
ing a grid of latent vectors in texture space, interpolating
latent vectors within the grid cells (the first method is faster
while the second is more general). For a given u, we thus find
the appropriate z (and optionally f) and run the generator
network to produce the corresponding GNDF image, which
gives the directional variation as a function of d (i.e., ψ̄ or h̄).
This GNDF is then plugged into the full BRDF equation (2).

3.3 Partial evaluation of generator networks
As described, the above procedure has one highly inefficient step: for
a single query, it runs the entire generator network to compute the
full GNDF image, only to query a single location d in it and throw
away the rest. A key contribution of our work is to enable partial
evaluation of generator networks, computing only the portion of
the network that affects the desired point or range query.

The next three sections will cover the above steps in detail: data
generation/measurement, GAN training, and final model evaluation.

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

Learning Generative Models for Rendering Specular Microgeometry • 225:5

4 DATA GENERATION AND MEASUREMENT
The input to our GAN training procedure is a dataset of example
GNDF images. We produce this dataset either synthetically from a
given heightfield (bump map) texture, fiber-lever fabric model, or
by measurement using a spherical gantry. Figure 3 illustrates the
shapes of some of our dataset GNDFs, as well as the corresponding
generated GNDFs (discussed in Section 5).

4.1 Synthetic GNDF generation
We start with a high-resolution input heightfield texture. The height-
field is then covered by a uniform grid of footprints. To compute the
GNDFs corresponding to these footprints, we explore two different
models: using geometric optics [Yan et al. 2014] and using wave
optics [Yan et al. 2018].

4.1.1 Geometric optics GNDFs. Yan et al. [2014] consider an en-
tire patch (footprint) of a surface heightfield at once, and consider
the actual distribution of surface normals across this patch. More
precisely, let D be the unit disk (projected hemisphere). A normal
map is defined as a function n : R2 → D from points u in texture
space to normals n(u) on the unit disk. This normal map can be
easily computed from the gradient of the heightfield, using bicubic
interpolation. Define a Gaussian footprint Gp (u) with standard de-
viation σp . Let X be a random variable distributed according to this
Gaussian. The GNDF for this footprint can then be defined as the
probability distribution on D of the random variable n(X).

We compute the geometric optics GNDFs by a binning (histogram)
approach: we generate samples of the random variableX , and bin the
resulting values of n(X). The noise in this approach is significantly
reduced by stratifying the sampling of X . We find that one million
samples per GNDF are sufficient for our purposes.When binning, we
further jitter the value n(X) by a Gaussian whose standard deviation
matches half a pixel size in the GNDF image, to alleviate box filtering
artifacts from the bins; this is equivalent to the intrinsic roughness
defined by Yan et al. [2014]). Examples of GNDF images computed
in this way are shown in Figure 2.

4.1.2 Wave optics GNDFs. More recently, a wave optics method
for rendering glints was introduced [Yan et al. 2018]. This paper
proposes multiple forms of the spatially varying wave-optics BRDF.
Here we will use the “reciprocal original Harvey-Shack” (R-OHS)
model, which can be written as follows:

fr (u, i,o) =
(ψ · n)2F (i · h)

4Acλ2 (i · n) (o · n)

����∫
R2

Ru(s) e
−i 2πλ (ψ̄ ·s)ds

����2 , (3)

where λ is the wavelength, and

Ru(s) = Gc (s) e
−i 4πλ h(s) (4)

is the reflection function weighted by the coherence kernel Gc (s).
This coherence kernel is centered at u and has a standard deviation
σc (typically 5-10 microns). Ac =

∫
R2

Gc (s)2 ds is a normalizing
constant. Please refer to Yan et al. [2018] for a more detailed deriva-
tion and explanation of the BRDF model and the coherence kernel
concept.
While this formulation does not explicitly use the concept of

normals and their distributions, we find that it is useful to rewrite it

in the form (2) matching a microfacet BRDF with a modified “wave
optics GNDF”. This can be done as follows:

fr (u, i,o) =
F (i · h) G∗(i,o) D∗(u,ψ̄)

4 (i · n) (o · n)
, (5)

where

D∗(u,ψ̄) =
4

Acλ2

����∫
R2

Ru(s) e
−i 2πλ (ψ̄ ·s)ds

����2 . (6)

andG∗(i,o) = 1
4 (ψ ·n)2. Defining the normalization this way makes

the extra term G∗(i,o) bounded by 1, and the wave GNDF has a
range of values comparable to the geometric GNDF of the same
microstructure. A similar rewrite was proposed by Dong et al. [2015]
in the context of the Kirchhoff wave optics model.

Looking at the definition of this GNDF, we find it is (ignoring the
multiplicative terms in the front) essentially the squared absolute
value of the Fourier transform of the weighted reflection function
Ru(s), queried at pointψ̄/λ. This suggests we can use the fast Fourier
transform to compute the GNDF image efficiently for each coherence
footprint. This computation is deterministic; it does not use random
sampling, unlike our geometric optics binning method.
The above GNDF definition depends on the wavelength λ. A

spectral version can be constructed simply by evaluating several
wavelengths (each using a separate FFT) and converting into RGB
space. We find that 8 spectral samples are sufficient for this purpose.
Furthermore, the pixel footprint is typically larger than the co-

herence kernel. We resolve this by averaging several GNDF images
computed as above, to obtain GNDF images matching the target
pixel size. Note, this is not equivalent to simply enlarging the co-
herence kernel, as the coherence integral is in the complex domain
(within the squared absolute value operator), while the pixel averag-
ing happens in the real domain. Figure 4 shows examples of wave
GNDFs; the top of the figure shows the coherence kernel GNDFs,
while the bottom shows the averaged pixel footprint GNDFs.

