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Abstract: In this paper, we develop a new discontinuous Galerkin method for solving
several types of partial differential equations (PDEs) with high order spatial derivatives.
We combine the advantages of local discontinuous Galerkin (LDG) method and ultra-
weak discontinuous Galerkin (UWDG) method. Firstly, we rewrite the PDEs with high
order spatial derivatives into a lower order system, then apply the UWDG method to the
system. We first consider the fourth order and fifth order nonlinear PDEs in one space
dimension, and then extend our method to general high order problems and two space
dimensions. The main advantage of our method over the LDG method is that we have
introduced fewer auxiliary variables, thereby reducing memory and computational costs.
The main advantage of our method over the UWDG method is that no internal penalty
terms are necessary in order to ensure stability for both even and odd order PDEs. We
prove stability of our method in the general nonlinear case and provide optimal error
estimates for linear PDEs for the solution itself as well as for the auxiliary variables
approximating its derivatives. A key ingredient in the proof of the error estimates is the
construction of the relationship between the derivative and the element interface jump
of the numerical solution and the auxiliary variable solution of the solution derivative.
With this relationship, we can then use the discrete Sobolev and Poincaré inequalities to
obtain the optimal error estimates. The theoretical findings are confirmed by numerical

experiments.
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1 Introduction

In this paper, we propose a new class of discontinuous Galerkin (DG) methods for
solving several types of partial differential equations (PDEs) with high order spatial

derivatives. The first two examples we consider are:

e The fourth order equation

wr + (b(u)tgg)ee =0, b(u) >0 (1.1)

e The fifth order equation
ur + f(Uzz)gze = 0. (1.2)

The boundary conditions are assumed to be periodic for simplicity, although most of
our discussions can be adapted for other types of boundary conditions. These equations
are classical model equations for many very important physical applications. The fourth
order problem has wide applications in the modeling of thin beams and plates, strain
gradient elasticity, and phase separation in binary mixtures [14]. The fifth order nonlinear
evolution equation is known as the critical surface-tension model [15].

Discontinuous Galerkin (DG) methods are a class of finite element methods (FEMs)
using completely discontinuous basis functions. The first DG method was introduced
in 1973 by Reed and Hill [20] in the framework of neutron transport. It was later
developed for time-dependent nonlinear hyperbolic conservation laws, coupled with the
Runge-Kutta time discretization, by Cockburn et al [5, 7, 8, 21]. Since then, the DG
method has been intensively studied and successfully applied to various problems in a
wide range of applications due to its flexibility with meshing, its compactness and its high
parallel efficiency. For the equations containing higher order spatial derivatives, there
are several different ways to approximate them by discontinuous Galerkin methods. One
way is to use the local discontinuous Galerkin (LDG) method [9, 10, 13, 17, 25, 27, 28|.
The idea of the LDG methods is to rewrite the equations with higher order spatial
derivatives into a first order system, then apply the DG method to this system and
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design suitable numerical fluxes to ensure stability. Another way is to use the penalty
methods that add penalty terms at cell interfaces in the DG formulation for numerical
stability [11, 19]. The third way is to use the ultra-weak DG (UWDG) methods [3]. It is
based on repeated integration by parts to move all spatial derivatives to the test function
in the weak formulation, and on a careful choice of the numerical fluxes to ensure stability
and optimal accuracy. Unlike the traditional LDG method, the UWDG method can be
applied without introducing any auxiliary variables or rewriting the original equation into
a system. Recently, Liu et al. introduced a mixed DG method [16], by first rewriting
the fourth order PDEs into a second order coupled system and then using a direct DG
discretization for the second order system. L? stability was obtained without internal
penalty.

