BMO SOLVABILITY AND ABSOLUTE CONTINUITY OF CALORIC
MEASURE

ALYSSA GENSCHAW AND STEVE HOFMANN

ABsTRACT. We show that BMO-solvability implies scale invariant quantitative
absolute continuity (specifically, the weak-A, property) of caloric measure with
respect to surface measure, for an open set Q € R"*!, assuming as a background
hypothesis only that the essential boundary of ( satisfies an appropriate par-
abolic version of Ahlfors-David regularity, entailing some backwards in time
thickness. Since the weak-A., property of the caloric measure is equivalent to
L? solvability of the initial-Dirichlet problem, we may then deduce that BMO-
solvability implies L solvability for some finite p.
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1. INTRODUCTION

In the setting of divergence form elliptic PDE, it is well known that solvability of
the Dirichlet problem with L? data is equivalent to scale-invariant absolute conti-
nuity of elliptic-harmonic measure (specifically that elliptic-harmonic measure be-
longs to the Muckenhoupt weight class A, with respect to surface measure on the
boundary). To be more precise, in a Lipschitz or even chord-arc domain, one ob-
tains that the Dirichlet problem is solvable with data in L”(€2) for some 1 < p < oo,
if and only if elliptic-harmonic measure w with some fixed pole is absolutely con-
tinuous with respect to surface measure o on the boundary, and the Poisson kernel
dw/do satisfies a reverse Holder condition with exponent p’ = p/(p — 1); see the
monograph of Kenig [Ke], and the references cited there. In fact, the equivalence
between L solvability and quantitative absolute continuity holds much more gen-
erally, for any open set with an Ahlfors-David regular boundary (see [HLe] for a
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proof, although the result is somewhat folkloric); in this generality, the A /reverse-
Holder property is (necessarily) replaced by its weak version, which does not entail
doubling.

These results have endpoint versions, as well: in [DKP], Dindos, Kenig and
Pipher showed that in a Lipschitz domain (or even a chord-arc domain) elliptic-
harmonic measure satisfies an A, condition with respect to surface measure, if
and only if a natural Carleson measure/BMO estimate holds for solutions of the
Dirichlet problem with continuous data. The results of [DKP] have been extended
to the setting of a 1-sided Chord-arc domain by Z. Zhao [Z].

In the above works, the proofs relied substantially on quantitative connectivity
of the domain, in the form of the Harnack Chain condition. More recently, the
second named author and P. Le [HLe] proved an analogous result in the absence
of any connectivity hypothesis, either quantitative or qualitative: one obtains that
BMO solvability implies scale invariant quantitative absolute continuity (the weak-
Ao property) of elliptic-harmonic measure with respect to surface measure on 9€2,
assuming only that Q is an open set with Ahlfors-David regular boundary'.

The goal of the present paper is to extend the results of [HLe] to the parabolic
setting. As regards geometric hypotheses, we assume only that Q ¢ R"*! is an
open set whose boundary satisfies an appropriate version of a parabolic Ahlfors-
David regularity condition. In particular, we impose no connectivity hypothesis,
such as a parabolic Harnack chain condition.

We shall consider the heat operator
(1.1) Ly:=0,- L,

where £ := V - V is the usual Laplacian in R", acting in the space variables. In
some circumstances, to be discussed momentarily, our results apply more generally
to divergence form parabolic operators

(1.2) L:=0,-divA(X, 1V,

defined in an open set Q C R ag described above, where A is n X n, real, L™, and
satisfies the uniform ellipticity condition

n+l1
(13) AU < (AXDEE = D AyX,Dé,  IAllLsgn < 47,

i,j=1
for some A > 0, and for all £ € R”, and a.e. (X, ) € Q. We do not require that the
matrix A(X, f) be symmetric.

More precisely, our results will apply to variable coefficient parabolic operators
as in (1.2), provided that the continuous Dirichlet problem (see Definition 1.17 - 1
below), is solvable in Q (and hence that parabolic measure for L can be defined).
Beyond the class of constant coefficient parabolic operators, such a solvability re-
sult holds when the coefficients are C!'-Dini: indeed, we shall impose an appropri-
ate parabolic version of Ahlfors-David regularity which in particular implies the
capacitary Wiener criterion, valid in the case of C!-Dini coefficients, proved by
Fabes, Garofalo and Lanconelli [FGL].

N partial converse is also obtained in [HLe]: namely that in the special case of the Laplace
operator, the weak-A., property of harmonic measure implies BMO solvability, assuming in addition
that the open set Q satisfies an interior Corkscrew condition.
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Before stating our main theorem, we briefly introduce some of the concepts
and notation to be used. All additional terminology used in the statement of the
theorem, and not discussed here or above, will be defined precisely in the sequel.
For now, we note that all distances and diameters are taken with respect to the
parabolic distance (1.14), and that 6(X, ¢) := dist((X, 1), 0.Q2), where d,Q denotes
the essential boundary (see Definition 1.11 below) of an open set Q c R"*!. We
further note that “surface measure” o~ on the quasi-lateral boundary’ %, is defined
by do = dods, where do = W"‘llzs, the restriction of (n — 1)-dimensional
Hausdorff measure to the time slice £, := X N {r = s}. We let Ty,in, Tinax denote,
respectively, the smallest and largest values of the time co-ordinate occurring in Q;
see (1.8).

We note that for an arbitrary open set Q c R"*!, caloric measure may be con-
structed via the PWB method, since continuous functions on the essential boundary
are resolutive; see [W1] or [W2, Chapter 8].

