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ABSTRACT. We generalize to the setting of 1-sided chord-arc domains, that is, to
domains satisfying the interior Corkscrew and Harnack Chain conditions (these
are respectively scale-invariant/quantitative versions of the openness and path-
connectedness) and which have an Ahlfors regular boundary, a result of Kenig-
Kirchheim-Pipher-Toro, in which Carleson measure estimates for bounded solutions
of the equation Lu = — div(AVu) = 0 with A being a real (not necessarily symmet-
ric) uniformly elliptic matrix, imply that the corresponding elliptic measure belongs
to the Muckenhoupt A, class with respect to surface measure on the boundary.
We present two applications of this result. In the first one we extend a perturba-
tion result recently proved by Cavero-Hofmann-Martell presenting a simpler proof
and allowing non-symmetric coefficients. Second, we prove that if an operator L as
above has locally Lipchitz coefficients satisfying certain Carleson measure condition
then wy € Ay if and only if w;t € As. As a consequence, we can remove one of
the main assumptions in the non-symmetric case of a result of Hofmann-Martell-
Toro and show that if the coefficients satisfy a slightly stronger Carleson measure
condition the membership of the elliptic measure associated with L to the class A
yields that the domain is indeed a chord-arc domain.
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1. INTRODUCTION AND MAIN RESULTS

F. and M. Riesz showed in [RR] that harmonic measure is absolutely continuous
with respect to the surface measure for any simply connected domain in the complex
plane whose boundary is rectifiable. Since then, one can find many references in the
literature studying how the previous result, or its quantitative version obtained by
Lavrentiev [Lav], can be extended to higher dimensions. In doing that, some kind of
“strong” connectivity hypotheses is needed (as shown by the counter example in [BJ]).
Dahlberg in [Dah] established that harmonic measure satisfies a quantitative version
of absolute continuity with respect to the surface measure for every Lipschitz domain.
That quantitative version says that harmonic measure is in the Muckenhoupt class
of weights A, and more precisely it belongs to RHs,, the class of weights satisfying
a reverse Holder condition with exponent 2. Jerison and Kenig [JK]| introduced a
new class of domains called NTA (non-tangentially accessible) satisfying interior an
exterior Corkscrew conditions (these are quantitative versions of the facts that the
domain and its exterior are open sets) and also an interior Harnack Chain condition
(which is a quantitative version of the path-connectivity). In this class of domains
they developed the background PDE properties “near the boundary” that harmonic
measure, Green function or harmonic functions satisfy. Assuming further that the
boundary is Ahlfors regular, in which class the domains are called of type chord-arc,
for this generalization of the Lipschitz domains David-Jerison [DJ] and independently
Semmes [Sem| proved that harmonic measure is again an A, weight belonging to
some class RH, with p > 1.

In the last years one can find several new results where the goal has been to un-
derstand to what extent some of the background hypotheses can be dropped. One
context where the theory has been satisfactory developed is that of 1-sided chord-
arc domains. These are open sets Q C R n > 2. whose boundaries 00 are
n-dimensional Ahlfors regular (cf. Definition [2.3), and which satisfy interior (but
not exterior) Corkscrew and Harnack Chain conditions (these are respectively scale-
invariant /quantitative versions of the openness and path-connectedness; see Defini-
tions and below). The papers [HM3, [HMUT] show that in the setting of
1-sided chord-arc domains, harmonic measure is in A, (02) (cf. [2.13)) if and only
if 02 is uniformly rectifiable (a quantitative version of rectifiability). It was shown
later in [AHM™2| that under the same background hypothesis; if 9 is uniformly
rectifiable then € satisfies an exterior corkscrew condition and hence €2 is a chord-arc
domain. All these together and, additionally, [AHM™2] in conjunction with [DJ] or
[Sem], give a characterization of chord-arc domains, or a characterization of the uni-
form rectifiability of the boundary, in terms of the membership of harmonic measure
to the class A (02). For other elliptic operators Lu = — div(AVu) with variable
coefficients it was shown recently in [HMT2| that the same characterization holds
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provided A is locally Lipschitz and has appropriately controlled oscillation near the
boundary.

This paper is the second part of a series of two articles where we consider perturba-
tion of real elliptic operators in the setting of 1-sided chord-arc domains. In the first
paper of the series [CHM] we worked with symmetric operators and studied perturba-
tions that preserve the A, (0€2) property extending the work of [FKPL MPT1, MPT2]
(see also [HLI, [HM2] [HMI]) to the setting of 1-sided chord-arc domains. It was shown
that if the disagreement between two elliptic symmetric matrices satisfies certain Car-
leson measure condition, then one of the associated elliptic measures is in A, (92)
if and only if the other one is in A, (9€2). In other words, the property that the
elliptic measure belongs to A, (912) is stable under Carleson measure type perturba-
tions. That result was proved using the so-called extrapolation of Carleson measures,
which originated in [LM]| (see also [HL, [AHLT, IAHM™1]), in the form developed in
[HM2], [HMI] (see also [HM3]). The method is a bootstrapping argument, based on
the Corona construction of Carleson [Car| and Carleson and Garnett [CG], that,
roughly speaking, allows one to reduce matters to the case in which the perturbation
is small in some sawtooth subdomains. Implicit in the proof of the perturbation
result in [CHM] one can find the treatment of the case in which the perturbation is
small, and this allowed the authors to obtain that for sufficiently small perturbations,
not only the class A, is preserved but one can also keep the same exponent in the
corresponding reverse Holder class.

In the present paper we work in the same setting of 1-sided chord-arc domains and
consider real not necessarily symmetric elliptic operators. Our first goal is to establish
that for any real elliptic operator non-necessarily symmetric L, the property that all
bounded solutions of L satisfy Carleson measure estimates yields wy € A, (0f2).
This extends the work [KKPT] where they treated bounded Lipschitz domains and
domains above the graph of a Lipschitz function. That the converse is true (hence
both properties are equivalent) follows from [HMTI] where a more general estimate
is obtained. Indeed, assuming that w;, € A, (99) then it is shown that the conical
square function is controlled by the non-tangential maximal function in every LP(952)
for every 1 < p < oo where both are applied to solutions of L. Applying this with
p = 2 and with a bounded solution the desired Carleson estimate follows at once.
Here, nevertheless, we present a simpler novel argument for the latter fact. The
precise result is as follows:

Theorem 1.1. Let Q C R"™ be a 1-sided CAD and let Lu = —div(AVu) be a
real (not necessarily symmetric) elliptic operator (cf. Definition . The following
statements are equivalent:

(a) Every bounded weak solution of Lu = 0 satisfies a Carleson measure estimate,
that is, there exists C' such that every u € W,o2(Q) N L>®(Q) with Lu = 0 in the

loc
weak sense in () satisfies the Carleson measure condition

1
(1.2) swp - [ [VuOPSE) X < Clulfieo
220, ™ Mpnne

(b) wr € A (09) (cf. Definition [2.15).
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Our second goal is to use the previous characterization to extend the “large” con-
stant perturbation result from [CHM] to the non-symmetric case:

Theorem 1.3. Let Q@ C R"™' n > 2, be a 1-sided CAD (cf. Definition . Let
Liu = —div(A;1Vu) and Lou = —div(AgVu) be real (not necessarily symmetric)
elliptic operators (cf. Definition . Define the disagreement between Ay and Ay
in Q by

(1.4) 0(A1, Ag)(X) := sup |A1(Y) — Ap(Y)], X e,

YEB(X,6(X)/2)

where §(X) := dist(X,00), and assume that it satisfies the Carleson measure condi-
tion

1 0(A1, Ap)(X)?
(1.5) e o(B.r)no%) //B@,m ) e

0<r<diam(99)

Then, wr, € Ax(0) if and only if wr, € Ax(0) (cf. Definition [2.19).

To prove this result we use a novel approach which is interesting on its own right
and is conceptually simpler. The bottom line is that assuming that wy, € A (9€)
and based on Theorem [1.1| we just need to establish that all bounded solutions for
L, satisfy the aforementioned Carleson measure estimates, rather than trying to
establish the “more delicate” condition wy, € A (09). In doing this we exploit the
fact that wy, € Ax(2) to find a sawtooth domain with ample contact where the
averages of wr, are essentially constant, hence in one can replace 0 by Gy, in
a sawtooth with ample contact. This in turn allows us to perform some integrations
by parts to conclude the desired estimate. We would like to emphasize that this
approach cannot be used to get the “small” constant perturbation since that requires
to directly show that the two elliptic measures are in the same reverse Holder class
without passing through the Carleson measure estimates.

Our last main result establishes a connection between the elliptic measures of an
operator and its adjoint assuming that the derivative of the antisymmetric part of
the matrix defining the operator satisfies some Carleson measure condition:

Theorem 1.6. Let Q C R™!, n > 2, be a I-sided CAD (cf. Definition [2.4)). Let
Lu = — div(AVu) be a real (not necessarily symmetric) elliptic operator (cf. Defini-
tion[2.19) and let LT denote the transpose of L (i.e, LTu = —div(ATVu) with AT
being the transpose matriz of A). Assume that (A — A") € Lip,,.(Q) and let

n+1

(17) lec(A - AT)(X) = (Z @(am - Cl,j,i)(X)) s X e Q.
i=1 1<j<n+1
Assume that the following Carleson measure estimate holds
1 2
1.8 su dive(A — AN(X)]5(X) dX < .
(1:8) xea% o(B(x,r)NoQ) //B(m,r)ﬂQ ‘ o ) )} (X)

0<r<diam(09)
Then wy, € Axo(0R2) if and only if wyt € Ax(99) (cf. Definition[2.15).

As an immediate consequence of the previous result we obtain the following:



PERTURBATIONS OF ELLIPTIC OPERATORS IN 1-SIDED CHORD-ARC DOMAINS 5

Corollary 1.9. Let Q C R"™ n > 2, be a 1-sided CAD (cf. Definition .
Let Lu = —div(AVu) be a real (not necessarily symmetric) elliptic operator (cf.
Definition [2.19). Assume that A € Lip,.(Q), [VA|d € L*(Q) and the following
Carleson measure estimate

1 2
(1.10) 5;18% )J(B(ac,r) A o0) //B(W)mQ IVA(X)['0(X) dX < oc.