In this paper, we design a new class of DG methods, combining the advantages of
LDG and UWDG methodologies, to solve PDEs with high order spatial derivatives.
The two PDEs (1.1) and (1.2) are used first as examples to develop our method. The
method is then extended to a wider class of PDEs both in one and in two dimensions.
Similar to the mixed DG method in [16], we first rewrite the higher order equation into
a lower order (but not all first order) system. For example, we rewrite the fourth order
problem into a second order system and rewrite the fifth order problem into a system with
two second order equations and a first order equation, then we repeat the application
of integration parts, and choose suitable numerical fluxes to ensure stability. For the
equations with spatial derivative order less than or equal to three, our method will be
the same as the LDG methods or ultra-weak DG method, but for higher order PDEs
our method combines the advantages of the two type of methods, and is more efficient.
It is known that the proof of optimal accuracy for LDG methods solving high order
time-dependent wave equations is very difficult. The work in [26] by Xu and Shu might
be the first to prove optimal order of accuracy in L? for not only the solution but also
the auxiliary variables. In their work, the main idea is to derive energy stability for the
auxiliary variables in the LDG scheme by using the scheme and its time derivatives. In
[12] Fu et al. identified a sub-family of the numerical fluxes by choosing the coefficients
in the linear combinations, so that the solution and some auxiliary variables of the
proposed DG methods are optimally accurate in the L? norm. In [10] Dong and Shu
proved the optimal error estimates for the higher even-order equations, including the
cases both in one dimension and in multidimensional triangular meshes. In this paper,
we prove the optimal error estimates for both the even order equations and the odd order

equations. The main idea is to use an important relationship between the derivative and



the element interface jump of the numerical solution and the auxiliary variable numerical
solution of the derivative [22, 23]. Then we can obtain suitable estimates to the auxiliary
variables, which lead to the optimal error estimates for both the numerical solution and
the auxiliary variables. This is a different approach from that in [10, 26], since in this
way we do not need to estimate many energy equations, and can get the relationship
between the solution and auxiliary variables directly.

The organization of the paper is as follows. In Section 2, we introduce some notations
and projections that will be used later. In Section 3, the scheme for the fourth order
equation is discussed, including the discussion on the L? stability and optimal error
estimates. In Section 4, we follow the lines of Section 3 and consider the fifth order
equation. In Section 5, we extend the schemes in Sections 3 and 4 to arbitrary even
and odd order equations, respectively. We also extend the scheme for the fourth order
equations to multidimensional Cartesian meshes as an example of multi-dimensions in
Section 6. The theoretical results are confirmed numerically in Section 7. In Section 8§,

we give some concluding remarks.

2 Notations and projections

In this section, we will introduce some notations, definitions and projections that will
be used later for the one-dimensional equations.

Throughout this paper, we adopt standard notations for the Sobolev spaces such as
Wm™P(D) on the subdomain D € € equipped with the norm || - ||, p. If D = €, we
omit the index D; and if p = 2, we set W™P(D) = H™(D), || - |lmp.0 = || - llm.p; and we

use || - [|p to denote the L? norm in D.

2.1 Basic notations

Let Q = [0,27] and 0 = r1 <x3 <--- <ayy1=2mbe N+ 1 distinct points on 2.
For each positive integer r, we define Z, = (1,2,--- ,7) and denote by
(xj—% +xj+%)7 J € Zn,

1
Li=(21,2551), 2;=35

the cells and cell centers, respectively. Let h; = z; I JEy and h = maxh;. We
J

assume that the mesh is regular. Define

Vi, = {Uh : Uh|lj € Pk<lj),] € ZN}



to be the finite element space, where P* denotes the space of polynomials of degree at

+

most k. For any v € Vj, v , and Vi denote the right and left limit values of v at
2

J+ 2
J+ %, respectively. As usual, the average and the jump of the function v at j + % are
denoted as .
_ + - — ot -
{odiy =500 +oy) Pl =, —vis
respectively.

