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ABSTRACT

The sea ice-albedo feedback (SIAF) is the product of the ice sensitivity (IS), that is, how much the surface

albedo in sea ice regions changes as the planet warms, and the radiative sensitivity (RS), that is, howmuch the

top-of-atmosphere radiation changes as the surface albedo changes. We demonstrate that the RS calculated

from radiative kernels in climate models is reproduced from calculations using the ‘‘approximate partial

radiative perturbation’’ method that uses the climatological radiative fluxes at the top of the atmosphere and

the assumption that the atmosphere is isotropic to shortwave radiation. This method facilitates the com-

parison of RS from satellite-based estimates of climatological radiative fluxes with RS estimates across a full

suite of coupled climate models and, thus, allows model evaluation of a quantity important in characterizing

the climate impact of sea ice concentration changes. The satellite-based RS is within the model range of RS

that differs by a factor of 2 across climate models in both the Arctic and Southern Ocean. Observed trends

in Arctic sea ice are used to estimate IS, which, in conjunction with the satellite-based RS, yields an SIAF of

0.16 6 0.04Wm22 K21. This Arctic SIAF estimate suggests a modest amplification of future global surface

temperature change by approximately 14% relative to a climate systemwith no SIAF.We calculate the global

albedo feedback in climatemodels usingmodel-specific RS and IS and find amodelmean feedback parameter

of 0.37Wm22 K21, which is 40% larger than the IPCC AR5 estimate based on using RS calculated from

radiative kernel calculations in a single climate model.

1. Introduction

Sea ice area is expected to decrease as the climate

system warms, and this in turn will lead to a darker

surface, and an increase in solar radiation absorbed by

the climate system. This additional radiative input re-

inforces the initial warming providing a positive climate

feedback often termed the sea ice-albedo feedback

(SIAF). Early literature on climate stability in simplified

models suggested that SIAF could cause abrupt and

dramatic climate state transitions under smoothly

varying external forcing (North 1984; Budyko 1969)

or produce multiple equilbria in more comprehensive

coupled climate models (Ferreira et al. 2011). More

modest estimates of the global albedo feedback (in-

cluding changes associated in surface albedo over land)

were found in coupled climate models (Stocker et al.

2013; Bony et al. 2006; Soden andHeld 2006), producing

an IPCCAR5 ensemblemean global albedo feedback of

0.26Wm22K21 (Flato et al. 2013) leading to a 22% in-

crease in the global climate response to external forcing

(Roe 2009) relative to system with no surface albedo

feedback. Pistone et al. (2014, 2019) used the covariance
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of year-to-year sea ice anomalies and satellite radia-

tion to produce an observationally based estimate of

SIAF with a similar magnitude for the Arctic sea ice

(0.31Wm22K21) and pointed out this additional radi-

ative input to the climate system due to Arctic ice melt

to date 25% the anthropogenic forcing. There is still

a substantial (60.1Wm22K21) intermodel spread in

strength of the SIAF (Winton 2006; Hall and Qu 2006)

that is understood to be the leading cause of intermodel

differences (Hall 2004; Kay et al. 2012) in the high-

latitude climate response (polar amplification; Holland

and Bitz 2003).

SIAFmeasures howmuch additional radiative energy

the Earth system gains due to sea ice loss as the planet

warms, which amplifies the warming relative to a system

with no SIAF. SIAF is quantified as the global (area

weighted) average of RITOA,a, the radiative impact of

sea ice change [the local top-of-atmosphere (TOA) ra-

diative flux change due to surface albedo changes (a)

from sea ice loss per degree of global averaged surface

temperature change]:

SIAF5 [RI
TOA,a

(x, y)], (1)

where square brackets indicate a global average.

Following Winton (2006) [Eq. (1)], the spatial map

of RITOA,a(x, y) is the product of two quantities (Soden

and Held 2006; Shell et al. 2008): 1) the surface albedo

change due to sea ice loss per unit of global mean

surface temperature change, [dTS], (daSI/[dTS]), and 2)

the sensitivity of TOA radiation to surface albedo

(›RADTOA/›a) that we hereafter refer to as radiative

sensitivity (RS):

RI
TOA,a

(x, y)5
da

SI

[dT
S
]|fflffl{zfflffl}

IS(x,y)

›RAD
TOA

(x, y)

›a(x, y)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
RS(x,y)

. (2)

The normalization of RITOA,a(x, y) by global mean

temperature (TS) change is integrated into the IS term

and RS is defined as the local radiative change at the

TOA per unit of surface albedo change. This study

considers only the radiative impact of a changes in high

latitudes [poleward of 608N and 558S, in the Northern

and Southern Hemispheres (NH and SH), respectively]

over oceans, and calculations of SIAF exclude the im-

pact of changes in terrestrial snow cover. RS and

a changes are calculated for each month and then their

product is time averaged. Changes in aSI are calculated

over the ocean and capture both the impact of sea ice

loss and changes in surface albedo over sea ice (i.e., snow

and melt ponds). Hall and Qu (2006) claim that RS

varies very little between climate models. As a result,

much of the literature on SIAF uncertainty has focused

on processes controlling sea ice albedo changes and the

sensitivity of sea ice concentration (SIC) to warming

(Winton 2006; Qu and Hall 2005; Curry et al. 1995),

which both vary substantially between models. The

IPCC estimate of the global albedo feedback (Flato

et al. 2013; Soden and Held 2006) used a RS calculated

from a single model, neglecting intermodel differences

and biases (relative to observations) and assuming RS

does not contribute to albedo feedback uncertainty. We

assess the validity of this assumption in this work.

RS depends primarily on cloud reflectivity; clouds

impede the amount of downwelling solar radiation

reaching the surface and also reduce the amount of solar

radiation reflected by the surface from reaching the

TOA (Taylor et al. 2007; Donohoe and Battisti 2011),

leading to a quadratic dependence of RS on cloud re-

flectivity. High-latitude cloud properties vary substan-

tially between models and exhibit many biases relative

to observations (Gorodetskaya et al. 2008; Vavrus et al.

2009; Trenberth and Fasullo 2010). Cloud differences

can contribute to model differences in RS that in turn

influence 1) the sensitivity of sea ice loss to future

warming (Hwang et al. 2011) via local positive radiative

feedbacks and 2) the impact of sea ice loss on the global

energy budget and, thus, the global climate sensitivity to

external forcing.

This study assesses intermodel differences in RS and

consistency compared to estimates from satellite ob-

servations. We also identify relative contributions of

IS and RS to model spread and biases (relative to ob-

servations) in the amplification of global warming by

SIAF, and evaluate the impact of using RS from a single

climate model to calculate the global surface albedo

feedback across models as was done in Soden and Held

(2006) and the IPCC AR5 estimate of surface albedo

feedback.

The manuscript is organized as follows: section 2

outlines how a simplified isotropic model often dis-

cussed in textbooks on radiative transfer, and further

developed by Taylor et al. (2007), can be used to

calculate RS from standard climate model output and

demonstrates that the method reproduces results from

more computationally demanding radiative kernel

techniques. This facilitates further evaluation of inter-

model spread in RS in the coupled models participating

in the Coupled Model Intercomparison Project (CMIP3

and CMIP5; Meehl et al. 2007; Taylor et al. 2012). Most

importantly, this method also provides an observational

estimate of RS from satellite data (section 3). These

estimates of RS along with the sea ice response over the

historical period are used to calculate an observational

SIAF (section 4). The observational SIAF is compared
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to that in model simulations under historical forcing

and 43CO2 and the model spread and biases are de-

composed into contributions fromRS and IS (section 5).

In section 6, we evaluate the impact of the intermodel

spread in RS on the global surface albedo feedback

calculated in the IPCC report. A summary and discus-

sion follow.

2. The impact of surface albedo changes on
TOA radiation in radiative kernels and a
simplified model

a. Radiative kernels

The impact of surface albedo changes on TOA radi-

ation (RS) has been rigorously calculated using radiative

kernel techniques in a small number of climate models

(Smith et al. 2018; Pendergrass et al. 2018; Shell et al.