Given an open set Q C R™! and a divergence form parabolic operator L as
above, for which the continuous Dirichlet problem is solvable, we shall say that
the initial-Dirichlet problem (see Definition 1.17 below) is BMO-solvable® for L in
Q if for all continuous f with compact support on X, the solution u of the initial-
Dirichlet problem with data f satisfies the Carleson measure estimate

1.4)

1 f f (IVu(¥. )P +16(Y, $)d5u(¥, $)) 8(Y. 5) d¥ds
Ar) JJano,x

su

(6Hex, 0<r<R(r) O (
2

< C“f”BMO(Z)’

where A, := Q,(x, )NZ, and R(1) :=min(Ro, VI — Tpin/(4y)), with Ry := diam(Z).
We recall that 7,0 — Tonin = Rg; see the discussion preceeding [GH, Theorem 2.9].

For (X, 1) € Q, we let wf’t denote parabolic measure for L with pole at (X, ¢), and
if the dependence on L is clear in context, we shall simply write w*”.

The main result of this paper is the following. All terminology used in the
statement of the theorem and not discussed already, will be defined precisely in the
sequel.

Theorem 1.5. Let L be a divergence form parabolic operator defined on Q. Let
be globally time-backwards ADR, and assume further that if Ry := diamX = oo,
then T, = —co.

If the initial-Dirichlet problem for L is BMO-solvable in Q, then the parabolic
measure belongs to weak-As in the following sense: for every parabolic cube

Q := Q(x0, to), with (xo,t0) € Z and 0 < r < min (R, Vio — Tin/(431)), and for
all (Y, s) € Q\ 40, parabolic measure w{’s € weak-A«(A), where the parameters
in the weak-A« condition are uniform in A.

2See Definition 1.11. In the present work, the ADR condition that we impose will imply that
the quasi-lateral boundary is a natural substitute for the lateral boundary (in cylindrical domains, for
example, they are the same). See also Remarks 1.25 and 1.26.

3Perhaps “VMO-solvable” would be a more appropriate term, but “BMO-solvable” seems to be
entrenched in the literature. In less austere settings, the two notions are equivalent, at least in the
elliptic case; see [HLe, Remark 4.20].
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We note that we are implicitly assuming here, as above, that the continuous
Dirichlet problem is solvable for L; we know that this is true if L is the heat op-
erator, or if the coefficients of L are C!-Dini: see Remarks 1.24 and 1.26. We
note that our assumption of solvability of the continuous Dirichlet problem is used
only qualitatively: the constants in our estimates will depend only on dimension,
ellipticity, and the constant in the BMO-solvability estimate (1.4).

Remark 1.6. By [GH, Theorem 2.9], the weak-A, property of caloric (or parabolic)
measure is equivalent to L? solvability of the initial-Dirichlet problem (see [GH]
for a precise statement), for some p < oo; hence the latter also follows from BMO
solvability.

Remark 1.7. In the elliptic case, the analogue of Theorem 1.5 has a partial con-
verse [HLe, Theorem 1.6], valid for the Laplacian: under the additional assump-
tion that Q satisfies an interior Corkscrew condition, if 9Q is ADR, and harmonic
measure belongs to weak-A,, with respect to surface measure on 9Q, then the
Dirichlet problem for Laplace’s equation is BMO-solvable. In the parabolic set-
ting, this converse result remains open. The proof in the elliptic case relies on
square-function/non-tangential-maximal-function estimates, which in turn are ob-
tained by invoking results of [HM] (see also [HLMN], [MT]) to deduce uniform
rectifiability of 0Q; see [HM], [HMM 1], [HMM?2] (as well as [GMT], [AGMT] for
related converse results). The machinery created in these references, and exploited
in [HLe], has yet to be developed in the parabolic setting.

The paper is organized as follows. In the remainder of this section, we present
some basic notations and definitions. In Section 2, we state two lemmas and a
corollary which we then use to prove Theorem 1.5. In Section 3 we prove Theorem
1.5.

Notation and Definitions For a set A ¢ R"*!, we define
(1.8) Tpin(A) :=1inf{T : AN{t =T} # 0}, Tpax(A) :=sup{T :An{t=T} + 0}

(note: it may be that 7,;,(A) = —oo, and/or that T),,(A) = +00). In the special case
that A = Q, an open set that has been fixed, we will simply write Ty, = Tpin(€2)
and Tmax = max(Q)~

Definition 1.9 (Parabolic cubes). An (open) parabolic cube in R” X R with center
(X, 1):

(1.10)  Q/(X,1) := Q((X, 1), 1)

={(Y, ) eR'XR:|IX;—Yj|<r,1<i<nt-r’<s<t+r.
With a mild abuse of terminology, we refer to r as the “parabolic sidelength” (or
simply the “length”) of Q,(X, r). We shall sometimes simply write Q, to denote a

cube of parabolic length r, when the center is implicit, and for Q = Q,, we shall
write £(Q) = r.

We also consider the time-backward and time-forward versions:

0 ((X,n,r) =0, (X,1)

={(V,s) eR'XR:|X;=Yi|<r,1<i<n,t—r<s<t,
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0" ((X,1),r) = 0} (X, 1)

={(Y ) eR"XR: X, Vil <r, 1 <i<n,t<s<t+r}.
We shall sometimes also use the letter P to denote parabolic cubes in R"*!.

Definition 1.11 (Classification of boundary points). Following [L], given an
open set Q c R™!, we define its parabolic boundary P as

PQ = {(x,1) € 0Q: ¥r >0, 0; (x,1) meets R™'\ Q.
The bottom boundary, denoted BQ, is defined as
BQ :={(x,1) € PQ: e > 0 such that OF (x,1) C Q}.

The lateral boundary, denoted SQ, is defined as SQ := PQ \ BQ.

Following [W1, W2], we also define the normal boundary, denoted 9,€, to
be equal to the parabolic boundary in a bounded domain, while in an unbounded
domain, we append the point at infinity: §,Q2 = PQU{co}. The abnormal boundary
is defined as 9,Q := dQ \ 9,Q, thus:

04Q = {(x,1) € 9Q : & > 0 such that O, (x,1) C Q}.

