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Abstract

In this paper, we study superconvergence properties of the ultraweak-local discon-
tinuous Galerkin (UWLDG) method in [33] for an one-dimensional linear fourth-order
equation. With special initial discretizations, we prove the numerical solution of the
semi-discrete UWLDG scheme superconverges to a special projection of the exact solu-
tion. The order of this superconvergence is proved to be k + min(3, k) when piecewise
P¥ polynomials with & > 2 are used. We also prove a 2k-th order superconvergence
rate for the cell averages and for the function values and derivatives of the UWLDG
approximation at cell boundaries. Moreover, we prove superconvergence of (k + 2)-th
and (k+1)-th order of the function values and the first order derivatives of the UWLDG
solution at a class of special quadrature points, respectively. Our proof is valid for arbi-
trary non-uniform regular meshes and for arbitrary £ > 2. Numerical experiments verify

that all theoretical findings are sharp.
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1 Introduction

Recently, Tao et al. [33] developed a new class of discontinuous Galerkin (DG)
methods, termed ultraweak-local DG (UWLDG), for solving time dependent high order
equations. In particular, for even order equations, Tao et al. [33] proved the UWLDG
scheme achieves energy conserving stability without penalty terms, in comparison with
the traditional ultra-weak DG method in [15] which would need penalty terms for sta-
bility. In this paper, we study the superconvergence properties of the UWLDG method

in [33] for the linear fourth-order equation as follows,
Ut + Uggzz = 0, (2,1) € Q x (0,77, (1.1)

where €1 is an interval. For simplicity, we assume the boundary condition is periodic.
Other types of boundary conditions can also be considered along the same lines for our
analysis. The fourth order model has wide applications, such as thin beams and plates,
strain gradient elasticity, and phase separation in binary mixtures [26].

The DG methods are a class of finite element methods devised to solve hyperbolic
conservation laws and related equations, e.g. [18, 19, 20, 21, 22], using discontinu-
ous piecewise polynomial function space for the test and trial functions in the spatial
variables. For equations with higher-order spatial derivatives, such as the convection-
diffusion equation, KdV equation etc., the DG method cannot be directly applied, due
to the discontinuous finite element space which is not regular enough to handle higher
order derivatives. There are several ways to solve this problem, including, for exam-
ple, the local discontinuous Galerkin (LDG) method [23, 24, 27, 36, 37, 38, 39|, the
interior penalty (IP) method [25, 31], and the ultra-weak DG (UWDG) methods [15].
We focus on a new class of DG methods which combines the advantages of LDG and
UWDG methodologies, to solve fourth-order partial differential equations (PDEs) [33].
It rewrites the fourth-order equation into a second order system and then applies the

ultra-weak DG discretization to each of the second order equations. The key features



of the UWLDG scheme are that they avoid too many auxiliary variables as in LDG
to make the scheme more efficient, and they achieve energy stability without interior
penalty terms for even-order equations.

It is important to study superconvergence, because a posteriori error estimates can be
derived for designing trouble cell indicators in adaptive algorithms such as the KXRCF
trouble cell indicator [28]. In the past few years, there have been many superconvergence
results of the DG methods in the literature. We refer to [1, 2] for ordinary differential
equations, and to [14, 16, 40] for one-dimensional time dependent hyperbolic conserva-
tion laws and convection-diffusion equations. In [12], Cao et al. introduced an approach
to study the superconvergence of the DG methods for linear hyperbolic equations by
constructing a locally suitable correction function. They proved the (2k + 1)-th order
superconvergence rate for the cell averages and the DG numerical fluxes when piecewise
polynomials of degree k are used. Later, Cao et al. extended this technique to study
upwind-biased numerical fluxes, degenerate variable coefficients, nonlinear hyperbolic
conservation laws and two-dimensional hyperbolic equations [7, 11, 10, 9]. The correc-
tion function techniques also work well on other types of DG methods such as the ALE
DG [32], the energy-conserving DG [30] etc. For higher-order equations, Cao et al. stud-
ied the superconvergence properties of the direct DG method for convection-diffusion
equations in [8]. Cao and Huang gave a unified framework to study superconvergence re-
sults of the LDG method in [6]. More recently, Chen et al. studied the superconvergence
of the ultra-weak DG methods for linear Schrédinger equations by using the correction
function technique in [13].

In this paper, we continue to apply the correction function technique to design a spe-
cial interpolation function to obtain superconvergence results for the UWLDG schemes
in [33] for fourth order equations. For high-order equations, the current state of the art
on using the correction function approach would lead to sub-optimal estimates of super-

convergence in comparison with numerical results in certain cases. For example, for the



DDG and UWDG methods for the second-order equations, the proof of the superconver-
gence rates will lose one order when k is even, as pointed out in [8, 13]. Thus, in order to
obtain the optimal superconvergence estimates, we would need to introduce additional
techniques. In [8], the authors improved the superconvergence estimates thanks to the
diffusion terms in the DDG spatial operators. Chen et al. [13] used the superconvergence
properties of the difference of projections in neighboring cells for uniform meshes in [3] to
obtain the optimal superconvergence on uniform meshes. In this paper, our analysis of
optimal superconvergence is valid for arbitrary regular nonuniform meshes. We use the
important properties of the LDG operators, namely the derivative and the cell interface
jump of the approximate solution can be bounded by the auxiliary variable [34, 35]. In
[33], Tao et al. also proved similar properties of the second-order derivative DG oper-
ators. We first obtain estimates, for the derivative and the element interface jump, of
the error between the special interpolation and the numerical solution by taking special
test functions in the schemes. Then, under suitable conditions, the discrete Poincaré
inequality [5, 4] implies that its own L? norm can be bounded by its derivative and the
element interface jump. Thus, the desired superconvergence estimates can be obtained.
The superconvergence of both the numerical solution and the auxiliary variable in the
infinity norm in time can be obtained thanks to the special initial discretization.

The outline of this paper is as follows. We first recall the UWLDG method for the
linear fourth-order equations in section 2. Then we construct the special interpolation
function and the superconvergence results are provided in section 3. Numerical examples
are provided to verify our theoretical findings in section 4. The concluding remarks and
plans for ongoing work are presented in section 5. Finally, some technical proofs of the

lemmas and theorems are collected in the appendix.



2 The UWLDG schemes

We consider the following one dimensional fourth-order equation

Ut + Ugppar = 0, (x,t) € ]0,1] x (0,7
(2.1)
u(z,0) = up(x), x€]0,1]

with the periodic boundary condition. We first introduce the usual notation of the DG
method. For a given interval 2 = [0, 1] and the index set Zy = {1,2,..., N}, the usual
DG mesh 7y is defined as:

O=xz1 <ws <...<ayp1 =1 (2.2)
We denote
1
I = (zj_1,2501), ;= 5(:L’J_% +@,1), (2.3)
and
_ .
hj =1 —x;_1, hj:?, h:mjaxhj, Jj € Zy. (2.4)

We also assume the mesh is regular, i.e., the ratio between the maximum and minimum
mesh sizes shall stay bounded during mesh refinements. We define the finite element

Space as
VE = {vn: (o), € PH(L), 5 =1,..., N}, (2.5)

Here P*(I;) denotes the set of all polynomials of degree at most k on I;. For a function

v, € Vi, we use (vh);rl and (vh);jrl to refer to the value of v, at 2;,1 form the left cell
2 2

I; and the right cell I;.q, respectively. We use [vp] = v; — vy, and {v,} = 3(v, +v)))

to denote the jump and the average of v, at element interfaces. The standard Sobolev

space notations are introduced. For any integer m > 0, we let W"™?(D) be the standard

Sobolev spaces on the sub-domain D C 2 equipped with the norm || - ||,,,p and the
semi-norm | -+ |, p. If p = 2, we set W™P(D) = H™(D), || - [lmpp = || * ||m.p, and
| “ |mp.0 =1 |mp and we omit the index D, when D = Q.
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To construct the UWLDG scheme for (2.1), we rewrite (2.1) into a second order

system
U+ Ve = 0, U= Uy,. (2.6)