2008; Block and Mauritsen 2013; Soden and Held 2006;

Previdi 2010). RS can be calculated directly from offline

radiative model calculations by prescribing changes

to the surface albedo (a) at each grid point and then

running the radiative code with all other fields un-

changed—a technique referred to as a radiative kernel

calculation (Soden and Held 2006; Shell et al. 2008).

Radiative kernels are generally calculated at each grid

point over a global domain by perturbing the surface

albedo at each grid point by a specified amount (in-

dependent of whether that surface albedo change is

feasible) using atmospheric models with prescribed

historical climatological (seasonally varying) sea surface

temperatures. We use kernel calculations (for specific

models) provided by 1) Karen Shell, NCAR CAM3

(Shell et al. 2008); 2) Karoline Block, MPI ECHAM6

(Block and Mauritsen 2013); 3) Angie Pendergrass,

NCAR CAM5 (Pendergrass et al. 2018); 4) Chris

Smith, UKMO HadGEM2 (Smith et al. 2018);

and 5) Brian Soden, GFDL AM2p12b (Soden and

Held 2006).

RS is reported in Wm22 %21 where the % refers to a

0.01 unit change in surface albedo (independent of the

climatological surface albedo). Summertime [May–

August (MJJA)] daily-averaged TOA insolation in the

Arctic (defined as the region poleward of 608N) is on

the order of 420Wm22, and a 4.2Wm22 %21 RS would

be expected in a completely transparent atmosphere.

Radiative kernel calculations produce an RS Arctic

average of 1.63Wm22 %21 across the four different

models (numbers in the upper right of each panel in

Fig. 1), indicating that the atmosphere attenuates the

surface contribution to reflected radiation at the TOA

by a factor of ;2.6 (4.2/1.63). Kernel estimates of RS in

Arctic summer (May–August) are largest over Greenland

(2–3.5Wm22 %21) and smallest in the Greenland–

Iceland–Norwegian (GIN) Seas (0.5–1Wm22 %21),

with intermediate values in the central Arctic

(1–2.5Wm22 %21; upper panels of Fig. 1). This spatial

structure primarily reflects the climatological pattern

of solar radiation reaching the surface in the Arctic

(Lindsay et al. 2014). The highest RS values are found

where cloud cover and water vapor are low over the high

topography of Greenland. Moderate RS values are seen

in the central Arctic due to the thin but persistent cloud

FIG. 1. Arctic summertime (MJJA) surface albedo radiative sensitivity (RS) (top) calculated from radiative kernels and (bottom)

estimated from the climatological radiative fields using the idealized isotropic radiation model in the same models. The squared spatial

correlation coefficient between the kernel isotropic methods in the same model are provided in the middle and the Arctic domain-

averaged values are shown in the top right of each panel. Note that there is no RS calculation from the GFDLmodel because mean state

fields from this simulation were not saved. Observational estimates from CERES EBAF satellite data and the isotropic model are shown

to the right.
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cover over the perennial sea ice. RS is smallest in the

GIN Seas due to abundant thick clouds.

There is remarkable intermodel spread in Arctic RS

across the different radiative kernel calculations, espe-

cially over the central Arctic where the models differ

by a factor of 2. As shown below, the diversity of RS

across the different kernel calculations is a consequence

of intermodel differences in the mean state cloudiness

and not due to differences in radiative transfer code or

the methodology used to calculate the kernels between

the different groups.

In the SO, RS during the austral summer [November–

February (NDJF)] calculated from radiative kernels

shows a zonally annular structure in all models with

smaller values over the cloudy storm track region

equatorward of the ice edge and larger values over the

sea ice (upper panels of Fig. 2). However, the models

differ to first order on the magnitude of RS over the

open ocean and on the location and aerial extent of the

region of larger RS adjacent to the Antarctic continent.

In HadGEM2, the value of RS over the open ocean is

2Wm22%21whereas inNCARCAM3RS is 1Wm22%21

over the same region. In NCAR CAM5, the region of

high RS adjacent to the Antarctic coast extends sub-

stantially into the SO whereas in NCAR CAM3 and

ECHAM6 the high RS region is confined to the coast

itself with the exception of the Weddell and Ross Seas.

The intermodel differences in the aerial extent of the

high RS region roughly correspond to intermodel biases

in summertime ice extent; the gradient in atmospheric

tranmissivity is linked to the sea ice edge via cloud

coverage and atmospheric water content although in

some models the gradient in cloudiness is significantly

poleward of the ice edge (i.e., NCAR CAM3) while in

other models the cloud gradient is collocated with the

ice edge (i.e., NCAR CAM5). Overall, the Southern

Ocean domain average RS (excluding the Antarctic

continent to focus on the sea ice) ranges from 1.29 to

1.75Wm22 %21 (as shown by the values in the upper-

right corner of Fig. 2).

b. Isotropic single-layer model

Taylor et al. (2007, hereafter T07) developed a model

(hereafter the isotropic model) that can be used for

approximating RS from the climatological radiative

fluxes at the TOA and surface and some basic assump-

tions about shortwave radiative transfer in the atmo-

sphere. Part of the T07 derivation is repeated here

for clarity with a few modifications to variable names.

Of the incident shortwave radiation at the TOA (S),

assume a fraction (A) is absorbed in the atmosphere

above cloud top and a fraction R of the radiation in-

cident on cloud top is reflected back to space (Fig. 3).

This resultant downwelling radiation at the surface is

S(1 2 A)(1 2 R). A fraction (a, equal to the surface

albedo) of this downwelling radiation is reflected up-

ward. Of this surface upwelling radiation, R is reflected

back (downward) to surface with the remainder [S(12
A)(1 2 R)2] transmitted to space. Reflections and

transmissions are continued indefinitely subject to the

three primary assumptions: 1) cloud optical properties

can be represented by a single layer, 2) cloud reflection

is isotropic–the same fraction (R) of broadband short-

wave radiation incident on the cloud layer is reflected

independent of the direction (upwelling/downwelling)

and how many previous interactions with the surface

and cloud occur, and 3) all of the atmospheric ab-

sorption occurs above cloud top on the first downward

pass which is apt for describing SW absorption by

ozone in the stratosphere (Chou and Lee 1996). We

FIG. 2. As in Fig. 1, but for the NDJF RS in the Southern Ocean. Domain-averaged surface albedo feedbacks exclude the Antarctic

continent. Note that the figures are ordered by domain average RS over the Southern Ocean and this order differs from Fig. 1.
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further analyze the limitations of these assumptions at

the end of this subsection.

In the isotropic model, loss of shortwave radiative

energy from the climate system due to surface albedo

is a three-step process: 1) insolation must be transmitted

to the surface, then 2) reflected by the surface, and fi-

nally 3) transmitted from the surface to the TOA.

Mathematically, upwelling SW radiation at the TOA

that results from reflection off the surface is equal to

the insolation (S) times the downwelling transmissivity

[(12A)(12R)] times the upwelling transmissivity (12R).

The isotropic model also includes higher-order reflec-

tions where the SW radiation reflected at the surface is

reflected back to the surface off clouds and thereafter

will contribute additional upwelling SW fluxes at the

TOA with each subsequent reflection equal to the value

of the previous order contribution times aR. These

terms form an infinite geometric series that converges to

the expression

SW[
TOA

5SR(12A)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
SW[TOA,atmos

1Sa
(12A)(12R)2

12aR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SW[TOA,surf

, (3)

where SW[TOA,atmos and SW[TOA,surf indicate the up-

welling radiation at the TOA that was derived from at-

mospheric and surface reflection respectively. Thus, if

the values of R andA along with a and S are known, the

contribution of the surface to the SW flux at the TOA

can be calculated. In our case, the isotropic model pro-

vides equations relating three satellite-derived quanti-

ties (SW[TOA, SW[SURF, and SWYSURF) in terms of

three unknown variables (A, R, a) and the satellite

measured S. The result is a determined set of three

equations in terms of three variables. Thus, the clima-

tological radiative fluxes allow the calculation of the

single-passA andR for each climatemodel.We can then

calculate the expected change of SW[TOA as a changes

with all else being equal by taking the partial derivative

of Eq. (3) with respect to a:

RS5
›SW[

TOA

›a
5 S

(12A)(12R)2

12aR

�
11

Ra

12Ra

�
.

(4)

This provides an alternate method for calculating RS

that relies only on readily available model output at

monthly resolution that can also be compared with the

RS calculated from radiative kernel techniques.

The lower panels of Fig. 1 show the RS in the Arctic

summer calculated from Eq. (4) applied to the monthly

climatological output from the same control simulations

that were used to calculate the radiative kernels. The RS

calculated from the isotropic model is in good agree-

ment with that calculated from radiative kernels in

terms of the spatial pattern of RS and intermodel dif-

ferences. Spatial correlation betweenRS in the isotropic

model and radiative kernel calculation for each model is

high with an R2 that exceeds 95% in all but NCAR

CAM3. The intermodel differences in domain average

of RS is within 10% in the absolute sense and captures

the rank of RS in models (cf. the adjacent upper and

lower panels of Fig. 1 with R2 listed in the middle). The

isotropic model explains 94% of the variance in MJJA

RS calculated from radiative kernels considered across

models and over all Arctic grid points collectively with a

root-mean-square (RMS) error of 0.15Wm22 %21 (see

the top panel of Fig. A2 in the appendix). As a basis for

comparison, if one used the spatial pattern of MJJA RS

calculated using radiative kernels from one model to

predict the kernel basedRS in a differentmodel—as was

done in the IPCC estimate of SIAF—the RS variance

explained is 21% with a RMS error of 0.67Wm22 %21

(bottom panel of Fig. A2). Thus, the isotropic model

offers a factor of 4 improvement on the practice of ap-

plying RS calculations from a single climate model.

The isotropic model also captures the spatial pattern

and intermodel spread of the kernel calculated RS in the

SO (Fig. 2) although the absolute values of RS differs by

as much as 20% (in the HadGEM2 model). The iso-

tropic model explains 96% of the variance in NDJF

kernel RS across models over the SO (top panel of

Fig. A3) with an RMS error of 0.23Wm22 %21. When

radiative kernels from one model are used to predict the

kernel-based NDJFRS in a different model the variance

explained is 71% with a RMS error of 0.47Wm22 %21

(bottom panel of Fig. A3). Thus, the isotropic model

offers a factor of 2 improvement on the practice of ap-

plyingRS calculations from a single climatemodel in the

FIG. 3. Schematic of the single layer isotropic model modified

from T07.

1 JULY 2020 DONOHOE ET AL . 5747

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 05/05/21 12:56 AM UTC



SO. These results indicate that the isotropic model

captures the essential SW radiative processes that de-

termine the RS of surface albedo changes, and that the

intermodel spread in RS is determined by the climato-

logical cloud reflectivity which is adequately calculated

from the modeled TOA and surface fluxes according

to Eq. (3).

The isotropic model tends to bias the RS high rela-

tive to the radiative kernel (cf. the domain average

values listed in the upper right of the map in the upper

and lower panels of Figs. 1 and 2) and we speculate that

this results from the simplifying assumption that at-

mospheric absorption only occurs during the first pass

as this allows more of the radiation reflected off the

surface to be transmitted to space than would occur if

the atmosphere absorbed upwelling solar radiation.

Alternative formulations of similar isotropic models

(Donohoe and Battisti 2011) assume the atmospheric

absorption occurs in the same layer as the cloud re-

flection and occurs on all passes through the atmo-

sphere to account for shortwave absorption by water

vapor that occurs throughout the troposphere (Donohoe

and Battisti 2013). This model better matches the RS

calculated by radiative kernels in the tropics and mid-

latitudes but substantially underestimates RS relative

to the radiative kernel derived value at high latitudes

(Fig. A1). We speculate that in the dry Arctic the at-

mospheric absorption is primarily by stratospheric

ozone whereas in the lower latitudes water vapor also

contributes. For this reason, we choose to assume that

absorption occurs only on the downward pass and return

to possible impacts and improvements of this method in

the discussion section.

c. Causes of intermodel spread in RS

What processes are responsible for the factor of 2

spread in modeled RS in Figs. 1 and 2? The ability of

the isotropic model to reproduce the kernel-based RS

calculated for each model demonstrates that the mean

state atmospheric opacity is the primary determinant.

Generally speaking, RS is determined by how much

insolation is transmitted to the surface and thus how

much impact surface albedo changes have on reflected

solar radiation. More specifically, RS is proportional to

the atmospheric transmissivity squared with higher-

order modifications due to the impact of multiple re-

flections [Eq. (4)]. What then causes the intermodel

spread in atmospheric opacity?

Clear-sky surface albedo kernels (Fig. 4) have much

larger magnitudes than their all-sky counterparts. The

very similar spatial structures and absolute values in the

four models with available kernel calculations have

domain averages that differ by 2% from the multimodel

mean, indicating that 1) clear-sky processes are not re-

sponsible for the intermodel spread in all-sky RS and

2) the different radiative transfer codes used in the cli-

mate models find a similar RS for a similar (clear sky)

mean state.

FIG. 4. Comparison of Arctic summertime (MJJA) full-sky and clear-sky surface albedo kernels.
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The atmospheric opacity parameters—reflectivity and

absorptivity—calculated by the isotropic model applied

to the mean states of the different climate models are

shown in Fig. 5. The all-sky reflectivity is subdivided

into a clear-sky and cloud component by applying the

isotropic model to the clear-sky mean state radiative

fields (as in T07) to define a clear-sky reflectivity, and the

cloud reflectivity is then defined as the all-sky minus

clear-sky reflectivity. All climate models have very

similar and nearly spatially uniform clear-sky re-

flectivity and all-sky absorptivity with Arctic domain

average absolute differences from the model mean of

order 0.02 fractional units. The slight spatial structure in

clear-sky reflectivity and absorptivity is consistent be-

tween climate models. Clear-sky reflectivity is larger

near the North Pole consistent with enhanced Rayleigh

scattering due to the shallower angle of incidence with

latitude. Absorptivity is smaller over the thinner atmo-

sphere above topography and drier continents consis-

tent with reduced absorption by water vapor. In contrast

to the consistency of absorption and clear-sky reflection

between models, the cloud reflectivity differs substan-

tially between models in both spatial structure and do-

main average values (which differ between models by

over 0.20 fractional units). In general, regions of stron-

ger cloud reflectivity have smaller RS values consistent

with less downwelling solar radiation at the surface in

cloudy regions. However, the anticorrelation between

the spatial variability in RS and cloud reflectivity is

significant but far from perfect (R ’ 20.60) within a

given climate model due to the (comparable in magni-

tude) impact of the spatial structure of mean state

FIG. 5. Comparison of the atmospheric opacity parameters that result from the application of the isotropic model to the Arctic sum-

mertime (MJJA) mean state radiative fields in the different climate models and observations. (top) All-sky RS repeated from Fig. 1.

(middle) Cloud reflectivity defined as the isotropic reflectivity applied to the all-sky radiative fields minus that defined from the clear-sky

fields with the latter shown in the third row. (bottom) All-sky absorptivity. The (full Arctic) domain average is shown in the top right of

each panel. The four models for which kernels are available are shown in the left columns and the observational calculation from CERES

data is shown to the right.
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albedo [Eq. (4)] on the multiple reflection contribu-

tion to RS. On a broader scale, the Arctic domain

average cloud reflectivity is very strongly anticorrelated

(R 5 20.99) with the domain average RS. indicating

that Arctic averaged RS is primarily determined by the

mean state cloud reflectivity.

3. Observational estimate of radiative sensitivity to
surface albedo changes and comparison to
coupled models

Given the strong correspondence between RS cal-

culated from radiative kernels and the isotropic model

(Figs. 1 and 2), we can use the isotropic model to

calculate RS from observational estimates of radiative

fluxes at the TOA and surface and use these same

fields (routinely available from model simulations) to

assess model biases in RS and diagnose their role in

the SIAF.

Observational estimates of climatological radiative

fluxes are taken from the CERES EBAF surface prod-

uct version 4.0 (Loeb et al. 2018; Kato et al. 2018) be-

tween 2000 and 2018. Climate model RS is estimated

using the isotropic model for the last decade (1995–

2005) of historical CMIP5 (Taylor et al. 2012) climate

simulations forced.1

Maps of summer (MJJA) RS estimated from satellite

products and models are shown in Fig. 6. Three spatial

averages of RS are also provided: 1) the whole domain

poleward of 608N (upper left corner in black), with an

FIG. 6. Arctic summertime (MJJA) radiative sensitivity estimated using the isotropic model and the climatological radiation fields for

CMIP5 historical simulations. Models are ordered as in reading a book (left to right then down) according to the domain average albedo

feedback. Asterisks denote the models for which radiative kernel calculations are available that have been repeated from Fig. 1. The dark

purple line shows the sea ice edge designated by theMJJA 50% sea ice concentration contour. The full domain spatial average is shown in

the top left corner of each panel in black, the Arctic Ocean average is shown in the lower right corner in blue, and the spatial average over

the sea ice is shown in the lower left corner in purple. Observational estimates from CERES satellite data are shown in the bottom

right panel.

1Most of the radiative kernel calculations discussed in section 2

used ‘‘modern,’’ slightly differing time periods.
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observational value of 1.79Wm22 %21; 2) the Arctic

Ocean excluding landmasses (lower right in blue), with

an observational value of 1.68Wm22 %21; and 3) the

spatial average over the sea ice (the spatial footprint and

region varies betweenmodels, lower left in purple), with

an observational value of 1.92Wm22 %21. The obser-

vational RS is very similar to multimodel mean values

(1.72, 1.65, and, 1.79Wm22 %21 over the entire Arctic

domain, Arctic Ocean, and sea ice regions respectively).

The models and observations generally agree on the

spatial pattern of RS over the Arctic with high values

over theGreenland Ice Sheet where the reducedmass of

the atmosphere above the high topography is associated

with enhanced atmospheric SW tranmissivity, lower RS

values over the GIN Seas, and more spatially uniform

RS values over the central Arctic. The magnitude of RS

differs substantially across models with domain average

RS varying by almost a factor of 2 between the models,

consistent with results from the radiative kernel-based

RS calculation (Fig. 1). The intermodel (2s) spread in

Arctic average RS is 0.57, 0.53, and, 0.64Wm22 %21

over the full Arctic domain, Arctic Ocean, and clima-

tological sea ice respectively.

The SOobservational estimate of summertime (NDJF)

RS is similar but slightly lower (domain average ex-

cluding the Antarctic continent of 1.56Wm22 %21)

than the multimodel mean (1.71Wm22 %21). All

models and observations show an annular structure in

RS with smaller values in the storm track region and

larger values adjacent to the Antarctic continent over

the sea ice (Fig. 7). RS differs substantially between

models (on the order of a factor of 2) in the storm track

region and on the location and lateral extent of the high

RS region adjacent to the continent. Some models (i.e.,

CSIRO Mk5) also have zonal asymmetries in RS that

are best characterized as a zonal wavenumber-1 pattern.

The domain average RS values differ by less than

the factor of 2 differences seen in the Arctic, but the

FIG. 7. As in Fig. 6, but for the NDJF SouthernOcean RS. Domain-averaged surface albedo feedbacks exclude the Antarctic continent.

The dark purple line shows the sea ice edge designated by the NDJF 50% sea ice concentration contour. Note that models are ordered by

Southern Ocean domain averaged RS and this order differs from that in Fig. 6. Asterisks denote the models for which radiative kernel

calculations are available that have been repeated from Fig. 2.
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local RS difference between models—especially in the

storm track region—are on the order of a factor of 2.

The intermodel (2s) spread in SO average RS is

0.54Wm22 %21, comparable in magnitude to that over

the Arctic domain and Arctic Ocean.

These results collectively suggest that while CMIP5

ensemble average RS of high-latitude ice loss is quite

similar to that implied from observational constraints,

models diverge substantially on the radiative impact of

ice loss because of differences in atmospheric optical

properties (i.e., clouds).

4. Observational estimate of ice albedo feedback

The Arctic sea ice-albedo feedback (SIAF) is (the

spatial average of) the product of the RS—the TOA

radiative impact of surface albedo changes—and the ice

sensitivity (IS), namely the surface albedo change due to

Arctic sea ice loss per unit of global warming [Eqs. (1)

and (2)]. Thus, theRS calculated from the climatological

radiative fluxes and the isotropic model in the previous

sections along with estimates of IS from the observa-

tional record provide an observational estimate of the

SIAF that can be compared to the SIAF calculated using

the same methodology applied to CMIP5 simulations

with historical and long-term forcing. Furthermore, we

can explicitly ask if the model spread (and potential bias

relative to observations) in SIAF is explained by RS or

IS spread.

The observational estimate of IS is calculated from

the changes in decadal surface albedo of the Arctic

ocean from 1982 to 2016 (2007–16 average minus 1982–

91 average; Fig. 8) during each summer month divided

by the global mean surface temperature (TS) change

over the same time period. We use two different ob-

servationally based datasets to calculate the change in

surface albedo over this time period: 1) sea ice concen-

tration calculated by the National Snow and Ice Data

Center (Cavalieri et al. 1996) from passive microwave

brightness measured by the Nimbus-7 satellite avail-

able from 1979 to 2016 and 2) broadband (all-sky)

surface albedo measured by the Advanced Very High

Resolution Radiometer (AVHRR) Polar Pathfinder

(APP-x) extended dataset (Wang and Key 2005) that

covers the 1982–2017 time period. The central estimate

of our observationally based IS is the average of calcu-

lations from these two datasets (elaborated on below)

and our uncertainty estimates account for differences

across the two datasets.

The NSIDC sea ice concentration changes are con-

verted to a surface albedo change record by multiplying

the SIC changes by the albedo contrast between sea ice

and open ocean (Da), which is assumed to be spatially

and temporally invariant:

IS5
dSIC

[dT
S
]
Da . (5)

Equation (5) assumes that changes in aSI are isolated

to regions of sea ice melt. NSIDC monthly maps of

the decadal average change in sea ice concentration

are multiplied by an assumed surface albedo contrast

between the open ocean and sea ice (Da) of 0.54,

assuming a typical ice a of 0.6 (Hummel and Reck 1979)

and an ocean albedo of 0.06 (Hansen et al. 1983). This

choice of typical ice albedo is an average of snow-

covered sea ice found during the late spring and sea

ice with melt ponds in the late summer (see Fig. 9 of

Perovich et al. 2002). This map of monthly NSIDC ice-

concentration-derived surface albedo change and those

derived from the APP-x (also monthly) data are aver-

aged to produce the observational best estimate of

change in surface albedo (Fig. 8c), hereafter referred to

as the observational best estimate (OBE). Both pro-

ducts produce similar estimates of surface albedo

changes (see Fig. A4 in the appendix). We use differ-

ences between the two surface albedo datasets as well as

the intradecadal variability within each dataset to cal-

culate the uncertainty in observational IS (Fig. 8d) as

outlined in the appendix.

Observational IS is calculated by normalizing OBE

surface albedo changes by a global surface temperature

change of 0.7 6 0.1K over the 1982–2016 time period.

The central estimate and uncertainty in global mean

surface temperature change come from the average

and standard deviation of the mean across three

different global surface temperature datasets: 1) the

National Centers for Environment Prediction (NCEP)

reanalysis surface air temperature (Kalnay et al. 1996),

2) the Goddard Institute for Space Studies Surface

Temperature Analysis (GISTEMP) (Hansen et al. 1999),

and 3) the modification by Cowtan and Way (Cowtan

andWay 2014) of the Met Office Hadley Centre surface

temperature dataset (Morice et al. 2012) version 4

(HadCRUT4).

The monthly IS is then multiplied by the monthly RS

derived from CERES data, and then time averaged

(over the summermonths) to produce amap of radiative

impact of sea ice changes (Fig. 8e). While the previous

figures showed MJJA average in the NH and NDJF in

the SH, Fig. 8e extends the summertime season to in-

clude the six months centered on the summer solstice

[April–September (AMJJAS) in NH and October–

March (ONDJFM) in the SH] since previous work

(Flanner et al. 2011) found an appreciable contribution
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FIG. 8. Spatial maps of observational estimates of summertime (MJJA) (top) radiative sensi-

tivity (RS) and (middle) ice sensitivity (IS), and (bottom) the radiative impact of surface albedo

change (RITOA,a). The RS is calculated from the isotropic shortwavemodel applied to the CERES

data. The IS is calculated from observational best estimate (OBE) surface albedo change between

1982 and 2016 divided by the global mean surface temperature change. (left) The central estimates

of each quantity and (right) the uncertainty (2 standard deviations, s) calculated from a Monte

Carlo bootstrapping resampling with replacement as described in the appendix.
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to the SIAF during the shoulder seasons especially in

April. The uncertainty in the RITOA,a (Fig. 8f) is as-

sessed from a Monte Carlo simulation that takes into

account three different uncertainties in the input data-

sets propagated (in quadrature) onto the calculation of

RITOA,a (see the appendix for details): 1) the uncer-

tainty in RS, due to uncertainty in the climatological

radiative fluxes; 2) uncertainty in the surface albedo

change, due to both intradecadal variability and differ-

ences between the APP-x and NSIDC ice concentra-

tions datasets; and 3) uncertainty in the global mean

temperature change that goes into the calculation of IS.

We note that RITOA,a in Fig. 8e is, by definition, the

radiative impact of sea ice changes normalized by global

mean surface temperature change (5 0.7K) and has a

summertime (AMJJAS)Arctic domain average of 4.96
1.4Wm22K21, which translates to an absolute change

in summertime radiation of 3.4 6 1.0Wm22 over the

Arctic. To convert this number to a global and annual

mean radiative impact, one must weight this number by

the ratio of summer months to the year (6/12) and the

spatial area of the Arctic (poleward of 608N) divided by

that of the globe (0.065), resulting in a global TOA ra-

diative change of 0.11Wm22 over the 1982–2016 period.

This translates to a global radiative feedback (divide by

0.7K global TS change) of 0.166 0.04Wm22K21 given

the observed global surface temperature change over

the same period. The uncertainties cited above reflect 2

standard deviations.

We do not estimate the observationally based surface

albedo feedback in the SO because the change in SO sea

ice concentration over the observational period is not

statistically significant above the year-to-year variability

(Jones et al. 2016). We also note that this estimate is

isolated to the Arctic Ocean (we have masked the APP-x

albedo changes over land) and, thus, does not include the

impact of changes in snow cover over land.

5. Comparison of observational and model SIAF
and decomposition of intermodel spread of SIAF
into RS and IS

We now compare the observational Arctic SIAF

derived above with that derived by the same method-

ology in historical CMIP5 simulations. The RS for each

climate model that was calculated using the isotropic

model in the previous section (from the climatology at

end of the historical simulation, 1995 to 2005) is multi-

plied by the decadal average surface albedo change,

calculated as the ratio of upwelling to downwelling

broadband shortwave radiation at the surface, over the

historical simulation (1995 to 2005 minus 1975 to 1985).

We note that this time period was chosen to correspond

to the end of the historical simulations and differs from

the 1982 to 2016 period used for the observational cal-

culations. The RS and surface albedo changes are cal-

culated for each month and the product is spatially

averaged over the Arctic Ocean to calculate the SIAF;

we exclude the impact of changes in snow cover over

land from our calculations. For simplicity, we will only

discuss the annual and global mean of the calculations

normalized by the global mean surface temperature

change over the same time period, as we did for the

observations. The CMIP5 ensemble mean Arctic SIAF

in the historical simulations is 0.12Wm22K21 with a

spread (2 standard deviations, s) of 0.13Wm22K21

(gray histogram in Fig. 9a with wide bars). The ensemble

mean is slightly smaller than the observational estimate

(cf. the solid and dashed vertical black lines in Fig. 9) but

the large intermodel spread indicates that the models

differ in either RS and/or IS. We now ask how much RS

and IS contribute to the intermodel differences in

Arctic SIAF.

To estimate the IS contribution to the SIAF spread,

the calculation of SIAF is repeated but the model spe-

cific RS is replaced with the observationally based RS

value. The resulting distribution of SIAF (blue histo-

gram in Fig. 9a) shows the spread produced by biases

and intermodel differences in IS. The mean value of

SIAF in the fixed RS distribution (0.12Wm22K21;

Table 1) is nearly equal to that of the full SIAF calcu-

lation (cf. the blue and black vertical lines). The CMIP5

ensemble average SIAF is quite insensitive to RS model

biases, and it is lower than the observed estimate be-

cause the modeled IS is smaller than the observational

estimate. Furthermore, the spread in the fixed RS dis-

tribution is only slightly smaller than that of the full

SIAF calculation (2s 5 0.12Wm22K21), indicating

that the majority of the intermodel spread in SIAF cal-

culated from the historical simulation is a result of the IS

differences between models.

A similar analysis can be made to estimate the impact

of biases (relative to observations) and intermodel RS

differences on the calculated SIAF by replacing the

model specific IS with that derived from observations

(red histogram in Fig. 9a). The CMIP5 ensemble aver-

age SIAF of the fixed IS distribution (0.16Wm22K21;

Table 1) is larger than that of the full SIAF calculation

(cf. the red and black vertical lines in Fig. 9), indi-

cating that the CMIP5 ensemble average IS is smaller

than that observed (the OBE value), a result also

found by Rosenblum and Eisenman (2016). The in-

termodel spread in SIAF in the fixed IS experiment

(2s 5 0.04Wm22 K21) is smaller than that of the full

calculation and fixed RS experiment, indicating that

intermodel differences in RS play a smaller but not
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insignificant role in the SIAF spread calculated over

the historical simulations. A summary of the role of

biases and intermodel differences in RS and IS in de-

termining the model distribution of SIAF is provided in

Table 1.

This partitioning of SIAF differences in contributions

from RS and IS takes spatial and temporal covariances

of ice loss and RS into account by weighting the ice loss

to the RS at that location and time. Similar results for

the impact of IS and RS on the total spread in SIAF are

obtained by simply noting the fractional spread (relative

to the ensemble mean) of summertime Arctic domain

average RS and IS betweenmodels. The ratio of domain

and summertime average intermodel spread (2s) to

the ensemble mean domain and summertime average

of RS is 40% whereas that of IS is 107%, roughly

scaling with the fractional contribution to SIAF

spread calculated above. This result suggests that

FIG. 9. Estimates of global (and annual) SIAF from climate models and observations using the radiative sensi-

tivity (RS) from the isotropic model applied to the climatology and the change in surface albedo under external

forcing normalized by the global mean temperature change. (a) Arctic sea ice changes over the historical (2007–16

minus 1982–91 averages). The black bars show the CMIP5 model distribution using the climate model specific

radiative sensitivity and ice changes, the blue bars show the distribution using themodel specific sea ice changes and

observational RS, and the red bars show the distribution using the observational sea ice change and model specific

radiative sensitivity. Solid vertical lines show the model mean of each distribution. The dashed vertical line shows

the observational estimate. The overlaid dark and thinner distribution shows the histogram of observational

estimates of ice albedo feedback calculated from a Monte Carlo resampling of subsets of the ice albedo data and

radiative data; the black distribution shows the impact of uncertainties in the observational RS and IS combined,

the blue distribution shows the impact of the IS uncertainty only, and the red shows the impact of theRS uncertainty

only. (b) As in (a), but using the modeled changes in the 43CO2 simulations. (c) Distribution of surface albedo

feedback in the Southern Ocean diagnosed from 43CO2 normalized sea ice changes. Because the observational

estimate of sea ice changes over the historical simulation is not statistically significant, the red distribution is cal-

culated from the model specific radiative sensitivity and the model mean normalized sea ice change.
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intermodel differences in IS and RS are fairly spa-

tially and temporally homogenous and the resultant

intermodel spread in SIAF is independent of the spa-

tiotemporal covariability of RS and IS. Previous work

has found similar large-magnitude intermodel spread in

IS in CMIP3 (Mahlstein and Knutti 2012) and CMIP5

(Stroeve and Notz 2015) linked to the spread in the

magnitude of Arctic amplification.

The sea ice retreat over the historical record repre-

sents the superposition of the response to climate forc-

ing and natural variability and, thus, the intermodel

spread in IS calculated over the 30 years of historical

simulations is expected to exceed that in response to

long-term sustained forcing. Schneider et al. (2018)

found that decadal trends in sea ice during periods when

global mean temperatures increased by more than 0.5K

provided good estimates of the long-term SIAF in an

ensemble of climate models. Other studies suggest that

as much as 50% of the observed Arctic sea loss since

1979 could be a result of the natural variability of at-

mospheric circulation (Ding et al. 2017, 2019; Kay et al.

2011). To reduce the amount of internal variability rel-

ative to the forced component, we also look at the

contribution of RS and IS to the intermodel spread in

SIAF in response to an abrupt and sustained quadru-

pling of atmospheric CO2 where the forced climate

change signal is expected to be larger than the natural

variability. The IS in the CO2 quadrupling simulations is

calculated from the change in surface albedo and global

mean surface temperature between the PI and the av-

erage over years 50–100 since CO2 quadrupling. The RS

used to calculate the SIAF is calculated from the PI

climatological fields in the same model. The ensemble

average Arctic SIAF calculated from the 43CO2 simu-

lations is 0.136 0.09Wm22K21 (uncertainty is 2s) and

is in close agreement with the ensemble average of the

historical simulation (0.12 6 0.13Wm22K21) with re-

duced intermodel spread. The central estimate and

range of SIAF from all model simulations—calculated

from 2s of the mean—is 0.13 6 0.02Wm22K21 and is

slightly smaller than but not statistically different from

the observational estimate (0.16 6 0.04Wm22K21).

Because the 43CO2 ice response primarily reflects the

forced response, the similarity of the ensemble average

SIAF diagnosed from historical and 43CO2 simula-

tions suggests that the same physics responsible for the

long-term SIAF are evident in historical simulations

despite the additional statistical noise from internal

variability.

When the model-specific RS is replaced by the obser-

vational estimate of RS the resultant Arctic SIAF for the

CO2 quadrupling simulations is 0.13 6 0.08Wm22K21

and when the model-specific IS is replaced by the ob-

servational estimate of IS the resultant SIAF is 0.16 6
0.04Wm22K21 (lower left panel of Fig. 9 and Table 1).

These results suggest that in the long-term response to

sustained anthropogenic forcing 1) the CMIP5 ensemble

average RS (spatially and temporally weighted by the

relevant regions of ice loss) is very near the observa-

tional estimate, 2) the CMIP5 ensemble average IS

(spatially and temporally weighted by structure of RS)

is slightly smaller than the observational estimate and is

responsible for the model SIAF being smaller than the

observational estimate and 3) intermodel differences in

IS contribute twice as much to the intermodel spread

in SIAF (63% of the ensemble average value) as do

intermodel differences in RS (30% of the ensemble

average value). We note that the intermodel spreads in

IS andRS are significantly (R5 0.54) correlated (at 95%

confidence interval) and we return to the implications of

this result in the discussion section.

A similar analysis can be performed for the 43CO2

simulations in the SO (poleward of 558S) to indicate

an ensemble average SIAF of 0.08 6 0.13Wm22K21

(Fig. 9c, Table 1). The SO SIAF is negative in a single

model (GFDL ESM2G) that simulates sea ice growth in

the Weddell Sea under 43CO2. When the model-

specific RS is replaced by the observational estimate of

RS, the calculated SO SIAF is 0.07 6 0.11Wm22K21,

suggesting the the ensemble average RS is slightly

larger than that estimated from the observations,

TABLE 1. SIAF values (in Wm22 K21) for the (top) Arctic and

(bottom) Southern Ocean derived from (left) observations and

model simulations of (middle) 43CO2 and (right) historical sim-

ulations. Each value shows the central estimate and 2s range across

the bootstrapping Monte Carlo simulations for the observations

and intermodel spread for the models. The top row in each hemi-

sphere shows the full calculation using the model specific RS and

IS. The second row shows the impact of intermodel differences in

IS as calculated using the model specific IS and the observed RS.

The third row shows the impact of intermodel differences in RS as

calculated using the model specific RS and the observed IS.

Arctic

Observations 43CO2 Historical

Full calculation 0.16 6 0.04 0.13 6 0.09 0.12 6 0.13

IS contribution

RSOBS 3 IS

0.13 6 0.08 0.12 6 0.12

RS contribution

RS 3 ISOBS

0.16 6 0.04 0.16 6 0.04

Southern Ocean

Observations 43CO2 Historical

Full calculation 0.08 6 0.13

IS contribution

RSOBS 3 IS

0.07 6 0.11

RS contribution

RS 3 ISOBS

0.08 6 0.04
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consistent with Fig. 7. Because no observational esti-

mate of SO IS is available, we probe the sensitivity of

SO SIAF to RS by replacing the model-specific IS with

the ensemble average IS, resulting in a calculated SIAF

of 0.086 0.04Wm22K21; intermodel differences in RS

result in intermodel differences in SO SIAF of mag-

nitude 50% the ensemble mean estimate. However, the

contribution of intermodel spread in RS to SIAF

spread is dwarfed by the impact of intermodel differ-

ences in IS, which produces intermodel differences in

SO SIAF exceeding the central estimate by almost a

factor of 1.5 (160%). This result is consistent with the

large intermodel differences in SO ice response to

global warming reported by Shu et al. (2015) and

Polvani and Smith (2013).

6. Global surface albedo feedback: Comparison to
IPCC AR5 value

The IPCC AR5 estimated a global surface albedo

feedback of 0.26Wm22 K21 based on the calcula-

tions of Soden and Held (2006), which use a single

RS—derived fom kernel calculations in the GFDL

model (Fig. 1)—applied the surface albedo change in

each CMIP3 model. These calculations are global and

include the impact of a changes over land (due to

changes in snow cover) in addition to the sea ice re-

lated changes considered up to this point and we term

this combined contribution of land and sea ice changes

the global albedo feedback (GAF). More recently,

Schneider et al. (2018) presented a CMIP5 ensemble

mean GAF 0.40Wm22K21 using NCAR CAM5-based

kernels. It is unclear if this discrepancy results from the

different RS used in these studies or the IS in different

GCM ensembles. Here, we compare the GAF produced

using the (kernel based) RS from a single model to that

calculated using a model specific RS derived from the

isotropic model.

Our GAF calculations are based upon surface albedo

change calculated from the 43CO2 simulations minus

that in the preindustrial simulation normalized by the

global mean surface temperature (TS) change in that

model–a quantity akin to IS in Eq. (2) but including the

albedo changes over land. This albedo change is multi-

plied by RS estimated two ways: 1) using the method

introduced in this study, where RS is calculated from the

isotropic model [Eq. (4)] using radiative fluxes from

appropriate model-specific preindustrial simulation and

2) using the method introduced by Soden and Held

(2006) where the GFDL surface albedo kernel (Fig. 1) is

used to estimate RS for all models. We separate the

GAF calculation into hemispheres. In the NH, the GAF

calculated in this study is larger than that calculated

using theGFDL kernel in all models (all the red dots fall

below the 1:1 line in the upper left panel of Fig. 10) as

would be expected from the GFDLRS being at the very

low end of the model range, especially over the ocean

domain. In the CMIP5 ensemble average, the NH GAF

is 0.20Wm22K21 using the GFDL kernel as compared

to 0.27Wm22K21 using the isotropic model method-

ology (35% greater; Table 2). The NH GAF has 64%

more spread using the model-specific RS because 1) the

ensemble mean RS is larger than the GFDL kernel RS

and 2) the intermodel spread in RS contributes to the

GAF spread as discussed in the previous subsection. If

we restrict the calculation to the Arctic Ocean poleward

of 608N (as was done in sections 4 and 5) we find a

CMIP5 ensemble average SIAF of 0.09Wm22K21 us-

ing the GFDL kernel compared to the 0.13Wm22K21

(Table 1) using the isotropic model methodology (45%

greater). This result suggests that approximately half of

the GAF is due to a changes over land as found by

Flanner et al. (2011).

In the SouthernHemisphere, the GAF estimates from

the two methods are in closer agreement; the dots

cluster along near the 1:1 line in the upper right panel of

Fig. 10 with the exception of the models producing the

highest GAF. This result is expected since theGFDLRS

is near the ensemble mean over the SO (Figs. 2 and 7).

The ensemble averageGAF in the SH is, therefore, very

similar when using the methodology in this study

(0.09Wm22K21) as compared to that calculated using

GFDL RS only (0.08Wm22K21; Table 2). Globally,

we calculate a GAF of 0.37Wm22K21, which is 30%

greater than the same result found applying the GFDL

RS to CMIP5 43CO2 simulations of 0.29Wm22K21.

We note the the IPCC AR5 cites a global GAF of

0.26Wm22K21 derived from the GFDL kernel and

CMIP4 simulations and, thus, our estimate is 40%

larger than the AR5 value. We attribute 30% of this

increase to improved methodology of using model-

specific RS and 10% to the difference between CMIP4

and CMIP5 model characteristics. Importantly, the

IPCC diagnosis of the overall climate sensitivity of

climate models is unaffected by our revised more pos-

itive GAF. Rather, our results suggest that the short-

wave cloud feedback should be revised downward by

the same amount because cloud feedbacks are diag-

nosed from all-sky minus clear-sky TOA radiation

adjusted by all-sky minus clear-sky radiative kernel

calculations.

7. Summary and discussion

We have shown that the radiative impact of surface

albedo changes [radiative sensitivity (RS)] calculated
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using offline radiative transfer models (radiative ker-

nels) can be closely replicated using a single-layer iso-

tropic SW radiation model applied to the climatological

radiative fluxes at the TOA and surface. This proce-

dure allows estimates of SIAF to be conveniently cal-

culated from observational datasets and standard model

output without use of a kernel calculation, facilitating a

comparison of observational and model estimates of

SIAF. It also allows the differences between models and

observation-based calculations to be decomposed into

contributions from RS and IS. The multimodel mean of

RS is close to the observational estimate in the Arctic

and only slightly larger than the observational estimate

in the Southern Ocean (SO). However, the intermodel

spread in RS (Figs. 6 and 7) is substantial, producing

intermodel differences in SIAF estimates that are 30%

and 50% the magnitude of the ensemble mean SIAF in

the Arctic and SO respectively. In agreement with Sledd

and L’Ecuyer (2019), high-latitude clouds tend to mask

the impact of surface albedo variations on the TOA al-

bedo by a factor of 2–3 in observational estimates.

Differences in climate model clouds influence the de-

gree of cloud masking.

Our results indicate that intermodel differences in IS

are more important than RS in explaining the inter-

model spread in SIAF. However, IS is not statistically

independent of RS (R 5 0.54). It is possible that inter-

model differences in RS contribute to intermodel

FIG. 10. Comparison of ice albedo feedback calculated from CMIP5 43CO2 using (ordinate) the method of

Soden and Held (2006b) with RS in all models set to the GFDL surface albedo kernel vs (abscissa) the method

introduced here with RS calculated from the model specific climatological radiative fluxes via the isotropic model.

The blue markers show the contribution of the ocean domain only and the red markers show the full domain. All

values shown are the contribution to the global mean. Dots show individual models and filled squares show the

ensemble average with bars showing one standard deviation of the mean. (top left) NH, (top right) SH, and

(bottom) the global mean. The black line is the 1:1 line.
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difference in IS because models that have a larger ra-

diative response to sea ice loss will tend to have greater

sea ice loss due to a stronger positive feedback between

initial ice loss and radiative heating. In this sense, the

contribution of RS to intermodel differences in SIAF of

0.04Wm22K21 both in the Arctic and SO can be

thought of as a lower bound on the contribution of mean

state radiative biases to the SIAF. We hope to explore

the impact of mean state radiative biases (RS) on IS and

the persistence of sea ice loss events in future work.

We estimate an observationally based global, and

annually averaged increase in TOA radiation of

0.11Wm22 from Arctic sea ice changes over the 1982–

2016 time period using observationally based estimates

of sea ice changes and the CERES-derived radiative

sensitivity implying a SIAF of 0.16 6 0.04Wm22K21.

Flanner et al. (2011) found a Northern Hemisphere

average ‘‘crypospheric radiative forcing’’ of 0.45Wm22

over the 1979–2008 time period, about half of which

(0.22Wm22) was attributed to sea ice changes while the

other half was attributed to snow changes over land.

Thus, the Flanner et al. (2011) result converted to a

global average (0.22/2 5 0.11Wm22) agrees very well

with our findings. Similarly, Cao et al. (2015) found a

Northern Hemisphere SIAF of 0.25Wm22K21 using

observed surface albedo change and RS estimated using

model-based kernels derived from GFDL (Soden and

Held 2006) and CAM3 (Shell et al. 2008). This result

translates to a global feedback of Arctic changes of

0.12Wm22K21, which is smaller than our central esti-

mate and we speculate this result follows from the lower

than observed RS in the CAM3 kernel (Fig. 1).

Pistone et al. (2014, 2019) calculated a substantially

larger SIAF (0.31 6 0.04Wm22K21) from the inter-

annual covariance of sea ice concentration and TOA

radiation measured by CERES.We speculate that some

of the TOA radiative variability that coincides with ice

loss events in Pistone et al. (2014) is not directly a con-

sequence of (i.e., geographically collocated with and/

or a radiative consequence) surface albedo changes but,

rather, is a consequence of atmospheric optical pro-

perties (i.e., clouds, water vapor, etc) that covary with

Arctic sea ice concentration. A central question moving

forward is whether the atmospheric changes (and the

associated radiative anomalies) accompanying Arctic

sea ice loss over the limited historical period result from

natural variability of atmospheric circulation initiated

by tropical and midlatitude processes or are a direct

result of sea ice loss and, thus, should be expected to also

apply to future climatological changes. Additionally,

how accurately does the observational IS calculated

over the historic record represent the expected rela-

tionship between future changes in Arctic ice concen-

tration and global mean temperature?

Pistone et al. (2014) suggest that the SIAF (Arctic

Ocean only) alone results in a 25% enhancement of

global warming via radiative feedbacks, a value they

derive from the ratio of their calculated radiative impact

of historic ice loss divided by the anthropogenic climate

forcing to date.We offer twomodifications as updates to

their calculation: 1) a significantly lower estimate of the

radiative impact of Arctic sea ice loss outlined above

and 2) consideration of how the implied feedback relates

to equilibrium climate sensitivity, noting that the climate

system is not currently in equilibrium with the anthro-

pogenic forcing to date. For the latter reason, the feed-

back gain of the Arctic SIAF should be calculated by

comparing the SIAF to the equilibrium radiative feed-

back of all other radiative processes as opposed to the

ratio of the transient radiative impact of ice loss to date

to the applied forcing. Given observational central

estimates of the total equilibrium feedback parameter

of 21.19Wm22K21 (Armour 2017) and our observa-

tional estimate of the Arctic SIAF (lSLAF 5 10.16 6
0.04Wm22K21), the implied feedback parameter of

all processes excluding the SIAF (l0) satisfies the

equation 21.19Wm22K21 5 l0 1 0.16Wm22K21.

This implies that l0 (the reference climate feedback

parameter of a systemwith no SIAF) is21.35Wm22K21.

We note that the reference climate feedback parame-

ter is more negative than that of a system with a SIAF,

implying a smaller climate sensitivity of the reference

system relative to the full system with a SIAF as is

expected for the positive SIAF. The fractional ampli-

fication of global mean temperature changes—the

TABLE 2. Global albedo feedback (GAF) in CMIP5 climate

models calculated using the methodology of this study—with a

model-specific RS from the isotropic model—compared to that

calculated using RS from the GFDL surface albedo kernel for all

models. The CMIP5 ensemble mean and 2s are shown for each

hemisphere and divided into ocean and full domains.