The abnormal boundary is further decomposed into 9,Q = 9,QUd,,Q (the singular
boundary and semi-singular boundary, respectively), where

95Q = {(x,1) € 3,2 : A& > 0 such that Q) (x,1) N Q =0},
and
05sQ = {(x,0) € 0,2 :Vr>0 QF(x,1) meets Q}.
The essential boundary 0.2, is defined as
(1.12) 8,Q 1= 9,Q U 8,,Q = 6Q\ 8,0

(where we replace 0Q by 9Q U {oo} if Q is unbounded). Finally, we define the
quasi-lateral boundary X to be

0Q, if Ty = —o0 and Ty =

(113) %= 0Q\ (BY)r,,,,» if Ty >—00 and Tyyqy = 0

0Q\ (0:Q)r,,. » if Tyax < 00 and Tyyip = —00

o\ (BY)r,, U 0:Q)r,,.), if —co<Tpin < Thmax < 0.
where (BQ)r,,, is the time slice of BQ with t = T,,;,, and (0,Q)r,,,, is the time slice

of 0,Q with t = T,,,,. Observe that for a cylindrical domain Q = U X (Tpin, Tnax),
with U C R" a domain in the spatial variables, then £ would simply be the usual
lateral boundary.

Caloric measure is supported on the essential boundary; see [Su], or [W1, W2].

e We use the letters ¢, C to denote harmless positive constants, not necessarily the
same at each occurrence, which depend only on dimension and the constants
appearing in the hypotheses of the theorems (which we refer to as the “allow-
able parameters”). We shall also sometimes write @ < b and a ~ b to mean,
respectively, that a < Cb and 0 < ¢ < a/b < C, where the constants ¢ and C are
as above, unless explicitly noted to the contrary.
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e We shall use lower case letters x,y, z, etc., to denote the spatial component of
points on the boundary 9€2, and capital letters X, Y, Z, etc., to denote the spatial
component of generic points in R”*! (in particular those in Q).

o For the sake of notational brevity, we shall sometimes also use boldface capital
letters to denote points in space time R™*!, and lower case boldface letters to
denote points on 0Q; thus,

X=X1, Y=({s), and x=(x1), y=(0O,9.
e We shall orient our coordinate axes so that time runs from left to right.
e We let " denote the unit sphere in R"*!.
e H“ denotes d-dimensional Hausdorff measure.
e ForA c R™! let A, := {(X,1) € A : t = s} denote the time slice of A with ¢ = s.

e We let do = doids denote the “surface measure” on the quasi-lateral boundary
2, where do = W"‘llzs, and X is the time slice of X, with ¢ = s.

e The parabolic norm of X = (X, ¢) € R"*!, denoted |[X]|, is the unique solution p
of the equation

X? A
% + —4 = 1 .
p= P
We observe that the parabolic norm satisfies
(1.14) X1 = 1% Ol ~ 1X] + |12,
The parabolic £~ norm is defined by
(1.15) Xl = 1K, Dl 2= max {[Xil, ..., X, 1172} .

Of course, the parabolic norm and parabolic £*° norm induce corresponding dis-
tances on R"*!, which are comparable to each other.

o If X € Q, we let 6(X) := dist(X, 9,0), and 6(X) := diste(X, 0.Q), denote
the parabolic distance, respectively, the parabolic ¢ distance, to the essential
boundary. We note that 6(X, 1) = 6(X, 1), with uniform implicit constants de-
pending only on dimension.

We shall find it convenient to work with “touching cubes” and “touching points”
with respect to the parabolic £ distance to the essential boundary:

Definition 1.16. Given a point (X, t) € Q, let Q4 (X, t) denote the “touching cube”
for the point (X, t), i.e., set Q4 (X, 1) := Q,(X, ), where
r=rx(X,1) :=sup {p >0:0,(X,HN0, Q= (Z)} ,

so that (since our cubes are open) Q4 (X, H)NJ.Q = 0, and IQ (X, 1) meets 9,02. We
shall say that (%, 7) € 8,9 is a “touching point” for (X, £), if (£,7) € 0« (X, 1) NI Q.
Note that 6o, (X, 1) := r(X, 7).

We further note that if Vi — T, > d00(X, 1), then (£,7) € X, for any touching
point (&, 7) of (X, 1), i.e., in this case 5 (X, 1) = diste((X, 1), Z).
e For a set A ¢ R™!, we shall write diam(A) to denote the diameter of A with

respect to the parabolic distance, i.e.,

diam(A) ;== sup (X, — (Y5l
((X,0),(Y,5))€AXA
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e Given a Borel measure u, and a Borel set A C R”, with positive and finite u
measure, we set ﬁ‘ fdu = u(A)™! fA fdu; if A is a subset of space-time R"*!,

we then write ff, fdu := u(A)™" [, fX. 1) du(X, ).
e A “surface cube” on X is defined by
A=0NX,
where Q is a parabolic cube centered on X, or more precisely,
A=A(x,1):=0,(x,HNZ,

with (x, ) € . We note that the “surface cubes” are not the same as the dyadic
cubes of M. Christ [Ch] on X; we apologize to the reader for the possibly con-
fusing terminology.

Definition 1.17. We define the following boundary value problems. The second is
relevant only in the case that 7,,;,, = —oo. In problems II and IV, N.u denotes the
non-tangential maximal function, taken with respect to parabolic cones. We refer
the reader to [GH], Section 4, for the precise definition of N,u.

I. Continuous Dirichlet Problem:

Lu =0in Q
(D){ M|6BQ = f € C.(0.2)
u € C(QUIQY).
If Q is unbounded, we further specify that lim)xj— . #(X) = 0. Here, we interpret
the statement uls,o = f € C.(0,L) to mean that
(XJI)EM) uX,t) = f(y,s), 5 €0,Q,

and

Iim w(X,?) = ,S), ,8) € 05502
(XJ)H@’S+)( )=Sf0n8),  (1,9) € s

If the preceeding problem is solvable for all f € C.(0,L2), then we say that the
“continuous Dirichlet problem is solvable for L.”

II. L? Dirichlet Problem:
Lu =0inQ
(D)p{ uy =fell®)
N.u € LP(X).
III. Continuous Initial-Dirichlet Problem:
Lu =0inQ” :=Qn{t>T)
uX, T) =0inQr =Qn{t=T}

ulsr = f € C(ET)
ueCQuo,0ly.

Here, X7 denotes the quasi-lateral boundary of the domain Q7. The statement
ulsr = f € C.(ZT) is intepreted as in problem I, and if Q7 is unbounded, we
further specify that limx)—e u(X) = 0.

IV. LP Initial-Dirichlet Problem:
Lu =0inQ" :=Qn{r>T)
uX, T) =0inQr=Qn{r=T}
uyr = feLP(ET)
N.u e LP(ZT).

(I-D)

(I-D),
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In problems II and IV, the statement uls = f € LP(X) (resp., ulsr = f € LP(ZT)) is
understood in the sense of parabolic non-tangential convergence. In problems I1I
and IV, the statement u(X, 7)) = 0 in Q7 means that u vanishes continuously on Q7.

Definition 1.18. (Caloric and Parabolic Measure) Let Q ¢ R"*! be an open set.
Let u be the PWB solution (see [W1], [W2, Chapter 8]) of the Dirichlet problem
for the heat equation, with data f € C.(0,)). By the Perron construction, for
each point (X,1) € Q, the mapping f +— u(X,t) is bounded, and by the resolu-
tivity of functions f € C(9.Q) (see [W2, Theorem 8.26)), it is also linear. The
caloric measure with pole (X, 7) is the probability measure w** given by the Riesz
representation theorem, such that

(1.19) u(X, 1) = ff O, ) dw™ (. ).
0.Q
For a general divergence form parabolic operator L as in (1.2)-(1.3), parabolic mea-
Xt X,t

sure ™' = w;" may be defined similarly, provided that the continuous Dirichlet
problem is solvable for L.

Definition 1.20. (ADR) (aka Ahlfors-David regular [in the parabolic sense]). Let
Q c R"™!. We say that the quasi-lateral boundary X is globally ADR (or just ADR)
if there is a constant My such that for every parabolic cube Q, = Q,(x, 1), centered
on X, and corresponding surface cube A, = Q, N X, with r < diam(Q),

1
(1.21) ﬁr"“ < o (A) < Mor™*! .
0

We also say that £ is ADR on a surface cube A = Q N Z, if there is a constant
My such that (1.21) holds for every surface cube A, = O, N X, with Q, € Q and
centered on X.

Definition 1.22. (Time-Backwards ADR, aka TBADR) Given a parabolic cube
Q centered on X, and corresponding surface cube A = QN X, we say that X is time-
backwards ADR on A if it is ADR on A, and if, in addition there exists a uniform
constant ¢ > 0 such that

(1.23) cor"™t < o (A)),

forevery A = O, NZ, where O, C Qs centered at some point (x, ) € . Note that
by definition, if £ is TBADR on A = ONZ, then itis TBADR onevery A’ = 0’ NX
with Q' C Q, and Q’ centered on X.

If X is time-backwards ADR on every A = X N Q,(xop, tp), for all (xg, %) € Z,
and for all r with 0 < r < ity — Tpnin/(44/n), then we shall simply say that X is
(globally) time-backwards ADR (and we shall refer to such A as “admissible”; note
that if T),;, = —oo, then there is no restriction on r, and in that case every surface
cube is admissible).

Remark 1.24. The assumption of some backwards in time thickness, as in Defini-
tion 1.22, is rather typical in the parabolic setting. See, e.g., the backwards in time
capacitary conditions in [La], [EG], [GL], [FGL], [GZ], [BiM]. Moreover, it is not
hard to verify that by the result of [EG] (or of [GL], [FGL]), time-backwards ADR
on some surface cube A implies parabolic Wiener-type regularity of each point in A
(and thus global time-backwards ADR implies regularity of the parabolic boundary
PQ), in the case of the heat equation [EG], or for L with smooth coefficients [GL],
or with C'-Dini coefficients [FGL].
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Remark 1.25. By [W2, Theorem 8.40], the abnormal boundary 9,Q is contained
in a countable union of hyperplanes orthogonal to the r-axis. Moreover, the same
is true for the bottom boundary B, since its image under the change of variable
t — —t is contained in J,Q*, for the domain Q* obtained from Q by the same
change of variable. Thus, o(8Q) = 0.

Remark 1.26. The time-backwards ADR condition ensures that the quasi-lateral
boundary X is a natural substitute for the lateral boundary, for the general class of
domains that we consider; in particular, 9,,Q = 0 = 9;Q\{r = T4}, at least locally
on any surface cube A on which TBADR holds, and thus (except for the possible
point at o), 8,Q = PQ = X, in the set {(X, 1) : t > T,nn}. Moreover, if 0 < o,
on some surface cube A (as we conclude in Theorem 1.5), then w*(BQ N A) = 0,
by Remark 1.25.

Remark 1.27. Time-backwards ADR yields an apparently stronger property: specif-
ically, that if X is time-backwards ADR on A = A, = £ N Q,(xo, fy), then (1.23)
self-improves to give the estimate

(1.28) i < oA N e < 1y — (ar)?)),

for some constants a € (0, 1) and ¢; > 0, depending only on n and the ADR and
TBADR constants; see [GH, Appendix A] for the proof.