4.2 Fabric GNDFs
Modeling cloth at the fiber level is a growing area of research with
remarkable recent progress [Leaf et al. 2018; Zhao et al. 2016]; the
explicit fiber representation can be used for high-fidelity render-
ing, but the cost is prohibitive in most applications. The situation
is different in our case, where the cost is incurred only in dataset
creation, not in training or rendering. We extend our approach to
render fabrics, by synthesizing and learning GNDFs from a bas-
ket weave cloth pattern simulated at the fiber level. We shade the
fibers using the hair BSDF model of Chiang et al. [2016]. The GNDF
data synthesis is accomplished by covering the cloth area by 2562
footprints, and computing the corresponding GNDFs by sampling
scattering paths with random incoming direction through the fabric.
We bin the resulting path throughput at the half vector given by the
path incoming and outgoing direction.

The true BRDF of this material is not in the form required by our
equation 2, so this approach is an approximation to the true BRDF.
In terms of the half-vector and difference vector parameterization
of BRDFs [Rusinkiewicz 1998], we are ignoring the difference vec-
tor dimension (i.e. averaging over it), keeping only the half vector
dimension. However, this approximation is quite effective for sin-
gle fiber reflection, and still produces a reasonable appearance for

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

225:6 • A. Kuznetsov, M. Hašan, Z. Xu, L. Yan, B. Walter, N. K. Kalantari, S. Marschner, and R. Ramamoorthi
 N

D
F

ex
am

pl
es

 in

tr

ai
ni

ng
 s

et

 Wave optics NDFs Scratch NDFs Fabric NDFs

O
ur

 g
en

er
at

ed

 N
D

Fs

Fig. 3. Comparison of ground truth (dataset) GNDFs and GNDFs generated by our method. Our method not only accurately captures the general distributions
of GNDFs for each different material, but also generates each individual GNDF with high quality and detail.

Fig. 4. Examples of wave optics GNDFs. Top: GNDF images corresponding
to coherence kernels. Bottom: GNDFs corresponding to pixel footprints;
these are essentially weighted averages of the images above.

low-order scattering (we are limiting the maximum depth to 5 fiber
interactions).

4.3 Measurement of GNDFs
For GNDF measurement, we used a spherical gantry consisting of a
camera and a light source mounted on robotically controlled arms,
automatically calibrated before each run using computer vision
techniques. The camera and sample were kept fixed; we only moved
the light to measure a variety of incoming directions.
The sample used is a steel Q-Panel with matte finish, manufac-

tured by Q-Lab Corporation. The camera is a Canon 70D with a 100
mm macro lens configured to keep a fixed focus and aperture. It is 1
meter away from the sample and rotated 15 degrees from vertical,
so we can observe GNDF peaks. The setup is shown in Figure 5 (top).
For each measurement, we combine multiple exposures to create an
HDR image. The images were downsized by a factor of 2 to reduce
noise and converted to grayscale (as there was little color variation
for this particular sample). The resulting pixel spacing corresponds
to roughly 70 microns on the sample surface.

The light source is a 19 mm diameter white LED at a distance of
60cm from the sample.We tookmeasurements at 4681 light positions
covering the hemisphere above the sample except for grazing angles
and a small retro-reflection region where the light source would
obstruct the camera’s view. The light source intensity is calibrated
by observing a reference material within the field of view.

60 cm
100 cm

moving
light source

fixed
camera

material
sample

15 deg.

Fig. 5. Left: Our measurement setup, with a camera 15 degrees off vertical
direction, and a moving light. Right: Examples of measured GNDFs, with
blue color indicating missing data (grazing angles or occlusion).

For each pixel and light position, the measured values are con-
verted to BRDF values. Assuming a microfacet model, we further
convert these into GNDF estimates, approximating the shadow-
ing/masking term as 1 and the Fresnel term as constant over the
region of interest (as grazing angles are excluded). For each pixel,
the measured values are interpolated over the hemisphere of direc-
tions using a kernel with a 3 degree radius. Thus, each visible pixel
of the sample gives rise to a single measured GNDF image. Several
examples are shown in Figure 5 (bottom).

5 MODEL AND TRAINING
Here we describe the network structure of our GAN, and the training
procedure. Our implementation uses the PyTorch framework.

5.1 Data transformations
We apply a log transformation log(1 + x) to the data, as the original
GNDF values have fairly high dynamic range. This is commonly
used by recent techniques that deal with HDR data [Eilertsen et al.
2017; Zhang and Lalonde 2017] as it makes the training process
better behaved. We keep all training data positive; we currently do
not center the values at zero.

We further apply a polar transformation to the data. We find that
the training performance is significantly improved, because GNDF
images have a broadly circular structure and the convolution can
reuse the features. For GNDFs with rotationally symmetric statistics,

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

Learning Generative Models for Rendering Specular Microgeometry • 225:7

a rotation becomes horizontal translation: a natural setup for a
convolutional network. This ensures that our learned convolutional
kernels treat the GNDF values at the same distance from the center
equally.

5.2 Network structure
Our generator and discriminator networks broadly follow DCGAN
[Radford et al. 2015], and are visualized in Figure 6. The generator
starts from a latent vector of length 100, followed by five transposed
convolution layers. Increasing the length of the latent vector is possi-
ble, but has little impact on quality or performance. The transposed
convolutions have a kernel size of 4 × 4 and a stride of 2. Unlike
DCGAN, which uses between 64 and 1024 internal channels, the
number of channels of our internal layers is always 64. The output
layer has 1 or 3 channels. The discriminator is symmetric to the
generator, using standard convolutions instead of transposed ones.

The generator output (in the polar domain) has a 64 × 64 resolu-
tion; this is sufficent to achieve high directional frequencies (and
resulting high temporal frequencies with slow light movement)
in our results. Larger resolutions should be possible, if very high
directional frequencies are desired.
Due to our use of the polar domain, we introduce horizontally

wrapped convolution operators (both in the generator and discrimi-
nator). In the polar domain, the columns of our images correspond
to angles and the rows correspond to radii. As we would like our
result to be continuous in angles, we need the convolution and trans-
posed convolution operators to wrap around horizontally across
the image edges; this applies to internal as well as output layers. For
this purpose, we introduce two custom neural network modules,
Conv2dHWrap and ConvTranspose2dHWrap; their implementation
is in PyTorch and does not require new C++ primitives.