2.2 Projections

Next, we will introduce some projections used in the error estimates. For example,

we can choose the Gauss-Radau projections PhjE into V},, such that for any u we have:

/ uvpdx —/ Pfuvydr, Pfu (xj.[ 1) =1u (xij;), (2.1)
I I JF3 2

Vj € Zn,vy € Pk_l(fj). Furthermore, for & > 1 we can define the projection Plj,i into
V}, such that, for any u, the projection Pf;u satisfies: Vj € Zy

/uvhdx:/ P uvpda, (2.2)
I I

J J

for any vy, € P*%(1;) and

Pu (a:j;%) =u <.rj¢%> . (P, (a:]j;%) = U, (xij%) : (2.3)

Similarly, for £ > 2 we can define the projection Pzih into V}, such that, for any w, it

satisfies:
/ uvpdr = / P uvydz, (2.4)
Ij 1j
and
Piu <xj;%> =u (xij%) , (P, (xj;%) = Uy (:Uj%) , (Pt) e <xji%> = Ugy (xij%) :

for any j € Zy, vy, € P*3(I;). We will use different projections according to the need

in each proof. For all these projections, the following inequality holds [4]:

& & 1 &
]l + Alluc oo + A2 [uf e, < CR* lulliss, (2.6)

+

where u¢ = 7w u — u, ™, = P, Pin, P, and I'j, denotes the set of boundary points of

all elements I;, and C' is a positive constant dependent on k but not on h.
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3 The fourth order problem

We start from the fourth order problem. Firstly, we consider the following one-

dimensional nonlinear equation

ur + (b(w)tgy)ee =0, blu) >0, (z,t) €[0,27] x (0,71, (3.1)
u(z,0) =up(z), xe€R, (3.2)
where ug(z) is a smooth function. Without loss of generality, we only consider the

periodic boundary conditions.

3.1 The numerical scheme

Before we introduce our DG method, we rewrite the fourth order equation (3.1) into

a system of second order equations

Ut + Vg = 0, (3.3)
v —blu)w =0, (3.4)
W — Ugy = 0. (3.5)

Notice that, unlike the LDG method, we stop at second order equations and do not
go all the way to a first order system. Our DG method is defined as follows: find

up, vp, wy €V, such that for all p, s, ¢ € V},, we have

((un)e:p)j + (Vs Paa)j + @pjj—&-% - 779Ep+|j—% - 6p;|j+§ + ap:ﬂj—% =0, (3.6)
(vn, 8); — (b(un)wp, s); =0, (3.7)
(wny @) = (Un, Gow)j — Uaq |42 + Uaq" o1 + gy 11 — Ug[;_1 = 0. (3.8)

Here (u,v); = / wvdx and U, Uy, U, U, are the numerical fluxes. The terms involving
1

these fluxes appear from repeated integration by parts, and a suitable choice for these

fluxes is the key ingredient for the stability of the DG scheme. We can take either of the

following four choices of alternating fluxes for these four fluxes

U=y, U= (n)y, U=y, U= (un)f (3.9)

x )

S=o, G= ()i, A=y, @ = () (3.10)



T=vy, G = (0)f, B=1uy, @ = () (3.11)

v=uv, 0= (), Uu=u), up = (up);. (3.12)

It is crucial that v and u, come from the opposite sides, and v, and @ come from the

opposite sides (alternating fluxes).

Remark 3.1. For the numerical fluzes, we can also take the following numerical fluxes

vp 4 (L= 0)0f, =05 + (1 - ) ()7, (3.13a)
wf (1= 0y, i = O(un)f + (1— 0)(w,);, (3.13b)

where 0 < 0 < 1. For 0 = 1/2, we would have the central fluzes as in [16] for the linear
case. We note that, unlike in the UWDG method [3], here we do not need to add extra

internal penalty terms to ensure stability.

3.2 Stability analysis

In this subsection, we will show the stability property of the scheme (3.6)-(3.8) with
the choice of fluxes (3.9)-(3.13).