0<r<diam (0

Then wr, € Ao (0R) if and only if wyt € Ax(0N).
In particular, if one further assumes that

1
(1.11) wse%% - (Blw.1) 1 %) //B(m)mQ |VA(X)| dX < oo,

0<r<diam(0Q)

then
(1.12) wr, € Ax(092) — Q is a CAD (cf. Definition[2.4).

The first part of the just stated result follows at once from Theorem For the
second part, we notice that once wy € A, (99) implies, after using the first part,
that wyt € A(99). In turn, we can then invoke [HMT2, Theorem 1.5] to conclude
that Q is a CAD. Note that comparing this with [HMT2, Theorem 1.5] what we
are proving is that with the given background hypotheses one just needs to assume
wr, € Ax(09), and the assumption wyr € A (02) is redundant.

The organization of the paper is as follows. In Section [2| we present some of the
needed preliminaries, notations, definitions and some of the PDE estimates which
will be needed throughout the paper. Section [3] contains the proof of Theorem [I.1]
Theorems and are proved in Section [4, as a matter of facts both results are
particular cases of the much more general Theorem [4.5]

2. PRELIMINARIES

2.1. Notation and conventions.
e Our ambient space is R**™1 n > 2.

e We use the letters ¢, C' to denote harmless positive constants, not necessarily
the same at each occurence, which depend only on dimension and the constants
appearing in the hypotheses of the theorems (which we refer to as the “allowable
parameters”). We shall also sometimes write a < b and a & b to mean, respectively,
that a < Cb and 0 < ¢ < a/b < C, where the constants ¢ and C' are as above,
unless explicitly noted to the contrary. Moreover, if ¢ and C' depend on some given
parameter 7, which is somehow relevant, we write a <, b and a =, b. At times,
we shall designate by M a particular constant whose value will remain unchanged
throughout the proof of a given lemma or proposition, but which may have a
different value during the proof of a different lemma or proposition.

e Given a domain (i.e., open and connected) 2 C R™™ we shall use lower case
letters x, ¥, z, etc., to denote points on 02, and capital letters X,Y, Z, etc., to
denote generic points in R"*! (especially those in ).
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e The open (n + 1)-dimensional Euclidean ball of radius » will be denoted B(x,r)
when the center x lies on 99, or B(X,r) when the center X € R"™\ 9. A
“surface ball” is denoted A(z,r) := B(x,r) N OS2, and unless otherwise specified
it is implicitly assumed that z € 0. Also if 02 is bounded, we typically assume
that 0 < r < diam(992), so that A = 9Q if diam(092) < r < diam(0S2).

e Given a Euclidean ball B or surface ball A, its radius will be denoted r(B) or r(A)
respectively.

e Given a Euclidean ball B = B(X,r) or surface ball A = A(z,r), its concentric
dilate by a factor of £ > 0 will be denoted by kB = B(X, kr) or kA = A(x, kr).

e For X € R"™! we set dgo(X) := dist(X,09). Sometimes, when clear from the
context we will omit the subscript 092 and simply write 6(X).

e We let H" denote the n-dimensional Hausdorff measure, and let ogq = H ”‘BQ

denote the “surface measure” on 9S). For a closed set E C R™! we will use the
notation o := H" = When clear from the context we will also omit the subscript

and simply write o.

e For a Borel set A C R*™!, we let 14 denote the usual indicator function of A, i.e.,
14(z) =1ifx € A and 14(x) =0if x ¢ A.

e For a Borel set A C R™!| we let int(A) denote the interior of A, and A denote the
closure of A. If A C 09, int(A) will denote the relative interior, i.e., the largest

relatively open set in J€2 contained in A. Thus, for A C 942, the boundary is then
well defined by 0A := A\ int(A).

e For a Borel set A C R™™! we denote by C(A) the space of continuous functions
on A and by C.(A) the subspace of C'(A) with compact support in A. Note that if
A is compact then C(A) = C.(A).

e For a Borel set A C 09 with 0 < 0(A) < oo, we write , fdo := o(A)™" [, fdo.

e We shall use the letter I (and sometimes .J) to denote a closed (n+ 1)-dimensional
Euclidean cube with sides parallel to the co-ordinate axes, and we let ¢(I) denote
the side length of 1. We use Q to denote a dyadic “cube” on £ C R™*!. The latter
exists, given that F is AR (cf. [DSI], [Chi]), and enjoy certain properties which
we enumerate in Lemma 2.5 below.

2.2. Some definitions.

Definition 2.1 (Corkscrew condition). Following [JK], we say that an open set
Q) C R"! satisfies the “Corkscrew condition” if for some uniform constant ¢ € (0,1)
and for every surface ball A := A(x,r) = B(z,r) N0 with z € 0Q and 0 < r <
diam(092), there is a ball B(Xa,cr) C B(z,r) N Q. The point Xa € Q is called a
“corkscrew point” relative to A. Note that we may allow r < C'diam(052) for any
fixed C'; simply by adjusting the constant c.

Definition 2.2 (Harnack Chain condition). Again following [JK], we say that
Q) C R™"*! satisfies the Harnack Chain condition if there is a uniform constant C' such
that for every p > 0, © > 1, and every pair of points X, X’ € Q with §(X),d(X’) > p
and | X — X'| < Op, there is a chain of open balls By,..., By C , N < C(0), with
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X e Bl, X' < BN; Bk N Bk+1 7é @ and C_l dlam(Bk) S dlSt(Bk,aQ) S C’dlam(Bk)
The chain of balls is called a “Harnack Chain”.

Definition 2.3 (Ahlfors regular). We say that a closed set E C R"™ is n-
dimensional AR (or simply AR), if there is some uniform constant C' = Cag such
that

Cl" <H"(ENB(x,r)) <Cr*, 0<r<dam(E), z¢ckE.

Definition 2.4 (1-sided chord-arc domain and chord-arc domain). We say
that Q C R"*! is a “I-sided chord-arc domain” (1-sided CAD for short) if it satisfies
the Corkscrew and Harnack Chain conditions and if 0€2 is AR. Analogously, we say
that  C R"*! is a “chord-arc domain” (CAD for short) if it is a 1-sided CAD and

additionally Qe = R"*! \ﬁ also satisfies the Corscrew condition.

2.3. Dyadic grids and sawtooths. We give a lemma concerning the existence of
a “dyadic grid”:

Lemma 2.5 (Existence and properties of the “dyadic grid”, [DSI, [DS2],
[Chi]). Suppose that E C R™ is n-dimensional AR. Then there exist constants
ag>0,n>0 and C' < oo depending only on dimension and the AR constant, such
that for each k € Z there is a collection of Borel sets (“cubes”)

D= {QYCco0: je T},
where Jy, denotes some (possibly finite) index set depending on k, satisfying:

(a) E=U; Q% for each k € Z.

(b) If m > k then either QT C Q? or Q7 N Qf = 0.

(¢) For each j,k € Z and each m > k, there is a unique i € Z such that Qf cQr.
(d) diam(Qf) < C27k,

(e) Fach Qé“ contains some “surface ball” A(mf, ap27F) = B(m;‘?, a2 ") N E.

)

(f H”({x < Q? : diSt(%E\Q?) < 7'2716}) < CT”H”(Qf), for all 3,k € Z and for
all 7 € (0, ap).

A few remarks are in order concerning this lemma.

e In the setting of a general space of homogeneous type, this lemma has been proved
by Christ [Chi], with the dyadic parameter 1/2 replaced by some constant § €
(0,1). In fact, one may always take 6 = 1/2 (cf. [HMMM, Proof of Proposition
2.12]). In the presence of the Ahlfors regularity property, the result already appears
in [DST] DS2].

e We shall denote by D(E) the collection of all relevant Q%, i.e.,
D(E) := | Dy,
k

where, if diam(FE) is finite, the union runs over those k € Z such that 27% <
diam(FE).
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e For a dyadic cube Q € Dy, we shall set £(Q) = 27%, and we shall refer to this
quantity as the “length” of Q). It is clear that ¢(Q) ~ diam(Q). Also, for Q € D(E)
we will set k(Q) =k if @ € Dy.

e Properties (d) and (e) imply that for each cube @ € D(E), there is a point xg € E,
a Euclidean ball B(xg,rg) and a surface ball A(zg,rq) := B(xq,rg)NE such that
cl(Q) < rg < {(Q), for some uniform constant ¢ > 0, and

(26) A(aﬁQ,er) C Q C A(SL’Q,CTQ)

for some uniform constant C' > 1. We shall denote these balls and surface balls by
(2.7) Bg = B(zq,rq),  Aq:=A(zq,rq),
(2.8) Bg = B(zq,Crq),  Aq = Alxg,Crq),

and we shall refer to the point zg as the “center” of Q.

e Let Q C R™! be an open set satisfying the Corkscrew condition and such that
00 is AR. Given @ € D(092) we define the “corkscrew point relative to Q7 as
Xq = Xa,- We note that

I(Xg) =~ dist(Xg, Q) ~ diam(Q).