The semi-discrete UWLDG scheme formulated in [33] is to find uy, v, € V¥ such that
for all ¢, ¢ € Vi¥,

a;j(un, vp; ) = 0, (2.7a)
bj(vn, up;¥) =0, Vj € Zy, (2.7h)
where
aj(un, vn; ) = ((un)e, ©); + Aj(vn, @), (2.8)
bj (vn, un; 1) = (vn,1); — Bj(un, ¥), (2.9)
with

—_~—

Aj(0ns ) = (Wns Paa)s + ()™ 43 = (00)a@" o1 = 00y ey +Ongr |z, (2.10)

—~— —_~—
—~— —_~—

Bj(“/hﬂb) = (uhﬂ/}xw)j + (uh>m¢_|j+% - (uh)xw—i—‘j_% - ﬂﬁb;\ﬁ% + @w;‘j_lv (211)

3
being the UWDG spatial discretizations for the second order derivative terms. (u,v); =

ij uv dx, v_|j+% and v+|j+% denote the left and right limits of v at the point Tiyds

—~—

respectively, and &A;, (up)z, On, (V). are the numerical fluxes. To ensure the stability

and the local solvability of the intermediate variable vy, we defined these four fluxes as

follows:
T = {up} + eafup] + Bul(un)el,  an, B €R, (2.12)
(un)e = {(un)e} + aol(un)s] + Balun], s, Bs € R, (2.13)
O = {on} — azlvp] + Bi[(va)a], (2.14)
(V)2 = {(vn)2} — 1 [(vn)z] + Balvnl, (2.15)

where aq, asg, 41, f2 can be chosen as follows:
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e central flux, ay = ay = 51 = B2 = 0;

e alternating flux, a; = :t%, g = :I:%, 0= P2 =0;

o IPDG like flux, ay = ay = By = 0, By = o™

e DDG like flux, a3 = dy, a9 = dia, 1 = 0, By = Boh™';

e more generally, any scale invariant flux, a; = dy, as = da, f1 = Bih, B2 = foh™;

where @y, da, (1, 2 are prescribed constants independent of the mesh size. For simplicity,
in this paper we will only consider the alternating flux choices, a; = —1, ap = %, Gy =

2
/62 = 0, i.e.

— —_— —_~—

un =y, (un)e = (un)y, Oh=vy,  (vn)e = (vn); (2.16)

We now introduce

N

alup, vp; ¢ Za] up, vp; ), b(vn, up; ) = Z bj(vn, un; ¥), (2.17)
¥ X -

Avn,up) Z (Vn up) /Q on(un)ea o+ 3 (Gl(wn)a] = (on)alun]) 1113, (2:18)
J_V JJ_VI _ —

uh, Uh Z uh, 'Uh /Quh(vh)m d!L’ + Z <@[(Uh)x] — (uh)x[vh]) |j+%‘ (2.19)
j=1 j=1

By the same arguments as in [13], we have the following lemma.

Lemma 2.1. Foruy, v, € V¥ satisfying periodic boundary condition, we have A(vy, up) =

B(uh,vh).

In [33], it was proved that the semi-discrete scheme is energy-conserving stable for

the alternating flux, which is a direct result of the lemma above:

1d

5l + lenll. (2:20)

0 = a(up, vp; up) + b(vp, up;vy) =



Here and below, an unmarked norm || - || denotes the L? norm. Obviously, the exact

solution u, v of (2.6) also satisfies
aj(u,v:0) =0, bi(v,u;9) =0, ¥(p,9) € [V (2.21)
Subtracting (2.7) from (2.21), we obtain the error equations
aj(u—up,v—vp;9) =0, bi(v—vpu—up;v) =0, V()€ [V (2.22)

In [33], for the error estimates, the special projection Pyu € V¥ of u has been defined

by
(Pru,p); = (u,9); Yo € PF2(1;) and (2.23a)
P,fu(x;r%) = u(:EjJr%), (P}fu)x(x;’_%) = ux(xj_%). (2.23b)
For this projection, the following inequality holds [33]:
|| + hllw [l + B2 0 [lr, < OB flw]|gsa, (2.24)

where w® = Pfw —w, I'y, denotes the set of boundary points of all elements 1, ||w®||r, =
1

(Z;VZI we(xjjrl)2 + we(x;l)z) ®and the constant C' depends on k.
2 2

We also need the following basic facts. For any function w, € V. the following

inequalities hold [17]:

(4) || (wn)all < Ch™|Juwnl],
(@) [Jwllr, < Ch™2|ws, (2.25)

(i) [wn oo < Ch™ |Jwpl].
We denote

Ny =u— Pru, &, =u, — Pyu, (2.26)

ny =v—Pv, & =uv,— Pv. (2.27)



Due to (2.22), we have

a(fu, &o; gu) + b(&,, §us gv) = a(nm M gu) + b(nvv T gv) (2'28)

By using the definitions of a(-,-) and b(-, -) and Cauchy-Schwartz inequality we obtain

(s 103 €u) + 000, 103 €0 = [((M)es &) + (10, &) S BFH(IEM + 1€,

then

a4 ( / (a7 [2 dr)? < BEH, (2.20)

here and in the following, A < B denotes that A can be bounded by B multiplied by a
constant independent of the mesh size h. However, this estimate is not optimal and far
from our superconvergence goal. We need to improve the analysis through constructing

a series of correction functions (wq(f), wz(,i)) € VM2, 1 <i < |52 such that

l ! ! l
(i + ) wmo+ Y wii) + b0, + Y wion+ Y 0) S R (el + el
i=1 i=1 i=1 i=1

Yew) e 1 << M0, (2.30)

where |k] denotes the maximal integer no more than k. When k is even, |551] = £52
which leads to one order lower than the optimal estimates. We will improve the estimates

in such situation in the next subsections.

Remark 2.1. We note that the estimate of ||&,|| in (2.29) is in the L* norm of time.
In fact, we can take time derivative for b; in the error equation (2.22), then take test

functions o = (u)t, ¥ = &, to obtain

a(&u, o5 (£u>t> + b((gv)ta (gu)ﬁ 51)) = @(ﬁm s (&L)t) + b((nv)ta (UU)ﬁ gv) (2'31)

Thus, by Lemma 2.1, we obtain

1d

5 g7 16l + N(&el® S Rl + 1€ (2.32)

Then, by Gronwall’s inequality, we have

1€ Gt S M€ (- 0| + hFF (2.33)



3 Construction of a special interpolation function

The correction functions wl’ and w{”, 1 < i < LkTJ are defined as follows. If we

denote w) = u — Pru, W = v — Pjv, then
(@, aa)i = WY, 0)5, Vo € PH(I), w2 1) =0, (W)a(e],) =0,  (3.1)
2 2
(@ Pan)s = = (@0 0)sy Ve €PHI), wiP(@),) =0, (@ )ala] 1) =0. (3:2)

In [13], the authors defined similar correction functions for UWDG. By similar argu-

ments, we have the following estimate for w( and wq(f), 1<i< L%J

Lemma 3.1. For any k > 3, the functions w and Wi, 1< < |51] are defined by
(8.1)-(3.2). Then
Wy = Y EnLimn @ = Z Ljm, (3.3)
m=k—1-2i m=k—1-2i
where c;m and d;m are some bounded constants, and L;,, are the standard Legendre

polynomials with degree m on interval I;. Furthermore, if u € H*32 there holds for

n=20,1and g =u,v
107w S WO g1 (3.4)

Proof. We provide the proof of this lemma in the appendix; see Section A.1. From

Lemma 3.1, we can obtain the corollary as follows.

Corollary 3.1. For any k > 3, if the exact solution of the equation (2.1), u € H*+5+2l%]

then

nu+zwu am‘FZW +bm+zwv ﬂzu+zw OIS 2 (el + 11D

E—1

V(p0) € Vi 1<1< LTJ (3.5)

Before studying the superconvergence properties of the UWLDG scheme, we need

some lemmas which are also mentioned in [33].
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Lemma 3.2. Suppose w € L? and £ € V}F satisfy

Aj(&m) = (w,m);, VneVy, (3.6)
or
Bj(&,n) = (w,m);, YneVy, (3.7)
then
1€)azllzy + 272 [l + h21[E]lms S lwllo,- (3.8)

Proof. This proof is the same as Lemma 4.2 in [33]. We omit it here.