Theorem 3.1. Our numerical scheme (3.6)-(5.8) with the choice of fluzes (3.9)-(3.13)

is L? stable, i.e.
1d 9 9
i/, uy (z, t)dz + g b(up)w; (z, t)dx = 0. (3.14)

Proof. We integrate by parts in the scheme (3.6) and (3.8) and sum over j to obtain

((uh)tap)ﬂ - ((Uh)zapx)ﬂ + Bl(vhap) = O? (315)
(vn, $)a — (b(up)wp, $)q = 0, (3.16)
(U)h, Q>Q + ((uh)xa qz)Q + BQ(uha q) = 07 (317)
where
N
Uha Z (Uhpm j—‘,— U}Tp:b—% +6;3p—’]+% _Qf};p+|]—%
j=1
=003 |y + 0511 ) (3.18)
N
uhu Z( Uhqx j+3 +Uhqx|‘_§ _d;q_|j+%+{[zq+|j_%
7=1



2

gy |y = g |-y ) - (3.19)

Then we take p = up,, s = —wy, and g = v, and add the three equalities (3.15)-(3.17) to

obtain
1d ) )
2% up (z,t)dr + [ blup)w;(x,t)dx + By (vh, up) + Ba(up, vy) = 0. (3.20)
Q Q
However,
Bl (Uh7 uh) + BQ(uh7 Uh)
N
=D (g (wn)y = v ()i + Gy, — Gy —0(un); + 0(un)f
j=1
=y, (Un)y +uj (vh)} — vy, + vy +U(on); — W(on); ) -1
=0, (3.21)
for all of our flux choices (3.9)-(3.13). Then we have (3.14). O

3.3 Error estimates

In this subsection, we state the error estimates of our scheme in the linear case,

namely b(u) = 1. In this case, (3.7) in the scheme becomes a trivial statement vy, = wj,.

Theorem 3.2. Let u be the exact solution of equation (3.1) with b(u) = 1, and w = Uy,
which are sufficiently smooth with bounded derivatives. Let u, and wy be solutions of
(3.6), (3.8), with any choice of fluzes (3.9)-(3.12), and let V}, be the space of piecewise

polynomials P*, k > 1, then we have the following error estimate:
lu(t) — un(t)| + /Ot |w(t) — wy(t)||dt < CRF, (3.22)
where C' is a constant independent of h and dependent on ||ul|x+3, and on t.
Proof. Without loss of generality, we choose the flux (3.9). Let
Cy =U—Up, €y =W — W

be the errors between the numerical and exact solutions. Since u and w clearly satisfy

the scheme (3.6) and (3.8) as well, we can obtain the cell error equations: for all p, ¢ € V},

((ew)e: P)j + (€w, Paa)j + (€w)a P |jus — (€w)aP™ i1 — €y |1 +eupalim1 =0,
(3.23)



(ew @); = (€ur Gow)j = (€)s ¢ |jns + ()i q o + ey s —enarl; 1 =0, (3.24)
Since k > 1, we can choose a projection P2 defined in (2.2) and (2.3). Denote
Ny =u— Phu, & =u,— Phu, n,=w-—PLw, & =w,— P,w,

and take p = &, and ¢ = &, in (3.23) and (3.24) respectively. By the stability and

property of projection Plih we have
((gu)ta fu)ﬂ + (6107 gw)ﬂ = ((nu)h éu)ﬂ + (nwa gw)ﬂ (325)
Then

d
Zl&ll + 1€ull* < CR &) + CR 6

Next we use Gronwall’s inequality and choose u;(0) = P u(0) to obtain

1€l (0) /nawu<owﬂ

and

leall(8) /mmw<mm /HMW+MN /mmw<cwﬂ

where C'is a constant independent of i and dependent on ||ul|x+3, ||we]/x+1, & and . O

4 The fifth order problem

Next we study the DG method for the following one-dimensional nonlinear fifth order

equation

Ut + f(Ups)zze =0, (x,t) €[0,27] x (0,77, (4.1)
u(z,0) =up(x), = €R, (4.2)

with periodic boundary conditions, where ug(x) is a smooth function.