Following [HM3| Section 3] we next introduce the notion of “Carleson region” and
“discretized sawtooth”. Given a cube ) € D(FE), the “discretized Carleson region”
Dg relative to ) is defined by

Do :={Q €D(E): Q' C Q}.
Let F = {Q;} C D(E) be a family of disjoint cubes. The “global discretized saw-
tooth” relative to F is the collection of cubes ) € D(E) that are not contained in
any @; € F, that is,
Dr :=D(E)\ | J Dq.
QieF

For a given () € D(E), the “local discretized sawtooth” relative to F is the collection
of cubes in D¢ that are not contained in any ); € F or, equivalently,

Drq :=Dg\ | Do, =DrNDg.
QiEF
We also introduce the “geometric” Carleson regions and sawtooths. In the sequel,
Q C R™! (n > 2) will be a 1-sided CAD. Given @ € D(92) we want to define some
associated regions which inherit the good properties of Q. Let W = W(2) denote
a collection of (closed) dyadic Whitney cubes of Q C R™"! so that the cubes in W
form a pairwise non-overlapping covering of €2, which satisfy

(2.9) 4diam(I) < dist(41,00Q) < dist(1,09Q) < 40 diam(I), VieWw,
and
diam(/;) ~ diam(/5), whenever I; and I5 touch.
Let X (1) denote the center of I, let (1) denote the sidelength of I, and write k = k;
if ((I) =27*.
Given 0 < A < 1 and I € W we write I* = (1 4+ ) for the “fattening” of I. By
taking A small enough, we can arrange matters, so that, first, dist(/*, J*) = dist (I, J)
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for every I, J € W, and secondly, I* meets J* if and only if 91 meets 0.J (the fattening
thus ensures overlap of I* and J* for any pair I,J € W whose boundaries touch,
so that the Harnack Chain property then holds locally in I* U J*, with constants
depending upon \). By picking A sufficiently small, say 0 < A < Ag, we may also
suppose that there is 7 € (1/2,1) such that for distinct I,J € W, we have that
7J N I* = . In what follows we will need to work with dilations I** = (1 + 2\)[
or [*** = (1 +4\)I, and in order to ensure that the same properties hold we further
assume that 0 < A < X\g/4.

For every ) € D(0f2) we can construct a family Wy, C W, and define

UQ = U ]*,

Tewy,

satisfying the following properties: Xq € Ug (actually, X can be taken to be the
center of some Whitney cube I € W), and there are uniform constants k* and K
such that

k(Q) —k* <k <k(Q)+ k", VIeW,
X(I) =u, Xo, VI €W,
dist(1,Q) < Ko2 ¥@, VI e W,

Here, X(I) —y, Xq means that the interior of Ug contains all balls in a Harnack
Chain (in §2) connecting X (I) to X¢, and moreover, for any point Z contained in
any ball in the Harnack Chain, we have dist(Z, 092) ~ dist(Z, Q2 \ Ug) with uniform
control of the implicit constants. The constants k*, Ky and the implicit constants
in the condition X (/) —p, Xgq, depend on at most allowable parameters and on
A. Moreover, given I € W we have that I € W[, , where Q; € D(952) satisfies
0(Qr) = L(I), and contains any fixed y € I such that dist(/,0) = dist(/,y). The
reader is referred to [HM3] for full details.

For a given @ € D(01), the “Carleson box” relative to @ is defined by

For a given family F = {Q;} of pairwise disjoint cubes and a given @ € D(012), we
define the “local sawtooth region” relative to F by

(2.10) Q;Q:int( U UQ/>:int< U [*),
Q'eDr,q IeWr @

where Wr ¢ = UQ, €Ds o W Analogously, we can slightly fatten the Whitney boxes

and use I to define new fattened Whitney regions and sawtooth domains. More
precisely, for every @ € D(99),

T} = int( U U@), Uy = mt( U U) vy = |J 1.
Q'eDq Tewy

Similarly, we can define 75", 2% 5 and Ug5" by using I™** in place of I**.
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Given a pairwise disjoint family F C D (we also allow F to be the null set) and
a constant p > 0, we derive another family F(p) C D from F as follows. Augment
F by adding cubes @@ € D whose sidelength ¢(Q) < p and let F(p) denote the
corresponding collection of maximal cubes. Note that the corresponding discrete
sawtooth region Dz, is the union of all cubes @ € Dx such that £(Q) > p. For a
given constant p and a cube Q) € D, let Df(,) o denote the local discrete sawtooth
region and let Qz(,) o denote the geometric sawtooth region relative to it.

Given @ € D(092) and 0 < € < 1, if we take Fy = O, one has that Fy(/(Q)) is the
collection of Q" € D(9NQ) such that 0(Q)/2 < £(Q') < €l(Q), hence Dr(¢0)).0 =
{Q € Dg : UQ") > €l(Q)}. We then introduce Uy, = Qry(ce(q)),@ , Which is a
Whitney region relative to ) whose distance to 02 is of the order of /(Q). For later
use, we observe that given Qg € D(0f2), the sets {UQ,a}QeDQO have bounded overlap
with constant that may depend on e. Indeed, suppose that there is X € Ug,. N
Uy . with Q, Q" € Dg,. By construction ¢(Q) ~. §(X) ~. ¢(Q’) and dist(Q, Q") <
dist(X, Q) + dist(X, Q") <c 4(Q) + Q') ~. £(Q). The bounded overlap property,
with constants depending on ¢, follows then at once.

Following [HM3], one can easily see that there exist constants 0 < k; < 1 and
ko > max{2C,4/c} (with C the constant in (2.§)), and ¢ such that c/(Q) < rg),
depending only on the allowable parameters, so that

(2.11) k1BoNQ C Ty C T, CTy CTy CroBeNQ=:3B;NQ,
where By is defined as in ([2.7]).

2.4. PDE estimates. Next, we recall several facts concerning the elliptic measures
and the Green functions. For our first results we will only assume that Q c R,
n > 2, is an open set, not necessarily connected, with 02 satisfying the AR property.
Later we will focus on the case where € is a 1-sided CAD.

Definition 2.12. Let Lu = — div(AVu) be a variable coefficient second order diver-
gence form operator with A(X) = (a;,;(X ))f;“:ll being a real (not necessarily sym-
metric) matrix with a; ; € L>(Q2) for 1 <+i,5 <n+ 1, and A uniformly elliptic, that
is, there exists A > 1 such that

ATHEP S AXE-€, JAX)E - T < Al
for all £,¢ € R*™! and almost every X € Q.

In what follows we will only be working with this kind of operators, we will refer
to them as “elliptic operators” for the sake of simplicity. We write LT to denote the
transpose of L, or, in other words, L"u = — div(A"Vu) with AT being the transpose
matrix of A.

We say that a function u € W'?(Q) is a weak solution of Lu = 0 in €, or that
Lu = 0 in the weak sense, if

// AX)Va(X) - Vo(X)dX =0, Vg e C2(Q).

Associated with L and LT one can respectively construct the elliptic measures
{wf}xeq and {wi } xeq, and the Green functions G, and Gy (see [HMTT] for full
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details). We next present some definitions and properties that will be used throughout
this paper.

Definition 2.13. Let Q C R"*! be a 1-sided CAD and let L be a real (non-necessarily

symmetric) elliptic operator. We say that the elliptic measure wy, € A, (09) if there

exist constants 0 < «, f < 1 such that given an arbitrary surface ball Ag = By N 02,

with By = B(xo,70), g € 0, 0 < r < diam(0f), and for every surface ball A =

B N oS centered at 02 with B C By, and for every Borel set F' C A, we have that
Xag

wy, () a(F)
(2.14) mga = mgﬁ.

It is well known (see [GRI, [CE]) that since ¢ is a doubling measure (recall that
01} satisfies the AR condition), w;, € A (99) if and only if w;, < o in I and there
exists 1 < ¢ < oo such that for every Ay and A as above

(][A kaode(m)); < C][A by > (x) do (),

where k:fAO = dwaO /do is the Radon-Nikodym derivative. Moreover since €2 is a
1-sided CAD the latter is equivalent to the scale invariant estimate (see [HMTTI])

(2.15) [ K wrdoty) < Coan,

for every surface ball Ay.

Lemma 2.16. Suppose that Q@ C R™™ is an open set such that OQ satisfies the
AR property. Let L be an elliptic operator, there exist constants ¢ < 1 and C > 1
(depending only on the AR constant and on the ellipticity of L) such that for every
xz € 02 and every 0 < r < diam(0S?), we have

wi (A(z,r)) > %, VY € B(z,cr) N

We refer the reader to [Bou, Lemma 1] for the proof in the harmonic case and
to [HMTT] for general elliptic operators. See also [HKM|, Theorem 6.18] and [Zhal
Section 3.

The proofs of the following lemmas may be found in [HMT1]. We note that, in par-
ticular, the AR hypothesis implies that 02 satisfies the Capacity Density Condition,
hence 0f2 is Wiener regular at every point (see [HLMN|, Lemma 3.27]).

Lemma 2.17. Suppose that Q@ C R™™ is an open set such that OQ satisfies the
AR property. Given an elliptic operator L, there exist C > 1 (depending only on
dimension and on the ellipticity of L) and cy > 0 (depending on the above parameters
and on 0 € (0,1)) such that Gr, the Green function associated with L, satisfies

(2.18) GL(X,Y) <O X —-Y|'"™
(2.19) ol X — Y[ <GLX,)Y), if | X-Y|<05(X), 6¢c(0,1);
(2.20) GL(Y)e C(Q\{Y}) and GL(Y)|,, =0 VY e
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(2.21) GLX,Y)>0, YX,Y€Q, X#£Y;

(2.22) GLX,Y) =G (Y, X), VX,Y €Q, X#Y.

Moreover, GL(-,Y) € WE(Q\ {Y}) for every Y € Q, and satisfies LGL(-,Y) = dy

loc
in the weak sense in €2, that is,

(2.23) / AX)VxGL(X,Y) - Vp(X)dX = o(Y), Ve Cx(Q).

Lemma 2.24. Suppose that Q C R is a 1-sided CAD. Let L be an elliptic
operator, there exist C, 0 < v < 1 (depending only on dimension, the 1-sided CAD
constants and the ellipticity of L), such that for every By = B(xg,10) with xy € OS2,
0 < ro < diam(09), and Ag = By N I we have the following properties:

(a) If0 <wu e W'lf)’cz(Bo NQ)NC(ByNQ) is a weak solution of Lu = 0 in By N Q
such that uw =0 in Ag, then

X — 0l
u(X)§C<ﬂ> sup u(Y), VX e ByNn.

To YeByNQ

(b) If B = B(z,r) with x € 02 and A = BN 0N is such that 2B C By, then for
all X € Q\ By we have that
1
wa (A) <" IGL(X, Xa) < Cwi (D).
(c) If X € Q\ 4By then
wf(QAO) S CW?(A())
(d) If B = B(x,r) with x € 0 and A := BN OQ is such that B C By, then for
every X € Q\ 2k0By with kg as in (2.11), we have that
I Xa, wi((A) XA
——= < Cw;°(A).
Twp(dg) T (&)
Moreover, if FF C Ay is a Borel set then

3. PROOF OF THEOREM [L.1]

3.1. Proof of Theorem (a) = (b). First we introduce some notation.

Definition 3.1. Let £ C R™"! be an n-dimensional AR set. Fix Qy € D(E) and let
i be a regular Borel measure on ()y. Given g5 € (0,1) and a Borel set F' C @, a
good eg-cover of F with respect to u, of length k € N, is a collection {O,}%_, of Borel
subsets of Qg, together with pairwise disjoint families 7, = {Q¢} C Dg,, such that

(CL) FCOkCOk71C"'CO2C01CQ07
() Or=Ugeer, @i 1<K,
(0) p(ONQTY) <eou@),  VQI'eF, 2<(<k
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Lemma 3.2. If {O,}5_, is a good q-cover of F with respect to p of length k € N
then

(33)  wONQ) <eg (@), VO eFn, 1<m<I<Ek

Proof. Fix 1 < ¢ < k and we proceed by induction in m. If m = ¢ the estimate is
trivial since u(O, N Q%) = p(Q%). If m = £ — 1 (in which case necessarily ¢ > 2)
then follows directly from (c) in Definition [3.1] Assume next that holds
for some fixed 2 < m < ¢ and we prove it for m — 1 in place of m. We first claim
that for every sz_l € F,n—1 there holds

(3.4) onQrtc |y oaner
QreFm
QreQrt

To see this, take z € O, N Q7' C O,,. Hence, there exists a unique Q7" € Fp such
that z € Q7" and consequently either Qrt C QT or QT C QI QM ¢ Q7
then p(Q" 1) = u(O0, NQT ) < eou(Q1), by (c) in Definition , and this is a
contradiction since 0 < g9 < 1. Thus, Q7" C Q"' and holds and

pOMQr < D won@r)<er™ D ul@)
QT eFm QT eFm
Qe QreQyt

—m m— £—(m— m—
<0 N QY < g "V u(QrY),

where we have applied the induction hypothesis to the @7"’s and the properties of
the good gp-cover. O

Lemma 3.5. Let E C R™™ be an n-dimensional AR set and fit Qo € D(E). Let u
be a reqular Borel measure on Qo and assume that it is dyadically doubling on Qq,
that is, there exists C,, > 1 such that p(Q*) < C,u(Q) for every @ € Dg, \ {Qo},
with Q* D Q and ((Q*) = 20(Q) (i.e., Q* is the the “dyadic parent” of Q). For every
0<eo <e !, if F C Qo with u(F) < ap(Qo) and 0 < o < e5/(2C7) then F has a
good eg-cover with respect to u of length ko = ko(a,e0) € N, ko > 2, which satisfies
ko =~ %. In particular, if u(F) = 0, then F has a good eo-cover of arbitrary

length.

Proof. Fix €y, F and « as in the statement and write a := C}, /e > 1. Note that
since 0 < o < £3/(2C7) = a~?/2 there is a unique ko = ko(a, g0) € N, kg > 2, such
that
a bl < 2a < a_ko,
and our choice of gy gives that
1 loga™t loga™t
3(1+1ogC) logey" = 0 ~ logey "

(3.6)

Since p(F) < au(Qo), by outer regularity there exists a relatively open set U C F
such that FF C U and p(U \ F) < au(Qyp). Set F':= U N Qo C Qp and define the

level sets
Q= {xEQO: Mi,Qo(1ﬁ>(x) >a*k}, 1 <k < ko,
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where M, /il,Qo is the local dyadic maximal operator with respect to p given by

Vi @)= s o [ fdnt,  f < L@ i)

xGQEDQO

Clearly, €3 C Q9 C -+ C Q, C Qo. Moreover, F C Q,. To see this fix € F and
use that U is relatively open to find B, = B(x,r,) with r, > 0 so that B,NE C U.
Take next @, € D with Q, > z so that £(Q,) < ¢(Qo) and diam(Q,) < r,. Since

€ FNQ, C Q,NQy and Q) < £(Qo) it follows that @), € Dg,. Also since
diam(Q,) < r, we easily see that @, C B, N FE C U and eventually we have obtained

that ), C F which in turn gives

My o,(15)(z) > 0 1> :

Hence, x € )y as desired.

All the previous observations show that F' C FCOCQcC - C Qk, C Qo and
in particular Q # @ for every k > 1. Moreover, by our choice of kg, we have that
for every 1 < k < kg

u(F) < u(U) < p(U\ F) + p(F) < 2041(Qo) < a™pa(Qo) < a*u(Qo)-

Subdividing @)y dyadically we can then select a pairwise disjoint collection of cubes
Fr = {Q%} C Dg, \ {Qo} which are maximal with respect to the property that

(3.7) p(FNQF) > a ™ u(@)),
and also Q; = UQfefk QY (note that F,, # @ since Q; # @). By the maximality of
the selected cubes we obtain that
p(F 0 Qk)
n(@Qr)
where (Q%)* is the dyadic parent of QF.
Next we claim that for each Q?H € Fi+1 we have that p(2, N Q?H) < 5()#(@?“).
To see this we first observe that if QF N Q;‘?H # (@, then necessarily QF C Q?“, for
otherwise Q?H C QF and by the maximality of the cube Q?“ and we would

have that a *u(QF) < w(F N QF) < a=*1u(QF), which leads to a contradiction since
a > 1. Hence, QF C Q?“ whenever Q¥ N Q?“ # (). Using this, (3.7)), and (3.8)) (for
Q?H and k + 1 replacing Q¥ and k respectively), we have that

pQN@Q) = > p@nf) = > u(@)
QF: QFcQrH! QF: QFcQkt!
k3 7 7 v g J

<d' Y pENQH < uFNQT) <a Cup(QF) = g0 nl(@T),
QF:QkcQk !

(F N (QF))

1
3 = O @)

—k
<Cpa™,

and this proves the claim.

To complete the proof of the lemma we define Oy := Q,_r+1 and note that the
sets {Ok}’,zozl form a good ey-cover of F', with respect to u, of length kg which satisfies
(3.6). Finally we observe that if pu(F) = 0, then « can be taken arbitrarily small,
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hence kg, the length of the good eg-cover of F', can be taken as large as desired by

B-9). 0

Given Qo € D(09) and for every n € (0,1) we define the modified non-tangential
cone

(3.9) o, (x) = |J Ugwp. Ugw= | Uo
QeDgq, Q'ebq
Q3 6Q)>n*(Q)

As already noted in Section 2, the sets {UQ,n3}Q€DQO have bounded overlap with
constant depending on 7.

Lemma 3.10. There exist 0 < n < 1, depending only on dimension, the 1-sided
CAD constants and the ellipticity of L, and og € (0,1), C,, > 1 both depending on
the same parameters and additionally on n, such that for every Qo € D, for every

0 < a < ap, and for every Borel set ' C @y satisfying waO (F) < awaO(Qo), there
exists a Borel set S C Qg such that the bounded weak solution u(X) = wy (S) satisfies
(3.11)

1/2 )
Shou(r) = (//r" " |Vu(Y)[P5(Y )™ dY) > C,H(loga™)?, Vz e F,
Qo \*F

Assuming this result momentarily, we can now prove Theorem [L.1]

Proof of Proof of Theorem[1.1: (a) = (b). Our first goal is to see that given 8 €
(0,1) there exists a € (0,1) so that for every @y € D and every Borel set F' C Q,
we have that

W% (F) o(F)
w2 (Qo) 7(Qo)

Fix then 8 € (0,1) and Qy € D, and take a Borel set F' C Q) so that waO (F) <

ozwf% (Qo) where o € (0,1) is to be chosen. Applying Lemma [3.10} if we assume
that 0 < a < g, then u(X) = wy (S) satisfies (3.11]) and therefore

(3.12) <a —

< p.

(3.13) C,*loga'o(F) S/FSgOu(x)Qdo(:r;)

< /0 (//F " \Vu(Y)\zé(Y)l_”dY> do(z)

~ [ wupsy( | 1, 00) doa)) ay

where we have used that T'¢, () C Tg, C Bp, NQ (see (2.11)), and we have used
Fubini’s theorem. To estimate the inner integral we fix Y € By, N and i € D(99)
such that |Y — gy] = §(Y). We claim that

(3.14) {reQo: Y el ()} CA®@FCypsY)).
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To show this let = € Qo be such that Y € T, (x). Then there exists @ € Dg, such
that € Q and Y € Ug,s. Hence, there is Q' € Dg with £(Q’') > n*((Q) such that
Y € Uy and consequently §(Y) ~ dist(Y, Q') ~ ¢(Q’). Then,

[ — §1 < diam(Q) + dist(Y, Q) + 8(Y) S £(Q) +8(Y) < Oy 8(Y),

thus = € A(y,Cn=36(Y)) as desired. If we now use ([3.14)) and the AR property we
conclude that for every Y € Bj N2

/Q Loy, (V) do(x) < o (A, C~*6(Y))) < - s(Y)".

Plugging this into (3.13) and using ((1.2)), since u € VV&?(Q) N L*>®(Q) with Lu = 0 in
the weak sense in €2, we obtain

Cyttoa () S [ (VU aY S e(ag,) < O ol@u),
Qo

where we have used that AL = Bf, N JQ, that 0 < uw(X) < w¥(092) <1 and that

00 is AR. Rearranging the terms we see that o(F)/o(Qo) < f provided 0 < a <
min{oyg, e~ "F ') and (B.12) follows.