Next, we shall study the superconvergence properties of the UWLDG solution, in-
cluding superconvergence between a special interpolation of the exact solution and the
numerical solution, the superconvergence of the cell averages, and the function and

derivative values at some special quadrature points respectively.

3.1 Superconvergence of the interpolation

With (3.1)-(3.2), we define

(W, W) Zu) Zwl (3.9)

1
(ull,vl) (Pru—wyy, Piv—wyy), 1<1< L—J, (3.10)

and we let
Ce=q—qn=q—q — (g —q}) =€, — &, q=u,v. (3.11)

As we know, the approximations of the initial condition are of great significance for
superconvergence. In order to obtain our superconvergence rate, the initial error should

be small enough to reach the same superconvergence rate. We have the following lemma.

11



Lemma 3.3. For any k > 2, suppose the exact solution of the equation (2.1), u €

Hr+s+2lA5 If the initial data is taken such that
vp(,0) = Prvg — wy(2,0),  vo = 02uy, (3.12)
where wy; is defined by (3.9), | = [552]. Then

(leull + lle.l)(0) < r**, (3.13)

(1Eu)ell + 11(€0)2lN(0) < hZ*. (3.14)

Proof. The choice of the initial data u(z,0) and this proof are given in the appendix
A2

With this initial solution, we have the following optimal superconvergence estimates

which are stated as a theorem.

Theorem 3.1. Suppose u, and vy, are the approximate solutions of the semi-discrete
scheme (2.7) with the initial data satisfying (3.12). Let u, v be the exact solutions of
the system (2.6) satisfying u € H*52 and (ub,v}) € [VF]? is defined in (3.10), where

I = |%L]. For any k > 2, we have

(leull + lle () < 1, (3.15)

(1wl + lIE)a D (E) S 2. (3.16)

Especially, if | =0, or 1, we get

. . h?*  if k=2,
Pl + WPt =l S { s 455 (3.17)
and
(B = ol + (o = en)al] S B2 (3.18)

Proof. We give the proof of this theorem in the appendix; see Section A.3.
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Remark 3.1. We note that when k = 2, the L? norm and H' semi-norm of the error
between the numerical solutions and the special projections of the exact solution both
have 2k-th order superconvergence. Actually, thanks to (3.16), we obtain the optimal
superconvergence rates of the derivative of the error between the special interpolation

functions and approximate solutions. Numerical ezamples also verify this result in section

/.

3.2 Superconvergence for the numerical fluxes and the cell av-
erages

With Theorem 3.1, we can obtain the following superconvergence results.

Theorem 3.2. We let

Caf = ( Z Lj+d ’t)Z) 1 €q fz = <% Z(ql‘_ @E) j+%,t)2> . (3.19)

2

( Z /q—qhd:c)> . g=1u,v, (3.20)

be the errors of the two numerical fluxes and the cell averages, respectively. Suppose
the exact solutions u € H?**** and the initial discretizations satisfy (3.12). For k > 2,

Vt € [0,T] then

< h2k

C ~ I

ot SP* egpn SBF e, (3.21)

where ¢ = u, v.
Proof. The proof of this Theorem can be found in the appendix; see Section A.4.

3.3 Superconvergence at special quadrature points

We firstly denote D3, s = 0,1, as the the roots of RJ k1, D° = U;VZI Ds5. Here
Rji41 = Ljjrt1 — PfLjr11. We study the superconvergence rates at these points and

state the results as a theorem.
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Theorem 3.3. If D?, s = 0,1 are not empty sets. Let

€q,q — HMax ‘(q - Qh)(x7 t)‘a €q,q, — Max ‘(Qm - (Qh)m)(l’, t)‘v q=1u,v, (322)
xeDY zeD?!

be the maximum point value error for the numerical solution, and for the derivative of
the solution at the corresponding sets of points. If the exact solution of equation (2.1)
u € Wk and the initial data is given satisfying (3.12), then the DG solutions of

(2.7), (un,vn), have

€q,q 5 hk+2v €q,q. 5 hk-Hu qg=u,v, Vk>2. (3.23)

Proof. The proof of this theorem can be found in the appendix; see section A.5.

4 Numerical examples

We provide some numerical experiments to confirm our theoretical results. Let us

recall the definitions of the various errors as mentioned in previous sections.

N 2
« 1 .
eq =g —anl, eqp=llan—Pral, eqr= (N Z(q - Qh)(Ij+%a t)2> ) (4.1)

(NI

Cq,fz = <% Z(QI - (/C];)/HC)(xj+%>t)2> ’ €q,c = <% Z(hi]/l q — qp dl’)2) , (42)

=1

1
€qq = max|(q — gu)(@, )],  eqq, = max|(ge — (qn)a) (2, 1), eqpa = [[(gn — PQ)ell,

zeDO zeD!
(4.3)
where ¢ = u,v.
Example 4.1. We consider the following linear fourth-order equation
U + Uggee = 0, (x,t) € 10,27 x (0,7
(4.4)
u(z,0) =sin(z), =z € (0,27
with periodic boundary condition. The exact solution is
u(z,t) = e 'sin(z), ov(x,t) = u(z,t) = —e 'sin(z). (4.5)
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We separately use the uniform mesh and nonuniform mesh with 10% random per-
turbation of N cells on [0, 27|, since after the UWLDG spatial discretization, we obtain
a linear ODE system with constant matrix. We can exactly solve the this ODE system
to reduce the temporal error. The initial discretization is taken to satisfy (3.12) and
the numerical flux is the alternating flux (2.16). We set the terminal time 7" = 1.0 and
T = 10. and calculate various errors and numerical orders of convergence for P* elements
with 2 < k£ < 4 both on uniform and nonuniform meshes. The numerical results are
listed in Tables 4.1-4.16. We find that all our theoretical results are optimal both on

uniform and nonuniform meshes.

Table 4.1. Errors ey, €yp, €y f; €u e and e, for k =2,3,4, T'= 1 on uniform mesh.

k| N €y order Cup order €t order €.t order Cuc order
10 | 2.13E-03 — 6.15E-04 — 2.50E-04 — 1.24E-04 — 2.43E-04 —
5 20 | 2.52E-04 3.08 | 3.94E-05 3.97 | 1.58E-05 3.99 | 7.88E-06 3.98 | 1.57E-05 3.95

40 | 3.10E-05 3.02 | 2.48E-06 3.99 | 9.89E-07 4.00 | 4.94E-07 3.99 | 9.87E-07 3.99
80 | 3.86E-06 3.01 | 1.55E-07 4.00 | 6.19E-08 4.00 | 3.09E-08 4.00 | 6.18E-08 4.00
10 | 5.50E-05 — 1.41E-06 - 2.76E-07 - 2.85E-07 - 5.54E-07 -
20 | 3.44E-06 4.00 | 2.23E-08 5.98 | 4.39E-09 5.98 | 4.42E-09 6.01 | 8.78E-09 5.98
40 | 2.15E-07 4.00 | 3.49E-10 6.00 | 6.88E-11 5.99 | 6.90E-11 6.00 | 1.38E-10 5.99
80 | 1.35E-08 4.00 | 5.45E-12 6.00 | 1.08E-12 6.00 | 1.08E-12 6.00 | 2.15E-12 6.00
10 | 1.45E-06 6.12E-09 3.93E-10 3.46E-12 3.74E-10

4 | 20 | 4.54E-08 5.00 | 4.63E-11 7.05 | 1.52E-12 8.01 | 3.20E-15 10.08 | 1.50E-12  7.96
40 | 1.42E-09 5.00 | 3.59E-13 7.01 | 5.94E-15 &8.00 | 3.08E-18 10.02 | 5.92E-15 7.99
80 | 4.44E-11  5.00 | 2.80E-15 7.00 | 2.32E-17 &8.00 | 3.00E-21 10.01 | 2.32E-17 &8.00

Table 4.2. Errors e, , €y, and e, p, for k =2,3,4, T" = 1 on uniform mesh.

k| N Cuu order Cuun order Coupz order
10 | 5.64E-04 — 5.64E-04 - 5.29E-04 -
9 20 | 3.73E-05 3.92 | 5.82E-05 3.28 | 3.37TE-05 3.97

40 | 2.35E-06  3.99 | 6.84E-06 3.09 | 2.12E-06 3.99
80 | 1.47E-07 4.00 | 8.40E-07 3.02 | 1.33E-07 4.00
10 | 1.34E-06 - 1.60E-05 - 2.90E-06 -

20 | 3.60E-08 5.22 | 1.01E-06 3.98 | 8.64E-08 5.07
40 | 1.06E-09  5.08 | 6.35E-08 4.00 | 2.66E-09 5.02
80 | 3.26E-11  5.02 | 3.97E-09 4.00 | 8.30E-11  5.00
10 | 4.93E-08 - 4.83E-07 - 4.93E-08 -

4120 | 7.71E-10 6.00 | 1.50E-08 5.01 | 7.65E-10 6.01
40 | 1.22E-11  5.98 | 4.72E-10 4.99 | 1.19E-11  6.00
80 | 1.91E-13 6.00 | 1.48E-11 5.00 | 1.86E-13  6.00
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Table 4.3. Errors e, €,,, €y ¢, €y.5o and e, for k = 2,3,4, T"= 1 on uniform mesh.

k| N €y order Cup order €, f order €, fu order €u,e order
10 | 2.01E-03 — 3.08E-04 — 1.28E-04 — 1.33E-06 — 1.22E-04 —

5 20 | 2.48E-04 3.02 | 1.97E-05 3.97 | 7.94E-06 4.01 | 2.15E-08 5.95 | 7.84E-06 3.96
40 | 3.09E-05 3.01 | 1.24E-06 3.99 | 4.95E-07 4.00 | 3.38E-10 5.99 | 4.94E-07 3.99
80 | 3.85E-06 3.00 | 7.75E-08 4.00 | 3.09E-08 4.00 | 5.30E-12 6.00 | 3.09E-08 4.00
10 | 5.49E-05 - 7.33E-07 — 1.22E-09 - 9.65E-09 - 2.81E-07 —

3 20 | 3.44E-06 4.00 | 1.15E-08 5.99 | 4.25E-12 8.17 | 5.30E-11  7.51 | 4.40E-09 5.99
40 | 2.15E-07 4.00 | 1.80E-10 6.00 | 1.61E-14 8.04 | 3.59E-13 7.21 | 6.89E-11 6.00
80 | 1.35E-08 4.00 | 2.81E-12 6.00 | 6.24E-17 8.01 | 2.68E-15 7.06 | 1.08E-12 6.00
10 | 1.45E-06 5.89E-09 1.06E-11 3.88E-10 3.40E-12

4 | 20 | 4.54E-08 5.00 | 4.59E-11 7.01 | 1.31E-14 9.65 | 1.52E-12 &8.00 | 3.19E-15 10.06
40 | 1.42E-09 5.00 | 3.58E-13 7.00 | 2.06E-17 9.32 | 5.93E-15 8.00 | 3.08E-18 10.02
80 | 4.44E-11  5.00 | 2.80E-15 7.00 | 3.74E-20 9.11 | 2.32E-17 8.00 | 3.00E-21 10.00

Table 4.4. Errors e, ,, €4, and e,,, for k= 2,3,4, T'=1 on uniform mesh.

k| N Cop order o, order Copx order
10 | 4.12E-04 — 4.42E-04 - 2.43E-04 —
9 20 | 2.62E-05 3.97 | 5.43E-05 3.02 | 1.53E-05 3.99
40 | 1.65E-06 3.99 | 6.71E-06 3.02 | 9.55E-07 4.00
80 | 1.03E-07 4.00 | 8.36E-07 3.00 | 5.97E-08 4.00
10 | 1.14E-06 — 1.57E-05 — 2.71E-06 -
3 20 | 3.38E-08 5.08 | 1.01E-06 3.96 | 8.48E-08 5.00
40 | 1.04E-09 5.02 | 6.34E-08 3.99 | 2.65E-09 5.00
80 | 3.24E-11  5.01 | 3.97E-09 4.00 | 8.29E-11 5.00
10 | 4.98E-08 - 4.83E-07 - 4.91E-08 —
4120 | 7.73E-10 6.01 | 1.50E-08 5.01 | 7.64E-10 6.01
40 | 1.22E-11  5.99 | 4.72E-10 4.99 | 1.19E-11 6.00
80 | 1.91E-13 6.00 | 1.48E-11 5.00 | 1.86E-13 6.00

Table 4.5. Errors ey, €y, €y f, €y fr and e, for k = 2,3,4, T'= 1 on nonuniform mesh.

k| N €u order Cup order Cu,f order Cu, fa order Cuc order
10 | 2.13E-03 — 6.15E-04 — 2.50E-04 — 1.24E-04 — 2.42E-04 —

9 20 | 2.55E-04 3.06 | 3.99E-05 3.94 | 1.60E-05 3.96 | 7.98E-06 3.96 | 1.59E-05 3.93
40 | 3.14E-05 3.02 | 2.51E-06 3.99 | 1.00E-06 4.00 | 5.01E-07 3.99 | 9.99E-07 3.99
80 | 3.94E-06 3.00 | 1.58E-07 3.99 | 6.32E-08 3.99 | 3.16E-08 3.99 | 6.31E-08 3.98
10 | 5.53E-05 1.42E-06 2.78E-07 2.88E-07 5.58 E-07

3 20 | 3.53E-06 3.97 | 2.31E-08 5.95 | 4.51E-09 5.95 | 4.55E-09 5.98 | 9.05E-09 5.95
40 | 2.19E-07 4.01 3.59E-10 6.01 7.04E-11 6.00 7.05E-11 6.01 1.41E-10 6.00
80 | 1.37E-08 4.00 | 5.62E-12 6.00 | 1.10E-12 6.00 | 1.10E-12 6.00 | 2.21E-12 6.00
10 | 1.56E-06 — 6.88E-09 — 4.42E-10 — 3.57E-11 — 4.19E-10 —

4 | 20 | 4.88E-08 5.00 5.28E-11 7.02 1.68E-12 8.04 3.91E-14 9.84 1.66E-12 7.98
40 | 1.47E-09 5.06 | 3.79E-13 7.12 | 6.20E-15 &8.08 | 6.74E-17 9.18 | 6.18E-15 8.07
80 | 4.58E-11 5.00 2.97E-15 7.00 2.41E-17 8.01 1.82E-19 8.53 2.41E-17  8.00

5 Concluding remarks

We have studied the superconvergence properties of the UWLDG methods with al-

ternating fluxes for linear fourth order derivatives equation in one dimension. Under
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Table 4.6. Errors ey, €4, and e, p, for k =2,3,4, T" =1 on nonuniform mesh.

k| N Cuu order Cuun order Coupz order
10 | 6.28E-04 — 5.79E-04 - 5.30E-04 -
9 20 | 4.21E-05 3.90 | 6.93E-05 3.06 | 3.42E-05 3.95
40 | 2.51E-06 4.07 | 7.77E-06 3.16 | 2.15E-06 3.99
80 | 1.67E-07 3.91 | 1.03E-06 2.92 | 1.36E-07 3.99
10 | 1.57E-06 - 1.74E-05 - 2.94E-06 -
3 20 | 4.30E-08 5.19 | 1.19E-06 3.87 | 8.99E-08 5.03
40 | 1.59E-09 4.76 | 8.34E-08 3.84 | 2.75E-09 5.03
80 | 5.04E-11 4.98 | 5.64E-09 3.89 | 856E-11 5.00
10 | 4.99E-08 — 4.87E-07 - 5.41E-08 -
4120 | 1.06E-09 5.57 | 1.93E-08 4.66 | 8.45E-10 6.00
40 | 1.74E-11  5.92 | 6.30E-10 4.94 | 1.25E-11 6.08
80 | 2.93E-13 5.89 | 2.10E-11 4.91 | 1.95E-13 6.00

Table 4.7. Errors e,, €,p, €y f, €y f» and e, for k = 2,3,4, "= 1 on nonuniform mesh.

k| N €y order Cop order Co, f order Co,fu order €p.e order
10 | 2.02E-03 — 3.08E-04 — 1.28E-04 — 2.84E-06 — 1.22E-04 —
9 20 | 2.51E-04 3.01 | 2.00E-05 3.95 | 8.06E-06 3.99 | 1.48E-07 4.26 | 7.96E-06 3.94
40 | 3.13E-05 3.00 | 1.25E-06 3.99 | 5.01E-07 4.01 | 2.27E-09 6.03 | 5.00E-07 3.99
80 | 3.94E-06 2.99 | 7.91E-08 3.99 | 3.16E-08 3.99 | 6.82E-11 5.06 | 3.16E-08 3.98
10 | 5.53E-05 — 7.46E-07 - 3.80E-09 - 1.78E-08 - 2.85E-07 —
3 20 | 3.53E-06 3.97 | 1.22E-08 5.93 | 9.64E-11 5.30 | 2.96E-10 5.91 | 4.63E-09 5.94
40 | 2.19E-07 4.01 1.88E-10 6.02 | 3.55E-13 8.08 1.68E-12 7.46 | 7.15E-11  6.02
80 | 1.37E-08 4.00 | 2.94E-12 6.00 | 7.25E-15 5.62 1.40E-14  6.90 1.12E-12  6.00
10 | 1.56E-06 — 6.62E-09 - 5.06E-11 — 4.31E-10 — 3.30E-11 -
4 | 20 | 4.88E-08 5.00 | 5.23E-11 6.98 | 1.27E-13 8.64 | 1.67E-12 8.01 7.18E-14 8.84
40 | 1.47E-09 5.06 | 3.79E-13 7.11 | 2.03E-16 9.28 | 6.18E-15 8.08 | 1.64E-16 8.77
80 | 4.58E-11 5.00 | 2.97E-15 6.99 | 4.84E-19 8.71 2.41E-17 8.00 | 4.00E-19 8.68

Table 4.8. Errors e, ,, €,,, and e,,, for k= 2,3,4, T'= 1 on nonuniform mesh.

k| N €y v order Co,v, order Co pa order
10 | 4.82E-04 - 5.17E-04 - 2.46E-04 -
9 20 | 3.09E-05 3.96 | 6.68E-05 2.95 | 1.56E-05 3.98
40 | 1.81E-06 4.09 | 7.58E-06 3.14 | 9.80E-07 3.99
80 | 1.24E-07 3.87 | 1.04E-06 2.87 | 6.18E-08 3.99
10 | 1.28E-06 — 1.71E-05 - 2.75E-06 -
3 20 | 4.14E-08 4.95 | 1.18E-06 3.85 | 8.83E-08 4.96
40 | 1.55E-09 4.74 | 8.33E-08 3.83 | 2.73E-09 5.01
80 | 5.03E-11 4.94 | 5.64E-09 3.88 | 8.55E-11 5.00
10 | 5.05E-08 - 4.87E-07 - 5.39E-08 -
4120 | 1.06E-09 5.58 | 1.93E-08 4.66 | 8.44E-10 6.00
40 | 1.74E-11  5.92 | 6.30E-10 4.94 | 1.24E-11 6.08
80 | 2.93E-13 5.89 | 2.10E-11  4.91 | 1.95E-13 6.00
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Table 4.9. Errors ey, €yp, €y f, €ufe and e, for k =2,3,4, T' = 10 on uniform mesh.

k| N €y order Cup order €t order €.t order Cuc order
10 | 8.28E-07 — 7.56E-07 — 3.02E-07 — 2.87E-07 — 2.97E-07 —
5 20 | 5.93E-08 3.80 | 4.86E-08 3.96 | 1.94E-08 3.96 | 1.84E-08 3.96 | 1.93E-08 3.94
40 | 4.97E-09 3.58 | 3.06E-09 3.99 | 1.22E-09 3.99 | 1.16E-09 3.99 | 1.22E-09 3.99
80 | 5.16E-10 3.27 | 1.91E-10 4.00 | 7.63E-11 4.00 | 7.25E-11 4.00 | 7.63E-11 4.00
10 | 7.01E-09 - 1.72E-09 — 6.50E-10 - 6.52E-10 - 6.75E-10 —
3 20 | 4.26E-10 4.04 | 2.72E-11 5.98 | 1.03E-11 5.98 | 1.03E-11 5.98 | 1.08E-11 5.97
40 | 2.66E-11  4.00 | 4.26E-13 6.00 | 1.61E-13 6.00 | 1.61E-13 6.00 | 1.70E-13 5.99
80 | 1.66E-12  4.00 | 6.66E-15 6.00 | 2.52E-15 6.00 | 2.52E-15 6.00 | 2.66E-15 6.00
10 | 1.79E-10 2.48E-12 9.02E-13 8.53E-13 8.85E-13
4120 | 5.61E-12 5.00 | 1.09E-14 7.83 | 3.55E-15 7.99 | 3.36E-15 7.99 | 3.53E-15 7.97
40 | 1.75E-13  5.00 | 5.74E-17 7.57 | 1.39E-17 &8.00 | 1.32E-17 8.00 | 1.39E-17 7.99
80 | 5.48E-15 5.00 | 3.74E-19 7.26 | 5.43E-20 8.00 | 5.15E-20 8.00 | 5.43E-20 8.00

Table 4.10. Errors ey, €44, and e, for k =2,3,4, T" = 10 on uniform mesh.

k| N Cuu order Cu order Cupa order
10 | 4.47E-07 - 4.36E-07 - 7.38E-07 -
9 20 | 2.92E-08 3.94 | 2.83E-08 3.95 | 4.77E-08 3.95
40 | 1.84E-09 3.99 | 1.93E-09 3.87 | 3.00E-09 3.99
80 | 1.15E-10 4.00 | 1.50E-10 3.68 | 1.88E-10 4.00
10 | 9.70E-10 - 2.81E-09 - 1.72E-09 —
3 20 | 1.60E-11 5.92 | 1.39E-10 4.34 | 2.86E-11 5.91
40 | 2.77TE-13 5.85 | 8.05E-12 4.11 | 5.30E-13 5.75
80 | 5.55E-15 5.64 | 4.94E-13 4.03 | 1.21E-14 5.45
10 | 4.96E-12 — 5.97E-11 — 6.97E-12 —
4120 1(9.07E-14 5.77 | 1.85E-12 5.01 | 9.69E-14 6.17
40 | 1.49E-15 5.93 | 5.82E-14 4.99 | 1.48E-15 6.03
80 | 2.35E-17 5.98 | 1.82E-15 5.00 | 2.30E-17 6.01

Table 4.11. Errors ey, €,,, €y ¢, €y 5o and e, for k= 2,3,4, T'= 10 on uniform mesh.

k| N €y order Cup order €, f order €, fu order €u,c order
10 | 7.92E-07 - 7.18E-07 — 2.87TE-07 - 2.72E-07 - 2.82E-07 —

5 20 | 5.72E-08 3.79 | 4.62E-08 3.96 | 1.84E-08 3.96 | 1.74E-08 3.96 | 1.83E-08 3.94
40 | 4.87E-09 3.55 | 2.90E-09 3.99 | 1.16E-09 3.99 | 1.10E-09 3.99 | 1.16E-09 3.99
80 | 5.12E-10 3.25 | 1.82E-10 4.00 | 7.25E-11 4.00 | 6.87E-11 4.00 | 7.25E-11 4.00
10 | 6.99E-09 — 1.63E-09 — 6.16E-10 — 6.17E-10 — 6.41E-10 —