4.1 The numerical scheme

Similar to the fourth order problem (3.1), we rewrite (4.1) into a system:
Up + Wey = 0, (4.3)
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w— f(v), =0, (4.4)
UV — Uy = 0. (4.5)

Then our DG method is defined as follows: find wuy, wp, vy, € Vj, such that for all
p, s, q € V,, we have

((un)e; p); + (Whs Paz)j + @;p7|j+% - @;p+|j7% - ﬁ)\p;|j+% + @pﬁjf% =0, (4.6)
(wiw 3)] + (f(vh)a Sm)j - f8_|j+% + f8+|j—% = 07 (47)

(Uha Q)j - (ufw qmc)j - 'L’vaq_|j+% + u~xq+|j—% + aq;b_,_% - EQ;‘]—% = 0. (48)

Here w, w,, f, u, u, are numerical fluxes. We can take either of the following two choices

for these five fluxes
W=wy, Wy = (wy),, f=Fflog,v)), U=y, U= (up)y, (4.9)
or

&}:w}-rv {U\;:(wh>+a f:f(U]:av}T)a ﬂ:u;, %:(uh);a (410)

~

where f(v™,v") is a monotone flux for f(v). Here monotone flux means that the function
]?is a non-decreasing function of its first argument and a non-increasing function of its
second argument. It is also assumed to be at least Lipschitz continuous with respect

to each argument and to be consistent with the physical flux f(v) in the sense that

-~

fv,0) = f(v).

Remark 4.1. It is crucial that W and u, come from the opposite sides, w, and U come
from the opposite sides. We have at least four choices of these alternating fluzes or simi-
lar fluzes in (3.13), as in fourth order case. But here we just give the rule of alternating,

and list part of them for simplicity.

4.2 Stability analysis

In this subsection, we will show the stability property of the scheme (4.6)-(4.8) with
the choice of fluxes (4.9) or (4.10).

Theorem 4.1. Our scheme (4.6), (4.7) and (4.8) with the choice of fluxes (4.9) or
(4.10) is stable, i.e

1d
ST Qui(m,t)dx <0. (4.11)
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Proof. Integrate by parts in the scheme (4.6), (4.8) and sum over j, we obtain

((uh)t7p)ﬂ - ((wh)mapx)fl + Bl(wh,p) = 0, (412)
(wp, $)a + (f(vn), sz)a + Bs(f,s) =0, (4.13)
(n, @) + ((Un)z, e )o + Ba(un, q) = 0, (4.14)

where By and B, have been defined before in (3.18) and (3.19), and

N
By(f,8) =3 (= Fs s+ Fs*l,0y). (4.15)
j=1
Then we take p = uy, s = —v;, and ¢ = wy, and add the three equations to obtain
1d
S d up (z,t)dx — (f(vn), (vn)a)a + Bi(wp, up) + Bs(f, —vn) + Ba(un, wy) = 0.
Q
(4.16)
By (3.21), we have By (wp, up) + Ba(up, wy) = 0, then
1d al
2 A A~ _
2t ), W2 (x,t)dr + ;“%; ~G, 1 +0,.1)=0, (4.17)
where
~ ~ Uh
Cyry= R+ Fop)| o Fen= [ s, (118)
0,1 = (F(v)) = F(vy) + fo, — ful)| |, (4.19)

for both of our flux choices (4.9) and (4.10). By the monotonicity of the fluxes f and

periodic boundary condition we obtain

0.

j—

> 0. (4.20)

N

Then we have (4.11). O

Remark 4.2. We can also choose the central flux for nonlinear term f(v)

_ 1)
U — U J=3

then our scheme will be conservative, that means @j_% =01n (4.20) and

d
E/ﬂui(x,t)dx = 0.
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4.3 FError estimates

In this subsection we consider the linear case, f(v) = v. Then we have the following

optimal error estimate:

Theorem 4.2. Let u be the exact solution of equation (4.1) with f(v) = v, and W = Uy,
UV = Ugy, which are sufficiently smooth with bounded deriwatives. Let uy, vy, wy be the
numerical solutions obtained from the scheme (4.6)-(4.8) with the choice of fluzes (4.9)
or (4.10) and f(v) = v~. If we use the Vi, space with piecewise polynomials P*, k > 1,

then we have the following error estimate:
lu(t) = un(®)]| + [lv(t) = va ()] + [lw(t) — wi ()] < CRF, (4.21)
where C' is a constant independent of h and dependent on ||u|g+a, ||ut|lp+1, k& and t.