Northern Hemisphere

Ocean domain Total

This study 0.15 6 0.10 0.27 6 0.18

GFDL RS kernel 0.11 6 0.06 0.20 6 0.11

Southern Hemisphere

Ocean domain Total

This study 0.09 6 0.16 0.10 6 0.17

GFDL RS kernel 0.08 6 0.14 0.09 6 0.15

Global

Ocean domain Total

This study 0.24 6 0.15 0.37 6 0.19

GFDL RS kernel 0.19 6 0.11 0.29 6 0.13
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feedback gain, GSIAF—due to the SIAF is then

(Roe 2009)

G
SIAF

5
1

11
l
SIAF

l
0

5 1:146 :04: (6)

Thus, our analysis suggests that the Arctic SIAF am-

plifies global warming by 14% (2s range between 10%

and 19%) at the equilibrium time scale and is a more

modest amplifier of global warming than the 25% sug-

gested by Pistone et al. (2014).

The IPCC AR5 report (Flato et al. 2013) points out a

discrepancy between the observationally based SIAF of

Flanner et al. (2011) and the model-based estimate of

Soden and Held (2006) and speculates that models are

biased toward low IS, but the roles of intermodel spread

and biases in RS were neglected. While we find no en-

semble meanmodel bias in Arctic RS (Fig. 6), the model

estimate of RS used in Soden and Held (2006) is taken

from radiative kernel calculations in a single (GFDL)

model and then applied to the IS across models. The RS

from thatmodel (Fig. 1) is biased low relative to both the

observationally based RS (by 46% of the kernel RS in

the Arctic average) and the CMIP5 ensemble mean.

As a result, the AR5 estimate of the global surface al-

bedo feedback of 0.26Wm22K21 based on the calcu-

lations of Soden and Held (2006) is substantially lower

than our calculated value of 0.37Wm22K21, which uses

model specific RS estimates. This result suggests that

at least some part of the low model bias identified in

the IPCC AR5 is a consequence of using a RS that is

inconsistent with some climate models. We recom-

mend using model-specific RS derived from the iso-

tropic model as a better practice to applying radiative

kernels across models. Additionally, our results

identified no discernible model bias in the SIAF at

least when considering like quantities over the Arctic

Ocean domain.
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APPENDIX

Uncertainty Estimate in the Observational
Calculation of the Sea Ice Albedo Feedback

The RS calculated from radiative kernel calculations,

theAPRP isotropic model of Taylor et al. (2007) and the

alternative isotropic model of Donohoe and Battisti

(2011) are compared in Fig. A1. Figure A2 shows the

correlation across Arctic grid points between radiative

kernel–based RS and that calculated using the isotropic

model (top panel) versus applying the radiative kernel

derived from one climate model to a different climate

model. The same analysis is repeated for the Southern

Ocean in Fig. A3.

We describe the methodology used to calculate the

uncertainty in our observational estimates of the RS, IS,

and RITOA,a the spatial average of which gives the re-

sultant SIAF [Eq. (1)]. We do so by first bootstrapping

(random resampling with replacement) the original

observational data into subsets half the temporal length

of the original data to produce an ensemble of records.

For example, in the CERES data used to calculate the

RS, we produce an ensemble of radiative climatologies

derived from random selections of 9 years of the 18 years

of data. This procedure queries how sensitive the radi-

ative climatologies are to the limited length of the

CERES record. Similarly, the surface albedo changes

are calculated from the difference of random selections

of 5-yr averages within the period 1982–91 and 2007–16.

We then use the resampled data to calculate the

RS—using the isotropic model—and IS in a Monte

Carlo simulation. We calculate 100 different estimates

of RS and 100 different estimates of IS with 50 derived

from resampled NSIDC ice concentration data and 50

derived from resampled APP-x data. Thus, our esti-

mates of IS (Fig. 8d) account for two sources of uncer-

tainty: 1) the impact of intradecadal variability on
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calculating longer-term changes in surface albedo and 2)

instrumental uncertainty.

The central estimates of surface albedo changes de-

rived from the NSIDC and APP-x datasets are shown if

Fig. A4. The within-dataset intradecadal variability of

surface albedo contributes more to the IS uncertainty

than the differences between APP-x and NSIDC sea

ice concentration datasets; the standard deviation in

IS calculated from ensembles of just the 50 NSIDC or

50 APP-x data is similar to that derived from the 100-

member ensemble considered collectively. Given that

the NSIDC estimate of surface albedo change is de-

rived from sea ice concentration changes only and

does not account for changes in the albedo over ice,

the similarity of the NSIDC and APP-x derived IS

suggests that albedo changes are primarily associated

with changes in ice area. The uncertainty in RS (taken

as 2 standard deviations across the resampled en-

semble) is approximately 10% of the mean RS with

larger values in the vicinity of sea ice edge (Fig. 8b),

suggesting that the cloud properties that determine the

RS are fairly constant from year to year. In contrast, the

uncertainty in the IS (Fig. 8d) is approximately 60% of

the mean value with particularly large uncertainties in

the Beaufort Sea, suggesting that the intradecadal vari-

ability and measurement uncertainty of sea ice changes

substantially hinders the calculation of long-term IS

over the relatively short observational record.

We now describe how we use the uncertainty in IS

and RS to calculate the uncertainty in RITOA,a, the

FIG. A1. Arctic summertime (MJJA) surface albedo radiative sensitivity (RS) (top) calculated from radiative kernels, and estimated

from the climatological radiative fields using the idealized isotropic radiation model of (middle) T07 and (bottom) Donohoe and Battisti

(2011) in the same models. The squared spatial correlation coefficients between the kernel isotropic methods in the same model are

provided in the middle and the Arctic domain-averaged values are shown in the upper right of each panel.
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spatial average of which gives the SIAF uncertainty. We

diagnose uncertainty RITOA,a by convoluting the 100

estimates of RS and the 100 estimates in IS to produce

10 000 estimates of RITOA,a. This procedure accounts

for the spatial covariance of IS and RS uncertainty

and central estimates. For example, the uncertainty in IS

will have a larger impact in the regions and seasons

where RS is largest. The uncertainty in the RITOA,a

looks like and is comparable in fractional magnitude to

that in surface albedo change with a slight modification

by the spatial pattern of the mean RS. The spread in

the spatial average of these 10 000 RITOA,a is combined

with the uncertainty in global mean temperature

changes—propagated in quadrature since both quanti-

ties are scalars—to produce a probability distribution

function of SIAF (dark black distribution in left panels of

Fig. 9). These calculations give an Arctic SIAF of 0.14 6
0.4Wm22K21 where the uncertainty is taken as 2s.

The uncertainty in the observational global SIAF can

be decomposed into contributions from the RS and

IS uncertainty as follows: 1) the contribution of RS is

calculated as 2s of the distribution derived from the

100 estimates of RS and multiplied by the OBE IS and

2) the contribution of IS is calculated as 2s of the dis-

tribution derived from the 100 estimates of IS and

multiplied by the mean RS. The uncertainty in the ob-

servational SIAF is almost entirely (60.04Wm22K21)

due to uncertainty in the IS (dark blue narrow distri-

bution in Fig. 9) whereas the uncertainty in the RS

contributes very little to the global uncertainty in the

SIAF (60.003Wm22K21; the very narrow dark red

distribution in the left of Fig. 9a).

FIG. A2. (top) Scatterplot of MJJA radiative sensitivity calcu-

lated by (ordinate) radiative kernels and (abscissa) the isotropic

model from the mean state in the same climate model. All four

climate models and Arctic gridpoints considered collectively.

(bottom) Scatterplot of MJJA radiative sensitivity calculated from

radiative kernels in one model vs the radiative sensitivity calcu-

lated from radiative kernels in a different model (selected at ran-

dom). The dashed black line shows the 1:1 line.

FIG. A3. (top) Scatterplot of NDJFM radiative sensitivity cal-

culated by (ordinate) radiative kernels and (abscissa) the isotropic

model from the mean state in the same climate model. All four

climate models and Southern Ocean grid points considered col-

lectively. (bottom) Scatterplot of NDJF radiative sensitivity cal-

culated from radiative kernels in one model vs the radiative

sensitivity calculated from radiative kernels in a different model

(selected at random). The dashed black line shows the 1:1 line.
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