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RESEARCH PAPER

The E3 ligase RFWD3 stabilizes ORC in a p53-dependent manner
Rosaline Y.C. Hsu+, Sumanprava Giri+, Yating Wang, Yo-Chuen Lin, Dazhen Liu, Susan Wopat, 
Arindam Chakraborty, Kannanganattu V. Prasanth, and Supriya G. Prasanth

Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

ABSTRACT
RFWD3 is an E3 ubiquitin ligase that plays important roles in DNA damage response and DNA 
replication. We have previously demonstrated that the stabilization of RFWD3 by PCNA at the 
replication fork enables ubiquitination of the single-stranded binding protein, RPA and its sub
sequent degradation for replication progression. Here, we report that RFWD3 associates with the 
Origin Recognition Complex (ORC) and ORC-Associated (ORCA/LRWD1), components of the pre- 
replicative complex required for the initiation of DNA replication. Overexpression of ORC/ORCA 
leads to the stabilization of RFWD3. Interestingly, RFWD3 seems to stabilize ORC/ORCA in cells 
expressing wild type p53, as the depletion of RFWD3 reduces the levels of ORC/ORCA. Further, the 
catalytic activity of RFWD3 is required for the stabilization of ORC. Our results indicate that the 
RFWD3 promotes the stability of ORC, enabling efficient pre-RC assembly.

ARTICLE HISTORY
Received 2 May 2020 
Revised 23 August 2020 
Accepted 17 September 2020 

KEYWORDS
ORC; ORCA/LRWD1; p53; 
RFWD3; replication; 
ubiquitination

Introduction

Accurate genome duplication and faithful segregation 
to daughter cells are critical for the maintenance of 
genome stability. During G1 phase of the cell cycle, the 
Origin recognition complex (ORC), along with ORC- 
associated protein (ORCA/LRWD1), bind to the ori
gins of replication and serve as the landing pad for the 
establishment of the pre-replicative complex (pre-RC) 
. Origin licensing involves the recruitment of MCM2- 
7 that encircles the origins of replication. As cells enter 
S phase, the “origin firing” is achieved through the 
activation of the CMG helicase (Cdc45, MCM2-7 and 
GINS complex) by the cell cycle dependent kinases 
[1,2,3,8] Insufficient origin licensing leads to replica
tion stress as cells enter S phase, which eventually leads 
to genome instability [9,10]. The depletion of pre-RC 
components, including Cdc6, Cdt1, and Orc2 in nor
mal human cells has been shown to activate origin 
licensing checkpoint and consequently G1 arrest [11– 
13]. The depletion of ORCA in human fibroblast and 
human embryonic stem cells leads to G1 arrest [5]. 
Interestingly, p53-deficient cells do not show similar 
G1 arrest phenotype, suggesting that p53 is crucial in 
the activation of origin licensing checkpoint [13]. 
Many factors can influence this checkpoint. The over
expression of cyclin E perturbs MCM loading which 

leads to accelerated S phase entry [14,15]. The over
expression of c-Myc also leads to increased replication 
origin activity [16].

The dynamics of ORC/ORCA are tightly regu
lated throughout the cell cycle. The changes in 
ORC/ORCA protein levels or their association 
with chromatin is one of the mechanisms to 
avoid inappropriate origin licensing. Cellular levels 
of the pre-RC, including ORC, ORCA, Cdc6, Cdt1, 
are controlled, largely governed by posttransla
tional modifications including phosphorylation 
and ubiquitination [4,17,18]. In yeast, the phos
phorylation of ORC does not affect its association 
with the chromatin, but prevents its ability to form 
the pre-RC [19,20,21]. In Drosophila, Orc1, the 
largest subunit of ORC, is ubiquitinated and 
degraded by anaphase-promoting complex [22]. 
In hamster cells, the dissociation of Orc1 from 
the chromatin is achieved through ubiquitination 
during S phase and Cdk1/cyclin A-dependent 
phosphorylation during G2/M [23,24]. In human 
cells, the protein level of Orc1 and ORCA are cell- 
cycle regulated, while the level of ORC2-5 remains 
stable throughout the cell cycle. During G1 phase, 
RIF1-PP1 complex protects Orc1 from inappropri
ate phosphorylation and degradation [25]. During 
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S phase, Orc1 is phosphorylated by S phase CDKs, 
and degraded by the Skp1-culin-F box (SCF) ubi
quitin ligase complex [26,27]. Similarly, the pro
tein level of ORCA, and its association with 
chromatin, are cell-cycle regulated [5]. ORCA is 
known to be ubiquitinated at the G1/S boundary 
[28]. More recently, the ubiquitination of Orc3 
and Orc5 by ORC-ubiquitin-ligase-1 (OBI1) was 
shown to be crucial for origin firing [29]. 
However, the entire repertoire of E3 ligases that 
control DNA replication initiation and S-phase 
progression remains far from complete.

The RING finger and WD repeat domain contain
ing protein 3 (RFWD3) has been identified as a crucial 
player in DNA damage response. RFWD3 was initially 
identified as ATM/ATR substrate [30,31]. Previous 
studies have shown that RFWD3 stabilizes p53 upon 
ionizing radiation through ubiquitination [32]. In 
response to replication stress, RFWD3 is recruited to 
the replication fork by RPA [33]. At the stalled fork, 
RFWD3 ubiquitinates RPA and RAD51, which facil
itates homologous recombination [34,35]. In addition 
to homologous recombination, RFWD3 participates 
in DNA interstrand crosslinks (ICLs) [36]. Biallelic 
mutations of RFWD3 have been discovered in 
Fanconi anemia (FA) patient, suggesting that 
RFWD3 is crucial for the FA/BRCA pathway [37]. 
Under unperturbed conditions, RFWD3 at the repli
cation fork is stabilized by PCNA, which enables the 
ubiquitination of RPA by RFWD3, and ensures the 
timely removal of RPA for successful fork progres
sion [38].

In the present study, we have identified RFWD3 
as an ORC-interacting protein. Overexpression of 
ORC and ORCA stabilizes cellular levels of 
RFWD3 in a p53-dependent manner. RFWD3 
directly interacts with Orc1 and Orc2 and can ubi
quitinate ORCA. The depletion of RFWD3 leads to 
a p53-dependent decrease of ORC/ORCA levels. We 
propose that RFWD3 associates with ORC and sta
bilizes it in a p53-dependent manner.

Material and methods

Cell culture and RNA interference

U2OS cells were grown in Dulbecco’s modified Eagle 
medium (DMEM) containing high glucose, supple
mented with penicillin-streptomycin and 5% fetal 

bovine serum (FBS) (Hyclone). HEK293T cells 
were grown in DMEM containing high glucose, 
supplemented with penicillin-streptomycin and 
10% heat-inactivated FBS. HCC38 cells were grown 
in RPMI medium supplemented with penicillin- 
streptomycin and 10% FBS. U2OS cells stably 
expressing HA-RFWD3 were generated as pre
viously described [38]. HCT116 cells were grown in 
McCoy’s medium containing high glucose and sup
plemented with 10% FBS. The U2OS-2-6-3 cells 
were cultured as described [5,39].

Lipofectamine 2000 was used for transient 
transfection as per the manufacturer’s protocols. 
Lipofectamine RNAiMAX (Invitrogen) was used 
for siRNA delivery. The final concentration of 
siRNA is 100 nM.

The siRNA oligos used in this study were synthe
sized by Sigma or IDT. The siRNA sequences/ 
source are:

siRFWD3 #1: 5ʹ-GGACCUACUUGCAAACUA 
U-3ʹ

siRFWD3 #2: 5ʹ- GCAGUCAUGUGCAGGAG 
UU-3ʹ

siRFWD3 #3: HSC.RNAI.N018124.12.1 3ʹUTR/13
siOrc1 [40]: 5ʹ-CUGCACUACCAAACCUAUA-3ʹ
siOrc2 [41]: 5ʹ-UGCUCCUCUCAUGUGGGA 

U-3ʹ
sip53: M-003329-03-0005, siGENOME SMART 

pool, Human TP53 (7157)

Plasmids and antibodies

The HA-RFWD3 WT and CA mutant were gen
erated as previously described [38]. RFWD3 WT 
was cloned in the pFastBac HT B plasmid. RFWD3 
WT or CA mutant were cloned in the YFP-LacI 
plasmid. The ORC and ORCA plasmids were gen
erated as previously described [5,6,7,28]. FLAG- 
Ubiquitin was a generous gift from Dr. Jie Chen, 
University of Illinois at Urbana Champaign).