Some further differences from DCGAN include omitting the batch
normalization operations in the generator and the tanh function at
the end of the generator. We use leaky ReLU in both generator and
discriminator.

5.3 Training process
We use noisy labels similarly to what is proposed by Salimans et
al. [2016]; this appears to improve stability in the beginning of the
training process.

We utilize random rotation to augment our training data, for the
materials that are isotropic; their statistics are rotationally invariant,
so the distribution of rotated GNDF images looks the same as the
original distribution. In polar coordinates, this random rotation
becomes particularly easy, simply requiring a horizontal pixel shift
with wrap-around. (This does not apply to brushed, scratched and
fabric examples, as they are not rotationally invariant.)

For training with RGB examples (as needed for the spectral wave
optics and fabric models), we find that while it is possible to train the
networks with RGB examples directly, the convergence is notably
worse than with grayscale GNDF images. We found that we can
achieve an improved convergence for RGB datasets by starting the
training process with grayscale versions of the images (say over the
first 10,000 batches), and gradually blending in the color (say over
the next 10,000 batches or so).

64 64
64

64

4

4 8

8

16

16

32

32

64

64

4×4
stride 2

4×4
stride 2 4×4

stride 2 4×4
stride 2

6464
6464

4

48

8

16

16

32

32

64

64

4×4
stride 2

4×4
stride 2

4×4
stride 2

4×4
stride 2

1
1
1

4×4
stride 1

no padding

real or
fake?

Discriminator

Generator

100
1

1

4×4
stride 1

C

C

Fig. 6. The network structure of our GAN.

We further compute the mean of the dataset GNDF images, as well
as the generated GNDFmean.We find that these match fairly closely
in their overall scaling, so the GAN succeeds in generating GNDF
values with the correct integrals. However, we find that there is a
slight directional pattern in the generated mean. Therefore, during
evaluation, we correct the remaining generator bias by multiplying
the output by the ratio of dataset and generated means. Note, this
slight mismatch between dataset and generated mean occurs for
traditional GAN applications as well, but is not a problem for them,
because generated images are used individually and not as a big
collection at once. Once the training is done, the discriminator is
discarded and we generate the results using only the generator.

5.4 cGAN and feature vectors
For microstructures with large-scale texture variation (scratches or
fabric yarns), the spatial correlations between pixels are important to
the appearance. We extend our model to account for this correlation
by using a cGAN to make the generated GNDF distribution depend
on a low-dimensional feature vector f . The feature vector varies
according to a texture to efficiently model the visually important
spatial structure of the material. One could, in theory, design such
feature vectors by hand (for example, for the scratched ceramic
example it could be a dominant scratch direction and footprint
coverage). We however find it more powerful and general to learn
the feature space itself, through an autoencoder architecture.
Our encoder and decoder shapes are virtually identical to the

discriminator and generator, respectively. The difference is that the
encoder outputs the feature vector f (using 9 dimensions in our
results) and the decoder takes it as input, attempting to reconstruct
the encoder input. We train the autoencoder with the same GNDF
training set, using an L1 loss. The decoder thus has a similar role
as the generator; however its outputs tend to be blurry and lack
detail, which the adversarially-trained generator produces much
more effectively.
This allows us to compute a feature vector for each GNDF in

the training set, giving rise to a 2562 feature texture. In the case of
scratched ceramic and fabric, this texture is too small to produce non-
repeating results, and needs to be extended; we currently achieve
that by a patch-based texture synthesis [Efros and Freeman 2001].
Figure 7 demonstrates the idea: an initial scratched heightfield is

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

225:8 • A. Kuznetsov, M. Hašan, Z. Xu, L. Yan, B. Walter, N. K. Kalantari, S. Marschner, and R. Ramamoorthi

Fig. 7. Left: initial scratched heightfield. Middle: feature vector texture
computed using our autoencoder from the GNDFs (showing 3 out of 9
channels as RGB colors). Right: the feature texture extended by texture
synthesis.

used to create a GNDF training set, resulting in a feature vector
texture, which is finally extended by texture synthesis.

Using the feature f in the generator is straightforward; we simply
append it to the latent random vector z. For the discriminator, we
pass f through the decoder first and use the resulting image as an
additional discriminator input.
In summary, we are using a two-pass learning system. First, we

train an autoencoder and fix its weights. Then, we use the result-
ing fixed feature vectors (textures) to train a cGAN. After training
the autoencoder for a particular material, we evaluate the encoder
for each of the 256x256 NDF images in the input data, produc-
ing a 9-dimensional feature vector for each NDF. The resulting
9-dimensional feature vectors form a 256x256x9 texture. The feature
textures can furthermore be extended through synthesis, to cover
much larger areas without repetition.

We opted for training separate models for each material because
we want to keep the networks as small as possible. A more general
network would require more weights to represent all required vari-
ations. That said, in the future it may be possible to train a single
general (larger) cGAN for multiple materials, conditioned on the
material type.

5.5 Hole filling in measured data
In measured GNDFs, some positions could not be captured due
to obstruction of the camera by the light, resulting in holes. As a
first step, we mask the holes in captured GNDF images by using
the average value at that direction. Moreover, we randomly rotate
captured GNDF images, so the hole is not in the same spot. For our
generator, we apply the same mask to the output, but randomly
rotate it. That way, the generator does not need to generate a hole
for the discriminator. The discriminator therefore sees the hole in
different positions for both measured and generated data, and the
generator learns to generate complete GNDF images without holes.

6 MODEL EVALUATION
In this section, we describe the evaluation of the full BRDF model
(2), using the trained generator networks. A key component of this
section is our partial network evaluation; this is critical for efficency
of the whole solution. To evaluate the BRDF, the only non-trivial
component is the evaluation of the GNDF; all other terms (Fresnel,
normalization, etc.) can be incorporated easily.

full
1 x 1 x 100 full

4 x 4 x 64
full

8 x 8 x 64
full

16 x 16 x 64 full
32 x 32 x 64 full

64 x 64 x C

partial
5 x 5 x 64

partial
4 x 4 x 64

partial
3 x 3 x 64

partial
1 x 1 x C

Fig. 8. Partial evaluation of the generator network. The full layers are shown
in light blue, while the portions required by partial evaluation are shown in
yellow. In this example, we are only interested in evaluating index (34, 42) in
the output layer. Using the range bounding approach, we find that within the
third, fourth and fifth layer, we need to evaluate ranges (blocks) [2, 6]×[3, 7],
[7, 10] × [9, 12], and [16, 18] × [20, 22], respectively.
6.1 Pixel sampling for GNDF evaluation
There are two possible ways to render the pixels of the image. The
first option is to assign one latent vector z per pixel of the appro-
priate material. This approach is convenient due to its simplicity
and performance, and has the additional advantage of supporting
random rotation of isotropic GNDFs. (Note: this result rotation at
rendering time is distinct from the rotation of the input data during
training, which is always valid for isotropic microstructures.) Ran-
dom rotation gives a slightly improved result, further equalizing
the angular statistics. This simple per-pixel approach requires the
network to be trained for a given pixel footprint size, and will only
work optimally with a fixed camera, and on objects rendered at the
right distance.
Alternatively, and more generally, latent vectors can be defined

on the vertices of a rectangular texel grid and smoothly interpolated
within texels, which leads to smoothly changing resulting GNDF
queries, due to the continuity of the generator network as a function
of z. We find that interpolating the latent vectors gives a reasonable
“morphed” GNDF. This is similar to previous GAN approaches for
e.g. faces, where latent interpolation gives rise to usually valid
intermediate faces [Karras et al. 2018]. This morphed GNDF is not
equivalent to a bilinear blend of the initial GNDFs, but it is similarly
acceptable as an approximation to the unknown intermediate GNDF.

For choosing the spacing in the UV-domain, we generally follow
the convention of choosing a Gaussian footprint with standard
deviation σp (typically a few microns), and making the spacing
(grid cell side-length) for synthetic data generation equal to σp , thus
getting some overlap of footprints. In effect, each training dataset
is captured at a particular spatial scale and the object UV-mapping
should preserve this. Latent vectors are then defined on vertices of
the same grid. These heuristics may indeed not be optimal; previous
work also does not provide answers about optimal or automatic
footprint/scale selection, and this problem remains open.
For the brushed metal example, we define the latent vectors on

the vertices of a texel grid. Each grid cell is anisotropic (rectangular),
with a side ratio of 1:30. The latent vectors are smoothly interpolated
within the grid cells, which interpolates GNDF images in a smooth
non-linear way, resulting in the horizontally elongated features of
brushed metal. Care must be taken to normalize the interpolated
latent vectors in order to have the same norm distribution as original
vectors.

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

Learning Generative Models for Rendering Specular Microgeometry • 225:9

6.2 Partial generator evaluation
To describe our partial evaluation approach, we first review the
definition of standard and transposed convolution, then describe
range bounding for transposed convolution, and finally discuss how
to extend the range bounding idea to support full-featured generator
networks.

6.2.1 Review of standard and transposed convolution. For simplicity,
let’s assume single-channel input and output images. A standard
1-dimensional convolution is a “gather”-type operation, where each
output value is a linear combination of k input values, weighted by
a kernelW . Similarly, a 2-dimensional convolution computes each
output value as a weighted linear combination of the corresponding
k × k values of the input.

More precisely, let I (i, j) and O(i, j) be the input and output im-
ages, respectively. LetW (p,q) be the k × k convolution kernel. Let s
be the stride of the convolution. The default stride of 1 achieves a
one-to-one mapping between the image resolutions, while a stride
of 2 causes the output resolution to be half the input resolution. This
convolution can be written as:

O(i, j) =
k−1∑
p=0

k−1∑
q=0

W (p,q) I (si + p, sj + q). (7)

For simplicity, we assume that accessing the input image beyond
its bounds simply returns zero; other boundary conditions (such as
wrap-around) can be easily handled as well.

A transposed convolution is defined as the multiplication by the
transpose of the sparse matrix that describes the (linear) convolution
operation. Therefore, a transposed convolution can be seen as a
“scatter” instead of a “gather” operation. This ismost easily expressed
using the following pseudocode:

(1) initialize O(i, j) to 0
(2) for each input image pixel (i, j):

• O(si : si + k − 1, sj : sj + k − 1) += I (i, j)W (:, :)
That is, the entire kernelW is splatted into ak×k block of the output,
weighted by the input pixel value I (i, j). Note that in a transposed
convolution, a stride of 2 will double the resolution of the output,
compared to the input.

6.2.2 Range bounding for partial evaluation. Consider a transposed
convolution operation with kernel size k × k and stride s . The key
question that needs to be answered to enable partial evaluation is:
given a block of interest in the output image, which block in the
input image can influence the values in the output block?
Let the output block of interest be Bo = [i1, i2] × [j1, j2] , where

the ranges are assumed to include their endpoints. We would like
to find the input block Bi = [i ′1, i

′
2] × [j ′1, j

′
2] such that values in Bi

affect values in Bo . After some analysis, we find that

i ′1 =

⌊
i1 − k + s

s

⌋
i ′2 =

⌊
i2
s

⌋
(8)

and similarly

j ′1 =

⌊
j1 − k + s

s

⌋
j ′2 =

⌊
j2
s

⌋
(9)

If the computed input block goes beyond the input image dimen-
sions, we simply clamp it. Therefore, for any desired block in the

0.000

0.005

0.010

0.015

0.020

Fr
ac

tio
n

of
 C

om
pu

ta
tio

n

Fig. 9. Computational cost of partial evaluation, for a 2×2 range query,
visualized as a fraction of the cost of doing full evaluation for different
points on a GNDF. The image represents a circular domain in the projected
hemisphere, though we use polar coordinates for the actual evaluation. The
average cost of partial evaluation is just 1.75% compared to full evaluation.
The variation in cost is due to the transposed convolution interacting with
the padding/wraparound near the edges. We typically evaluate a 2×2 region
instead of just 1×1, since we use bilinear interpolation in GNDF lookups.

output image, the above formulas let us find the corresponding block
of the input image, over which we need to iterate, to guarantee cov-
erage of the desired output block.