Definition 1.29. (Parabolic BMO). BMO(Y) is the parabolic version of the usual
BMO space with norm ||f]|zmocs), defined for any locally integrable function f on
> by

(1.30) Ifllamoc) = Slip{ﬁi lf - fA|d0—} <

where A = A,(x,1) := O, (x, ) N X, fa := ﬁf, (x,t) € Z,and 0 < r < diam(X).

Definition 1.31. (Parabolic Polar Coordinates). Let dos: denote the usual sur-
face measure on the unit sphere S$” in R”**!. We have the parabolic polar coordinate
decomposition

(X, 1) = (oL, p*1),  dXdt = p"dp du(Z,7),

where ({,7) € S", p = ||(X,?)], and u is an appropriately weighted version of
surface measure on the sphere; to be precise, du(¢,7) = (1 + %) doe (£, T); see,
e.g. [FR1, FR2] or [R].

Definition 1.32. (Parabolic Projection). We denote by mp, (X, 1) the parabolic
projection of (X, 7) onto S", which we define by setting 7. (X, 1) = ({, 1), where
(X, t) has the parabolic polar coordinate representation

X, = (p¢.p77),
with o = [I(X, 0)ll, and (£, 7) € S".
Definition 1.33. (Parabolic Cone) Let (£,7) € S", and let ¥ > 0. We define

the parabolic cone I'g({, 7), “in the direction (£, 7)”, with vertex at the origin and
aperture ¥ > 0, as follows:

Ly, 1) :=={(X,5) : lImpar (Y, 5) — (£, DIl < I}
For any (X, t) € R™*! with mpar(X, 1) = (£, 7), we shall also write
rz?(Xs t) = Fﬁ(é’v T) .
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Definition 1.34. (A, weak-A., and weak-RH,;). Given a parabolic ADR set E C
R™*! and a surface cube Ay := Qo NE, we say that a Borel measure y defined on E
belongs to A« (Ap) if there are positive constants C and 6 such that for each surface
cube A = QN E, with Q C Qyp, we have

o(F)
a(A)

Similarly, we say that u € weak-A«(Ag) if for each surface cube A = Q N E, with
20 < Qo

0
(1.35) U(F) < C( ) u(A), for every Borel set F C A.

o(F)
o(A)
We recall that, as is well known, the condition u € weak-A(Ag) is equivalent to

the property that © <« o in Ap, and that for some ¢ > 1, the Radon-Nikodym
derivative k := du/do satisfies the weak reverse Holder estimate

0
(1.36) U(F) < C( ) u2A), for every Borel set F C A.

Va 2A
(1.37) (Hkqdﬁ) < CH kdo ~ ﬂ(—) , YA=0nE, with 20 C Q.
A 20 a(A)

We shall refer to the inequality in (1.37) as a “weak-RH,” estimate, and we shall
say that k € weak-RH,(Ao) if k satisfies (1.37).

2. PRELIMINARIES

The proofs of the following two lemmas may be found in the Appendix of [GH].

Let a > 0 be the constant mentioned in Remark 1.27. In the sequel, Q will
always denote an open set in R"*!, with quasi-lateral boundary X. To simplify ter-
minology, in the sequel we shall say that some quantity “depends on ADR” if it
depends on the constants in the ADR and/or time backwards ADR conditions. We
recall that ¥/ may denote either caloric measure, or parabolic measure for a diver-
gence form parabolic operator as in (1.2)-(1.3), but in the latter case we implicitly
assume that the continuous Dirichlet problem is solvable for L; as mentioned above
(see Remark 1.24), given our time-backwards ADR assumption, such solvability
indeed holds for the heat equation, and more generally for equations with C!-Dini
coeflicients, by the result of [FGL]. Recall that Ry := diam(X).

Lemma 2.1 (Parabolic Bourgain-type Estimate). Let X be time-backwards ADR on

A, = Q,(x0,19) N X, where (xp, 1) € X, and 0 < r < min (Ry, Vtg — Trnin/(4vn)).
Then there exists M1,k > 0 such that for all (X,t) € QML,. nQ,
1

(2.2) WA >k,

where QML,« = O((xo, 1), Milr) The constants M| and k depend only on n, ADR
1
and A.

Remark 2.3. One may readily deduce the following consequence of Lemma 2.1.
Let X be globally TBADR. Then there is a constant M, =, M,/a, such that, given
(X,1) € Q, with 2M>6.,(X, 1) < min (Ry, Vi — Tpnin ), if (£,7) € X is a touching
point for (X, 7), so that ||(X, 1) — (X, D|lg~ = deo(X, 1) =: 7, and if

2.4 Axy = A%, 1), Mar) =20 Q((%, 1), Mar)
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then

(2.5) W (Ax,) > k.

Lemma 2.6 (Holder Continuity at the Boundary). Let (xo, %) € X, and fix r with
0 < r < min(Ro, Vto — Trin/(8Vn)). Suppose that T is time-backwards ADR on

Aoy := Qr(xo,t9) N Z. Let u be the parabolic measure solution corresponding to
non-negative data f € C.(0,Q), with f =0 on Ay,. Then for some a > 0,

oY, ¢ 1 ff
Y, = C > v Y’ r ’ Q’
uth1) < ( r ) |Q2-(x0, )| JJ 01, (x0,10)002 o V0D € Orlxo.10)

where the constants C and a depend only on n, A, and the ADR and time-backwards
ADR constants.

3. Proor oF THEOREM 1.5

Recall that for (X, 1) € Q, we let 6oo(X, t) := disto((X, 1), 3.€) denote the para-
bolic £ distance to the essential boundary, and that if V¢ — Ty, > 0o(X, 1), then
3.1 O0oo(X, 1) = disto((X, 1), X),
by definition of X. We note that in the context of Theorem 1.5, by hypothesis we
shall always work with points (X, ¢) for which (3.1) holds.

Given (X, 1) € Q, let (£, 7) € X be a touching point for (X, 1), so that
(32) ri= (500(X’ t) = ”(X’ t) - (),(\f, i)”[” ’
and define Ay; as in (2.4) where M, is the constant in Remark 2.3. We shall say

that caloric (or parabolic) measure w*” is locally ample on Ax, or more precisely,
(0, B)-locally ample, if there exists constants 6, 8 € (0, 1) such that

(3.3) o(F) > (1-00c(Ay) = o™(F) = wf’t(F ) =B,
where F' C Ay, is a Borel set.

We shall use the following result from [GH]; we remark that it is the parabolic
analogue of a result proved in the elliptic setting in [BL].

Theorem 3.4. [GH, Theorem 1.6]. Let Q C R"™! be an open set with a globally
ADR quasi-lateral boundary . Let (xq, to) € X, and let 0 < r < \/tg — T pin/ (84n).
Assume that T is time-backwards ADR on Ay, = Z N Qrr(x0, ty), and suppose that
there are constants 0, B € (0, 1) such that caloric measure w*' satisfies the (6, 8)-
local ampleness condition (3.3) on Ay, for each (X, t) € Q N Qz,(xo, to).

Then there exist constants C > 1, y > 0, such that if (Yy, so) € Q \ Qu,(x0, tp),
then W% < o on T N Q,(xo, to), with dw¥* /do = h satisfying

1/(1+y)
(3.5) (p_"_l f f h”%m) <Cp! f f hdo
Ap(,5) Aop(y,5)

= Cp™ " (A3, 9))
whenever (y, s) € X and Qy,(y, s) C Q(xo, to), where Ay(y, s) = Qp(y,s) N Z, and
Aop(y,5) = O2p(y, 5) N X,

Remark 3.6. In [GH], Ax; is defined in a slightly different way: there, Ay, is

centered at (X, 1) € Q; more precisely, it is of the form £ N Q((X, 1), Ké(X, 1)), for
some K > 2. This is comparable to the present definition of Ay, in Remark 2.3.
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Thus, to prove Theorem 1.5, we suppose that X is globally ADR and TBADR,
and observe that it suffices to verify the hypotheses of Theorem 3.4, in the presence
of BMO-solvability. More precisely, we suppose that estimate (1.4) holds for all
f € CcEN{Tmin <t < Thmax}), and our goal is to verify the (6, 5)-locally ampleness
condition (3.3), for all (X, ) € Q with 2M»0.,(X, ) < min (Ry, Vt — Thin ), Where
M, is the constant in Remark 2.3, and Ry := diam(X). In comparing this constraint
on 0.(X, ) with that on r in Theorem 3.4, we observe that there is no loss of
generality: indeed, suppose that we have verified (3.3) for all (X, ) € Q, with

(3.7) Soo(X, 1) < 2M>)™ " min (Ro, V1 — Tomin ) -

Let M be a fixed, sufficiently large constant. In particular, (3.7) applies to all
(X, 1) € QN Oy (x1,11), with (x1,11) € X, provided that

(3.8) r< M '\t = Toins

with M large enough, depending on M,. Now let (xp,%) € X, and consider
Q210 (x0,10) With O < ro < Vito — Tinin/(8/n), as in Theorem 3.4. Let (x1,1) €
2N Qy,(x0, 1), and set r := ro/M. Then for M large enough, (3.8), and hence (3.7)
holds, for every (X, 1) € QN O.(x1, t1). Consequently, we may apply Theorem 3.4
to obtain the reverse Holder inequality in X N Q,(x1, #1). Since X N Oy, (xo, fp) may
be covered by a bounded number (depending on M) of surface cubes N Q,(x1, 1),
and since r =)y ry, we obtain the desired reverse Holder inequality in XN Q,, (xo, t),
as well.

We now fix (X, ) as in (3.7), and let (%,7) € X be a touching point for (X, 1), so
that (3.2) holds. Fix a sufficiently small number b € (0, 7/10000), to be chosen
depending only on n and ADR. We then set

QX,I = Q((ﬁ" i)’ Mzr)’ AX,I = A(()%, ﬁ’ MZF)’

Oy, = O((&, 1), br), Ay, = A((%, 1), br).

Note that Ay, is the same as in (2.4).

The proof will use the following pair of claims. We recall that a is the constant
in Remark 1.27.

Claim 1: For b small enough, depending on n, a and ADR, there is a constant 8 > 0
depending only on n,a, b, ADR and 4, and a cube Q; := Q((x;, 1), br) C Qx,, with
(x1,11) € Z, such that

(3.9) dist(Q » 1) 2 r

(note that the implicit constants in (3.9) depend on the constant a in Remark 1.27,
but not on b), and

(3.10) W®(A1) = B™ (Ax,),
where A| := Q1 NX.

Remark 3.11. Since the constant a in Remark 1.27 depends only on n and ADR, in
turn b ultimately depends only on n and ADR.
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Claim 2: Suppose that u is a non-negative solution of Lu = 0 in €, vanishing
continuously on 2A% , with ||ul|.~q) < 1. Then for every € > 0,
(3.12)

c
(X, 1) < —=

o(Ax,)

where « is the exponent from Lemma 2.6.

f f (IVu(¥ )P + 1Y, )d,u(Y. ) ) 8(¥. s)d¥ds + Ce™,
Ox,NQ

Momentarily taking these two claims for granted, we adapt to the parabolic
setting the argument of [DKP], as modified in [HLe]. Let Q; and A; be as in Claim
1. Let F c Ay, be a Borel set satisfying

o(F) z (1 = mo(Ax,),

for some small 7 > 0. If we choose n small enough, depending only on n, ADR,
and b, then by inner regularity of o, there is a closed set F; C F N A; such that

o(F1) =2 (1 - yipo(Ay).
Set A; := Ay \ F1. Then A is relatively open in X. Define
f:=max(0, 1 +ylog M(14,)),

where y > 0 is a small number, to be chosen, and M is the Hardy-Littlewood
maximal operator on . Note that we have the following:

(3.13) 0<f<1, Iflamocs) < Cy, I, (x) < f(x), Vx € X.
Note also that if z € £ \ 20, then

o(Ar)
M(14,)(2) < oA < v,

where the implicit constants depend only on n» and ADR. Thus, if 77 is chosen small
enough depending on v, then 1 + ylog M(14,) will be negative, hence f = 0, on
2\20;.

In order to work with continuous data, we shall require the following.

Lemma 3.14. There exists a collection of continuous functions {f,}o<y<ar/1000, de-
fined on X with the following properties.

(1) 0< fy £ 1, foreach v.

(2) supp(fy) €301 NZ.
(3) 14,(x) < lim iglffv(x), for every x € Z.

@) supllfyllsmoc) < ClifllBmoc) < ¥, where C = C(n,ADR).
4

We defer the proof of Lemma 3.14 to the end of this section.

Taking the two claims (and Lemma 3.14) for granted momentarily, we give the
proof of Theorem 1.5. As noted above, by Theorem 3.4, it suffices to verify the
(6, 8)-locally ampleness condition (3.3). To this end, let u, be the solution of the
continuous Dirichlet problem with data f,. Then f, vanishes on ZA%’ .» by the sep-
aration condition (3.9) in Claim 1 and Lemma 3.14-(2), provided that b is chosen
small enough depending on a. Then, for small € > 0 to be chosen momentarily, by

Lemma 3.14, Fatou’s lemma, and Claim 2, we have

(3.15) Ww¥(A)) < flim iglffy dw™ < lim iglf u,(X,1) < Cey + Ce?,
> V— V>
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where in the last inequality we used (3.12), (1.4), and Lemma 3.14-(4). Combining
(3.15) with (2.5), we find that

(3.16) wX(A)) < (Cey + Ce®)w™ (Ax,y).

Next, we set A := Ax, \ F, and observe that by definition of A and A;, along
with Claim 1, and (3.16),

W(A) < WM (Ax \ A1)+ WM(A)) < (1= B+ Cey + CeMw™ (Axy).
We now choose first € > 0, and then y > 0, so that C¢y + Ce®* < 5/2, to obtain that

WNE) 2 Bt A = B,

where in the last inequality we have used (2.5). Therefore (3.3) holds.

It remains to prove the two claims. Let a > 0 be the constant mentioned in
Remark 1.27. Recall that M; is the constant in Lemma 2.1, and that M, is the
constant in Remark 2.3.

Proof of Claim 1. Recall that we have fixed (X, 7) € Q, and that (%,7) € X is a touch-
ing point for (X, ), so that (&, 7) lies on the boundary of the (open) cube Q,(X, 1),
with 7 = 6o(X, 1) = [|(X, 1) — (&, Dl|¢=, and O-(X,1) N X = 0. If there is more than
one touching point, we simply fix one. Note that since (£,7) € Q,(X, f), we have
in particular that

f<t+r*.
Consequently, we may apply Remark 1.27 to the cube Qpjg := Qs,-1,(, 1), to find a
point (y, ) € X N Qpjg, With s < f—@2r?* <t+r*—(2r)? The point (y, s) therefore
satisfies
(3.17) s<t—3r%, and ||(X,1) — SN Sar.

Let us note for future reference that for (Z,7) € Q N Qy;,, by Remark 1.26 we
have

(3.18) distes ((Z,7), %) = 000(Z, T) =, distes ((Z,7),0Q), if T <1— (r/4)%,
since (X, t) € Q implies that t < T}y, and the restriction V¢ — T, > 2Myr, with
My ~ My/a > 1/a, implies that (3.1) holds for (Z, 7) € Qpjq.
We fix a point X, = (X, t.) lying on the back face of Q,(X, f) (so thatt, = t— ),
with
(3.19) X — X >r/4.
We now form the parabola $; with vertex at (y,s), passing through the point
(X, t+), so that any point (Z, T) on P; satisfies
_ to—s
|X* - }’|2
We also form the parabola #,, with vertex at (X, t.), through the point (X, ), so
that any point (Z, 7) on P, satisfies
it
X -X.P
(it may be that X, = X, in which case $; is simply the horizontal line joining
(X, — %) to (X,1)). Set C := P, UP,, and travel along C backwards in time,

T—s Z =y 24 1Z-yP.

-1, 1Z - X.I> 2 1Z - X.
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starting at (X, r), moving towards (X, t.), and if need be through (X, #.) towards
(v, 5), stopping the first time that we reach a point (Z1, 71) satisfying

S(Z1,71) = bM;'r.

Choose (x1,t) € X such that 6.(Z1, 71) = ||(Z1,71) = (X1, t1)||¢=, SEL A 1= Q1 N Z,
with Q; := Q((x1, 1), br), so that, by Remark 2.3,

W (A > k.

We may then move along C, forwards in time, from (Z;, 1) to (X, ?), to obtain
(3.10) by Harnack’s inequality and (3.18), and the fact that w*" is a probability
measure.

Moreover, by (3.19) and the construction of the curve C, for b small enough
depending on a, we readily obtain the separation condition (3.9), and for M, large
enough, again depending on a, using the second inequality in (3.17), we obtain the
containment Q1 C Qx;. m]

Proof of Claim 2. By a translation, we may suppose that the touching point (£, 7)
is the origin. As above, we set
r= 600(X= t) = ”(X9 t)”'foov

where we have used that (£,7) = 0. Since the ¢2 and ¢* versions of the parabolic
distance are comparable, we have that

(3.20) r =Xl = 6X, ) ~ r,
with implicit constants depending only on dimension.