3 20 | 4.26E-10 4.04 | 2.58E-11 5.98 | 9.76E-12 5.98 | 9.76E-12 598 | 1.03E-11 5.97
40 | 2.66E-11  4.00 | 4.05E-13 6.00 | 1.53E-13 6.00 | 1.53E-13 6.00 | 1.61E-13 5.99
80 | 1.66E-12 4.00 | 6.33E-15 6.00 | 2.39E-15 6.00 | 2.39E-15 6.00 | 2.52E-15 6.00
10 | 1.79E-10 2.37TE-12 8.54E-13 8.05E-13 8.39E-13

4 120 | 5.61E-12 5.00 | 1.05E-14 7.81 | 3.36E-15 7.99 | 3.18E-15 7.99 | 3.35E-15 7.97
40 | 1.75E-13  5.00 | 5.62E-17 7.55 | 1.32E-17 8.00 | 1.24E-17 8.00 | 1.32E-17 7.99
80 | 5.48E-15 5.00 | 3.71E-19 7.24 | 5.15E-20 8.00 | 4.86E-20 8.00 | 5.14E-20 8.00

suitable initial approximation, the error of the cell averages and the numerical fluxes
of the function values and the derivatives converge with the rate of (2k)-th order when

k > 2. Especially, for the superconvergence of the numerical fluxes of the derivatives, we
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Table 4.12. Errors e, ,, €y, and e, ,, for k= 2,3,4, T'= 10 on uniform mesh.

k| N €y v order Co,v, order Copa order
10 | 4.26E-07 — 4.15E-07 - 7.01E-07 -

9 20 | 2.78E-08 3.94 | 2.70E-08 3.95 | 4.53E-08 3.95
40 | 1.75E-09 3.99 | 1.86E-09 3.86 | 2.85E-09 3.99
80 | 1.10E-10 4.00 | 1.47E-10 3.66 | 1.79E-10 4.00
10 | 9.22E-10 - 2.77E-09 - 1.63E-09 -

3 20 | 1.53E-11 591 | 1.38E-10 4.33 | 2.74E-11  5.90

40 | 2.67E-13 5.84 | 8.04E-12 4.10 | 5.14E-13 5.73
80 | 5.42E-15 5.62 | 4.93E-13 4.03 | 1.20E-14 5.43
10 | 5.02E-12 - 5.97E-11 - 6.91E-12 -

4120 ] 9.09E-14 5.79 | 1.85E-12 5.01 | 9.67E-14 6.16
40 | 1.49E-15 5.93 | 5.82E-14 4.99 | 1.48E-15 6.03
80 | 2.35E-17  5.98 | 1.82E-15 5.00 | 2.30E-17 6.01

Table 4.13. Errors ey, €y, €y f, €y . and e, for k = 2,3,4, T = 10 on nonuniform

mesh.

k| N €u order Cup order Cu,f order Cu, fa order Cuc order
10 | 8.52E-07 — 7. TTE-07 — 3.12E-07 — 2.94E-07 — 3.06E-07 —
20 | 6.02E-08 3.82 | 4.93E-08 3.98 | 1.96E-08 3.99 | 1.87E-08 3.97 | 1.95E-08 3.97

2 40 | 5.06E-09 3.57 | 3.11E-09 3.99 | 1.24E-09 3.98 | 1.18E-09 3.99 | 1.24E-09 3.98
80 | 5.27E-10 3.26 | 1.95E-10 4.00 | 7.78E-11 4.00 | 7.39E-11 3.99 | 7.78E-11  3.99
10 | 7.78E-09 — 1.98E-09 — 7.43E-10 — 7.60E-10 — 7.72E-10 -

3 20 | 4.35E-10 4.16 | 2.78E-11 6.16 | 1.05E-11 6.14 | 1.05E-11 6.17 | 1.11E-11 6.12

40 | 2.78E-11  3.97 | 4.51E-13 5.95 | 1.71E-13 5.95 | 1.71E-13 5.95 | 1.79E-13 5.95
80 | 1.70E-12 4.04 | 6.84E-15 6.04 | 2.59E-15 6.04 | 2.59E-15 6.04 | 2.72E-15 6.04
10 | 1.77E-10 - 2.41E-12 - 8.69E-13 - 8.30E-13 - 8.53E-13 -

4 |20 | 5.79E-12 4.93 | 1.16E-14 7.72 | 3.71E-15 7.87 | 3.51E-15 7.89 | 3.69E-15 7.85
40 | 1.79E-13  5.01 | 5.97E-17 7.59 | 1.43E-17 8.02 | 1.36E-17 8.01 | 1.43E-17 &8.01
80 | 5.70E-15 4.98 | 4.00E-19 7.22 | 5.72E-20 7.97 | 5.42E-20 7.97 | 5.72E-20 7.97

obtain the optimal estimates which are confirmed by the numerical examples. Other su-
perconvergence properties such as the numerical solution towards the special projection
of the truth solution, the function values and first derivatives at a class of special quadra-
ture points are also studied. A new technique in this paper leads to an improved estimate
of superconvergence by using discrete Poincaré inequality when £ is even. The super-
convergence study of the UWLDG method for higher order equations is very interesting
and challenging, when optimal estimates are desired. It is also intriguing to generalize
our analysis to multi-dimensions and non-linear equations. These will be explored in the

future.
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Table 4.14. Errors ey, €y, and e, p, for k = 2,3,4, T' = 10 on nonuniform mesh.

k| N Cuu order Cuun order Coupz order
10 | 4.68E-07 — 4.48E-07 - 7.60E-07 -
9 20 | 3.00E-08 3.97 | 2.98E-08 3.91 | 4.84E-08 3.97
40 | 1.87E-09 4.00 | 2.04E-09 3.87 | 3.06E-09 3.98
80 | 1.20E-10  3.97 | 1.69E-10 3.59 | 1.92E-10 3.99
10 | 1.13E-09 - 3.09E-09 - 1.98E-09 -
3 20 | 1.68E-11 6.08 | 1.82E-10 4.08 | 2.93E-11 6.08
40 | 3.27E-13  5.68 | 1.10E-11  4.05 | 5.65E-13 5.70
80 | 6.70E-15 5.61 | 6.74E-13 4.03 | 1.25E-14 5.50
10 | 6.35E-12 - 7.03E-11 - 6.88E-12 -
4120 | 1.56E-13 5.35 | 2.84E-12 4.63 | 1.01E-13 6.09
40 | 2.46E-15 5.99 | 8.84E-14 5.01 | 1.53E-15 6.05
80 | 291E-17 6.41 | 2.17E-15 5.35 | 2.43E-17 5.98

Table 4.15. Errors e,, €,p, €y ¢, €u fr and €,

for k = 2,3,4, T = 10 on nonuniform

mesh.

k| N €u order Cop order Co, f order Co,fa order €p.c order
10 | 8.15E-07 — 7.39E-07 — 2.96E-07 — 2.79E-07 — 2.91E-07 —

9 20 | 5.81E-08 3.81 | 4.68E-08 3.98 | 1.87E-08 3.99 | 1.77E-08 3.97 | 1.86E-08 3.97
40 | 4.96E-09 3.55 2.96E-09 3.99 1.18E-09 3.98 1.12E-09 3.99 1.18E-09 3.98
80 | 5.23E-10 3.25 | 1.85E-10 4.00 | 7.39E-11 4.00 | 7.00E-11 3.99 | 7.39E-11 3.99
10 | 7.75E-09 — 1.88E-09 — 7.04E-10 — 7.20E-10 — 7.33E-10 -

3 20 | 4.35E-10 4.16 2.64E-11 6.16 | 9.99E-12 6.14 | 9.98E-12 6.17 1.05E-11 6.13
40 | 2.78E-11  3.97 | 4.28E-13 5.95 | 1.62E-13 5.95 | 1.62E-13 5.95 | 1.70E-13 5.95
80 | 1.70E-12 4.04 | 6.49E-15 6.04 | 2.45E-15 6.04 | 2.45E-15 6.04 | 2.59E-15 6.04
10 | 1.77E-10 — 2.30E-12 - 8.23E-13 - 7.84E-13 — 8.08E-13 —

4|20 | 5.79E-12 4.93 | 1.10E-14 7.70 | 3.51E-15 7.87 | 3.31E-15 7.89 | 3.50E-15 7.85
40 | 1.79E-13 5.01 | 5.85E-17 7.56 | 1.36E-17 8.02 | 1.28E-17 8.01 | 1.36E-17 &.01
80 | 5.70E-15 4.98 | 3.98E-19 7.20 | 5.42E-20 7.97 | 5.12E-20 7.97 | 5.42E-20 7.97

A Proof of a few technical lemmas and theorems

pendix.

A.1 Proof of Lemma 3.1

The proofs of some of the technical lemmas and theorems are provided in this ap-

Proof. We use induction to prove this lemma. Since w(go) 1L P*2(1;), ¢ = u,v, from

(3.1)-(3.2), we obtain

w L),
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q=1u,v.

(A.6)




Table 4.16. Errors e, ,, €,,, and e,,, for k= 2,3,4, T'= 10 on nonuniform mesh.

k| N €y v order Co,v, order Copa order
10 | 4.47E-07 — 4.27E-07 - 7.21E-07 -

20 | 2.86E-08 3.97 | 2.86E-08 3.90 | 4.59E-08 3.97
40 | 1.79E-09 4.00 | 1.96E-09 3.87 | 2.90E-09 3.98
80 | 1.14E-10 3.97 | 1.67E-10 3.56 | 1.82E-10 3.99
10 | 1.08E-09 - 3.03E-09 - 1.88E-09 -

20 | 1.60E-11  6.07 | 1.81E-10 4.07 | 2.80E-11 6.07
40 | 3.16E-13  5.67 | 1.10E-11 4.04 | 5.47E-13 5.68
80 | 6.58E-15 5.58 | 6.73E-13 4.03 | 1.23E-14 5.47
10 | 6.41E-12 - 7.03E-11 - 6.82E-12 —

4120 | 1.56E-13 5.36 | 2.84E-12 4.63 | 1.01E-13 6.08
40 | 2.46E-15 5.99 | 8.84E-14 5.01 | 1.53E-15 6.05
80 | 291E-17 6.41 | 2.17E-15 5.35 | 2.43E-17 5.98

Thus, we have

k k
2(x — x;
wil)‘lj = Z c;,ij,m<£)7 wt(Jl)‘Ij = Z d},ij,m(£)7 52 % S [_17 1]
m=k—3 m=k—3 J
(A.7)
Then, we define an integral operator D! by
1 xT S
D™ w(x) = h_/ w(z)dr = / r(s)ds, x €l (A.B)
jJx. 1 -1

i=z

where s = (v — x;)/h; € [-1,1]. We denote D~ = D=4D~(=V) | > 2. Taking

0 =D"2Lj,;,, m=k—3,k—2 respectively in (3.1), by Cauchy-Schwartz inequality, we

have
%27711—1— 0 im = /Ij wOD2L;,, dx
< w5 1D Lymlls,
S R s,
Thus,
el S B2 s, m=k—3,k—2. (A.9)

By the same arguments, we have

|5l S HEF2

'U||k+3,Ij> m = k‘—g,k‘—2 (AlO)
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Next, we estimate the ¢j,, and dj,,, m =k — 1,k. We obtain from (3.1)-(3.2),

)1 J,m?
k k—2
> Ln()g,, = - Lo (1)}, (A.11)
m=k—1 m=k—3
k k—2
L.(=1)¢j,, = — L (=1)¢] . (A.12)
m=k—1 m=k—3

where L, denote the standard Legendre polynomial of degree m on the interval [—1, 1].

Thus we have

AZ=b, (A.13)
where
1 1
A - ( -1 k+1 -1 k ) 5 (A14)
CO k(b +1) S (k- Dk
k—2 k—2 T
b= (- Lu(1)e} . — Z L;n(—l)c;m) , (A.15)
m=k—3 m=k—3
¢= (C},ku le‘,k—l)T‘ (A.16)

We have used the following facts
1
Lo(£1) = (£1)™, L (+1) = i(il)m“m(m +1). (A.17)

The determinate of A, Det(A) = (—=1)kk? # 0 for k > 1. Therefore,

=z

k N
@7 ST ST ()P S R ullkgs (A18)

Thus

< A3 || pgs.- (A.19)

Taking time derivative on the both sides of (3.1), the three identities still hold. Then

following the same arguments as what we did for wq(f), we get

18wV || S PEF2 1Bl s (A.20)
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By the same arguments, we have
oIl S B2 ollisa, 18w Pl S B[00 ks (A.21)

By the recursion formula, (3.4) holds for all 1 < i < |%2] and n = 0,1. This finishes

our proof.

A.2 Proof of Lemma 3.3

Proof. The initial discretization wuy(-,0) is the solution of the following equations,
(vn, ©); = Bj(un, ), for Vj € Zy,Vp € ViF, (A.22)

and it also satisfies

/uhd:c:/uod:c. (A.23)
Q Q

As we know, uy, + ¢ also satisfies (A.22), here ¢ is any constant. If there are two solutions

upy and uyy satisfying (A.22)-(A.23), then we denote wy, = up; — upe € Vi¥ to obtain
Bj(wp, p) =0, / wydr =0, VjeZy, Vo e Vi (A.24)
Q
Applying Lemma 3.2, we have

(Wh)aelr, =0, [wpl;_1 =0, [(wn)e];_1 =0, Vj € Zy. (A.25)

Together with w;, € V¥, we have wy, is a constant function, and (A.24) implies w;, = 0.

Finally, we have proved uy, is well-defined. Since é,(z,0) = 0 and (2.22),

a;(Bu, €03 ) = aj(€u, €03 ) = /I}(wif))t@ dz, (A.26)
by (60, 0i ) = biens cui ) = /I Wpds Vi ey, YoV (A20

Thus,
((2):(0), )5 = (@):(0), )54 (A.28)



B0 p) = [ ~u0O)pds Vi€ Zy, Vo e V. (A.29)
I

J

Therefore,

(€u)e(0) = (@) (0), (A.30)
which implies,

[(€0)e(0)]| < REFHHE (A.31)

And by Lemma 3.2, we have

[(€)acl + 172 (Z |[<éu>x]j_%\2) +hd (Z |[<éu>]j_%\2) S W (O] 5 12

j=1
(A.32)
By using the discrete Poincaré inequalities [5], we have
I@)ell < e~ [ (@edal+] [ (@)odal
Q Q
1 1
N 2 N 2
_ _1 _ 1 _
S 1@u)aall + A7 (Z‘[(eu>r]j—%|2) +hoe (Z\[(eu)]j_%lz)
j=1 j=1
< phri2 (A.33)
If k is odd, then k + 1+ 21 = 2k. We have,
!
/ €y dr = / up — P,fu+2wfj)dx
I I i=1
= / up — udz +/ w¥ dz, (A.34)
I I

J J

since w$) L PO(1;), 1 <i <l—1. Then summing over j, and by (A.23)

/ /uh—udx+/ d:c—/ w® d. (A.35)

We apply the discrete Poincaré inequalities to obtain,

leull <llew— [ evdal+] [ evda
Q Q
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1
N 2
S@)al +h72 (Z _%|2> +|/Qw§” dz| (A.36)
< h2k
If £ is even, | = %, we need to improve the estimates. From the conclusion of

Lemma 3.1, wd L PY, thus D~ 'w ( jcl) = (. Using the integration by parts on the

right hand side of (A.29), we have

B;(éy, @) :/ h; D WP, dv, Vo € Vi (A.37)
1
We take the test function
(_1)k+1h.
Pl = (Lir(@) = Liga(2)) (A.38)
such that
ple,,) =0, po(z] 1) =1, and p(@)]r; L PF2(1;). (A.39)
Thus,
e,y =1 [ D wlp. da (A.40)
1
< Ry D', 2. (A1)
Then, we take ¢ = —é, in (A.37), after the integration by parts and using inverse
inequality, we have
N ) N
)P =Y [ BD @) de -2 Y (@)oo
j=1 I; 7j=1
1
N 2
T e _ _ 1 _
SR D P [[1(Eu)ell + Nl (Eu)allh ™2 (Zl[eu]j_;IQ) - (A.42)
j=1
Together with (A.41), we have
1
N 2
[N (Z Heu]j_g?) < Hllol]| S B, (A.43)
j=1
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We note that

/eudx:/uh—Phu—l—Zw
I I

J J =1

:/ up —udw, (A.44)
I

J

since w$) L PO(I;), 1 <i <. Then summing over j, and by (A.23)

/eu:/uh—udxzo. (A.45)
Q Q

Therefore, by applying the discrete Poincaré inequalities [5], we have

leull S Nl + 72 <Z|eu %2) < b (A.46)

This finishes our proof.

A.3 Proof of Theorem 3.1

Proof. We take the test functions ¢ = é,, ) = €, in (2.22). Summing over j and using

periodic boundary condition we have
a(€y, €y;€y) + b€y, €y; €y) = aley, €, €,) + b(ey, €43 €,). (A.A4T)

From Lemma 2.1 and Corollary 3.1, we have

1d

sglel +llel’ S PRI (e | + el (A.48)

Applying Gronwall’s inequality, we obtain
leull(e) S pietat, (A.49)

Remark A.1. We note that, here, we use Gronwall’s inequality to obtain the error
bound for the error grows exponentially in time. In fact, we can obtain the error bound

for the error grows linearly in time. From (A.48), we have

1d

S leull” < Cunt T (e | + pHEIEY), (A.50)

26



. _ llew]l
where Cy is a constant depend on sup,eo 1y ||u||k+5+2L%J' Set D = eswey =yt then

D%D <Ci(D+1). (A51)

Then we refer to the proof of Theorem 2.2 in [29] and obtain

12u(-, £)]| < (Co + Cyt)hF #2157 (A.52)

where Cy is a constant of the error bound of the initial data in (A.46) and Cs = g(lg;),

and G(s) = s —In(s+ 1).

Then, by the same arguments in Remark 2.1, we also obtain
lelt) S mEr2te, (A.53)

Taking time derivatives in (2.22) and with the special initial discretizations (A.31), we

can obtain
@)el(t) S RIS, (A.54)
If k is odd, then k + 1+ 2[ %2 | = 2k. From Lemma 3.2, we have

_ _Llyr _3r/= _
I(€w)acllr, + A2 1[(€u)el ;-2 ] + A2 ][(Eu)] 42| S l1E — 0P, (A.55)

[@)aalls, + 22 ([(E0)e] ;2| + A2 (@] e2] S @) = (@)elly;, Vi€ Zy (A56)

By using the discrete Poincaré inequalities [5], we have

lE)all < N1E)s — / (eu)e ] + | / (64). d]

rS ||(éu):mH + h_% (Z |[(éu)x]g—;‘2) + h_% <Z |[(éu)]g—é‘2) (A57>

J=1

with (A.55),

(el S h**. (A.58)
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By the same arguments for ||(€,).||, we also have
1(&0)all S P (A.59)

If k is even, then k + 1 + 2[ 51| = 2k — 1. We need to improve the estimation as

following. First, we have
e §) = aieusie) = [ @lipdo+ A(eng) = [ (@, (A.60)
I I
by (o, €0 ) = by (60, 20 ) :/ eutb d — By(6n, ) :/ WOy dr, Vi e Zy, V(o) € VI
I I
(A.61)
Since I = %52 and (W), wd 1 PO, thus D‘l(wlu)t(:cfil) = D‘lwgl)(xjil) = 0. By using
2 2

the integration by parts on the right hand sides of (A.60) and (A.61), we have

Afene) = [ D dpado = [ (@)ipds, (A.62)
Bj(e,,1) = /I h; D™ WD, da + /1 e, d. (A.63)
By the similar arguments in the proof of Lemma 3.3, we take
ol =0l = 0 (1 0) - L),

in (A.62) and (A.63) respectively, then

[Eu],-1] < 1B DM wh)ellh® + [[(@u)ills, 2,

[[Eul; 1| < IRy D7 Ll k2 + [|ey ] 1,3,
and

- 1|2)§ < W (A.64)

J=3

B ﬁ: <|[év] o
B i (Ileul;-a

Then, we take ¢ =1 = 1in (A.62) and (A.63) and sum over j,

<

)5 < p2k, (A.65)

<

/Q(eu)t dx =0, /Qev dx = 0. (A.66)
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Then, we take ¢ = —€, in (A.62) and ) = —(é,); in (A.63) to obtain

N
||2 Z/j hD €v dl’—2z ] %—FZ/(éu)tévdl’,

j=1"1i
(A.67)
N d N - N
T A(CARERD SEICARMINES Sl (LR ICIEE i ENCA
j=1 j=1 Ij j=1 Ij
N N
_Zdt/ —h; D' (@), da:—l—Z/ f_Lj(D_lwf)l))t(éu)md:c—Z/ eu(2y); d.
j=171; j=171;
(A.68)

We add (A.67) and (A.68) to obtain

N

2 d g+ -
A CRN DI CUSHIED
< W) @l + e ),

| &

[ BD 0@+ @)l (1.09)
1

Sy

where we have used (A.64) and the inverse inequality. Furthermore, we have

1d N od Nod o[-
2 e [CHNEEY) @([éu](éu);“\j_%) +) pr /1 h;D7'w(e,), dx
j=1 7j=1 J
< W2)|(8,)|| + 1. (A.70)

Suppose [|(€.):[|(t*) 1= sup,ejo 1y |(€u)z]|(t), then integrate (A.70) over [0,¢] and using

(A.65), the special initial solutions and inverse inequality, we have

1(€u)ell S h**. (A.71)
Thus, using the same arguments as in Remark 2.1, we can also obtain

(@)l S P2 (A.72)

Finally, together with (A.65) and (A.64), and using the discrete Poincaré inequalities

[5], we have
el + lew]l S h? . (A.73)
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This finishes the proof of (3.15) and (3.16). Especially, if k¥ = 2, then ¢, — Pfq = €,
q = u,v, thus (3.17) and (3.18) hold true. If £ > 3, then we set [ =1,

lun = Prull < leu]l + lwPl < h*2, (A.74)
(wn = Pruoll < l@ell + 1(@P)all S A2 (A.75)

Here we have used the inverse inequality for the last inequality. By the same steps as

before, we can obtain the estimates for vj,. This finishes our proof.

A.4 Proof of Theorem 3.2

Proof. By (3.1) and the definition of P}, we have u — u;|j+% = —é;|j+% and u, —

xT

(uh)+|j+% = —(éu);\ﬁ%. Therefore, by the inverse inequality and (3.15)-(3.16), we have

ews < el < 1%, (A.76)

et S (@)= S P (A.77)

Next, we give the estimates for e, .. If k is odd, then ij Wi da = 0,1<i< %, thus,

L554)
, k=1
/ u— updr = / u— Pru+ Z w — &, dx :/ Witz ) —/ €, dx. (A.78)
I; I; P I; I;
Using the Cauchy-Schwartz inequality, we have
b
eue S (el + s V%)% S 2%, (A.79)
If k is even, then | 1 w dx = 0,1 <1< %, thus, by similar arguments as before, we
have
/ w— updr = / eudr, ey.Sled S h2*. (A.80)
I I
Clearly, by the same steps as before, we can obtain the desired estimates for e, ¢, €, o

and e, .
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A.5 Proof of Theorem 3.3

Proof. By the standard approximation of the projection P; [13], we have

max [u — Pru| < RM2 max|(u — Pru),| < hF (A.81)
zeDO reD1

By Theorem 3.1 and the inverse inequality, we have

Cu S Maxu — Prul +[|Pyu — unllc B2l 5,00 (A.82)
x

The estimates for e, , €,, and e,,, can be proven following the same lines.
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