To prove Theorem 4.2 we need some lemmas, addressing the relationship between the
derivative and the element interface jump of the numerical solution and the auxiliary
variable numerical solution of the derivative. This plays an important role in the error
estimates analysis. Firstly, we have Lemma 4.1, which was proved in [22] for the LDG

method and extended to the multi-dimensional case in [23].

Lemma 4.1. [22] Suppose (wp,v) € Vi, X V}, is the solution of the scheme (4.7) with
f(v) = v, then there ezists a positive constant C' which is independent of h, such that
Vi e Zyn

1(on)zl; + h_%l[[vh]]b_% < Cllwall;- (4.22)

Next, we establish similar results for wy, in the equation (4.6) as in [22].

Lemma 4.2. Suppose (up,wy) € Vi, X V}, is the solution of the scheme (4.6), then there

exists a positive constant C' which is independent of h, such thatVj € Zy

_1 _3
[(wn)aellr; + A7 2| [(wr)a]l ;41 + A7 [ [wall ;1 < Cll(un)ellz,- (4.23)

Proof. Without loss of generality, we choose the flux (4.10)

{&:w]i_a {U\; - (Wh)j;, f:U_a Q/I\IZU;, {[x: (uh);

Recalling the equation (4.6), after integration by parts we have

((wn)es ) + ((00)azs 2); = [ndy3 (), + wn)al g3,y = 0. (4.24)

N
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Let Ly be the standard Legendre polynomial of degree k in [—1, 1], we have Ly(1) =1

and Ly is orthogonal to any polynomials with degree at most £ — 1. First we take

Uy — s
in (4.6), with ¢ = %
J

and

’

hj(wh)zm(xi,_%) B Ly (1)(wh)m($~_+1)

J J

5 -
2k k = (Wh)ealz, ),
p(z) € Vj, and is well defined since & > 1 in our function space. Clearly, there hold

B =

p(fﬁ;_%) =0, px(a:;r%) =0, and ((wh)zz,P); = ((Wh)zzs (Wh)zz);- By (4.24) we have
((uh>t7p)j + ((wh):px; (wh)xx)j =0.
Thus

1(wn)aall < Nl Cun)elly ((wn)aall; + AN L)l + 1Bl Zi-1(E)ll5)
< Ol (un)ell;lI(wn) ezl

where the first inequality is obtained by using the Cauchy-Schwartz inequality and the
second is derived by using the inverse inequality and the fact ||L;(€)||; < Chz. Therefore,

I(wn)all; < C1l(un)ill;- (4.25)

Next we take p = 1 in (4.24) to obtain

((uh)t> 1)j + ((wh)mv 1)]’ + [[(wh)x]]j+% =0,

then, by (4.25) and the Cauchy-Schwartz inequality we get

[Cwn)al 3] < 22 (ln)elly + 11 0n)as ;) < ChE | (un el (4.26)
Our next choice of the test function is p = £ in (4.24), which gives

()0 )+ (€)= 3 unly + [l =0
By (4.25), (4.26) and the Cauchy-Schwartz inequality we get

Teond 31 < Ch2 (Cun)ell; + [ (wn)aally) < CE[|un)ell; (4.27)
Finally, we get the desired result (4.23). O
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Based on the relationship constructed in the Lemma 4.1 and Lemma 4.2, we can

easily use the discrete Poincaré inequalities [1, 2] to estimate wy, and vy,.

Lemma 4.3. Let (up,vp, wy) € Vi, be the solutions of the scheme (4.6)-(4.8), then there

exists a positive constant C' which are independent of h, such that

[(wn)e|| < Cl(un)ell; (4.28)
[wnll < Cll(un).l, (4.29)
[on]l < Cllwn. (4.30)

With all these preparations, we can start the proof of Theorem 4.2.