6.2.3 Partial evaluation of full generator network. The above simpli-
fied situation needs to be extended to support the full set of features
used in our generator network. This entails:

(1) Supporting multiple channels in the input and output images.
This simply requires more computation when splatting into
a given output pixel index.

(2) Supporting bias and leaky ReLU operations: these are per-
element operations and can be handled easily.

(3) Supporting multiple layers. This is achieved by recursively
propagating the block query backwards through the network.
Boundary conditions (padding) need to be accounted for in
the propagation.

(4) Supporting horizontal wraparound. This is slightly more tech-
nically involved, and requires blocks that cross the image
boundary. First, we compute the ranges assuming no horizon-
tal wraparound and the size of the input being infinite. Then,
we clamp the horizontal ranges to their respective wrap sizes.

In summary, we find that this partial evaluation approach can
compute any desired values of the output layer with no numerical
error, while saving between 97.7% and 99.7% of the computation,
depending on output size and query location. See Figure 9 for a
visualization of the computational cost of partial evaluation. In
practice, we implement the partial evaluation in C++ inside CPU
rendering code (a Mitsuba BSDF plugin). The actual wall clock
speedup of partial evaluation over full evaluation (using the same
CPU code) is 150x. Our smaller memory footprint/caching enables
an even greater (3x) speedup beyond that expected solely from the
number of operations performed.

6.3 Discussion of alternatives
An alternative idea to our partial evaluation is to learn a network
that takes the value ofd as input, in addition toz (and f), and directly

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

225:10 • A. Kuznetsov, M. Hašan, Z. Xu, L. Yan, B. Walter, N. K. Kalantari, S. Marschner, and R. Ramamoorthi

Query-based method (mode collapse) Our partial GAN evaluation (better variety)

Fig. 10. Left: The alternative query-based method, taking the query vector
d as input. In our experiments, this method exhibits mode collapse, where
the same examples are repeated with minor variations; we mark one such
case with circles but there are clearly others. Right: our partial generator
evaluation has no such issue.

outputs the final value of the GNDF at that direction. We could still
use an adversarial training scheme, evaluating the network for all d
and passing the concatenated result to the discriminator as usual.
We have tried this idea in several different versions, but could

not obtain good results. We experimented with different network
architectures and different d parameterizations. They all generated
results that are notably less accurate than with our partial evaluation
approach. The results also suffered from mode collapse, so that the
learned distribution failed to reflect the full variation of the training
data; this is obvious from Figure 10.

Another serious issue with this approach is that training becomes
very expensive. If we want to generate a single GNDF, we need to
evaluate 64x64 = 4096 individual networks. Doing that "in parallel"
does not help, as essentially none of the computation is shared. The
backpropagation becomes slow and memory intensive.
Yet another alternative we considered is to evaluate appearance

matching in the final renderings, as opposed to the GNDF domain.
However, to obtain temporal glint coherence with light (or camera)
movement, we would need to use videos instead of images, and the
computational challenges are formidable.

7 IMPLEMENTATION DETAILS
Here we discuss more details about training dataset generation and
including our method within full global illumination simulations.

7.1 Training data generation
All GANs are trained on datasets of size 65 and 75 thousand GNDF
images. The synthetic datasets are obtained by uniformly covering
the heightfield textures (or fiber-level cloth model) by 2562 or 2742
footprints and computing the corresponding GNDF images. The
measured dataset is similarly obtained by taking a 2562 window
from the camera view.

7.2 Combining with other light paths
To render full global illumination, we need to combine the result
of our technique with other light paths; there are several ways this
can be done. Typically, the high-frequency directional effects are
not visible in indirect and environment illumination. We therefore
take the approach of computing the direct illumination on the glinty

Table 2. Comparison of our rendering time (our evaluation component only,
excluding global illumination) versus the corresponding previous method
for different material types.

Scene Type Our Time Prev. Time
Macbook Geom. 4.5s 2.0s
Macbook Wave 5.9s 234s

Plate Geom. 12.3s 45.8s
Phone Geom. 6.4s 3.3s
Cloth Fabric 10.1s n/a

surface in a first pass. We compute other light paths (indirect and
environment illumination) in separate passes, approximating the
glinty material by a standard smooth microfacet BRDF with a match-
ing roughness. The roughness of the smooth (average) GNDF for
indirect/environment lighting can be obtained from the mean GNDF
image of the dataset. Various other sampling schemes are also possi-
ble, but this approach currently gives the best performance for our
example scenes.

8 RESULTS AND DISCUSSION
In this section, we show the behavior of our approach on six different
learned materials, showcased on five different scenes. We discuss the
performance and storage of our method in comparison to previous
work, and conclude with a discussion of limitations and future work.
The performance details are given in Table 2.

We implemented our rendering (including partial cGAN evalua-
tion) in C++ as a CPU Mitsuba plugin. We run on an Intel 8-core
i7-7820X machine, using an with NVIDIA 2080Ti GPU for training.
The GAN training uses the PyTorch framework and takes around 3
hours per material. The synthetic dataset generation can take from
1 to 6 hours depending on the type of material. Currently our data
synthesis is CPU-based, so the GPU was used only for training.