The following antibodies were used for immu
noprecipitations and immunoblots as indicated: 
rabbit anti-ORCA (2853–2; IB), mouse anti-Orc2 
(902; IP), rabbit anti-Orc2 (205; IB), rabbit anti- 
Orc1 (2518–2; IP & IB), mouse anti-T7 (Novagen), 
mouse anti-HA (12 CA5), mouse anti-FLAG (M2, 
Sigma), mouse anti-α-Tubulin (Sigma), mouse 
anti-Actin (Santa Cruz), rabbit anti-RFWD3 
(Bethyl, A301-397A, Abcam, ab138030), goat anti- 
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Or c 3 ( A b c a m), m o us e a nti- p 5 3  ( S a nt a Cr u z), r a b -
bit  a nti- C h k 2  ( C ell  si g n ali n g),  r a b bit  a nti- C h k 2 
p T 6 8  ( C ell  si g n ali n g),  m o us e  a nti- R P A 3 2  ( S a nt a 
Cr u z)

I m m u n o pr e ci pit ati o n  a n d  i m m u n ofl u or e s c e n c e

F or c o-i m m u n o pr e ci pit ati o n, t h e c ells w er e c oll e ct e d 
2 4 h aft er tr a nsi e nt tr a nsf e cti o n. O n c e c oll e ct e d, c ells 
w er e first l ys e d i n I P b uff er ( 5 0 m M Tris- H Cl p H 7. 4, 
5 0 0 m M N a Cl, 1 0 % gl y c er ol, 0. 2 5 % Trit o n X- 1 0 0 wit h 
pr ot e as e  a n d  p h os p h at as e  i n hi bit ors)  at  4° C  f or 
2 0  mi n,  a n d  e q u al  v ol u m e  of  z er o  s alt  b uff er  w as 
a d d e d. Aft er c e ntrif u g ati o n, t h e s u p er n at a nt w as pr e- 
cl e ar e d,  i n c u b at e d  wit h  a p pr o pri at e  a nti b o d y  o v er -
ni g ht,  p ull e d  d o w n,  a n d  w as h e d  wit h  w as h  b uff er 
( 5 0  m M  Tris- H Cl  p H  7. 4,  2 5 0  m M  N a Cl,  1 0 %  gl y-
c er ol, 0. 2 5 % Trit o n X- 1 0 0 wit h pr ot e as e a n d p h os p h a -
t as e i n hi bit ors).

F or  i m m u n ofl u or es c e n c e  st ai ni n g,  c ells  w er e  pr e- 
e xtr a ct e d wit h 0. 3 % Trit o n X- 1 0 0 i n C yt os k el et al b uf -
f er  ( C S K:  1 0 0  m M  N a Cl,  3 0 0  m M  S u cr os e,  3  m M 
M g Cl 2,  1 0  m M  PI P E S  p H  6. 8)  f or  3  mi n  o n  i c e 
f oll o w e d  b y  fi x ati o n  wit h  2 %  p ar af or m al d e h y d e  i n 
p h os p h at e  b uff er e d  s ali n e  ( P B S,  p H  7. 4)  f or  1 5  mi n 
i n  R T.  Bl o c ki n g  w as  t h e n  d o n e  f or  3 0  mi n  wit h  1 % 
n or m al g o at s er u m ( N G S) i n P B S. Pri m ar y a nti b o d y 
( a nti- M C M 3,  T B 3)  i n c u b ati o n  w as  t h e n  c arri e d  o ut 
f or  1  or  2  h  i n  a  h u mi difi e d  c h a m b er  f oll o w e d  b y 
s e c o n d ar y  a nti b o d y  i n c u b ati o n  f or  1  h  at  R T.  T h e 
c ells  w er e  t h e n  st ai n e d  wit h  D A PI  ( 4 , 6- Di a mi di n o- 
2- P h e n yli n d ol e) a n d m o u nt e d usi n g V E C T A S HI E L D 
( V e ct or L a b or at ori es I n c., B urli n g a m e, C A).

Pr ot ei n  p urifi c ati o n

T h e p urifi c ati o n of His-t a g g e d pr ot ei n w as d es cri b e d 
pr e vi o usl y  [ 6 ].  I n  s h ort,  t h e  r e c o m bi n a nt  b a c ul o-
vir us es w er e pr o d u c e d a c c or di n g t o t h e m a n uf a ct ur e’s 
pr ot o c ol  ( B a c-t o- B a c  b a c ul o vir us  e x pr essi o n  s yst e m; 
I n vitr o g e n).  Hi 5/ Sf 9  i ns e ct  c ells  w er e  i nf e ct e d  wit h 
b a c ul o vir us es  e x pr essi n g  His-t a g g e d  pr ot ei ns.  T h e 
pr ot ei ns w er e p urifi e d o n a T al o n c ol u m n.

I n  vi v o  u bi q uiti n ati o n  a s s a y

H E K 2 9 3 T  c ells  tr a nsf e ct e d  wit h  fl a g- u bi q uiti n 
w er e  l ys e d  usi n g  d e n at ur e  b uff er  ( 2 0  m M  Tris 

p H 7. 5,  2 5 0  m M  N a Cl,  1  m M  E D T A,  0. 5 %  N P 4 0, 
0. 5 % S D S, 0. 5 % s o di u m d e o x y c h ol at e) s u p pl e m e n -
t e d wit h pr ot e as e a n d p h os p h at as e i n hi bit ors at 4° 
C  f or  2 0  mi n,  f oll o w e d  b y  s o ni c ati o n  f or  1 5  mi n 
a n d  p ass a g e  t hr o u g h  a  2 7  G  n e e dl e  t o  s h e ar  t h e 
D N A.  U bi q uiti n at e d  pr ot ei ns  w er e  t h e n  p ull e d 
d o w n  b y  a nti- Fl a g  M 2  a g ar os e  b e a ds  ( Si g m a)  at 
4° C o v er ni g ht. T h e b e a ds w er e w as h e d i n d e n at ur e 
b uff er t hr e e ti m es a n d c a pt ur e d u bi q uiti n at e d pr o -
t ei ns w er e  el ut e d  b y  b oili n g  i n  L a e m mli  b uff er.

C hr o m ati n  fr a cti o n ati o n

D et ail e d  pr o c e d ur e  w as  d es cri b e d  pr e vi o usl y  [ 5 ].  T o 
is ol at e  c hr o m ati n,  c ells  w er e  r es us p e n d e d  i n  b uff er 
A  ( 1 0  m M  H E P E S  p H  7. 9,  1 0  m M  K Cl,  1. 5  m M 
M g Cl 2 ,  0. 3 4  M  s u cr os e,  1 0 %  gl y c er ol,  1  m M  D T T, 
0. 1 %  Trit o n  X- 1 0 0  wit h  pr ot e as e  i n hi bit ors)  f or 
5  mi n  o n  i c e.  T h e  c yt o pl as mi c  fr a cti o n  ( C yt o)  w as 
s e p ar at e d b y c e ntrif u g ati o n ( 1, 4 0 0 g, 4 mi n). T h e is o-
l at e d  n u cl ei  w er e  l ys e d  i n  b uff er  B  ( 3  m M  E D T A, 
0. 2 m M E G T A, 1 m M D T T wit h pr ot e as e i n hi bit ors) 
f or  3 0  mi n  o n  i c e.  T h e  n u cl e ar  s ol u bl e  fr a cti o n  ( S ol) 
w as  c oll e ct e d  b y  c e ntrif u g ati o n  ( 1, 7 0 0  g  4  mi n). 
Fi n all y,  t h e  c hr o m ati n  i ns ol u bl e  fr a cti o n  (I ns ol)  w as 
r es us p e n d e d i n b uff er A ( wit h o ut Trit o n X- 1 0 0) a n d 
s o ni c at e d. All t h e fr a cti o ns w er e mi x e d wit h L a e m mli 
b uff er, d e n at ur e d, a n d a n al y z e d b y W est er n bl otti n g.

C y cl o h e xi mi d e  ( C H X)  c h a s e  a s s a y

T o e v al u at e O R C A pr ot ei n st a bilit y, U 2 O S O R C A K O 
c ells w er e tr a nsi e nt tr a nsf e ct e d wit h T 7- O R C A i n t h e 
pr es e n c e or a bs e n c e of H A- R F W D 3. 2 4 h aft er tr a n -
si e nt tr a nsf e cti o n, U 2 O S O R C A K O c ells w er e tr e at e d 
wit h  3 0  µ g/ ml  C H X  f or  2 0  h  or  4  h,  a n d  w h ol e- c ell 
e xtr a ct w er e c oll e ct e d a n d a n al y z e d b y W est er n bl ot.

R e s ult s

R F W D 3  i nt er a ct s  wit h  O R C  a n d  O R C A

W e h a v e pr e vi o usl y r e p ort e d t h at O R C ass o ci at es wit h 
O R C- ass o ci at e d  pr ot ei n  ( O R C A/ L R W D 1),  a  W D- 
r e p e at  c o nt ai ni n g  pr ot ei n  t h at  st a bili z es  t h e  bi n di n g 
of  O R C  t o  c hr o m ati n  [ 5 ].  W e  n o w  r e p ort  t h at 
O R C i nt er a cts wit h a n ot h er W D- c o nt ai ni n g pr ot ei n, 
R F W D 3  ( RI N G  fi n g er  a n d  W D  r e p e at  d o m ai n- 
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containing protein 3), an E3 ligase. Co-immunopreci
pitation using HA antibody in HEK 293 T cells tran
siently expressing HA-RFWD3 and T7-Orc1, showed 
that HA-RFWD3 co-immunoprecipitated with T7- 
Orc1 (Figure 1(a)). We also established HA-RFWD3 
stable cell line in U2OS and conducted HA pulldown 
[38]. Endogenous Orc2 co-immunoprecipitated with 
HA-RFWD3 (Figure 1(b)). In addition, T7-IP in cells 
co-expressing HA-RFWD3 and T7-ORCA further 
confirmed the interaction of RFWD3 with ORC and 
ORCA (Figure 1(c)). Finally, IP with Orc1 antibody 
demonstrated that RFWD3 associated with endogen
ous ORC (Figure 1(d)). To determine if RFWD3 
directly interacts with ORC, we purified His-tagged 
Orc1, Orc2, and RFWD3 from insect cells and con
duced immunoprecipitation using RFWD3 antibody. 
We found that RFWD3 directly interacts with Orc1 
and Orc2 (Figure 1(e–f)). These experiments demon
strated that RFWD3 interacted with ORC/ORCA 
complex.

Next we tested whether RFWD3 at a chromatin 
site could initiate the cell cycle-specific assembly of 
functional replisome. MCM2-7 is a component of 
the pre-RC complex and is also associated with the 
replisome. We utilized an artificially generated 
in vivo heterochromatic locus in the human 
U2OS osteosarcoma cells [5,42]. This reporter 

cell line carries a stably integrated 200-copy trans
gene array with the Lac operator repeats, and the 
locus is visualized by the stable expression of 
Cherry-Lac repressor (Cherry-LacI) (Figure 2(a)). 
YFP-LacI-RFWD3 or YFP-LacI-RFWD3 CA 
(ligase-dead mutant, C315A) was tethered to the 
CLTon locus and we examined the association of 
replisome components. The tethering of RFWD3 
showed robust accumulation of the MCM helicase 
specifically during S-phase of the cell cycle, as is 
evident from the MCM pattern reminiscent of 
S phase cells (Figure 2(b)), supporting the data 
that RFWD3 colocalizes with the replisome com
ponents during S-phase (Figure 2(c)). The RFWD3 
CA mutant behaved similar to the WT, suggesting 
that the ligase activity of RFWD3 is not required 
for its association with replisome.

Overexpression of ORC stabilizes RFWD3 in a 
P53-dependent manner

To determine the functional significance of ORC/ 
ORCA interaction with RFWD3, we co-expressed 
RFWD3 with ORC subunits or ORCA. Surprisingly, 
we observed that overexpression of Orc1-5 (shown 
here Orc1, 2 and 5), and ORCA stabilized 
RFWD3, whereas the overexpression of Orc6 did not 
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Figure 1. RFWD3 Interacts with ORC. (a). Co-immunoprecipitation (Co-IP) of HA-RFWD3 with T7-Orc1, the protein complex was analyzed by 
Western blotting. Actin serves as the loading control. “*” denotes cross-reacting band. (b). Immunoprecipitation (IP) of HA-RFWD3 in U2OS HA- 
RFWD3 WT stable cells, and the protein complex was analyzed by Western blotting. (c). Co-IP of HA-RFWD3 with T7-ORCA, the protein complex 
was analyzed by Western blotting. Orc2 serves as the positive control. Actin serves as the loading control. “*” denotes cross-reacting band. D. 
Immunoprecipitation (IP) of Orc1 in U2OS cells, and the protein complex was analyzed by Western blotting. Actin serves as the loading control. 
(e). Direct interaction of RFWD3 and Orc1 using purified proteins. (f). Direct interaction of RFWD3 and Orc2 using purified proteins.
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(Figure 3(a)). Among the ORC subunits that stabilize 
RFWD3, Orc2 directly interacts with RFWD3, and 
showed prominent stabilization of RFWD3. We 

mapped the minimum domain of Orc2 that is 
required for RFWD3 stabilization. We found that 
residues 277–451 aa of Orc2 are required for 

Figure 2. RFWD3 co-localized with MCM during S phase. (a). Schematic representation of the 2-6-3 CLTon locus in human U2OS cells. (b). 
Representative images of YFP-LacI, YFP-LacI-RFWD3 WT, or YFP-LacI-RFWD3-CA with MCM3 during G1 or S phase of the cell cycle. Scale 
bar denotes 15 µm. (c). Quantification of A. Cell number > 45. Values (means ± S.D.) are from four independent experiments.
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stabilizing RFWD3 (Figure 3(b)). This region of Orc2 
is also known to be the Orc3 interaction domain.

RFWD3 is known to be auto-ubiquitinated and 
therefore can mediate its own degradation [37]. To 
determine if Orc2 stabilizes RFWD3 through pre
venting its auto-ubiquitination and degradation, we 
co-expressed Orc2 with HA-RFWD3 with or with
out proteasome inhibitor MG132. The presence of 
MG132 did not further enhance RFWD3 level, sug
gesting that Orc2 binding to RFWD3 did not protect 
RFWD3 from proteasome degradation (Figure 3(c)). 
Consistent with this result, the RFWD3 ligase-dead 
mutant can be stabilized by Orc2 (Figure 3(d)). 
These results demonstrate that the overexpression 
of ORC/ORCA can stabilize RFWD3.

It is interesting to note that the overexpression 
levels of HA-RFWD3 vary depending on the genetic 
background of the cells. Using HCT116 WT, p53-/- 
and p21-/- cells, we observed that RFWD3 protein 
levels were significantly low in p21-/- cells (Figure 4 
(a)). We addressed if overexpression of Orc2 can 
stabilize RFWD3 in these genetic backgrounds. We 
observed that Orc2 stabilized RFWD3 in WT and the 
p21-/- background (Figure 4(b)), but not in cells lack
ing p53 (Figure 4(c)). Also, the catalytic dead RFWD3 
was found to be less stable than WT RFWD3 in both 
Orc2-overexpressed WT and p21 -/- cells (Figure 4 
(b)). Because Orc2 is unable to stabilize RFWD3 
in cells lacking p53, we treated these cells with 
MDM2 inhibitor (Nutlin) and proteasomal inhibitor 
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(MG132). Both these treatments resulted in the stabi
lization of RFWD3 upon Orc2 overexpression in 
p53-/- cells (Figure 4(c)). These results suggest that 
MDM2 helps in rapid turnover of RFWD3.

However, depletion of endogenous Orc1 or Orc2 in 
human cells (HCT116 and U2OS) did not destabilize 
endogenous RFWD3 level, rather, it resulted in mod
est increase in total RFWD3 and chromatin-bound 
RFWD3 levels (Figure 4(d–e)), suggesting multiple 
mechanisms operate to stabilize RFWD3 in vivo. 
Based on the inability in generating RFWD3 knockout 
cells [34,37,38], and the fact that RFWD3 plays essen
tial roles in DNA damage response and replication 
fork progression, we reasoned that the endogenous 
RFWD3 level is controlled by multiple redundant 
mechanisms, and thus remains unperturbed upon 
the loss of Orc1 or Orc2.

Depletion of RFWD3 results in p53-dependent 
reduction of ORC

In order to gain functional insights into the interaction 
of RFWD3 with ORC/ORCA, we depleted RFWD3 
and studied the impact on ORC/ORCA protein levels. 
The depletion of RFWD3 resulted in reduced levels of 
ORC/ORCA (Figure 5(a,d)). The depletion of 
RFWD3 in HCC38, a breast cancer cell line, which 
carries a gain of function mutation of p53 (R273L), 
also leads to reduced levels of ORC (figure 5(f)). 
However, depletion of RFWD3 in p53 null cells did 
not show reduction in ORC levels (Figure 5(b,e)). The 
activation of p21 by p53 is crucial in G1 checkpoint 
[43,44]. We therefore monitored the levels of ORC 
upon RFWD3 depletion in p21 -/- cells. ORC levels 
remained unchanged in control and RFWD3- 
depleted p21-/- cells (Figure 5(c)), suggesting that 
the regulation of p53 pathway by RFWD3 governs 
ORC/ORCA stability. These results were further con
firmed in U2OS cells where we co-depleted RFWD3 
and p53 by siRNA. While loss of RFWD3 resulted in 
degradation of ORC, co-depletion of RFWD3 and p53 
resulted in restoration of ORC levels (Figure 5(g)). To 
determine whether the E3 ligase activity is essential for 
ORC/ORCA stabilization by RFWD3, Orc2 level was 
monitored in RFWD3-depleted samples rescued by 
RFWD3 WT or CA mutant. The changes of Orc2 level 
were rescued with RFWD3 WT, but not the CA 
mutant, suggesting that the E3 ligase activity of 

RFWD3 is required for stabilizing ORC/ORCA 
(Figure 5(h)).

The depletion of RFWD3 is known to cause repli
cation stress and defects in interstrand crosslink 
repair [33–36,38,45]. To rule out the possibility that 
the changes in ORC/ORCA is an indirect result of 
DNA damage, we treated cells with various DNA 
damaging agents and monitored the changes in 
ORC/ORCA level (Figure 5(i)). Treatment with var
ious DNA damaging agents that induce fork stalling, 
fork collapse, interstrand crosslink, and alkylation do 
not lead to a global reduction in ORC/ORCA, sug
gesting that the destabilization of ORC/ORCA upon 
loss of RFWD3 is not a result of DNA damage.

RFWD3 ubiquitinates ORCA

Since RFWD3 is an E3 ligase, which directly interacts 
with Orc1 and Orc2, we aimed to determine whether 
RFWD3 ubiquitinates any of the ORC subunits and/ 
or ORCA. Human Orc1 is known to be ubiquitinated 
and degraded during S phase [26,27]. Several ubiqui
tination sites on Orc2 have been identified [46]. 
ORCA is also known to be ubiquitinated at the G1/S 
boundary [28]. We did not observe any changes in the 
ubiquitination of Orc1 in the presence of RFWD3 
WT. Minimal ubiquitination of Orc2 was observed 
with/without RFWD3, similar to previous findings 
[29] (Figure 6(a)). The overexpression of RFWD3 
WT, but not the CA mutant, led to enhanced ubiqui
tination of ORCA (Figure 6(b)). The differences in 
ORCA ubiquitination level was not due to disrupted 
interaction between ORCA and RFWD3 CA mutant, 
since the E3 ligase activity of RFWD3 was not found to 
be required for its interaction with ORCA (Figure 6 
(c)). We have previously shown that the interaction of 
ORCA with Orc2 is essential for its stability [28]. To 
determine the impact of ORCA ubiquitination, we 
evaluated if this affected its interaction with ORC. 
We generated a ubiquitination-deficient mutant of 
ORCA (28KR, Figure 6(d)) and found that this 
mutant showed significantly reduced interaction 
with Orc2 (Figure 6(e)), indicating that the RFWD3- 
mediated ubiquitination of ORCA facilitates its inter
action with Orc2, thereby enhancing its stability. 
Finally, we analyzed ORCA protein stability with or 
without HA-RFWD3 overexpression. Upon treat
ment with cycloheximide (CHX), ORCA protein 
decreased significantly after 4 h. However, upon the 
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overexpression of RFWD3, 4 h of CHX treatment did 
not cause significant reduction of ORCA protein level, 
which further supports our model that RFWD3 stabi
lizes ORCA (figure 6(f)). All of this data supports the 
model that RFWD3-mediated ubiquitination of 
ORCA increases its interaction with ORC complex 
and also enhances the stability of ORCA.

Our results point to an interaction between 
RFWD3 and ORC/ORCA and our study uncovers 

a novel mode of ORC stabilization by virtue of 
binding to an E3 ligase. We propose that the 
association of RFWD3 with ORC/ORCA prevents 
its destabilization, which is mediated by a p53 
target E3 ligase (Figure 6(g)).

Discussion

The proper regulation of DNA replication is essential 
for preventing genome instability. In G1 phase of the 
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cell cycle, the “origin licensing” is achieved by sequen
tial assembly of pre-RC components on the origins of 
replication [1–4]. The appropriate regulation of origin 
licensing and timing is essential for maintaining gen
ome stability [47]. The regulation of origin licensing is 
achieved through modulating the dynamics of pre-RC 
components throughout the cell cycle. Multiple 
mechanisms lead to the removal of preRCs from ori
gins once licensing is achieved and this ensures that 
DNA replication occurs once and once per cell divi
sion cycle. For example, as cells enter S phase, Orc1 is 
phosphorylated and consequently degraded [26,27]. 
The ubiquitination of ORCA occurs during the G1/S 
boundary, which leads to its degradation [28]. The 
protein level of ORC2-5 remain constant throughout 

the cell cycle. However, the phosphorylation of Orc2 
during S phase is required for the dissociation of 
ORC2-5 from the chromatin [48]. The depletion of 
pre-RC components in normal human cells activates 
origin licensing checkpoint and leads to G1 arrest 
[11,12,13].

In the present study, we show that ORC/ORCA 
associates with an E3 ligase RFWD3. Recent studies 
have shown that RFWD3 is essential for DNA damage 
response and S phase progression [32–38,45]. We 
found that RFWD3 directly interacts with compo
nents of the ORC. Binding of ORC to RFWD3 pro
tects the ORC complex from degradation, specifically 
in cells that have an intact p53 pathway. However, 
when cells lose the p53 protein or have an abrogated 
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p53 pathway, loss of RFWD3 doesn’t cause degrada
tion of ORC. Our results support a model whereby 
p53 activates a E3 ubiquitin ligase that is responsible 
for the destruction of ORC. In RFWD3-depleted cells, 
ORC is not protected and in the presence of p53, 
a downstream p53 target E3 ligase results in degrada
tion of ORC. Consistent with this model, depletion of 
RFWD3 in p53-/- cells causes stabilization of ORC. It 
is interesting to note that the decrease in Orc2 upon 
RFWD3 depletion (in p53 proficient cells) can be 
rescued by RFWD3 WT but not the CA mutant. 
This suggests that the E3 ligase activity of RFWD3 is 
needed for the ORC stability. It could be that the 
autoubiquitinated form of RFWD3 associates with 
ORC and protects it from destruction. Alternatively, 
active form of RFWD3 ubiquitinates ORC and this 
form of ORC cannot be targeted for destruction by the 
p53 pathway. We found that RFWD3 does not ubi
quitinate Orc1 and Orc2 but can ubiquitinate ORCA. 
Depletion of RFWD3 doesn’t result in the accumula
tion of ORC/ORCA suggesting that RFWD3- 
mediated ubiquitination of ORC/ORCA does not tar
get this complex for proteasomal degradation. Our 
results support a model whereby RFWD3-mediated 
ubiquitination of ORCA is required for interaction 
with ORC and this enhances the stability of ORC- 
ORCA. Thus, the depletion of RFWD3 leads to desta
bilization of ORCA, and consequently decreased 
ORC2-5. Future work will focus on identifying 
the p53 target E3 ligase that is responsible for ORC 
degradation.

We have previously reported that in cancer 
cells, the depletion of RFWD3 leads to accumula
tion of S phase population, whereas in WI38 
(human diploid fibroblast), RFWD3-deficient 
cells showed G1 arrest after serum release [38]. It 
is known that the depletion of preRC components 
in diploid fibroblasts causes a G1 arrest. We pro
pose that in the absence of RFWD3 origin licen
sing checkpoint is activated because of a reduction 
in ORC proteins. Future work will entail under
standing if RFWD3 has a direct role in DNA 
replication initiation, and the molecular mechan
ism of its association and control of ORC function.
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