Next we see that (3.12) implies that wy, € A (9€2). To see this we first obtain a
dyadic-A,, condition. Fix Q°, Qg € D with Qy C Q°. Lemma parts (¢) and (d),
Harnack’s inequality and Lemma [2.16| gives for every F' C Qg

Lo, () _ 0, "(F) _, wp(F)
X =X = V17X :
Crup®(Qo) ~ w2 (Qo) w;,*(Qo)

With all these in hand we fix 8 € (0,1) and take the corresponding o € (0,1) so
that (3.12]) holds. Let M > 1 be large enough to be chosen and we are going to see
that

(3.15)

X

C(F F
(3.16) “’g(—()gi o)
w, Q) G o(Qo)
. . w0
Assuming that the first estimate holds we see that (3.15]) yields S0 < a. Thus
wp, Q

we can apply (3.12) to obtain that :((QI?) < [ as desired. To complete the proof we
need to see that (3.16) gives (2.14). The argument is standard and is left to the
the interested reader. This completes the proof of Theorem modulo the proof of

Lemma [3.10 O

Before proving Lemma [3.10] we need some notation and some estimates. Let n =
277 < 1. Given Q € D(99Q) we define ) € Dg to be the unique cube such that

g € Q, and £(Q) = n¢(Q). Using this notation we have the following estimates
which will be used later:

(3.17) 2,200\ Q) = w, 2(09) —w, 2(Q) < 1—w,%(Q) < O

where C' depends on dimension, the 1-sided CAD constants and the ellipticity of L
and 7 is the parameter in Lemma [2.24. To see this, keeping in mind the notation
introduced in ([2.6)), let o(X) = ¢o((X —2q)/rg) where gy € C.(R"™) with 15(91) <
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©o < 1p(o2). Note that ¢ € C.(R") with 0 < ¢ < 1, supp(p) C 2Bg, and ¢ =1 in
Bg. In particular, 90‘89 < I, <1g and hence

X~ X=

(3.18) v(X) = /89 o(y)dw, °(y) < w; %(Q)

Note that v € W,'?(Q)NC(Q) is a weak solution with 0 < v < 1 and Vg = Plog =1

loc
in Bg. Thus, 7 = 1 —v € W,22(Q) N C(Q) is a weak solution with 0 < 7 < 1 and
’17‘69 =1—¢| ,=0in Bg. Thus we can use (3.18) and part (a) in Lemma [2.24] to
see that

X5 . [Xg —zol\"
(319)  1-w, %@ <1—0(X) = 3(X) (2L [l < O,
TQ
where the last estimate follows from
X5 — 20| < [Xg — 25| +|zg — 20| S UQ) =nl(Q),

since x¢ € @ and X@ is a corkscrew point relative to Q.

We also claim that there exists ¢y € (0,1) depending only on the AR constant
and on the ellipticity of L so that if 1 is small enough (depending only on the AR
constant) then

(3.20) o <w Q) <1 e
The first inequality follows at once from Lemma and Harnack’s inequality. For
the second one we claim that if 7 is small enough we can find Q’ € D with E(Q ) =
(Q) Q' N Q @ and dlst(Q Q’) (Q) Indeed, if we write Q7 for the j-th
ancestor of Q (that is, the unique cube satisfying 0(Q7) = 20¢(Q) and Q C Q7) then
o(Q) = 0(Q7)" = 2m0(Q)" > o(Q) for j large enough depending on the AR constant.
Note that in the previous estimates we are implicitly using that ¢(Q) < diam(9S2),
fact that follows by choosing 7 small enough depending on the AR constant. Once
J has been chosen we must have Q - QJ and we can easily pick Q’ € Dg; with all
the desired properties. In turn by Harnack’s inequality and Lemma [2.16| one can see
that w’@ (@’) pe wX@’(@’) > C~! with C > 1 and consequently

0, 2(Q) = w, 2(0) —w, Y0\ Q) < 1—w, Y(Q) < 1-C7,

which is the desired estimate.

Proof of Lemma[3.10. Let n = 2% < 1 be a small dyadic number to be chosen (in

particular and hold). Fix @y € D and note that w := waO is a regular
Borel measure on 92 which is dyadically doubling with constants Cy (depending
only on dimension, the 1-sided CAD constants and the ellipticity of L) by part (c)
of Lemma and Harnack’s inequality. Let 0 < g9 < e™! and 0 < a < €2/(2C3),
sufficiently small to be chosen later, and let F' C @)y be a Borel set such that w(F') <
aw(Qo). By Lemma applied to p = w, it follows that F' has a good ep-cover of

length k ~ 11023:11 , with k > 2. Let {O,}}_, be the corresponding collection of Borel
08 &

sets so that ¥ C O, C --- C O1 C Q¢ and O, = UQfEH Q¢, with disjoint families

={Qf} C Dg, \ {Qo}. Now, using the notation above we define Oy := gecr, Qf
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and consider the Borel set S := U?:z ((5j_1 \ O;). Note that the union of sets
comprising S is disjoint, hence

k
(3.21) Ls(y) =Y 15, 0,4,  y €I
j=2
Now we introduce some notation. For each y € F and 1 < ¢ < k, there exists a
unique Q%(y) € F; such that y € Q%(y). We also let Pf(y) € Dge(y) be the unique
cube verifying y € Pf(y) and E(Pf&y)) = nl(Q%(y)). Associated w1th Pf(y) we can
construct P (y) as above, that is, P{(y) € Dpe(, satisfies £(Pf(y)) = nl(P/(y)) and

Tpe(y) € P!(y), where Zpe(, is the center of Pf(y). As usual we write Xge(y, and

Xpe(y) to denote, respectively, the corkscrew points associated to Q'(y) and P!(y).
Let u(X) := w(S) be so that

(3.22) w(X) = /a REOEEL ZWL 0\ 0)).

In the following lemma we obtain a lower bound for the oscillation of wu.

Lemma 3.23. Ifn and gy are taken sufficiently small (depending only on dimension,
the 1-sided CAD constants and the ellipticity of L), then for each y € F, and each
1<t <k-—1, we have that

(3.24) }u(XQf(y)) — u(Xﬁf(y))| >
where cq is the constant in ([3.20))

Assume this result momentarily and fix the corresponding n and ¢y. Fix also
ye F,1</(<k-1,and write Q! := Q%(y) € Dg,, and P} := Pf(y) € Dge. By
construction Xg, € Uge and X pe € Upe, hence we can find Whitney cubes / gt € ng
and Ipe € W;;f so that Xge € I and Xpe € Ipe.

Also, note that £(QY) = n¢(QY) and ¢(PY) = ?0(Qf) which imply QY > (P! >
QY since n < 1. On the other hand, Q¢ C Q¢ and P/ C P! C Qf, which in
turn yield that Iij and Il*gf are both contained in UQf’ns. Using , the notation

[U]UQe s =4 , 3udX , Moser’s “local boundedness” estimates and the previous
il Qm

observations we can obtain

% S ‘U(X@f) — ‘ + ‘ — U(Xlsf)l

QZ 3 Ql’ n3

1/2 1/2
<]§[i [u(Y) — [u] Ut i dY) - (]é[ lu(Y) — [u] Ut ik dY)
b o 2¢ 1/2
<G, (z(@» //U » lu(Y) — [lvge s dy)

0,7(//(]( 3 |Vu(Y)\25(Y)1"dY)1/2,

N

A

IN
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where the last estimate follows from the Poincaré’s inequality in [HMT2, Lemma
3.1]), and the fact that 6(Y) &, £(QY) for every YV € Uge - Summing up the above
estimate, taking into account that the sets {Uq 3 }qeng, have bounded overlap with
constant depending on 7, and using Lemma we obtain if « is small enough

1

2 k-1 2
La-n=0Y [ [muRm Ty <6 (s3,000)"
(=1 Q43

This completes the proof of Lemma [3.10} O

ctloga~

4 loge,

Proof of Lemma . Fix y € F and write Q¢ := Q%(y), Pf := P{(y). Our first goal
is to estimate u(X ) For starters, by (3.17)

Xa Xa¢ ¢ Xat ¢
(3.25) w(Xge) =wp ' (5) Sw, (92N Qi) +wy 1(5ﬂQ-)
< Cn” +w (SQQ) = Cn"+1L
For 1 < ¢ <k — 1 we have that QfCOECOj for each 2 < j < ¢ and hence

k

(3.26) IwaL (0;\0)) = Y wy QN0 0,)
j=t+1
= > W, (QIN(0;11\0y) +WL QN (O Or)) = 1 + 1,
j=0+2
with the understanding that if / = £ — 1 then I; = 0.
Next, we claim that I < Cyep. This is clear if £/ =k — 1 and for 1 < ¢ < k — 2,
using Harnack’s inequality to move from X@e to XQe (with constants depending on

n), Lemma [2.24| parts (c¢) and (d) (recall that w = w; QO) we have that

k

(327) L <C, ZwL (QIN(0;11\0y) <
Jj=0+2
k

k
Z w(@N0;_1) <C, Z e " < Cyeo,

j=t+2 j=0+2

< Cy
~ w(@Q))

where the next-to- last estimate follows from Lemma with p=w, and the last one

uses that gy < e™'. Let us now focus on I,. Note that QE N Og , hence
yields

I, = WL (Q \ Opy) < WL (Qf) <1-c.
Collecting this with (3.25)), (3.26)), (3.27]), we conclude that

3
(328) U(XQ@) < C??Fy + Cnﬁo +1-— cy < 1-— ZCO’

by choosing first 1 small enough so that Cn” < ¢/8 and then £y small enough so
that Cyeo < ¢o/8.

To get a lower bound for u(Xs,) we use that QY N O, = Q¢ and ( (3-20):
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X@z 12 ~
U(X@g) = WL "(S) > WL (Q (O¢\ Op11))
X
(Qe \Op1) = WL (Q€> (Qz N Opp1) > ¢o — WL (Qz N Opp1).

Using Harnack’s inequality to move from X gt to XQe (with constants depending on
n), Lemma [2.24| parts (c¢) and (d) (recall that w = w; QO) we have that
w(Qf N Opy1)

w(Q5)
where the last estimate follows from Lemma[3.2) with ;1 = w and since 1 < ¢ < k—1.
Assuming further that Cyeo < ¢p/4 we arrive at

X~y
(320)  w, (01N Ow) < Cro, “ (@NOuy) <, < Cyeo,

3
(330) U(XQ‘@) Z Co — Cné‘o Z ZCQ.

Let us now focus on estimating u(Xp:) and we consider two cases:
K3

Case 1: P/N Q! = @. Much as before by (3.17)

Xt X

X~
(331) u(Xp) =w, " (S) Sw, " (OQ\ PY) +w, " (SN PY)
Xﬁé i -
<Cn'+w, "(SNP)=Cn"+1L
For 1 </ <k — 1 we have that PfCQfCOgCOj for each 2 < j < /¢ and hence

k

~ b Xp ~ Xpe ~
(332) T=) w, " (B/N(0;1\0)) = Y w, " (PN (0;1\0)))
j=2 j=t+1
k ~

- Z . (P ﬁ( - 1\0))+WLP5(R'KQ(5Z\O£+1)) :3T1+T2,

j=0+2

with the understanding that if { = k — 1 then Tl = 0. The estimate for Tl (when
¢ < k —2) follows from that of I; since using Harnack’s inequality to move from Xz,

to Xge and the fact that Pf C Q¢ we easily obtain from (3.27)

(3.33) T, <G, Z wL 0,1\ 0;)) = CyL1 < Cyey.

j=L+2

On the other hand, note that P/ N (O, \ Op1) = (PLN QY \ Opps = @ and hence

T, = 0. Thus (3:31), (3-32), and (3.33) yield
1
(3.34) w(Xpe) < Cn" + Chep < 160

by choosing first 1 small enough so that Cn” < ¢/8 and then £y small enough so
that Cyeg < /8. This estimate along with (3.30]) give at once

3
[u(Xge) — u(Xp)l = u(Xgy) — u(Xpr) = e0 = 360 = 5co,

which is the desired estimate.
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Case 2: P/ N Q! # (. Notice that since both cubes have the same sidelength it
follows that P! = Qf. Our goal is to get a lower bound for u(Xp). We use that
PINO,=QiN0O, = Qf = P and B.17):
X5 X5 - X5
w(Xpe) = wp, " () 2w (B{ N (O \ Oy)) = wp " (P Ors)
X5 X5 X5
=, (P) =, (PN Ovi) 2 1= O =, ™ (PE 0 Oa).

Moreover, using Harnack’s inequality to move from Xp, to X5 (with constants de-

pending on 1) and (3.29)) we observe that

X~¢ X~¢ ~ X~g ~
CULP"” (Pf N OK—H) = wLPZ (Qf N Og+1) S anLQl (Qf N Og_H) S 07760.

Collecting the obtained estimates we conclude that
1
(335) U(X@g) 2 1-— 07]7 - Cnéfo Z 1-— ZCO’

if we choose first n small enough so that Cn? < ¢/8 and then gy small enough so that
Cheo < ¢o/8. If we now gather (3.28) and (3.35) we eventually obtain the desired

estimate

|u(X50) — u(Xpe)

1 3 1
= u(X]Sf) - U<X@f) > (]. — ZCO) — <]_ — ZCO) = 500.
This completes the proof. 0

3.2. Proof of Theorem (1.1 (b) = (a). We start with some notation and auxil-
iary results. Let Qg € D and a = {OéQ}QeDQO be a sequence of non-negative numbers
indexed by the dyadic cubes in Dg,. For any collection D' C Dy,, we define the
associated discrete “measure”
(3.36) ma (D) == aq.

QeD

We say that m,, is a discrete “Carleson measure” (with respect to o) in @, if

m, (D
(3.37) Imalle@y) == sup ma(Do) < 0.

QeDgq, U(Q)

The following result reduces the desired Carleson measure estimate to a discrete
one:

Lemma 3.38. Let Q C R"! be a I-sided CAD and let Lu = —div(AVu) be a
real (not necessarily symmetric) elliptic operator. Let u € WL2(Q) N L®(Q) satisfy
Lu = 0 in the weak sense in €2 and define

(3.39) o = {ag)gen = { //U Vu(X)[28(X) dx}

Suppose that there exist Co, My > 1 such that ||mq|lco) < C’0||u||%oo(m for every
Q € D(0N) verifying £(Q) < diam(0)/My. Then,

1
(3.40) sup — // Vu(X)P6(X)dX < C(1+ Co+ Mo)||ul2er.
(58T M Banna

QeD’
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where C' depends only on dimension, the 1-sided CAD constants, and the ellipticity
of L.

Proof. By homogeneity we may assume that ||u||p~) = 1. First, we claim that
(3.41) sup

Qen(o0) 0(Q)
Given Qo € D(052) such that ¢(Qy) < diam(0)/M,, we have that

//; [Vu(X)PS(X)dX < Y ag=ma(Dg,) < [mallei@no(Qo) < Coo(Qo)-

QEDQO

Otherwise, if £(Qy) > diam(0)/M, (this happens only if diam(02) < o0), there
exists a unique kg > 1 so that

diam(092) i diam(0Q2)
— K o~ 7
My, ~ o) <2 M,

As observed before if diam(9€) < oo then £(Qo) < diam(9€2) hence 2¥ < M,. Define
the disjoint collection Dy := {Q' € Dg, : £(Q') = 27%¢(Qp)} and let

Dt = {Q € Dg, : UQ) < 27F6(Qo)}, D% :={Q € Dg, : £(Q) >27"¢(Q)}.
Note that

// |VU(X)|2(S(X) dX S Z CYQ + Z OéQ = IQo + IIQO'
Tqo

QGDZ;%&“ Qe Dblg

/ |Vu(X)?6(X)dX < Cy+ M.
Tq

2]{:071

Note that if @ € D", there exists a unique Q' € Dy such that Q € D¢, hence
= D ag= Y ma@o) < Y Imalle)a(@) < Coo(Qy)-
Q€D QDo Q'eDy Q'€Dy

where we have used our hypothesis since £(Q') = 27%4(Q,) < diam(9)/M,. For
the second term, since 0(X) ~ ¢(Q) for X € Ug, we write

Mo, S Y // IVu(X)|?dX < Z // X)|2dx

QEDblg blg
S 2]%5( Qo)~ 1|TQO| S Moo (Qo),

where we have used Caccioppoli’s inequality, the fact that the family {Uj}qep has
bounded overlap, the normalization ||| pe~) =1, (2.11)), the AR property, and that
2k < M,. Gathering the above we have proved that (3.41)) holds.

Our next goal is to see that (3.41)) yields (3.40). Fix then z € 92 and 0 < r < co.
Set

IZ={IeW:InB(z,r)#0}.
Given I € Z, let Z; € I N B(x,r) and note that by
(3.42) diam(I) < dist(1,00) < |Z; —z| < r.
Set
7l =T e T:((]) < diam(00)/4}, I ={I € T:¢(I) > diam(99)/4},
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with the understanding that Z" = () if diam(0Q) = co. Then,

//m Vul6dX < ) //|Vu| SdX + Z//|Vu]5dX—I+H

]ezbmall Ierlg
here we understand that IT = 0 if Z"® = (.
To estimate I we set 79 = min{r, diam(9)/4} and pick ky € Z so that 2F~1 <

ro < 2%2. Set

D, ={QeD:(Q)=2", QNA(z,3r) # O}
Given I € 75! we pick y € 99 so that dist(1, 9Q) = dist(/,y). Hence there exists a
unique Q; € D so that y € Q; and £(Q;) = £(I) < ro < diam(9Q)/4 by (3.42). This
as mentioned above implies that I € W;, . On the other hand by (3.42)

ly — x| <dist(y, ) + diam(]) + |Z; — x| < 3r,

hence there exists a unique @ € Dy so that y € Q. Since £(Qr) < 1o < 27 = ((Q) we
conclude that Q; C @ and consequently I C int(Ug,) C Ty. In short we have shown
that if I € Z5m2! then there exists Q € Dy so that I C Tg. Thus,

1<y //T Vul?sdX £ (Co+ Mo) Y 0(Q) = (Co+ Moo | @)

QeD, QEeDy QeD,
< (Co+ Mp)o(A(z,Cr)) < (Co + Mo)r",
where we have used that the Whitney boxes have non-overlapping interiors, (3.41)),
the fact that D; is a pairwise disjoint family, that (Jgep, @ C A(x, Cr) (C' depends
on dimension and AR), and that 09 is AR.

We now estimate IT using ([2.9)), Caccioppoli’s inequality and our assumption
[l ooy = 1

IS Y« //|Vu|2dX< > 1/ lul>dX
I*

Iezhisg IeTbis
<SS w3 e 1M1 = 24,
Iel’big dianzl(aﬂ) §2k<1”

To estimate the last term we observe that if Y € I € Z"® we have by (2.9)
Y — x| < diam([]) + dist(I, 092) 4+ diam(0Q) < ¢(1).
This and the fact that Whitney boxes have non-overlapping interiors imply
#{I € TV : ((I) =2} = 27K+ N
TE€Tbig:4(T) =2k

—orkeen| ) 1| <2k B o) S 1
IeThie:f(1)=2F

ns Y 2ngm

diam(992) k
g <2F<r

Therefore,

Collecting the estimates for I and II we obtain the desired estimate. O
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Proof of Proof of Theorem[I.1: (b) = (a). Let u € W,22(Q) N L®(Q) be so that
Lu = 0 in the weak sense in ) and our goal is to prove that holds. By homo-
geneity we may assume, without loss of generality, that ||u||~) = 1. On the other
hand, by Lemma we can reduce matters to establish that ||m,|lc) < Co, for
every @ € D(09Q) such that ¢(Q) < diam(02)/M, and where « is given in (3.39)). To
show this we fix My > 2k/c, where ¢ is the corkscrew constant and kg as in (2.11)).
We also fix a cube Q° € D(9N2) with ¢(Q°) < diam(9)/My. Applying [HMTZ,
Lemma 3.12] it suffices to show that for every Qg € Dgo we can find some pairwise
disjoint family Fo, C Dg, \ {Qo} satisfying

(3.43) 0(@0\ U Qj) > K1 'o(Qu),

QjEFQ,

and prove that
(3.44) ma(D;QO,QO) < Mio(Qo).

With all the previous reductions our main goal is to find Fg, so that (3.43) holds

and establish (3.44). Having these in mind we let Bg, = B(zq,,rq,) With rg, ~
£(Qo) as in (2.6). Let Xo := Xypa,, be the corkscrew point relative to MyAg,

(note that Myrg, < Mol(Qy) < diam(0f2)). By our choice of My, it is clear that
Qo C MyAg, and also that §(Xy) > cMorg, > 2korg,. Hence, by (2.11)),
(3.45) Xy € Q\ B,

On the other hand, §(Xg,) ~ €(Qo), 6(Xo) = Mul(Qo) > £(Qo), and | Xy — Xg,| <
Mol(Qo). Using Lemmal[2.16|and Harnack’s inequality, there exists Cy > 1 depending
on the 1-sided CAD constants, the ellipticity of L, and on M, (which is already fixed),
such that w;°(Qo) > Cy .

Next, we define the normalized elliptic measure and Green function as
(346) Wo ‘= CO O'(Qo)w2(0, and go(> = CO O'(Q(])GL<X0, )
Note the fact that wy°(9Q) < 1 implies
wo (o) <o
o(Qo)

Recall that we have assumed that wy € A (092) and, as observed above, this means
after passing to the previous renormalization that wy < o and we write ky = dwy/do
for the Radon-Nikodym derivative. Since Q)9 C MyAg,, using (2.15) we have that

(f oy i) e,

In particular, for any Borel set F' C Qp, using Holder’s inequality we obtain

o < (][ ) dff(y)) " (f afy)" da<y>) "o (2"

Hence we can apply [HMT2, Lemma 3.5] to 1 = wp, and extract a pairwise disjoint

family Fo, = {Q;} C Dg, \ {Qo} verifying (3.43)), as well as

1 wo(Q)
35 0(Q)

1<

(3.47)

SKOKD vQGID)]:QO,QN
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with Kl = (4K0)1/9, K(] = maX{Co, Cg}, and 0 = ]_/q,
We next observe that if I € Wy, with Q € Dg, q, then 2B C By (see (2.11)).

Hence, using Harnack’s inequality, parts (b) and (c) of Lemma [2.24] (3.47) and the
AR property we have

Go(X1) _ Go(Xr) _ wo(Ag) _
343 (0 S S e =t

where X7 is the center of I.

At this point, we are looking for M; independent of Qo and Q° such that (3.44])
holds. Recalling (3.39) we note that

349 maDra)= 3 [] [Vu(OPS)aX

U

~ Y //UQ'V“ eax)ix s [ [P0 ax

QGD}—QO Qo

where we have used Harnack’s inequality, , and the bounded overlap of the
family {Ug}gep.

As in Section for every N > 1 we can consider the pairwise disjoint collection
Fn = Fg,(2774(Qo)) which is the family of maximal cubes of the collection Fg,
augmented by adding all of the cubes Q € Dg, such that (Q) < 27V0(Qp). In
particular, @ € Dz, , if and only if Q@ € Dz, o, and Q) > 27N0(Qy). Clearly,
Dry.0o C Dryiqo if N < N, and therefore Qry g, C Qr,,.00 C Q27y,,0,- This and
the monotone convergence theorem give that

(3.50) //n; . IVu(X)[*Go(X) dX = lim //QF . |Vu(X)[*Go(X) dX

We now formulate an auxiliary result that will lead us to the desired estimate.

Proposition 3.51. Given Cy > 1, one can find C' such that if Fx C Dg,, N € N,
15 a family of pairwise disjoint dyadic cubes satisfying

e o< 2 <o wd Q) >2VHQ)  YQeDrq,
then
(3.53) /A VU)X dX < Co(@)

Here, C depends only on dimension, the 1-sided CAD constants, and the ellipticity
of L.

Assuming this result momentarily, 3.47) and the construction of Fy give (3.52)).

Next, we combme , D and (3.53)) to conclude (3.44)). This completes the
proof of (b) = Theorem . modulo obtaining the just stated proposition. [

Proof of Proposition|3.51. We introduce an adapted cut-off function which can be
obtained from a straightforward modification of [HMT2, Lemma 4.44] by simply
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replacing A by 2\ (recall that \ appearing in Section can be chosen arbitrarily
small).

Lemma 3.54. There exists Uy € C°(R™™) such that

(CL) ]‘Q]—'N,QO S Uy < 1g;

FNQo
(b) supyen [VUN(X)[6(X) S 1.
(c) Set
Wye=|J W5  Wiy={IeWy:3TeW\ Wy with dINdJ# O}
QED}-NaQO
Then
VU¥y=0 in U I~ and Z ()" < o(Qo),
TeWwn\W3R Tewy

with implicit constants depending only on the allowable parameters but uniform
in N.

Taking then Wy as above, Leibniz’s rule leads us to

(3.55) AVu-VuGy U3 = AVu-V(uGy V%) — 1AV(u* ¥3) - V Gy
+1AV(UY) - VGou® — LAV (W?) - V(¥3) Go.

Note that u G, U3 € W, ’Q(Qj_f‘MQO) since 0% s a compact subset of Q (indeed
by construction dist(Q% , ,00) 2 2-N0(Qo)), u € WEA(Q) N L=(Q), Go € WA\

loc loc

{Xo}), Q% o, C T C 5B, (cf. (2.11)), and (3.45). Moreover, since u € WL2(Q)
it follows that u € W;;2(Q) € Wh(Q, o). All these and the fact that Lu = 0 in

loc
the weak sense in 2 easily give

(3.56) // AVu - V(uGol2) dX = // AVu - V(uGel2) dX = 0.
@ ;‘"*N!Qo

On the other hand, much as before u? ¥%; € W(JLQ(Q?N,QO)' Also, Lemma [2.17| (see
in particular (2.23)) gives at once that Gy € W'?(Q%, ) and LTGy = 0 in the weak
sense in 2\ {Xo}. Thus, we easily obtain

(3.57) // AV(u* V%) - VGodX = // ATVGy - V(u?V3%)dX = 0.
Q b o

Using ellipticity, (3.55), (3.56]), (3.57), the fact that ||u[/z~@) = 1, and Lemma
3.54] we have

(3.58) //\vngofo?VdX,g//Avu-vugoqf?vdx
Q Q

S [ (19l + ¥l 6o) [9x] ax =1
Q
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To estimate I we use Lemma [3.54] Caccioppoli’s and Harnack’s inequalities, and the
fact that ||u||fe(q) = 1

(359) 1< ) 6(1)1(//** ]VQo|dX+//** V| Go dX) S ) U Go(X0),

Iewx Tewy

where X is the center of I. Note that for every I € W5 there is Q € Dg, g, such
that I € W,,. Hence we can use (3-48) to obtain

(3.60) IS Y UD"'G(Xn) S D U S o(Qo).
Iews Iews
Plugging this into (3.58) we get the desired estimate and the proof is complete. O

4. PROOF OF THEOREMS AND

We will prove Theorems and by showing that all bounded weak solutions
satisfy the Carleson measure estimate (|1.2)), in which case Theorem will give the
Ao properties. Before that we need some integration by parts equality.

Lemma 4.1. Let D = (d; )n+1 € L>(Q2)NLipy,. () be an antisymmetric real matriz

and set
n+1

(42)  dive D(X) := (div (d;5(X))) ;e = (Zad” ) , XeQ,
1<j<n+1

which is the vector formed by taking the divergence operator acting on the columns of
D. Then,

(4.3) / DX)Vu(X) - Vo(X)dX = —// dive D(X) - Va(X) v(X) dX,
Q Q
for everyu € W,b2(Q) and every v € WH(Q) such that K = supp(v) C Q is compact.

Proof. We first consider the case on which u,v € C2°(Q2). Using Leibniz’s rule and
the fact that D is antisymmetric we have that

n+1 n+1 n+1 n+1
div(DVu) ZZ@dZ]E?U—FZZdzJa@u_lecD Vu.
=1 j=1 i=1 j=1

Using this we integrate by parts to obtain

//DVU~VvdX:—//div(DVu)vdX:—//dchD‘VuvdX.
Q Q Q

To obtain the general case let u € W,2*(Q) and v € W'2(Q) such that K =
supp(v) C 2 is compact. It is standard to see, using for instance the Whitney
covering, that we can find @5 € C°(Q2) so that @5 = 1in K. Write K* = supp(Px)
which is a compact subset of 2 and define

U:={X € Q:dist(X, K*) < dist(K™,00)/2}

which satisfies dist(U, 9§2) > dist(K*,9Q)/2 > 0, hence U it is also a compact subset
of Q. Since u € WL?(Q) we clearly have that u®x € Wy*(U) and hence we can
find {u;}; C C=(U) so that u; — u®x in W*(U). Also, since v € W2(Q) verifies
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K = supp(v) C Q it is also easy to see that v € Wy*(U) and hence we can find
{v;}; € C>(U) so that v; — v in WH?(U). Notice that extending the u;’s and v;’s
as 0 outside of U one sees that {u;};,{v;}; € C>(2). Thus, we can use (4.3) and
for every j

(44) ﬂ DV'U,] . V?Jj dX = — //v diVC D . VUj Vj dX.