8.1 Rendered images
Our geometric optics result for an isotropic noise heightfield can
be seen in Figure 11 (left), as well as in Figure 12 (left). In Figure 12
(right), we also provide a comparison to a result computed using the
method of Yan et al. [2016]. Our method can achieve similar spatial
and temporal patterns. While we can exceed the performance of
the highly optimized previous work [Yan et al. 2016] only in some
cases, our storage requirements are much lower. We also show a
brushed metal material in Figure 14. This is using geometric optics
and an anisotropic spacing of latent vectors in texture space, and
also demonstrating a moving geometry.

Our wave optics result can be seen in Figure 11 (middle), as well
as in the teaser (Figure 1). A comparison with the wave optics
method of Yan et al. [2018] is provided in Figure 11 (right). Again,
our result is quite close in its spatial and temporal behavior, as well
as the subtle color effects. The previous wave optics method is quite
expensive, and our method has significantly faster performance, as
well as lower storage requirements.

A result rendered with the measured GNDF dataset is shown in
Figure 13 and compared to the naive approach of using the measured
data directly. Our method is much more practical, not requiring the
massive data storage, avoiding tiling artifacts, as well as learning
to fill the holes. While it may well be possible to fix the missing

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

Learning Generative Models for Rendering Specular Microgeometry • 225:11

a) Our geometric GAN b) Our wave optics GAN c) [Yan et al. 2018] wave optics

Fig. 11. Laptop. From left to right: our geometric optics GAN, our wave optics GAN and Yan et al.’s [2018] wave optics method.

a) Our geometric GAN b) [Yan et al. 2016] geometric optics

Fig. 12. Phone. Comparison of our geometric optics GAN to Yan et al.’s [2016] explicit method for geometric optics.

a) Our GAN learned from the measured GNDFsa) Directly using the measured GNDFs

Fig. 13. The left image shows the naive approach of using the measured data for rendering directly. This is clearly not viable, and illustrates the need for some
texture synthesis and hole filling in order to use this data effectively. Our GAN result learned from the measured GNDF dataset (right) shows closely matching
highlight size and intensity, and similar glint appearance, but fixes the issues with holes and the visible tiling pattern.

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

225:12 • A. Kuznetsov, M. Hašan, Z. Xu, L. Yan, B. Walter, N. K. Kalantari, S. Marschner, and R. Ramamoorthi

Fig. 14. Tumbler. This scene demonstrates our anisotropic brushed metal
extension.

data hole and render good images directly, without requiring our
full framework, the drawback of having to store a large number of
NDFs would remain. The fact that our method handles the storage
and missing data issues cleanly is a notable advantage.
Figure 15 shows a scratched ceramic example using our cGAN

technique. We show a comparison between [Yan et al. 2016] (left)
and our method using a feature texture describing the same area as
the original heightfield (middle). The images match fairly well, while
our rendering is about 3 times faster. However, both images show a
clear pattern repetition issue, as the original microstructure covers
too little area. The image on the right shows our method rendered
with a much larger feature texture, synthesized using image quilting
[Efros and Freeman 2001], with a greatly reduced pattern repetition
problem. This can be done at no performance cost, and with minimal
storage increase for the larger feature texture.

Figure 16 shows a fabric example, with GNDFs constructed from
fiber-levelmicrogeometry, also using our cGAN technique to achieve
seamless texturing. As above, we used image quilting to extend the
feature texture. This example shows that our method can be applied
to microgeometry types that are not expressible as heightfields.
Finally, figure 17 shows six additional material variations, with dif-
ferent microgeometry leading to alternative GNDFs and feature
maps, all of which can be handled by our framework.

We strongly encourage the reader to view the temporal behavior
of these examples in the supplementary video, as static images can
convey only a partial impression of our technique’s capabilities.

8.2 Performance and storage comparison
Our method can reproduce the results of previous glints methods,
but has multiple advantages over them. Since we pretrain our net-
work, rendering time is independent of the complexity of optical

simulation and the patch size covered by the pixel; this is not the
case for previous methods. For example, in the case of Yan et al.
[2018] wave optics, the simulation is very computationally expen-
sive. Moreover, they use a fixed coherence kernel σc ; where the
pixel is several times larger than the coherence kernel (like in the
laptop example), their method needs to be rendered with a higher
sample count to cover the pixel. Our method can train the network
with GNDF images already integrated for the pixel size. Rendering
the laptop scene using the previous wave optics method took 234
seconds, while our method took just 5.9 seconds (both for the glints
component only, ignoring global illumination).

Another advantage of our method is its low storage requirement.
The size of our network is small (under 1.3 MB) and independent
of the heightfield or training data size. In addition, because we do
partial evaluation, we just need under 20 KB to evaluate it. On the
other hand, the previous methods can require several GB to store the
associated acceleration data structures, even for a relatively small
heightfield of size 4k×4k. Moreover, in scenes containing multiple
different glinty objects, the storage cost of previous methods quickly
becomes prohibitive, while with our method we can easily have
multiple networks for different materials.

8.3 Discussion and future work
Comparing specular microgeometry renderings to ground truth
is itself an open problem due to the stochastic nature of patterns,
dependence on texture sampling and filtering, etc. However, by
looking at GNDFs directly, we can see that our method can faithfully
reproduce the overall appearance of the GNDFs in the synthetic or
measured input data (Figure 3). In this sense, our BRDF evaluation
is close to ground truth.

Currently, our generator is trained at a single resolution (footprint
size). This works fine for rendering animations where objects are at
a largely fixed distance from the camera; we can support some level
of zoom-out but efficiency will eventually be lost. We are interested
in extending the framework to learn the right material appearance
across several different resolutions (footprint sizes).

The generativemodel could likely becomemore compact and even
faster, by further exploring how small a network can still learn visu-
ally plausible models. The appearance training data can be produced
from a broader range of microstructures, by ever more elaborate op-
tical simulations, or by further exploration of measurement setups.
Finally, it is possible that our approach could be extended beyond
heightfield and fabric microstructures, to materials such as snow,
foam, packed crystals, and more.

9 CONCLUSION
Rendering glinty highlights on stochastic surfaces provides an im-
portant improvement in the realism of images, especially when
surfaces are viewed up close. Previous work has shown how to
do this with reasonable efficiency, but improvements in the reflec-
tion model, progressing from flat mirror flakes through smooth
surfaces under geometric optics to diffraction models for arbitrary
heightfields, have come with progressively higher computational
requirements. At the same time, there is no obvious way to set these
methods up to match measurements of a specific real material. The

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

Learning Generative Models for Rendering Specular Microgeometry • 225:13

b) Our conditional GAN c) Our conditional GAN with texture synthesisa) [Yan et al. 2016] geometric optics

Fig. 15. Plate. From left to right: Yan et al.’s [2016] geometric optics method, our method on the same microgeometry (using a corresponding small feature
texture), and our method using a much larger feature texture produced by texture synthesis. Note the repeating pattern due to small original microgeometry
(for example, within the red square, but not limited to it) is addressed by our texture synthesis.

Fig. 16. Result generated with our fabric GNDF dataset.

method we have presented here shows a path forward by taking
advantage of the stochastic nature of the surface. By using our GAN
to capture the statistical variation of the generalized NDFs that
determine surface appearance, we decouple the run-time computa-
tion from the source of the appearance data. This makes the cost
of the optical computations inconsequential, while also making it
equally easy to train the model on measured data. Finally, the stor-
age required by the trained generator network is small, turning the
network into a convenient material exchange format.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants 1703957 and 1704540,
an Adobe Fellowship, the Ronald L. Graham chair, and the UC
San Diego Center for Visual Computing. We thank Sitian Chen
for generating fiber-level fabric microstructures. We also thank
sriniwasjha for the phone model .

REFERENCES
Miika Aittala, Timo Aila, and Jaakko Lehtinen. 2016. Reflectance Modeling by Neural

Texture Synthesis. ACM Trans. Graph. 35, 4, Article 65 (2016), 65:1–65:13 pages.
Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative

Adversarial Networks. In Proceedings of the 34th International Conference on Machine
Learning (Proceedings of Machine Learning Research), Doina Precup and Yee Whye

Teh (Eds.), Vol. 70. PMLR, International Convention Centre, Sydney, Australia, 214–
223. http://proceedings.mlr.press/v70/arjovsky17a.html

Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck Tappan, and Brent Burley. 2016. A Prac-
tical and Controllable Hair and Fur Model for Production Path Tracing. Computer
Graphics Forum 35, 2 (2016), 275–283.

R. L. Cook and K. E. Torrance. 1982. A Reflectance Model for Computer Graphics. ACM
Trans. Graph. 1, 1 (1982), 7–24.

Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien
Bousseau. 2018. Single-image SVBRDF Capture with a Rendering-aware Deep
Network. ACM Trans. Graph. 37, 4, Article 128 (July 2018), 128:1–128:15 pages.

Chris Donahue, Julian McAuley, and Miller Puckette. 2018. Synthesizing Audio with
Generative Adversarial Networks. CoRR abs/1802.04208 (2018). arXiv:1802.04208
http://arxiv.org/abs/1802.04208

Zhao Dong, Bruce Walter, Steve Marschner, and Donald P. Greenberg. 2015. Predicting
Appearance from Measured Microgeometry of Metal Surfaces. ACM Trans. Graph.
35, 1, Article 9 (2015), 13 pages. https://doi.org/10.1145/2815618

Alexei A. Efros and William T. Freeman. 2001. Image Quilting for Texture Synthesis
and Transfer. In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’01). 341–346.

Gabriel Eilertsen, Joel Kronander, Gyorgy Denes, Rafał K. Mantiuk, and Jonas Unger.
2017. HDR Image Reconstruction from a Single Exposure Using Deep CNNs. ACM
Trans. Graph. 36, 6, Article 178 (Nov. 2017), 15 pages.

Bruno Galerne, Ares Lagae, Sylvain Lefebvre, and George Drettakis. 2012. Gabor Noise
by Example. ACM Trans. Graph. 31, 4, Article 73 (July 2012), 9 pages.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In
Advances in Neural Information Processing Systems 27. 2672–2680.

Paul Graham, Borom Tunwattanapong, Jay Busch, Xueming Yu, Andrew Jones, Paul
Debevec, and Abhijeet Ghosh. 2013. Measurement-Based Synthesis of Facial Micro-
geometry. Computer Graphics Forum 32, 2pt3 (2013), 335–344.

Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2017. Globally and Locally
Consistent Image Completion. ACM Transactions on Graphics (Proc. of SIGGRAPH
2017) 36, 4, Article 107 (2017), 107:1–107:14 pages.

Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Jason Lawrence, Ravi Ramamoorthi, and Steve
Marschner. 2014. Discrete Stochastic Microfacet Models. ACM Trans. Graph. 33, 4
(2014).

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive Growing
of GANs for Improved Quality, Stability, and Variation. In International Conference
on Learning Representations. https://openreview.net/forum?id=Hk99zCeAb

Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve Marschner.
2018. Interactive Design of Periodic Yarn-level Cloth Patterns. ACM Trans. Graph.
37, 6, Article 202 (Dec. 2018), 15 pages.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang,
and Wenzhe Shi. 2017. Photo-Realistic Single Image Super-Resolution Using a
Generative Adversarial Network. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2017. Modeling Surface Appearance
from a Single Photograph Using Self-augmented Convolutional Neural Networks.
ACM Trans. Graph. 36, 4, Article 45 (July 2017), 11 pages.

Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. 2018. Materials for
Masses: SVBRDF Acquisition with a Single Mobile Phone Image. In Computer Vision

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

http://proceedings.mlr.press/v70/arjovsky17a.html
http://arxiv.org/abs/1802.04208
http://arxiv.org/abs/1802.04208
https://doi.org/10.1145/2815618
https://openreview.net/forum?id=Hk99zCeAb

225:14 • A. Kuznetsov, M. Hašan, Z. Xu, L. Yan, B. Walter, N. K. Kalantari, S. Marschner, and R. Ramamoorthi

Training NDFs
Our NDFs

Height�eld
Feature Map Our Result

Training NDFs
Our NDFs

Height�eld
Feature Map Our Result

(c) (d)

(a) (b)

(e) (f)

N/A N/A

N/A

N/A

Fig. 17. Our method can be used to generate a wide variety of materials, represented as different GNDFs and (optionally) feature textures. From left to right:
(a) A plate with a smoothed random box pattern as an underlying heightfield, causing the normals to be roughly axis-aligned. (b) A plate with 8-pointed stars
as an underlying heightfield. As a result, it has normals roughly aligned with the star edges, causing 8 glinty rays out of the center of the highlight. (c) A
phone with scratches with random directions limited to a 30◦ range. (d) Similar to (c), but scratch directions limited to a 10◦ range. (e) An alternative fabric
weave pattern (plaine weave instead of basket weave). (f) A phone with a synthetic GNDF made with randomly placed colored Gaussian flakes.

- ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part III (Lecture Notes in Computer Science), Vol. 11207. 74–90.

Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial Nets.
CoRR abs/1411.1784 (2014). http://arxiv.org/abs/1411.1784

Koki Nagano, Graham Fyffe, Oleg Alexander, Jernej Barbiç, Hao Li, Abhijeet Ghosh,
and Paul Debevec. 2015. Skin Microstructure Deformation with Displacement Map
Convolution. ACM Trans. Graph. 34, 4, Article 109 (July 2015), 10 pages.

Giljoo Nam, Joo Ho Lee, Hongzhi Wu, Diego Gutierrez, and Min H. Kim. 2016. Simulta-
neous Acquisition of Microscale Reflectance and Normals. ACM Trans. Graph. 35, 6,
Article 185 (Nov. 2016), 11 pages.

Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks. CoRR
abs/1511.06434 (2015). arXiv:1511.06434 http://arxiv.org/abs/1511.06434

Gilles Rainer, Wenzel Jakob, Abhijeet Ghosh, and Tim Weyrich. 2019. Neural BTF
Compression and Interpolation. Computer Graphics Forum (2019). https://doi.org/
10.1111/cgf.13633

Boris Raymond, Gael Guennebaud, and Pascal Barla. 2016. Multi-Scale Rendering
of Scratched Materials using a Structured SV-BRDF Model. ACM Transactions on
Graphics (July 2016). https://doi.org/10.1145/2897824.2925945

Szymon Rusinkiewicz. 1998. A New Change of Variables for Efficient BRDF Represen-
tation.. In Rendering Techniques (Eurographics). Springer, 11–22.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi
Chen. 2016. Improved techniques for training gans. InAdvances in neural information
processing systems. 2234–2242.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. 2018. MoCoGAN:
Decomposing Motion and Content for Video Generation. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007.
Microfacet Models for Refraction Through Rough Surfaces (EGSR 07). 195–206.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2018. High-Resolution Image Synthesis and Semantic Manipulation
With Conditional GANs. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

SebastianWerner, Zdravko Velinov, Wenzel Jakob, and Matthias B. Hullin. 2017. Scratch
Iridescence: Wave-optical Rendering of Diffractive Surface Structure. ACM Trans.
Graph. 36, 6, Article 207 (2017), 14 pages. https://doi.org/10.1145/3130800.3130840

Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi
Ramamoorthi. 2014. Rendering Glints on High-resolution Normal-mapped Specular
Surfaces. ACM Trans. Graph. 33, 4, Article 116 (2014), 9 pages. https://doi.org/10.
1145/2601097.2601155

Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Position-
normal Distributions for Efficient Rendering of Specular Microstructure. ACM Trans.
Graph. 35, 4, Article 56 (2016), 9 pages. https://doi.org/10.1145/2897824.2925915

Ling-Qi Yan, Miloš Hašan, Bruce Walter, Steve Marschner, and Ravi Ramamoorthi. 2018.
Rendering Specular Microgeometry with Wave Optics. ACM Trans. Graph. 37, 4
(2018).

Jinsong Zhang and Jean-Francois Lalonde. 2017. Learning High Dynamic Range From
Outdoor Panoramas. In The IEEE International Conference on Computer Vision (ICCV).

Shuang Zhao, Fujun Luan, and Kavita Bala. 2016. Fitting Procedural Yarn Models for
Realistic Cloth Rendering. ACM Trans. Graph. 35, 4, Article 51 (July 2016), 11 pages.

ACM Trans. Graph., Vol. 38, No. 6, Article 225. Publication date: November 2019.

http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://doi.org/10.1111/cgf.13633
https://doi.org/10.1111/cgf.13633
https://doi.org/10.1145/2897824.2925945
https://doi.org/10.1145/3130800.3130840
https://doi.org/10.1145/2601097.2601155
https://doi.org/10.1145/2601097.2601155
https://doi.org/10.1145/2897824.2925915

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	3.1 Our material model
	3.2 Learning generalized NDFs
	3.3 Partial evaluation of generator networks

	4 Data generation and measurement
	4.1 Synthetic GNDF generation
	4.2 Fabric GNDFs
	4.3 Measurement of GNDFs

	5 Model and training
	5.1 Data transformations
	5.2 Network structure
	5.3 Training process
	5.4 cGAN and feature vectors
	5.5 Hole filling in measured data

	6 Model evaluation
	6.1 Pixel sampling for GNDF evaluation
	6.2 Partial generator evaluation
	6.3 Discussion of alternatives

	7 Implementation details
	7.1 Training data generation
	7.2 Combining with other light paths

	8 Results and discussion
	8.1 Rendered images
	8.2 Performance and storage comparison
	8.3 Discussion and future work

	9 Conclusion
	Acknowledgments
	References