Proof. (The proof of Theorem 4.2)
Without loss of generality, we choose the flux (4.10). Let

Cy =U—Up, €, =V—1Up, €, =1wW—W,

be the errors between the numerical and exact solutions. Since u, v and w clearly satisfy

(4.6)-(4.8) we can obtain the cell error equations: for all p, s, ¢ € V},

((eu)t;p)j + (ew,px.r)j + <€w) p |]+1 - <€w)+ +|]—7 - ewpx |]+1 + ewp:r |]—— - O’
(4.31)

(€w,8)j + (€v;8a)j — €8 |j41 +€ys |]_7 =0, (4.32)

(ean)j - (eu7q$x)]' - (eu>xq ’j+% + (6U)zq |j7% + 6;Q;’g+ — ey, e |]77 =0. (433)

Since k > 1 we choose the projections Pj;, and P, , which are defined in (2.1)-(2.3).

Denote

Ny =u— PLu, & =u, — P,u,
Ne =w — Phw, & =w, — P}w
Ny =v—PFP v, &=uv,— P, 0.

Furthermore by the error equations (4.31)-(4.33) and Lemma 4.1, Lemma 4.2 and Lemma

4.3 we have

lgull < Cliteu)ell < CllEu)ell + CRM, (4.34)
&l < Cllewll < Cll&ull + CR*, (4.35)

e Error estimates for the initial condition.
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We choose the initial condition wuy(x,0) such that
wp(z,0) = Phw(z,0), w(x,0) = ty(z,0). (4.36)
Then we have
|w(z,0) — wy(z,0)| < CHFH.
By (4.34) and (4.35) we get
6ol < ll€wll + CR*E < OB,

I8all < 6]l + Ch*H < CREH,

and we have the following estimates:
|w(z,0) — up (2, 0)|| + |lv(z,0) — v (2, 0)|| + |lw(z,0) — wy(x,0)|| < CA*. (4.37)
Next we choose t = 0 in (4.31), due to the choice of wy(z,0) we have
(u:(0) = (un)e(0),p); = 0.
Now, we choose p = (up,)¢(0) — P(us(0)), P is the standard L? projection, and obtain
lue(,0) = (un)e(0)]| < CRF. (4.38)
e Error estimates for ¢ > 0.

Then we take p = ¢,, s = —¢, and g = £, and add the three equations (4.31)-(4.33)

and also sum over j. By the stability and the properties of the projections we can obtain

((gu)tv gu)Q + Z [[Sv]]i_% = ((nu)h £u>Q - (nwa S’U)Q + (771;; gw)Q

j=1
Next, we take the time derivative of the three error equations (4.31)-(4.33), and take
p=(&u)t, s = —(&)e and g = (&u): to obtain

((€u)ets (Eu)e)a + Z [[(fv)t]ﬁf% = ((Mu)ut, (&u))o — (M), (&o)e)a + (), (Cw)i)e-

Now, combining the energy equations we get

%%(Hfun? + [(€a)ell?) + Z([[gv]]ﬁ_% + [[(gy)tﬂf,_%) =T 4 A, (4.39)
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where

T = ((77U>ta fu)Q - (nwaév)ﬁ + (7711: fw)ﬂ + ((UU)th (fu)t)ﬂu
A= _((nw)h (év)t)ﬂ + ((nv)ta (€w>t)ﬂ

By (4.34), (4.35) we have the estimate
6]l < Cligull + CRM - lgull < Cli(€u)ell + CRF,
then we can easily get
T < CRHEull + CRMHI(8u)ell + CRHF2.