Note that using that supp(v;),supp(v) C U and that &5 =1in K C U we have

( // DVu - VvdX — // DVu; - Vv, dX’
- ’//DV(U@K)-VvdX—//DVuj-ijdX’
Q Q

<D ey ([IV (W@ )| 20y [V = Vo || 20
+ |[V(u®k) — V|| 20 |V | 12007))

and the last term converges to 0 as j — oo since D € L*(£2). Analogously,

)//dchD-VuvdX—//diVCD~VujvjdX‘
Q Q
— ‘//divCD-V(u(IDK))vdX—//divCD-VujvjdX‘
Q Q

<NV D| oo (IV (@) | 2@nllv = vill 2 )
+ |[V(u®k) — V|| 2 ||v5]] 20

which also converges to j — oo since D € Lip,,.(€2). All these and (4.4) readily gives
i3). 0

We are going to show that Theorems [[.3] and [1.6] follow easily from the following
more general result which is interesting on its own right:

Theorem 4.5. Let Q C R™!, n > 2, be a I-sided CAD (cf. Definition [2.4)). Let
Liu = —div(A;Vu) and Lou = —div(AgVu) be real (not necessarily symmetric)
elliptic operators (cf. Definition . Suppose that Ay — Ay = A+ D where A, D €
L*>(Q) are real matrices satisfying the following conditions:

(i) Define

(4.6) a(X) = sup |A(Y)], X e,
YEB(X,5(X)/2)

where §(X) = dist(X,09), and assume that it satisfies the Carleson measure
condition

1 a(X)?
(4.7) o o(B o) //Le<x,r)mﬂ 5(x) X oo

0<r<diam(99)

(i1) D € Lip,,.(2) is antisymmetric and suppose that dive D defined in (4.2)) satisfies
the Carleson measure condition
1

4.8 su // dive DOOIZS(X IX < oo,
(4.8) xe@% o(B(z,r)NoQ) B(z,r)m| o D(X)|70(X)

0<r<diam(9Q)
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Then, wr, € A (0R) if and only if w, € Ax(02) (c¢f. Definition .
Assuming this result momentarily we can easily prove Theorems [1.3] and [1.6}

Proof of Theorem[1.3 For Lo and L; as in the statement of Theorem we set
A= Ay— A; and D = 0. Thus, it suffices to check that A and D satisfy the required
conditions in Theorem For () notice that a = p(Ay, Ag) (cf. and

hence gives immediately (4.7 . On the other hand since D = O we clearly have
all the conditions in (é¢). With all these in hand, Theorem gives at once the
desired conclusion. O

Proof of Theorem[1.6 Set Ay = A, Ay = AT ,A=0and D = A— AT so that
Ag— Ay = A+ D. As before we can easily see that A and D satisfy the required
conditions in Theorem [4.5] This time () is trivial. For (zz) notice that by assumption

D =A— AT € Lip,,(Q) and also that (1.8) yields (4.8) since (L.7)) agrees with .

As a result, we can invoke Theorem [4.5] obtaining the desn"ed conclusion.

Besides the previous results one can easily get other interesting perturbation results
from Theorem [4.5] For instance suppose that Lou = — div(A4yVu) has an associated
elliptic measure satisfying wr, € Ax(02). Let D be a real antisymmetric matrix
with locally Lipschitz coefficients and assume that ||D| p~@) < Ao where A\g > 0 is
so that A(X)E-& > N [€]? for all £ € R™! and a.e. X € Q. The latter ensures that
Ay = Ag + D is uniformly elliptic and hence if we assume that dive D satisfies
then Theorem [4.5| gives immediately that wy, € Ay (02) where Lyu = — div(A;Vu).
In particular, the A, property is preserved under perturbations by antisymmetric
“sufficiently small” matrices D with locally Lipschitz coefficients so that |V D|*)
satisfies a Carleson measure condition.

Proof of Theorem[.5. By symmetry it suffices to assume that wy, € A (99Q) and
our goal is to see that wy, € A, (092). By Theorem it suffices to show that given
u € WEA(Q) N L®(Q) with Liu = 0 in the weak sense in Q then holds. As
before, by homogeneity we may assume without loss of generality that |[u||e=q) = 1.
We can now follow closely the proof of (b) = (a) in Theorem [1.1| with the following
changes. Here we are assuming that wy, € A.(992) and hence needs to be

replaced by

(4.9) wo = Coo(Qo)wry,  and  Go(-) = Coa(Qo)Gry(Xo, ),
where Xg := Xypn,, is chosen as before so that (3.45)) holds.
Notice that in the present situation w satisfies Lyu = 0 (as opposed to what

happened above where both v and Gy where associated with the same operator).
Other than that, and keeping in mind (4.9)), all estimates (3.47)—(3.50) hold. Thus
it is straightforward to see that everything reduces to obtain the following analog of

Proposition [3.51}
Proposition 4.10. Given Cy > 1, one can find C' such that if Fn C Dg,, N € N,
15 a family of pairwise disjoint dyadic cubes satisfying

wo(Q)

(@ ot =TS

<Oy and Q) >27NUQo), VQEDxr, g,
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then
(4.12) //Q Vu(X)PGo(X) dX < Co(Qu).

Here, C depends only on dimension, the 1-sided CAD constants, the ellipticity of Lo
and Ly, and on the quantity (L1.5)) in the scenario of Theorem or (L.8)) in the
scenario of Theorem [1.6,

Much as before, assuming this result momentarily, the proof of Theorem is
complete modulo obtaining the just stated proposition. O

Proof of Proposition[4.10. Take WUy from Lemma and write £(X) = A;(X) —
Ap(X). Then Leibniz’s rule leads us to

(4.13) A;Vu-VuGy ¥y = 41Vu-V(uGy ¥y) — 1A,V (u* ¥3) - VG
+ 14V(TR) - VGou® — 1AV (u?) - V(¥3) Go — 2EV(u) - V(Go TY).

Note that u Gy U3, € W, ’2(Q-¥<N7QO> since Q0% s a compact subset of Q) (indeed
by construction dist(QF ., 09) 2 27V(Qo)), u € W2 (Q) N L¥(Q), Gy € Wi (Q\
{X0}), W C W C iBp, (cf. [2.11), and (3.45). Moreover, since u € Wh2(Q)
it follows that u € W ’(Q) C Wh2(Q3%, o,)- All these and the fact that Lyu = 0 in

loc
the weak sense in €2 easily give

(4.14) //A Vu-V(uGel?)dX = // AV - V(uGoW2)dX = 0.

FN-Qo

On the other hand, much as before u? U3, € Wy’ Z(QjT*N 0,)- Also, Lemma [2.17] (see
in particular (2.23)) gives at once that Gy € W"(Q% ) and L Gy = 0 in the weak
sense in 2\ {Xo}. Thus, we easily obtain

(4.15) // AV (u? V%) - VGydX = // AJ VG- V(u?U3%)dX = 0.

FN-Qo

Using ellipticity, (4.13)), (4.14)), (4.15)), the fact that ||u|/z=~@@) = 1, and Lemma
3.54], we have

(4.16) //|vu|2g0\1f§VdX5/ AV - Vu Gy U3 dX
Q Q
<[] (190 +1vulge) (wwstax + | [] evie) vi@ w3 ax| 1o
Q Q

Much as in (3.59) and (3.60) we can show that I < o(Qp). To estimate II note
that since £ = A; — Ay = —(A + D) it follows that

(4.17)
II< '//AV golIl2 dX’ ‘/ DV V(QO\IJ?V)dX‘ — 11, + II,.
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For the term II; we use that A € L>(£2) and the fact that ||| z~) = 1 to obtain

(4.18) 1115//\Ay |vu||vg0|qfivdx+// V()| [V(F2)] Go dX —: TTT, + T,
Q Q

For III; we note that sup;. |A| < infpa for every I € W, since I C {Y € Q :
Y — X| < §(X)/2} for every X € I* (see (2.9)). Hence, Lemma [3.54] Caccioppoli’s
and Harnack’s inequalities, (3.48)), the fact that the family {I**};c)y has bounded

overlap, and (2.11)) yield

(4.19) m, < sup\Ay(// |vu|2\1/§VdX> (// |vg0|2dx)
I** * ok * %k

IeWn

1

> <// [Vl ¥y dX>§(S;3p\A!290(X,)25(1)n1)?

IeWN

<> (// |Vu|QQO\I/deX)%<//*%2dX)%

1eWn

3 2 3
< (//\Vu\QQO\P?VdX) (// %dX)
Q 50
< ( // |Vu\290\1f%vdX)20<Qo>%,
Q

where in the last estimate we have used (4.7) and AR along with the fact that
7(Bg,) = 2korq, < 2k0l(Qo) < 2K diam(0€2) /My < diam(02) by our choice of M.
On the other hand, we observe that

(4.20) 0, < // V| [V 0| Go Uy dX
Q

< (//Q\vu\zgo \IJ?VdX);(//QW\IINFQOdX)é
< (//Q|vu|2g0 ¢ dX);< > e(f)n—lgo(xf))

Tewy

< ( //Q Vul Go W2 dX)za(Qoﬁ

where we have used Lemma[3.54] Harnack’s inequality, the normalization ||ul|zq) =
1 and the last estimate follows as in ([3.60)).

Let us now turn our attention to estimating IT,. Note that u? € W,>%(Q) since
u € Wh2() N L=(Q); supp(Go U%) C D% o, Which is a compact subset of € since
by construction dist(Q% o ,9Q) 2 27V(Qy); and finally Gy U3 € W'*(Q) since
Go € W2(Q\ {Xo}), Ve 0, CTo, C 3Bg, (cf. 2.11)), and (3.45). Thus we can

invoke Lemma [4.1] to see that

(4.21) I, = ‘//dich-V(UQ)QO U3 dX
Q

[N
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3 1
< (/ \WPQ@MX) (/ \dich\ZQO\IJ?VdX) .
Q Q

< ( J[ g dx) o(Q0),
Q

where we have used [|ul|zq) = 1 and the last estimate is obtained as follows:

//|d1vCD|290\112 dX 5> Go(X)) // |dive D|? dX

IeWn

S 3 ff tenpaxs [ jdve RSN X S Cor)

where we have used Harnack’s inequality, (3.48)), the fact that the family {7**};cy
has bounded overlap, (2.11)), and the last estimate follows from (4.8)), the fact that
r(B,) = 2K0rq, < 2r0l(Qo) < 2k diam(9€2) /My < diam(9€2) by our choice of My,
and AR.

At this point we can collect (4.16)—(4.21]) and use Young’s inequality to conclude
that

// |Vul|? Go U3 dX < Ca(Q0)+C(// |Vul? Gy m?VdX)QU(QO)é
Q Q

c2+C 1
Q

The last term is finite since supp(¥y) C Q% - Q Wthh is a compact subset of €,

u € W), Go € LS (Q\ {Xo}), (3:45), and (2.11). Hence we can hide it and use

Lemma [3.54] to conclude as desired that
J[ - 1vupGiax s [ 1var g u ax < o),
Qry Q

This completes the proof. O
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