Set
(3.2 Px; = Qc(X,1), Py,:=0,(X,1),

where ¢ < 1/1000 is a small fixed positive constant to be chosen momentarily.
Then by [M, Theorem 3], we have that

1/2
3.22) M(X’I)S(Jq |u(Y)|2dY] .
Py,

Let S denote the spherical cap
So = {(£.1) € 5" 6. 7) — mpar(X. 1)l < 7/1000)

where we recall that 7, is defined in Definition 1.32. For the sake of notational
convenience, we shall write

€=, pIE:= (ol p'T)

to denote, respectively, points on the unit sphere S”, and on the parabolic sphere of
radius p (expressed in parabolic polar coordinates; see Definition 1.31).

Then for ¢ in (3.21) chosen small enough, we have that
P)_(,t C ﬂX’[ 5

where Ay, is the region given in parabolic polar coordinates by

Axy = {p"PE: £ €S0, n/2<p<RE},
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where r; ~ ris defined in (3.20), and R(¢) is defined appropriately so that R(¢) < r,
uniformly in &, and so that Ay, C Q% In fact, more generally,

(3.23) Ty = {p1Pé: £€S0,0<p<RE}CQ.

Of course, 'y, is just a truncated version of the parabolic cone I' (see Definition
1.33) with vertex at 0 = (£, f), in the direction 7tpar(X, 1), with aperture 7/1000.

Then by (3.22) and the fact that P)‘(J C Ay, we have
R(E) 5 12
<[ [ [ b ol s apae)
So Jr1/2

R(&) 2 v
$(r_"_2 f f [u(p"28) - u((er)'¢)| p"“dpdu@) + 0(e")
So Jri/2
=1 I + O(")

where we have used parabolic polar coordinates (Definition 1.31), and where the
“big-O” term is

2 KE) 1,2) 2+l "
I = (r_"_ j; f , ju(en! o) p* dpdu(&)) ;
0vr

which may be estimated as follows. First note that

12
2
I~ ( f ju((en!29)| du(-f))
So
since r; = r = R(£). Observe that for £ € Sg C S”, we have

5((enPé) s er,
since (£,7) = 0 lies on . Moreover, u vanishes continuously on ZASU, which is
centered at (%, 7) = 0, and has parabolic diameter ~ r. Then by Lemma 2.6, using
that ||u||c < 1, we obtain that for every & € Sy,

u((en¢) < €,

whence it follows that 11 < €.

It remains to control term / by appropriate localized square functions. To this
end, using that p = r in Ay,, we write

0 2
2=, 2 ff |f Bqu(q(l’z)f)dql 0" dpdu(€)
Axs €r

v 0
S f fﬂ f Vu(q"2é)Pdgdpdu(€) + f fﬂ f 10,u(q"2é)Pdqdpdu(€)

2,72
=0+,

4 We need be this careful only if Tpux — t < r?, otherwise, we could simply set R(§) = Cr
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‘We note first that

0
P s rm? ff f Va0 dgdpdu(e)
Ax; Jer
1 R 1,2 2 2
< f f V(g 26)Rq"dgdu(@)
So Jer

~e 1 f f IVu(Y, )| 8(Y, s)dY ds
;ﬂ*

Seo(Ax)”! f f [Vu(y, s)"6(Y. s)ay ds.
Ox,NQ
where the region A, is given in parabolic polar coordinates by

A= {q"PE: £€So. er<qg<RE) .
and where in the last step we have used (3.20), (3.23), ADR, and the definitions of
QX,I and AXJ.
Similarly,

0
2 < i f f f " 05u(q" ) Pdqdpdu(é)
Ax; Jer
R(£)
< f f 0su(q P OPG dgdu(©)
So Jer

me ! f f l0,uY, )| 6* (Y, $)dY ds
57[*

Se o(Ax)™! f f |6su(Y, )| 63 (Y, $)dY ds.
;7{*

This concludes the proof of Claim 2, and hence of Theorem 1.5, modulo the
proof of Lemma 3.14. O

Proof of Lemma 3.14. Let { € Ci(R™1),
supp({) € B(0,1), ¢=1o0nB(0,1/2), 0<¢<1.

Given v € (0,ar/1000), and x,z := (z,7) € Z, set
. -1, (X2
A2 =k (),

fora=(1,1,...,1,2), and
(3.24) b(x,v) := ffg(x—_az) do(z) ~ V'™,
b \4

uniformly in x € X, by the ADR property. Furthermore,

ff A,(X,Z2)do(z) =1, VYxeZX.
p)

H(x) = f fz Ay(x,2)f(z)do (),

‘We now define
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so that f, is continuous, by construction. Let us now verify (1)-(4) of Lemma 3.14.
We obtain (1) immediately, by (3.13), and the properties of A,, while (2) follows
directly from the smallness of v and the fact that supp(f) C 2Q; N X. Next, observe
that since A is a relatively open set in X, we have that for every x € %,

14,(x) < lim ié’lf f f Ay(x,2)14,(z)do(z) < lim ié’lf (%),
V> > V>

by the last inequality in (3.13). Hence (3) holds.

To prove (4), we observe that the second inequality is simply a re-statement of
the second inequality in (3.13), so it suffices to show that

(3.25) I llBmo) < IfllBMoc) uniformly in v.

To this end, we fix a surface cube A = A(y, r), and we consider two cases.
Case 1: v > r. In this case, set ¢ := j%(x ) f, so that by ADR, (3.24) and the

construction of A,

H fy - cldo < H H \f = cldodo < I flswo.
A AJIax2v)

Case 2: v < r. In this case, set ¢ := 39% A J- Then by Fubini’s Theorem,

Jfﬁ 00 = el dor(x) < Jfﬁ NICRE: f fz Ay, Do (0do(2) < |fllsmoe).

where again we have used ADR, (3.24) and the compact support property of A, (X, z).

Since these bounds are uniform all over y € Z, and r € (0, diam(X)), we obtain
(3.25). O
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