Next, integrating A with respect to time between 0 and t, we can get the following

equation after integration by parts:

/0 Adt = —((gu)o, E)al + / (D)ot €t + (1) Eu)all — / () Eu)ardt

We can easily get the following estimates using the approximation property of the pro-

jections and the estimates for the initial condition

t t
/0 Adt] < O 1 JI6, 1 + 1lEul + / (U1 + lEwl)dt
t
< Ch* 2 4 Opk+! / 1(€2)e|dt.
0

Now we integrate (4.39) with respect to the time between 0 to ¢, using the Cauchy-
Schwartz inequality and (4.37), (4.38) to obtain

SIS+ M) < 7 [ 6P + W€ IPde + 1412

After employing the Gronwall’s inequality, we get
e ] + mac ]| (€| < CHF,
and also
g € | + ma 1€, < O

After using the standard approximation results, we can get (4.21). O
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5 Extension to high order equations

The DG method introduced in the previous sections as well as the theoretical analysis
for the stability and error estimates can be extended to more general high order PDEs;,
and to multidimensional cases. Firstly, we consider the extension to the general high

order equations,

I3
I
s
|
=

ug + (= 1)y (5.1)

with n being any positive integer. Here u] denotes the n-th derivative of u with respect
to x, and [§] is the integer part of 7.
In the first two subsections, we will give two specific examples to introduce our scheme

to sixth and seventh order equations. Then we will summarize to the general case.

5.1 Extension to sixth order equations

In this subsection, we will consider the sixth order equation:

uw —u® =0, (z,t) €[0,21] x (0,7, (5.2)
u(z,0) =up(x), z€eR, (5.3)
where ug(x) is a smooth function, as an example of even order diffusive equations. For

simplicity of discussion, we will again only consider the periodic boundary conditions.

Firstly, we rewrite the sixth order equation into a system of third order equations
Up — Wege = 0, (5.4)
W — Uy = 0. (5.5)

Then our DG method is defined as follows: find uy,, wy € V}, such that for all p, ¢ € V},,

we have

((Uh)tvp)j + (Whypmmm>j - r&}‘\r;pilj_&_% + T/U\x;p+|j_% + Qfl};p;’3+% — @p;b_%
(wh, @) + (Un; Gora)j = Uaad ™ |j41 + ﬁ;chr\j,% + Uy |y — u}qj{]jf%

- aqg;ac|j+§ + aq;—xb—% =0. (5.7)

Here w, w,, Wyy, Uy, Uy, and u,, are the numerical fluxes. The terms involving these

numerical fluxes appear from repeated integration by parts. We can take either of the
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following two choices for these six fluxes

W=wy, We=(Wh)y, Wex=(Wn)yp, U=ty Go=(n)y, Uox=(n)z,,  (58)
or
W=wy, We=(wn)y, Wee=(Wn) gy, U=y, Go=(un),, Uaa=(un)py-  (5.9)

It is crucial that we take the pair @ and w,, from opposite sides, the pair 4, and w,

from opposite sides, and the pair u,, and w from opposite sides.

Theorem 5.1. (Stability) Our scheme (5.6)-(5.7) with the choice of fluxes (5.8) or
(5.9) is L? stable, i.e.

1d

—— ui(x,t)dm—i—/wi(x,t)dx =0. (5.10)
2di g

Q

Proof. Integrating by parts in the scheme (5.6)-(5.7) and summing over j, we have

((Uh)tap)ﬂ - ((wh)zxx7p)ﬂ + B4(wh7p) = 07 (511)
(wh7 q)Q + (Uh, qzm:r)ﬂ + B5<uh7 Q) == 0, (512)
where
N
By(wp, p) = Z (w}:p;x|j+% - w;piﬂj—% - (wh);p;b—f—% + (wh);pi—lj—%
j=1

+(wh);zp_|j+§ - (whu_xp—i_’j—% - @PT%% + {U\m—;p+|j—%

Py |y = @ |y — Pl + @0, ) (5.13)
N
Bs(un, q) = Z (—@q_|j+% + “fx\xqﬂj—% + @q;|j+% - @Q;ﬂj—%
j=1
UGy |41 + ﬂqimlj_%) : (5.14)

Then we take p = u;, and ¢ = wy, and add the two equations (5.11)-(5.12) to obtain

1d

57 ul (z,t)dr + / wi (2, t)dx + By(wp, up) + