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ABsTRACT. We show that a suitable quantitative Fatou Theorem characterizes
uniform rectifiability in the codimension 1 case.
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1. INTRODUCTION

Fatou theorems take their name from a classical result of Fatou [F] concerning
a.e. existence of boundary limits of bounded harmonic functions (see also [Ste,
Chapter 7]). In [G], Garnett proved a “quantitative Fatou theorem” ([G, Chap-
ter VIII, Corollary 6.2]) for bounded harmonic functions in the upper half-plane,
which, roughly speaking, means the following: given a bounded harmonic function
u, normalized so that ||u|| < 1, and a number & > 0, one counts, locally at each
scale, and at each boundary point x, the maximum number of oscillations of u, of
size at least £, on any lacunary vertical (or non-tangential) sequence approaching x;
the resulting counting function then enjoys an estimate of Carleson measure type,
with bound depending only on & and the parameter of lacunarity (and the aperture
of the non-tangential approach region). Garnett’s theorem was a corollary of the
fact that bounded harmonic functions in the upper half-plane are e-approximable,
a property first established by Varopoulos [V], and refined by Garnett [G]; subse-
quently, the e-approximablity of bounded harmonic functions in Lipschitz domains
in R™*! was obtained by Dahlberg [D]. In [KKPT], the authors consider the case
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of a (real) divergence form uniformly elliptic operator £ = —div AV in a Lipschitz
domain Q, and generalize Garnett’s result by showing that quantitative Fatou the-
orems hold for any such £ whose bounded null solutions are e-approximable. In
turn, they then deduce that elliptic-harmonic measure for £ belongs to the Mucken-
houpt A, class with respect to surface measure on 9€2. The latter implication is not
available in settings as general as those we consider here, since absolute continuity
of harmonic measure with respect to surface measure may fail in the absence of
sufficient connectivity, even for an open set with a uniformly rectifiable' boundary
[BiJ].

More recently, in the current context, it was shown that if £ is a (real) divergence
form operator satisfying the Carleson measure condition (2.5) and the pointwise
local Lipschitz bound (2.6), then e-approximability of bounded null solutions to
L and L* is equivalent to uniform rectifiability; see [HMM] and [AGMT]. This is
perhaps surprising, in light of the example of [BiJ]; however, one may wonder what
other surrogates, for the Ao, property of harmonic measure, do hold. In particular,
the works of [G] and [KKPT] prompt two natural questions: First, what is the
appropriate notion of a quantitative Fatou theorem in an open set without traditional
(connected) accessibility? Second, does this notion serve to characterize uniform
rectifiability? The present work addresses these questions. Our main result is the
following.

Theorem 1.1. Let Q ¢ R™! n > 2% be an open set satisfying an interior
Corkscrew condition (Definition 2.3 below), whose boundary is n-dimensional
Ahlfors-David regular (Definition 2.1). Suppose that L = —div AV is a uniformly
elliptic divergence form operator whose coefficients satisfy (2.5) and (2.6). Then
a quantitative Fatou theorem holds for bounded null solutions of L and its adjoint
L7, if and only if 0Q is uniformly rectifiable.

In the sequel, we shall give a precise definition of the term “quantitative Fatou
theorem”. For the moment, however, let us try to give at least some heuristic in-
dication of the meaning of this expression. To begin, we recall that in Garnett’s
theorem, one obtains estimates of Carleson measure type for the counting function
which give bounds (locally) on the g-oscillations of a bounded solution, on lacu-
nary sequences lying along a non-tangential path to the boundary of the half-space
R"*!. To be precise, given & > 0, a scale r > 0, a positive lacunarity parame-
ter 8 < 1, and a point x € R”", along with a bounded solution # of the equation
Lu = 0in R""! we say that a sequence {Xk}llio:ll c R**1, of arbitrary finite cardi-
nality ko + 1 > 2, is (x, €, 0, r)-admissible (for the solution u) if Xy = (xg, s¢) lies in
the truncated cone I'"(x) := {(y, s) € R’fl Dx =y < s < r}, with sg4; < sy, and
|u(Xy) — u(Xy+1)| > €. Define the counting function

(1) N'u(xz0) = sup ko : 3(x.5,0,r)-admissible (X'}

If there is no such (x, &, 6, r)-admissible sequence of cardinality at least 2, we set
N'u(x,€,0) = 0. Garnett’s theorem states that if £ is the Laplacian, and if the

ISee Definition 2.7 below.
2Theorem 1.1 holds in the case n = 1 for the Laplacian, that is, £ = £* = —A := —divV, see
Lemma 3.8 and the paragraph that precedes it.
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solution u is normalized so that ||u|| Loy S 1, then

(1.3) sup r‘”/ N'u(y,e,0)dy < C < o0,
xeR™, r>0 |x—yl<r

where the constant C depends only on g, 8, and n. We remark that Garnett’s the-

orem is stated only for admissible sequences approaching the point x vertically,

rather than non-tangentially, but his arguments extend readily to the latter case; see

also [KKPT].

In our context, a fundamental difficulty arises: our non-tangential paths to the
boundary may be disconnected. This lack of connectivity cannot be avoided (in-
deed, there may be no connected non-tangential path), and is a rather delicate mat-
ter. In particular, there may be multiple (even infinitely many) choices of non-
tangential approach to the boundary, and some (perhaps most) of these may not
work (heuristically, while the good paths may be disconnected, they cannot jump
around too much). Instead, there are canonical, universally defined non-tangential
approach regions, which may be localized to define an appropriate counting func-
tion. In the sequel, we shall find it convenient to construct these approach regions
dyadically. To be a bit more precise, we begin with the dyadic “cube” decomposi-
tion of our Ahlfors-David regular boundary 0Q (as in [Dav] or [Chr]; see Lemma
2.19 below), and for each dyadic cube Q, we define an associated Whitney region
Uy, consisting of points ¥ € Q with

dist(Y, 4Q) ~ diam(Q) ~ diam(Uy) ~ dist(Y, Q)

(see (2.29) for a precise definition). This Whitney region may in general have more
than one (but at most a uniformly bounded number of) connected components. For
each O, we may then specify (and fix in advance) a particular component of the
corresponding U; each such a priori specification of components will result in a
different collection of non-tangential approach regions, and thus a different count-
ing function, as follows. Given a specification of components, some particular cube
Qo, and a point x € Qp C JQ, we set

w:= J vp,
Q:x€QcQo

where Vj is the specified component of Ug. Observe that this “cone” has been
truncated at a “height” on the order of diam(Qp). An admissible sequence for a
given bounded solution u, relative to x, Qp, € > 0, and our particular specification
of components, will be {Xk}],zo:ﬁl such that X; € Vp,, with x € Qi1 & Ok &
. © 01 € Qo, and [u(Xy) — u(Xg+1)l > &. “Lacunarity” is provided by the fact
that the diameters of the properly nested cubes (and hence the distances to the
boundary of the corresponding Whitney regions), shrinks roughly dyadically. We
may now define the counting function N%u(x, €) corresponding to this particular
specification of Whitney components as in (1.2), but now with the new version of
admissibility that we have just described. A quantitative Fatou theorem holds for
a particular specification of Whitney components if for every bounded solution u,
normalized so that ||u||z~) < 1, we have the following dyadic analogue of (1.3):

(1.4) swd@*/N%@@wst<m,
) 0
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where o := H"| 5q is the surface measure on dQ, and where for each Q, Nu(-, €) is
the counting function corresponding to the particular specification of components
that we have fixed in advance.

The essence of the statement that a quantitative Fatou theorem implies uniform
rectifiability is in fact that if there is even one (fixed in advance) choice of spec-
ified components of the Ug’s (hence one particular specification of the counting
function) for which (1.4) holds, then dQ is uniformly rectifiable. Conversely, if
0Q is uniformly rectifiable, then we shall show that all suitably good choices of
path® (hence of counting function), enjoy the estimate (1.4), and moreover there is
always at least one such choice.

Of course, we shall make all of these constructions and statements precise in the
sequel.

We have decoupled the two parts of Theorem 1.1, with precise statements, into
Theorem 3.12 (quantitative Fatou implies uniform rectifiability), and Theorem 4.1
(uniform rectifiability implies quantitative Fatou). We remark that the main new
ingredient in the proof of Theorem 3.12 is Theorem 3.10, from which the former
follows as an essentially immediate corollary, by the results of [AGMT].

2. PRELIMINARIES

Definition 2.1 (ADR). (aka Ahlfors-David regular). We say thata set E C R of
Hausdorff dimension 7, is ADR if it is closed, and if there is some uniform constant
C such that

2.2) érﬂ <o (Ax,n) <Cr, Vre(0,diam(E)), x € E,

where diam(E) may be infinite. Here, A(x,r) := E N B(x, r) is the “surface ball”
of radius r, and o := H"|g is the “surface measure” on E, where H" denotes n-
dimensional Hausdorff measure.

Definition 2.3. (Corkscrew condition). Following [JK], we say that an open set
Q c R™! satisfies the (interior) “Corkscrew condition” if for some uniform con-
stant ¢ > 0 and for every surface ball A := A(x,r), with x € 0Q and 0 < r <
diam(9Q)), there is a ball B(Xa,cr) C B(x,r) N Q. The point X, C Q is called a
“Corkscrew point” relative to A. We note that we may allow r < C diam(9Q) for
any fixed C, simply by adjusting the constant c.

Henceforth we will assume that Q ¢ R™*! is an open set satisfying the (interior)
Corkscrew condition such that dQ is ADR.

Definition 2.4 (Divergence Form Elliptic Operator). We say that £ = —divAV
is a divergence form elliptic operator if there exists C > 1 such that

CTP < (AX0E,8), Al < C,

for all £, X € R""!. We interpret the operator £ in the weak sense as usual.

3See Remark 4.3 and Theorem 4.20.
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We shall consider solutions to divergence form elliptic operators £ on open sets
Q. Sometimes we will impose the additional assumption that the coefficients of L
are locally Lipschitz in Q, and satisfy the Carleson measure condition

1

(2.5 su ff IVAX)|dX < C < 0,
e HBx.r) 009 Jsenna
O<r<diam(0Q)

as well as the pointwise gradient bound
(2.6) IVAX)| < Cs(x)L.

Definition 2.7. (UR) (aka uniformly rectifiable). An n-dimensional ADR (hence
closed) set E ¢ R™! is UR if and only if it contains “Big Pieces of Lipschitz
Images” of R" (“BPLI”). This means that there are positive constants 6 and My,
such that for each x € E and each r € (0, diam(E)), there is a Lipschitz mapping
pP=psr R'"—> R™! with Lipschitz constant no larger than My, such that

H"(EﬂB(x,r)mp({zeR” : |z|<r})> > 0r.

Definition 2.8. (“UR character”). Given a UR set E ¢ R"*!_ its “UR character” is
just the pair of constants (6, My) involved in the definition of uniform rectifiability,
along with the ADR constant; or equivalently, the quantitative bounds involved in
any particular characterization of uniform rectifiability.

We employ the following standard notation:

e We use the letters ¢, C to denote harmless positive constants, not necessarily the
same at each occurrence, which depend only on dimension and the constants
appearing in the hypotheses of the theorems (which we refer to as the “allow-
able parameters”). We shall also sometimes write a < b and a =~ b to mean,
respectively, that a < Cb and 0 < ¢ < a/b < C, where the constants ¢ and C are
as above, unless explicitly noted to the contrary.

e Given a closed set E ¢ R™! we shall use lower case letters x,y,z, etc., to
denote points on E, and capital letters X, Y, Z, etc., to denote generic points in
R"*! (especially those in R"*! \ E).

e The open (n + 1)-dimensional Euclidean ball of radius r will be denoted B(x, r)
when the center x lies on E, or B(X, r) when the center X € R*"' \ E. A “surface
ball” is denoted A(x, r) := B(x,r) N 0Q.

e Given a Euclidean or surface ball B = B(X, r) or A = A(x, r), its concentric dilate
by a factor of x > 0 will be denoted xB := B(X, «r) or kA := A(x, kr).

¢ Given a Euclidean ball B (resp., a surface ball A), we shall denote its radius by
rg (resp. ra).
e Given a (fixed) closed set E ¢ R™! for X € R™!, we set §(X) := dist(X, E). If

we are working with an open set, {2, we will use the notation 6(X) := dist(X, 0Q),
that is, we will take E = 0Q.

e We let H" denote n-dimensional Hausdorff measure, and let oo := H" |, denote

the “surface measure” on a closed set E of co-dimension 1.

e
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e For a Borel set A c R™! we let 1 4 denote the usual indicator function of A, i.e.
Iax)=1ifxeA,and I4(x) =0if x ¢ A.

e For a Borel set A ¢ R™!, we let int(A) denote the interior of A.

e We shall use the letter J to denote a closed (n + 1)-dimensional Euclidean dyadic
cube with sides parallel to the co-ordinate axes, and we let £(J) denote the side
length of J. Given an ADR set E ¢ R"*!, we use Q to denote a dyadic “cube”
on E. The latter exist (cf. [DS1], [Chr]), and enjoy certain properties which we
enumerate in Lemma 2.19 below.

Definition 2.9. (Harnack Chain condition). Following [JK], we say that Q sat-
isfies the Harnack Chain condition if there is a uniform constant C such that for
every p > 0, A > 1, and every pair of points X, X’ € Q with §(X), §(X’) > p and
X — X’| < Ap, there is a chain of open balls By,...,By € Q, N < C(A), with
X € By, X’ € By, By N Biy; # @ and C~! diam(By) < dist(Bg, 0Q) < C diam(By).
The chain of balls is called a “Harnack Chain”.

Definition 2.10. (NTA). Again following [JK], we say that a domain Q C R g
NTA (Non-tangentially accessible) if it satisfies the Harnack Chain condition, and
if both Q and Qe := R™1\ Q satisfy the Corkscrew condition.

Definition 2.11. (CAD). We say that a connected open set Q ¢ R"*! is a CAD
(Chord-arc domain), if it is NTA, and if 0Q is ADR.

Definition 2.12 (DeG/N/M Estimates). Given an elliptic operator, £ = —divAV,
we say that solutions to Lu = 0 on Q satisfy De Giorgi-Nash-Moser (DeG/N/M)
estimates if there exist C,8 > 0 if for every ball B = B(x,r) such that 2B =
B(x,2r) c Q we have

YA !
|u<Y>—u<X>|sC('X Y') (f |u(Z>|2dZ) :
r 2B

whenever X, Y € B (see [DeG, NJ]). We note that all operators with real coefficients
satisfy DeG/N/M estimates.

Definition 2.13 (e—approximablity). Let Q c R"*! be an open set satisfying the
interior Corkscrew condition with ADR boundary and let € € (0, 1). We say that
u, with ||ul[z=) < 1 is e—approximable, if there is a constant C. and a function
@ =€ W,lo’c1 (Q) satisfying

llu — @ll~) < €
and

1
(2.14) sup  — Vo(Y)|dY < Ce.

x€E,0<r<co r B(x,r)NQ

Given € € (0, 1) we say every bounded solution of Lu = 0 is e-approximable if for
all u with Lu = 0 and ||u|lz~) < 1, u is e-approximable and the constant C, is
independent of u.

Theorem 2.15 ((HMM]). Suppose Q c R"*! is an open set satisfying the (interior)
Corkscrew condition such that 0Q is UR and L is a divergence form elliptic oper-
ator with coefficients satisfying (2.5) and (2.6). Then bounded solutions to Lu = 0
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in Q are e-approximable for all € € (0, 1) with constant C. depending on (2.5),
(2.6), €, n and the UR character of 0.

Remark 2.16. In fact, this result is proved explicitly in [HMM] only in the case
that L is the Laplacian, but as noted in [HMM, Remark 5.29], the proof in fact
does not require harmonicity of u, per se, but only the following properties of u: 1)
u € L=(Q), with ||ull < 1; 2) u satisfies Moser’s local boundedness estimates in

Q; 3) u satisfies the Carleson measure estimate

1
el fB _IVUORSN A < Clle,

and 4) u satisfies “N < S estimates” in chord-arc subdomains of Q, with uniform
quantitative bounds depending on the chord-arc constants (we mention here that
item 4) was inadvertently omitted in [HMM, Remark 5.29]). We further remark
that these ingredients are all in place, for u as in Theorem 2.15, even with (2.5)
replaced by the weaker condition

1

(2.18) su f f IVAX)]? 6(X)dX < C < .
oo H' (B, N09) Jpnna
0O<r<diam(9Q)

2.17) sup

X€E,O<r<oo T

Lemma 2.19. (Existence and properties of the “dyadic grid’) [Dav], [DSI1,
DS2], [Chr]. Suppose that E c R"™! is closed n-dimensional ADR set. Then there
exist constants ag > 0 and C; < oo, depending only on dimension and the ADR
constant, such that for each k € Z, there is a collection of Borel sets (“cubes”)

Dy :={Qj C E: j €3,
where 3y denotes some (possibly finite) index set depending on k, satisfying
(i) E = UjQ/J‘- for each k € Z.
(1) If m > k then either Q7' C Q’; or Q"N Q’J‘. = Q.
(iii) For each (j, k) and each m < k, there is a unique i such that Q’; c o
(iv) diam (Q%) <27%
(v) Each Q"; contains some “surface ball” A(x’;., a02_k) =B (x’;., a02_k) NE.

A few remarks are in order concerning this lemma.

e In the setting of a general space of homogeneous type, this lemma has been
proved by Christ [Chr], with the dyadic parameter 1/2 replaced by some constant
0 € (0,1). In fact, one may always take 6 = 1/2 (cf. [HMMM, Proof of
Proposition 2.12]). In the presence of the Ahlfors-David property (2.2), the
result already appears in [DS1, DS2].

e For our purposes, we may ignore those k € Z such that 27% > diam(E), in the
case that the latter is finite.

4I.e., that the non-tangential maximal function of u is controlled in some L? norm by the conical
square function of Vu.
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e We shall denote by D = D(E) the collection of all relevant Q’]‘. ,l.e.,
D := U;Dy,
where, if diam(E) is finite, the union runs over those k such that 27% < diam(E).

e Properties (iv) and (v) imply that for each cube Q € Dy, there is a point x¢g € E,
a Euclidean ball B(xg, r) and a surface ball A(xg,r) := B(xp,r) N E such that
r ~ 27F ~ diam(Q) and

(2.20) A(xg,r) € Q € A(xg,Cr),

for some uniform constant C. We shall denote this ball and surface ball by
(2.21) Bo := B(xg, 1), Ag = A(xg, 1),

and we shall refer to the point x¢ as the “center” of Q.

e For a dyadic cube Q € Dy, we shall set £(Q) = 27k and we shall refer to this
quantity as the “length” of Q. Evidently, £(Q) ~ diam(Q).

e Forany A > 1 and Q € D(E) we will write
(2.22) AQ = {x € E : dist(x, Q) < (1 — 1)(Q)}.

Later, we will consider stopping time regimes, making the following definition
useful.

Definition 2.23. [DS2]. Let S ¢ D(E). We say that S is “coherent” if the following
conditions hold:

(a) S contains a unique maximal element Q(S), which contains all other ele-
ments of S as subsets.

(b) If Q belongs to S, and if Q € O c O(S), then Q € 8.

(c) Given a cube Q € S, either all of its children belong to S, or none of them
do.

We say that S is “semi-coherent” if only conditions (a) and (b) hold.

Given an open set Q c R™*! satisfying the (interior) Corkscrew condition such
that 0Q is ADR, we let ‘W = {J} be a Whitney decomposition of Q, that is, {J} is
a collection of closed (n + 1)-dimensional cubes whose interiors are disjoint, union
is Q, for which

(2.24)  4diam(J) < dist(4J,0Q) < dist(J, 0Q) < 40 diam(J), YJeW

and
1/4 diam(J;) < diam(J,) < 4 diam(J;)
whenever J1 N J, # @. Givenn < 1 and K > 1 we define for every Q € D(0Q),

(2.25)  Wp =1{J e W: Q) < () < K'*0(Q), dist(J, Q) < K'*6(Q)} .

When it seems useful to emphasize the dependence on 1 and K, we shall write
"W%(n, K) in place of Wg.
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Remark 2.26. We note that for an open set Q satisfying the Corkscrew condition,
WOQ = (W%(n, K) is non-empty, provided that we choose 1 small enough, and K
large enough, depending only on the Corkscrew constant. In the sequel, we shall
always assume that  and K have been so chosen.

We fix a small parameter 79 > 0 (depending on dimension), so that for any
J € ‘W, and any 7 € (0, 7¢], the concentric dilate

(2.27) J@) =1 +1)J
still satisfies the Whitney property
(2.28)  diamJ ~ diam J*(7) ~ dist (J*(1),0Q) ~ dist(J,0Q), 0<7 < 710.

Moreover, for 7 < 19, with 7o small enough, and for any Ji, J, € W, we have that
Ji(7) meets J3(7) if and only if J; and J, have a boundary point in common, and
that, if J; # Jo, then Jy(7) misses (3/4).J>.

We then define for all 7 € (0, 79/2]

(2.29) Up=Ugm.K.1):= | int(J*()).
Won.K)

Note that our Uy is somewhat different to the constructions in [HM, HMM] (we
shall recall the latter constructions in Section 4). In the sequel, we will often sup-
press the dependence on 77, K and 7 when these parameters have been fixed, in order
to simplify the notation.

Let us remark that for any fixed n and K there exists N = N(n, K) such that #{J €
Wg(n, K)} < N. It follows that Uy has only finitely many connected components,

we will enumerate these connected components as {U iQ}
N.

Definition 2.30 (Index Catalog and Subcatalogs). Let Q ¢ R™! be an open set
satisfying the (interior) Corkscrew condition such that 0Q is ADR. Given n <«
1 < K we enumerate the components of each Uy as {U iQ}iGIQ as before and call
I = {Ip}pep(sn) the index catalog. We say that / is an index subcatalog (or just a
subcatalog) if I = {ip}gen(aq), Where for each Q, ip € Ip; i.e., in a subcatalog, we
have fixed precisely one component of Uy for each Q.

1> Where we have #Ig <

Definition 2.31 (Admissible Sequences and the Dyadic Oscillation Counting Func-
tion). Let Q ¢ R™! be an open set satisfying the (interior) Corkscrew condition
such that 0Q is ADR and n <« 1 <« K. Letu : Q — R. Given a subcatalog 1,
a cube Q € D(9Q), a point x € Q, and a number € > 0, we say that a sequence
(X! © Q, of arbitrary finite cardinality ko + 1 > 2, is (x, €, I, Q)-admissible
Jor u (or simply (x, €, I, @)-admissible, when u is understood from context) if there

exist strictly nested cubes {Qk}lg":ﬁl with x € Q41 € Ok, S ... € 01 € O, such that

Xi € US with ig, € I, and [u(Xy) — u(Xes1)| > €.
The dyadic oscillation counting function is then defined to be
(2.32) NCQu(x, e, 1) := sup {ko : A(x, €, I, Q)-admissible {xk}’,gl} :

If there is no such (x, €, I, Q)-admissible sequence of cardinality at least 2, we set
NCu(x, e, I) = 0.
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Remark 2.33. Tt is easy to see that for each Q, N? is o-measurable. First, we
may define a collection of intermediate functions N /Q for j € Z, where we restrict
the cubes Oy in the definition of NV to those which have side length greater than
or equal to 27/, This restriction yields a bounded simple function and taking the
supremum over j € Z is exactly €.

Following [AGMT], we make the following definition.

Definition 2.34 (Corona Decomposition for Harmonic Measure). Let Q ¢ R"*! be
an open set satisfying the interior Corkscrew condition with n-dimensional ADR
boundary. Let £ be a (real) divergence form elliptic operator and w s be the corre-
sponding elliptic measure for Q2. We say that w s admits a Corona decomposition if
D(9Q) is decomposed into disjoint coherent stopping time regimes D(0Q) = | Jg S’
such that the following holds. The maximal cubes, Q(S’), satisfy a Carleson pack-
ing condition
Y 0(Q(8)) < Co(R), VYR e D(OQ).
Q(8)CR
For each Q(S’) there exists pg(s) € € such that

Q) < dist(posy), A(S)) < dist(pocsy, 0Q) < cl(Q(S')),

so that
o(R)

a(Q(S")

where the implicit constants and ¢ are uniform in S” and R.

WP (3R) ~ VReS,

3. A QuanTiTaTIVE FATOU THEOREM IMPLIES UNIFORM RECTIFIABILITY

The following lemma is similar to Lemma 3.3 in [AGMT], with two differences.
We do not obtain an estimate on the gradient of uy or any approximant and we
create a dichotomy which allows us to get a worse, but sufficient estimate for the
purpose of packing low density cubes.

Lemma 3.1. Let Q c R™! n > 2, bean open set with n-dimensional ADR bound-
ary and L a (real) divergence form elliptic operator. Let a € (0,1). There exists
v €(0,1/2) and €' € (0,1/2) depending on a,n, ADR and the ellipticity constants
such that for every € € (0, €'] the following holds. If pg, sg € Q are such that

ael(Q) < |po — xgl < €l(Q)

and

(3.2) lso — xgl < yel(Q)
and Eg C Q with

(3.3) WP (Eg) > (1 - &’ (Q)

then there exists a positive solution to Lu = 0, ug, such that
e upX)= [ fo w%, Jfor a positive Borel function fg satisfying 0 < fo < 1,
® |ug(pg) —ugp(sg)l 2 %E",

where a € (0, 1) depends on dimension, ADR and the ellipticity constant for L.
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Proof. For simplicity of notation we drop the subscript £ in w . By a simple argu-
ment using Bourgain’s Lemma [HeKM, Lemma 11.21] (see also [AGMT, Lemma
3.2]), we have for all sufficiently small € depending on n, ADR and ellipticity

(34 wPe(Q) > (1 - ce?),

where @ € (0,1) and ¢ > 0 depend on dimension, ADR and ellipticity. Now we
break into cases. Let y > 0 be a small number to be chosen, with s¢ as in (3.2).
Case 1: w'2(Ep) < (1 — €*)wP2(Ep). In this case we set ug(X) = wX(EQ). Using
(3.9) and (3.4) we obtain

wPe(Eg) — w*(Ep)
WP(EQ)[l - (1 - €")]

ug(pg) — up(sg)

v

\%
m
5

provided € < 1 depending on n, ADR and ellipticity. As ugp obviously satisfies the
other desired conditions the lemma is shown in this case.
Case 2: w*?(Eg) > (1 — €")wP?(E(). Using (3.9) and (3.4), we record the follow-
ing:
w2(0Q\ Ep) <1 —[(1 - €Mw’2(Ep)]

<1-[0-eH1 -e)(1 - ceM)
3.5
(3-5) =(1+0)e” —ce®® +e—(1 +)e®*! + ¢!
< ¢e?,

provided that € is small depending on dimension, ADR and ellipticity. Set A’ :=
A(xg,vel(Q)) = B(xg, yel(Q)) N 0€2. Define

1
go(X) := / Er(X, y)do(y),
SO Jy yeti Y
where & is the global fundamental solution for £ in R**!. We note that

OSSL(X,Y)QW,

with implicit constants depending on dimension and ellipticity. Then by the ADR

condition ||ggpll = 1, with implicit constants depending on dimension, ADR and
ellipticity. Set

X) = 20(X).
$0lX) = 12 L ge™)

A simple calculation shows that go(sp) ~ 1 with constants independent of y and
€. On the other hand, if y < § we have by the triangle inequality that

a 3 ,
EEZ(Q) <lpo -yl < Eff(Q), Vye A’

Consequently, the ADR condition yields
1
yet(Q) (et(Q))™!

go(po) = o(A)
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where the implicit constants may depend on a, but are independent of e. It follows
that for some vy sufficiently small,

(3.6) lgo(po) — go(so)l 2 1,

where the choice of y and the implicit constant are independent of €. Having fixed
Y, we set

ug(X) ::/dewxz/E gow*.
0

Note that fp has the desired property 0 < fp < 1g,. Since go(X) = [ g0 dw*, we
have

< w¥(0Q\ Ep).

(3.7) lgo(X) —up(X)| = | / gow*
IO\Eo

By our assumption that (3.9) holds and (3.4) we have
wP(OQ\ Ep) <1 —-(1-e)1l —ce”) < Ce”.
Combining this estimate and (3.5) with (3.7) we obtain the pair of estimates

l80(Po) — uo(Po)l. I80(s0) — ug(so)l < Ce®.
Then for all € sufficiently small depending on vy, (3.6) yields

1
lug(po) —up(sg)l 21> Eea.

The other properties of up are again easily checked in this case. |

When n = 1 we have the following substitute for the previous Lemma, which
allows one to prove Theorem 1.1 when £ = —A, the Laplacian®. This is essentially
a modification of [GMT, Lemma 3.3], completely analogous to the one we have
made above for [AGMT, Lemma 3.3], we omit some of the redundancies.

Lemma 3.8. Ler Q c R? be a domain with 1-dimensional ADR boundary. Let
a € (0,1). Then there exists C5 > 2 depending on ADR and €' € (0, 1/2) depending
on a and ADR such that for every € € (0, €’] the following holds. If po, so € Q are
such that

ael(Q) < |pg — xgl| < €l(Q)
and
lso — xol < €755 £(Q)

and Eg C Q with
(3.9) wPe(Eg) > (1 — €)w"2(Q)
then there exists a positive solution to Au = 0, up, such that

e up(X) = [ fo WX, for a positive Borel function fg satisfying 0 < Jo < 1g,,

o lug(pg) — ug(so)l > 1€,

where « depends on dimension, ADR and the ellipticity constants.

>The one minor change required in the proof of Theorem 3.10 is noted therein.
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Proof. We begin as in Lemma 3.1 and note that Case 1 can be handled exactly
the same. To handle Case 2 when n = 1, we define a different g, noting that the
fundamental solution, E(X,Y) = 5—; In|X — Y|, does not decay at infinity, which
necessitates a few changes.

Set y = €%, where Cs > 2 is to be chosen. Set x; := xp and let xp €
[B(x1,4k*€(Q)) \ B(x1,36(0))] N 0Q, where « is the ADR constant for Q. Such
a point x; always exists by the ADR condition. Next, define r = yef(Q) and set
B := B(x1,r) and B; := B(x», r) Define

~ 1 a(By)
X) := / —In ——do(y) - —In —— do(y).
so= ) X190 S b 40

Following [GMT, Lemma 3.3] verbatim in the case n = 1, we have g¢ € Co(Q)
and that gp > O on Q.

Next, we again follow [GMT, Lemma 3.3] to see

lIgollo < [In(ey)l.

Indeed, we break into cases. If X ¢ B(x;, 10«*¢(Q)) then for YEBIUBy, [x—y| =~
Ix=yal & [x=y1| = k¥*£(Q) and therefore [go(X)| < 1 for X ¢ B(x1, 106*€(Q)). To es-
timate go for X € B(x;, 10k*£(Q)) we collect two estimates. If X € B(xy, 10k*€(Q))\
2B; and y € B; then
L X o 1
r r €y
In the alternate scenario, X € 2B;, we have

1
—1In do(y)
/B(x,-,4r) r |X y|

B 1 r o(By)
X) = —1 d —
80X) /B 0 s |

Writing

and using these two estimates for X € B(x, 10K2€(Q)) we have [go(X)| < |In(ey).
Now, for X € B(x;,(Q)) we write

gQ(X):/B 1, 19 oB) (1~ UQ)

ou —In ——do(y)
1X =yl o(B2) Jp, v 1X—)l

=I(X) + I[I(X).
Notice for X € B(x,£(Q) and y € B, we have £(Q) < |X — y| < 5k*£(Q), so that
I(X)| < In 5k

for all such X, with implicit constant independent of Cs. In particular, this estimate
holds for X = pp and X = sg. If we ensure Cs > 2 and choose € small depending
on a we have that 2e((Q) > |pp — y| > e2600). Plugging this estimate into /(X)
we have

1I(po)l < |In(e),

where the implicit constant is independent of Cs. Perhaps choosing € even smaller
we have [go(po)| < C’|In(e)|, with C” independent of Cs. To get a lower bound for
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lg(so)l, we use [sg — y| < 2eyl(Q) = 2¢!*65£(Q) and observe for Cs sufficiently
large
(s)| % 1 In(e"* ) = [In2] 2 (Cs + D] In(e)]
Perhaps making Cs larger we have [go(sp)l 2 (Cs + 1)|In(e)| > 2C’|In(e)|. Com-
bining our estimates for go(po) and gp(sp) we have for all Cs sufficiently large
12o(po) — 8o(s0)l = C'|Inel.
Having fixed such a Cs, we see that our estimate for |go(so)| shows that, in fact,
lgolleo = [In(ey)| = |In(e).

Therefore if we define

§X)
8o(X) = ——,
S el
we see that g has the same properties as in Lemma 3.1 Case 2 and therefore the
rest of the proof follows exactly as in Lemma 3.1. O

The following is really the main result in this section. We recall that the dyadic
counting function N Qy(x, €1 ) is defined in Definition 2.31.

Theorem 3.10. Let Q c R™! n > 2, be an open set satisfying the Corkscrew
condition with n-dimensional ADR boundary, 0Q, and let L be a (real) divergence
form operator. Let 1 < 1 < K be such that every Whitney region U is non-empty
and v € (0,7¢/2). There exists € = €y(n,ADR,n, K, L) such that the following
holds. If there exists any subcatalog 1 with the property that for any bounded
solution to Lu = 0 in Q with ||ull» < 1

G.1D) | Nutsen.) 5 (@0 ¥Qy € Do),
Qo
then w g admits a Corona decomposition (see Definition 2.34).

Combining Theorem 3.10 with the proof of the main result of [AGMT]® we
obtain the following as an immediate corollary.

Theorem 3.12. Let Q c R"™! n > 2 be an open set satisfying the Corkscrew
condition with n-dimensional ADR boundary, 0, and let L be a (real) divergence
form operator with coefficients satisfying (2.5) and (2.6). Letn < 1 <« K be
such that every Whitney region Ug is non-empty and v € (0,79/2]. There exists
e = en,ADR,n, K, L) such that the following holds. If there exists any two
subcatalogs I and I, with the property that for any bounded solution to Lu = 0 in
Qwith ||ulle < 1

N®ux,&.1) < 0(Qo). Y Qo € D(OL),
and for any boundecQIOsolution to L'v =0in Qwith ||v]|e < 1
/ Nv(x, €0, 1) < (Qo).  YQo € D),
then 0Q is uniforml)QJOrectiﬁable.

“In the case n = 1 and £ the Laplacian we may use the results of [GMT] instead.
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Of course, if L is self-adjoint, then only one subcatalog is required, and the
condition on v is redundant.

Proof of Theorem 3.10. By definition of Uy there exists C;, ¢ > 1 such that for all
vyeQand X € Uy

(3.13) Cokl(Q) < Iy — x| < Cpxl(Q).
Leta = CZ‘K and let y = y(a) and € = €'(a) be from Lemma 3.17. Choose M, M, €
N be such that

2MiC, k <e< 2™, g

27,k <y <27MHC, k.

For any cube Q € D(dQ) let Q(big) € D(Q) be such that xp € Q(big) and
£(Q(big)) = 27Mig(Q), and let po be an arbitrary point in UIQQ((Z’}Z) where igpig) € 1.
By (3.13) and (3.14)

(3.15) ael(Q) < Ipg — xol < €l(Q).

Similarly, let Q(little) € D(Q) be such that xo € Q(little) and K(Q(little)) =
27M20(Q(big)) = 27M1=M2¢(Q), and let s¢ be an arbitrary point in UIQQ((Z’;;Z) where
iQ(little) el By (3.13) and (3.14)

(3.16) lso — xol < yel(Q).

We will try to adopt the notation of [AGMT] when possible and we will also
drop the subscript Lin wy. Let 0 < § < e and A > 1 be fixed constants. For a
fixed cube R € D(0Q) we say Q € D(R) is a high density cube and write Q € HD(R)
if O is a maximal cube (with respect to containment) satisfying

W*2Q) W2R)
o(20) o(2R)
We say O € D(R) is a low density cube and write Q € LD(R) if Q is a maximal
cube satisfying

(3.14)

W(Q) _ 6wa(R)

o@Q) o)
Next, for any cube R € D(Q) we set LD°(R) := {R} and define LD*(R), k > 1,
inductively by

Lo*®y = ) LD).

QeLD*\(R)

As in [AGMT], we may reduce the proof that w admits a Corona decomposition
to the following claim, which is analogous to [AGMT, Lemma 3.5].

Claim 3.17. If ¢ is sufficiently small depending on n, K, ADRand Land0 < <€
then for any m > 1 we have

> ). (@) <Co),

k=1 QeLDK(R)

In the case n = 1 and £ the Laplacian, we replace y by (/)5 and use Lemma 3.8 in lieu of
Lemma 3.1 throughout.
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where C is independent of m and R.

Proof of claim 3.17. Set 1, := Ule LD*(R). We refine the collection F1.m, bY
putting some separation between cubes. We let 2, € F1,, be a collection such
that if Q, Q* € 7>, with Q € Q* then £(Q) < 2=2=1¢(Q*) and

(3.18) Y Q) s Y o).

oFin " 0chrn
Forming such a collection is easy. Choose the largest cube in %7 ,,, O, and add it
to 72, then remove from 77 ,, all of the cubes Q' € 71, with Q" € Q, £(Q’) >
2=M2£(Q). Continuing this way we obtain the collection . Thus, to prove the
claim it is enough to show

(3.19) > Q) < Co(R).

0€Fom
We now produce Eg so that we may utilize Lemma 3.1; we do this for all the cubes
in 1, even though we will only deal with cubes in %5, later. For Q € ¥}, we
set LQ = UQ/ELD(Q)Q’ and

EQ = Q \ LQ.

Since Fo,w S Fim = UL, LDX(R), we have {Eg}oes,,, are pairwise disjoint.
Moreover, by definition

(@) ro

Welg) s Y w(Q@)<6 Y (Q) < 5w"2(Q)
Q'eLD(Q) oo 79
and hence
(3.20) W'(Eg) > (1 - 8)wPe(Q) > (1 — €)wl2(Q).

By (3.15), (3.16) and (3.20), we may use Lemma 3.1 to construct solutions {ug}ges;,,
such that

uo(X) = / fodo®, 0<f<1lg,
oQ

and

lup(po) — up(sp)l = cre” =: cs.
Let = denote the collection of sequences {b = (bg) : Q € Q € F2,u,bp = £1} and
let A be a probability measure on = which assigns equal probability to 1 and —1.
For b € = we set

up(X) = Y boug(X).
Qeﬁ,lll
By the disjointness of E¢ and the fact that 0 < f < 1g, we have

lup(X)| < / > Ibglfpde® < Y WF(EQ < 1.

O0€Fom QeF2.m
Now, using Khintchine’s inequality and the construction of 1y we obtain
12

2 < lug(po) — (sl < | D lug(pg) - ug(so)P
Q' €Fom
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1
<o > bo(ug(po) - ug(sg))| dib)

=|oern

1
L / p(po) — y(s0)] dA(D),
a3 Jz

where c3 is a universal constant provided by Khintchine’s inequality. Now set
c4 = cyc3, then we have shown

(3.21) ci < [ n(po) - (sl d®).
Now we prescribe € := 7¢. Immediately, we have for any cube Q € 7,
(3.22) AUGD = |up(po) — un(sg)l > c4/4}) = ca/8.

For if not, we would contradict (3.21) as the negation of (3.22) leads to the estimate

/ |ub<pQ)—ub(sQ>|dﬂ<b><f(2> 14 5‘*

where we used |up(X)| < 1 and that A is a probability measure. For each b € Z and
0 € Fo,n We set

F(O.b) = @ | %f lus(sg) — up(po)l < (ca/4)
Qlittle) if |up(sg) — up(p)l > (ca/4).
Then (3.22) implies

[ [ 1ron doeo.diw) > Gogtiie) z o )
2JR
which implies
/ / > Lrgp do(x).dib) 2 Y o(Q).

Q€Fom Q€Fom
Thus, to prove the claim it is enough to show that forall x e Rand b € =
(3.23) > Lra®) < Nfuy(x, e, D).

Q€Fom
Indeed, assuming (3.23) and (3.11) we have

> Q) s / / > Lrgs do(x), dA(b)

‘FZ m QE‘}_Z m

< / / Nup(x, €0, 1) dor(x), dA(D)
=Z=JR
< o(R),

where we recall that ||up|le < 1.

We turn our attention to showing (3.23), recalling that €y = c4/16. For notational
convenience, the cubes we will use to ‘test’ in the definition of N will be with a
superscript instead of a subscript. Fix b € E and x € R. Let {Q J} 1> Where jo <m
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be the cubes in 7>, such that 1 F(Q;b)(x) = 1, that is, the collection of Q; € Fam
such that x € Q(little). Note

Jo=Y_ Lron).
0<Fom
We relabel {Q;} so that Q;.1 C Q;. For each j, let Qj- = Qj(big) and Q;- =
Q(little). Then by construction of %>, for j =1,..., jo — 1 we have
X € Q;‘+1 c Q;+1 c Q; C Q;

Indeed, all but the ‘middle’ inclusion, Qj- +1 C Q}, is obvious; however by construc-
tion of ¥

0Q3%1) = 27M0(Q ) < 27 Ne(0)) = 271 Q)).

Now we choose O and X to obtain a lower bound on NRu,(x, €, I). Set Xy =
po, and X = s¢,, Q° = Qj and Q' = Qf so that |up(Xo) — up(X1)| > ca/4 > c4/16,
Xy € UlQQ(? and X; € UIQQII. For k > 2, having chosen X;_; we choose Xj in the
following way. We have that |u,(pg,) — up(sg,)| > c4/4 so that either

lup(po,) — up(Xi—1)| > c4/16
or
lup(sg,) — up(Xi-1)l > c4/16.
Thus, we may choose X; € {pg,, sg,} so that
lup(Xi) — up(Xi-1)l > c4/16.
We then choose QX to be Oy if X = pg, and 0 to be O, if X = sp,. Having done

this for k = 2, ... jo we obtain {Q*}]°, where x € Q"' ¢ Q¥ C Rand X; € U;Qf
are such that

lup(Xi) — up(X—1)| > ca/16.
It follows that
Z Lron () = jo < NRup(x, &, D),

O<Fom
which is (3.23). This proves the claim. m|
With claim 3.17 in hand, the proof then proceeds exactly as in [AGMT]. m|

4. UnirorM RECTIFIABILITY IMPLIES A QUANTITATIVE FATOU THEOREM

In this section we assume that n > 1. We shall invoke certain results from
[HMM] which are stated for n > 2 in that paper, but actually hold also whenn = 1,
with essentially the same proofs.

The converse to Theorem 3.12 (which therefore completes Theorem 1.1) is the
following.
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Theorem 4.1. Let Q c R™! be an open set satisfying the Corkscrew condition with
n-dimensional UR boundary 0Q, and let L be a (real) divergence form elliptic
operator with coefficients satisfying (2.5)° and (2.6). For alln < 1 < K (with
n < K1) and t € (0,70/2] the following holds: there exists a subcatalog I such
that for every bounded solution to Lu = 0 in Q with ||ullz~q) < 1,

4.2) / NQou(x, e,do(x) S0(Qp) VYQp € D(0OQ),
Qo

where implicit constant depends on €,1, K, 7, UR/ADR, the DeG/N/M constants and
the constants in (2.5) and (2.6) (but not Qqy, u or I).

Remark 4.3. Typically, there will be more (perhaps many more) than one sub-
catalog for which the conclusion of Theorem 4.1 holds: see Theorem 4.20 (and
Definition 4.18).

The following pair of lemmata lie at the heart of the proof of Theorem 4.1.

Lemma 4.4 ((HMM, Lemma 2.2]). Suppose that E c R"*! is n-dimensional UR.
Then given any positive constants 1 < 1 and K > 1, there is a disjoint decompo-
sition D(E) = G U B, satisfying the following properties.
(1) The “Good’collection G is further subdivided into disjoint stopping time
regimes, such that each regime {S} is coherent (see Definition 2.23).
(2) The “Bad” cubes, as well as the maximal cubes Q(S) satisfy a Carleson
packing condition:

4.5) Y d@) + Y o(08) £ Crro(Q). Y0 eDE).
0'cO,Q'e8B S:0(8)cQ
(3) For each S, there is a Lipschitz graph Us, with Lipschitz constant at most
n, such that, for every Q € S,
sup dist(x,I's) + sup dist(y, E) < n€(Q),
xeA’b yEB"QﬁFS

where BZ) = B(xg, Kt(Q)) and Ay, = B’é NE.

Next, we recall a construction in [HMM, Section 3], leading up to and including
in particular [HMM, Lemma 3.24], which says that for a UR set E, the open set
Qp := R™! \ E has an approximation, of Corona type, by Chord-arc domains
(Definition 2.11). We summarize this construction as follows.

Lemma 4.6. Let E c R™! be an n-dimensional UR set, and let Qp = R"™ 1 \ E.
Given positive constants n < 1 and K > 1, as in (2.25) and Remark 2.26, let
D(E) = G U B, be the corresponding bilateral Corona decomposition of Lemma
4.4. Then for each S C G, and for each Q € S, the collection "W% in (2.25) (defined
with respect to the open set Qg), has an augmentation W, C ‘W satisfying the
following properties.

(1) "W% c Wy = “VVBJr U W, where (after a suitable rotation of coordi-
nates) each J € "WE lies above the Lipschitz graph I's of Lemma 4.4,

80r even (2.18); see Remark 2.16.
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each J € ‘WB_ lies below T's. Moreover, if Q' is a child of Q, also belong-
ing to S, then every J € ‘WZ)’+ U ‘W*Q/Jr (resp. W5~ U W, ) is contained
in the same connected component of Qp, and (WB,Jr N (WB+ #+ O (resp.,
W5 NWg~ #0).
(2) There are uniform constants ¢ and C such that¥J € ‘W,
en'26(Q) < €(J) < CK'20(Q),
4.7) dist(J, Q) < CK'2¢£(Q),
en'’?€(Q) < dist(J*(7),Ts) ~ dist (J*(7), E), Y71 € (0,70].
Moreover, given T € (0, o] (with To as in previous sections), set
(4.8) Up=Up.= |J int(J'@), Up:=U,uU,,
Je(WB*
and given S’, a semi-coherent subregime of S, define
(4.9) Qf =04 =] U;.
QeS’

Then each of Qé—', is a CAD, with Chord-arc constants depending only on n, 7,1, K,
and the ADR/UR constants for 0Q.

Finally, for Q € G, if Ug is defined as in (2.29), then each connected component

of Ug is contained in either ﬁé or in Uy, and conversely, each component of le
contains at least one component of Uy.

We mention that the Whitney regions U o were simply denoted Ug in [HMM],
but for our purposes in the present section, we prefer to avoid conflict with the
notation introduced in (2.29).

Remark 4.10. In particulgr, for each Sc@G,if Q' and Q belong to S, and if O’ is a
dyadic child of Q, then Ué, uuU 5 is Harnack Chain connected, and every pair of
points X, Y € U é uuU é may be connected by a Harnack Chain in Qg of length at
most C = C(n, 1,7, K, ADR/UR). The same is true for ﬁé U ljé
Remquk 4.11. Note that by (4.7), we have in particular that 6(Y) = £(Q), for all
Y € Ug o, provided that 7 < 7¢/2.
Remark 4.12. Let 0 < 7 < 19/2. Given any S C G, and any semi-coherent sub-
regime 8’ C S, define Qg = Qg (7) as in (4.9), and similarly set Q3 = Qg (27).
Then by construction, for any X € Qg,,

dist(X, E) ~ dist(X, 0Q% ) ,

where of course the implicit constants depend on 7.

As in [HMM], it will be useful for us to extend the definition of the Whitney
region Uy to the case that Q € B, the “bad” collection of Lemma 4.4 and Lemma
4.6. Let ‘W, be the augmentation of (W% as constructed in Lemma 4.6, and set

Wy, 0€6.
0=

4.13
15 W), 0B
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For Q € G we shall therefore sometimes simply write W ”—é in place of ‘W Bi. For
arbitrary Q € D(E), we may then define
(4.14) Ug=Upr:= | J int (/@) .
IeWo
Let us note that for Q € G, the latter definition agrees with that in (4.8). On the

other hand, for Q € B, the regions defined in (4.14) are precisely the same as the
regions Uy defined in (2.29). We then have the following.

Remark 4.15. We note that for any fixed  and K, and for any given Q, Up C l7Q,
and there exists N = N(n, K) such that Uy has at most N connected components.

Remark 4.16. Given an open set Q satisfying an interior Corkscrew condition, for
each cube O € D(0Q), we construct the Whitney regions l~]Q relative to the set
E := dQ, and we note that at least one component of each Uy is contained in €,
provided that we choose 1 small enough and K large enough, depending on the
constant in the Corkscrew condition. We shall henceforth always choose n and K
accordingly.

We now define subcatalogs and a counting function adapted to the regions U 0-

Definition 4.17 (Special Subcatalogs and Extra Special Subcatalogs). Let Q C
R"*! be an open set satisfying the (interior) Corkscrew condition such that 6Q is
UR. Givenn < 1 < K, we define the augmented Whitney regions U o asin Lemma
4.6 (w1th E = 0(2) and (4.13) - (4. 14) and we enumerate the connected components
of each U o as{ U Q} We say that Tisa special subcatalog, if I= {io}oep(9q), where
for each Q, U 0 is one of the enumerated components of UQ, i.e., in a special
subcatalog, we have fixed precisely one component of U o for each Q. A special
subcatalog I= {ip}oep(aq) 18 said to be an extra special subcatalog if for each Q,
the selected component U iQQ is contained in Q (note that this need not be the case
in general, since the Whitney regions U o are constructed with respect to the open
set R™1\ 9Q, which may properly contain €2), and if in addition, for each stopping
time regime S, U UQ, for every Q € S, or else UQ = UQ, for every Q € S.

Definition 4.18 (Admissible sequences and the Special Dyadic Oscillation Count-
ing Function). Let Q c R"*! be an open set satisfying the (interior) Corkscrew
condition such that 9Q is UR, and let 7 < 1 < K. Letu : Q — R. Given a
special subcatalog 1, a cube 0 € D(0Q), a point x € Q, and a number € > 0,
we say that a sequence {Xk}koJrl C Q, of arbitrary finite cardinality kg + 1 > 2, is
(x, €, 1, 0)-admissible for u (or simply (x, €, I, 0)-admissible when u is understood
from context) if there exist strlctly nested cubes {Qk}k"Jrl with x € Qi1 € Ok, &
.. < 01 C Q, such that X € UQk with i, € I, and |u(Xy) — u(Xie1)| > €.

The special dyadic oscillation counting function is then defined to be
(4.19) Nu(x, e, T) := suplko : A(x, €, I, 0)-admissible(X; )24} .

If there is no such (x,€, I, Q)-admissible sequence of cardinality at least 2, we set
NC9u(x,e,1)=0
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Given a subcatalog I = {ip}p, and a special subcatalog 1= Jol}o, we say that
7 o — 17jo
I<1 if UQCUQ, YO.
‘We note that if 1 < Z then
NC(x,e,1) < No(x,€,1),

for every Q € D(0Q), x e Q and € > 0; indeed, if I < 7 then every (x, €, 1, Q)-
admissible sequence {Xk} J{ is also (x, €, I 0)-admissible.

Moreover, by Lemma 4.6, for every Q, each component of l~]Q which lies in-
side Q must contain at least one component of Ug. Thus, for every extra special
subcatalog 1, there is at least one subcatalog I with I < . Consequently, Theorem
4.1 is an immediate corollary of the following somewhat stronger version of itself,
which is really the main result of this section.

Theorem 4.20. Let Q c R™! be an open set satisfying the Corkscrew condition,
with n-dimensional UR boundary 09, and let L be a (real) divergence form elliptic
operator with coefficients satisfying (2.5) (or (2.18)) and (2.6). Foralln < 1 < K
(withn < K1) and v € (0,70/2] the following holds: for every extra special
subcatalog I~, and for every bounded solution to Lu = 0 in Q with ||ullr~q) < 1,

(4.21) NOu(x,e, 1) do(x) s 0(Qo),  YQy € D),

Qo
where the implicit constant depends on €,n, K, T, UR/ADR, the DNeG/N/M constants
and the constants in (2.5) (or (2.18)) and (2.6) (but not Qq, u or I). Moreover, there
always exists at least one extra special subcatalog.

Proof of Theorem 4.20. For suitably small positive 7 < 1, and suitably large K >
7!, taking E := 0Q, we make the corona decomposition D(E) = G U B of Lemma
4.4 and Lemma 4.6, and we construct the chord-arc domains Q§ associated to each
stopping time regime S C G. Since Q satisfies an interior Corkscrew condition, for
each cube Q € D(E), at least one component of the Whitney region U o 1s contained
in Q, provided that we choose 7 small enough and K large enough, depending on
the constant in the Corkscrew condition. Consequently, for each stopping time
regime S C G, at least one of Q¢ or Qg must be contained in Q.

We begin by building an arbitrary extra special subcatalog constructively. For
each O € D(E), we shall renumber the components of UQ so that U 1Q c Q. As
noted above, there is always at least one such component. For the bad cubes Q € B,
if there is more than one such component, then we simply fix one arbitrarily. For
the good cubes, we do this in a more precise manner: if Q € G, then Q belongs
to some particular stopping time reglme S, and its augmented Whitney region U 0
has exactly two components U} o and U; o- If only one of these is contained in €2,
we then let UQ denote that component. By way of illustration, for the sake of
specificity suppose that component is U é; then by the construction in Lemma 4.6,
the same is true for all the cubes in S, i.e., Uz C Q for each cube R € S, and U} is
the only component of Uy with this property. Consequently, Q¢ c Q. We then set
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U ,13 = l~]1§, and set ig = 1, for every R € S. A similar construction works, mutatis
mutandi, in the case that only U, C Q.

On the other hand, if both U 5 C Q, then similarly 17;—5 c Q foreach cube R € S,
and for each choice of +, and thus Qg UQg C Q. In this case, we have two choices:
we may set 17,1? =: 17;5 for every R € S, or we may set 17,2 = 1713 for every R € S.
Having made such a choice, we then set iz = 1, for every R € S,

Note that by construction, for a given stopping time regime S, there is a com-
ponent of Qg, which we now relabel QS = URes Ul &> Which is contained in Q.
Moreover, for each S for which Q¢ U Qg c Q, we are free to designate either

Qs = Qf, or QS = Qg. Having globally renumbered the components of every U 0
in this way, we now set ip := 1 for each Q, and define the extra special subcatalog

I:= {ip}o. We observe that every extra special subcatalog arises in this way.

Having fixed I for the remainder of this section, we henceforth suppress the
dependence of N on I. Fix Qo € D(E) and x € Qp. We set some useful notation.
Forevery S, if x € Q € D(Qp)NS we set O,,4x(S, x, Qp) to be O(S) if O(S) € Qp and
Qo otherwise. Note that the latter can only happen for one stopping time regime
as QO € Qo € O(S) implies Qg € S. Similarly, if x € Q € D(Qg) N S we set
Onmin(S, x, Qp) be the smallest cube in D(Qp) N S such that x € Q; if there is no
smallest cube, we abuse notation and set Q,,,;(S, x, Qo) “ = "x.

Next, we define doubly truncated N.If Q’, 0" € S for some S with Q' c O,
and x € Q' we say that a sequence {Xk}k"Jrl c Q, of arbitrary finite cardinality
ko +1 > 2,is (x,€,Q’, O%)-admissible if there exist strictly nested cubes {Qk}k°+]
with x € Q" C Okp+1 € Ok, & ... © Q1 € O, such that X; € UQk with ig, € I, and
lee(Xi) — u(Xi+1)| > €.

Abusing notation, we allow Q’ to be “equal” to x, and in this case the sequence
is admissible in the sense of Definition 4.18.

The doubly truncated dyadic oscillation counting function is then defined to be
(4.22) NE u(x,e,T) = suplko : 3(x, €, 0, 0)-admissible(X;} '}
If there is no such (x, €, Q’, O*)-admissible sequence of cardinality at least 2, we
set NQQ, u(x,e,1)=0

Using the same abuse of n~otati0n as ab~ove, we allow Q’ to be “equal” to x, and
in this case we simply have N. )53 (x,€) = N2 (x, €).

Claim 4.23.
X N max S7 £
4.24) Nu(x,e) < > NG S e+ Y 1+ >
$:30:D(Q))NS>0>x 0: x€QeB S: O(S)ax
0CQo Q(S)CQo

= 21 +Zz+z3’

where of course ;= >~ (x), foreach j = 1,2,3.

Proof of claim 4.23. Consider any (x, €, I Qo)-admissible sequence {Xk}k‘frl By
definition (and by the construction of this particular / 1), this means that X; € U} O
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with x € Qky+1 &€ Ok & ... € 01 € Qp. Trivially,

#k: QeBI<)y .

so we need only treat {k : Qr € G} = Usfk : Oy € S}. Consider now any S
which contains at least one Q. In this case, #{k : Qr € S} = m + 1, for some
m > 0, hence, for this particular S, there is an (x, €, Qin(S, X, Q0), Omax(S, x, Qo))-
admissible sequence of cardinality m + 1. Consequently, by definition,

X/ max S7 £
m < NG Su(x, €).

Adding 1 to both sides of the last inequality, and summing in S, we find that

#k: Qi eG) < ZI+Z3+1.

The extra 1 on the right hand side accounts for the case that there may be one S for
which Qg € O(S) (50 Qpax(S, x, Qo) = Qp), in which case it is not included in ) 5.
The claim now follows when we take a supremum over all (x, €, 7 Qo)-admissible
sequences. O

Next we observe that

/QO (Zz + Z3> do
:/Q Z Lo(x) + Z Loe)(x) | do(x)

QeB: 0CQo S: 0(S)C0o
= > @+ Y. o(QO) Q).
QeB: 0CQo S: 0($)S0o

where in the last step we have used the packing condition on 8 and on {Q(S)}s,
i.e., (4.5). Consequently, to complete the proof of (4.21), it remains to treat ) .
To this end, we first define truncated dyadic “cones”

r%w:= J Ugar,
Q:x€0C0
and for Q" € Q*, doubly truncated dyadic cones
2= |J Oon.
Q: 0'CQCQ”

where the fattened Whitney regions U 027 are defined as in (4.14), but with 27 in
place of 7, and we recall that we have fixed 7 < 7¢/2.

Claim 4.25. Let ¢ be an €/8 approximation of u as in Definition 2.14 (afforded by
Theorem 2.15). Then

(4.26) S s [ meiewyar

9 (x)



QUANTITATIVE FATOU THEOREMS AND UNIFORM RECTIFIABILITY 25

Momentarily taking the claim for granted, by the definition of I'%° and Remark
4.11, we see that

/ Zld‘fs / / IVo(Y)|S(Y)™" dY do(x)
Qo Qo JT0(x)

< S [ 10t [ 1mamieo) " avdoe
0cQ, Qo Ugar

z/‘IWWMst%)
Toy2r

where T2 := Ugcg, l~]Q,2, is a dyadic Carleson region of diameter d ~ £(Qy),
and where we have used Fubini’s Theorem, then the bounded overlap property
of the Whitney regions l~]Q,2,, and then Theorem 2.15 and the definition of e-
approximability (Definition 2.13). Estimate (4.21), and hence the conclusion of
Theorem 4.20 now follow.

It therefore remains only to prove Claim 4.25. In turn, by the definition of > _,,
and the bounded overlap property of the Whitney regions Ug ., Claim 4.25 is an
immediate consequence of the following claim.

Claim 4.27. For each S

X/ max S7 i —
NSW&£§§MLE>S(/ Vo(V)IS(Y) ™ d.

Qmax(SsXsQ())
Omin(8:x.90)

It therefore remains only to prove Claim 4.27.

Proof of Claim 4.27. We begin with a preliminary observation, for future refer-
ence. Given a point X € Q, let B} := B(X,y5(X)), where y > 0 is a small number
to be chosen momentarily. By the De Giorgi-Nash-Moser estimates, and the fact
that [lullo < 1,

Mm—fMSCWse,
. g

for any B C B§ , by choice of y = y(€) small enough. Let ¢ be the €/8 approx-
imation of u (Definition 2.13), whose existence is guaranteed by Theorem 2.15.
Then

(4.28) u(X) — fgo| < Z, VBCB.
B

We now fix some S which meets D(Qp), and let x € Qy. To simplify no-
tation, set Qpax = Omax(S, X, Q0)s Omin = Omin(S, x, Qo). Consider now any
(x, €, Omin> Omax)-admissible sequence {Xk}f’:ll, of cardinality ko + 1 > 2; if there is
no such sequence then there is nothing to prove for this S. By definition, X € U 1Qk,
and for consecutive points Xy, and Xy, we have

Qmin C Qk+l - Qk - Qmax .

We now form a chain of cubes {P j}?[:(]f) such that

Ok =:P1 D Py D .2 PN = Qk+1»
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and such that P; is the dyadic parent of P;,i. Let Y; denote the center of some
JeWwW! » where for each cube Q, WQ (JeWp: J C UQ} By the chord arc

property of QL. and Remark 4.12, we may connect X to Y; (resp., X4+ to YNwy)s
by a Harnack chain of balls {B;}¥,, of uniformly bounded cardinality M no larger
than some My depending only on 7 and dimension, in such a way that the radius of
each ball is comparable (again depending on 7) to £(Qy) (resp., {(Qk+1)), and such
that any two consecutive balls in the Harnack chain, say B; and B;, 1, are contained
in a ball B whose double is contained in U 0,27 (resp., U 04.1,27)- In particular, note

that by construction, each Bl is contained in Fg’;:’:, and that 5(Y) = Ig.s the radius
of B,-, for every Y € Bi.

Moreover, we note that the terminal ball in each of these chains, containing X
(resp. Xi+1), may be taken to be centered at Xj (resp. Xi+1), and may be chosen to
have small enough radius, depending on vy, but still comparable to 6(X) ~ €(QOx)
(resp. 6(Xi+1) = €(Qk+1)), such that (4.28) holds with X = X; and with X = X;,;.

In addition, for each j = 1,2,..., N(k) — 1, by Remark 4.10, we may connect Y;
to Y41 by another Harnack chain of uniformly bounded cardinality, such that the
radius of each ball is comparable to £(P;), and such that any two consecutive balls
in the Harnack chain, agaln call them B; and B;,, are contained in a ball B whose
double is contained in U P;2r U U Pi2r AS above, each B is contained in FQ'"‘”

and 0(Y) = rz, forevery Y € B

Combining these chains, we obtain a Harnack chain {Bff h<ism(j), 0 <Nk With
reverse lexicographical ordering Blf,1’B§,1’ ...,B’l‘v[(l)’l,B’iz, ---B]ft/[(z),z’ ... etc., join-
ing Xj to X1, such that M(j) < My for each j, and such that consecutive balls Bﬁf j

and BX , . are contained in a ball B" Fng’n" Moreover, 6(Y) =~ the radius of

i+1,j Eﬁj’

”, for each i, j, and for every Y € B

Let B(k) := B1 1 Bk+1) = BM(N(k» NG be the balls centered at X and X,
respectively. By assumption, |u(Xy)—u(Xy+1| > €, and by construction, (4.28) holds
with X = X and X = Xj,,. By these facts, and then a telescoping argument,

f f + ‘
kO N(k) M (])
B

22201

k=1 j=0 i=1

ko

k

ko N(k) M(j)

SY D) / VoY) 8(Y) ™ ay

k=1 j=0 i=1

by Poincare’s inequality, since our ambient dimension is n+ 1, and the radius of Bﬁ‘ j
is comparable to 5(Y) by construction. Since the balls Bﬁ ; have bounded overlaps

(again by construction), and are all contained in Fg::j’:, we obtain Claim 4.27 by
taking a supremum over all (x, €, Qnin, Omax)-admissible sequences. m]
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This concludes the proof of Theorem 4.20. |

5. REMARKS ON ‘QUALITATIVE’ FaTOoU THEOREMS ON ROUGH SETS

In this section, we make the observation that a qualitative Fatou theorem in quite
general open sets is a simple consequence of the methods in [ABHM].

Definition 5.1 (Cone Set). Given an open set Q ¢ R™! we say x € 9Q is in the
cone set of Q) if there exists an open truncated cone, [, with vertex at x such that
I'ecQ.

We define a weakened version of non-tangential limits for open sets that only
have qualitative accessibility.

Definition 5.2 (Weak Non-tangential Limits). Let Q ¢ R"*! be an open set and x
in the cone set. We say a function, u, has a weak non-tangential limit at x if the

limit limy—x u(y) exists, for some I, an open truncated cone with vertex at x such
yel'y

that T, ¢ Q. Here the cone I, does not need to be T, afforded by the fact that x is
in the cone set.

Proposition 5.3. Suppose Q c R"™! is an open set with o = H"|sq locally finite
and o(0Q \ K) = 0, where K is the cone set of Q. Then every bounded harmonic
function in Q has a weak non-tangential limit at o-a.e. x € 0C.

Proof. Let Q be as above and let u be a bounded harmonic function in Q. Then
following [ABHM], we may construct {€);}; a countable collection of bounded Lip-
schitz domains such that Q; c Q for all i and o7 (0Q2 \ U;0Q);) = 0. By [D], bounded
harmonic functions in each €; have a (weak) non-tangential limit (relative to €Q;)
at a.e. x € 0Q;. Thus, ulg, has a (weak) non-tangential limit at a.e. x € 9Q;. In
particular, u has a (weak) non-tangential limit at a.e. x € 9Q; N 9Q (using that the
interior cones for €; are also cones for Q). As 0(9Q \ U;0€);) = 0 the proposition
follows readily. o
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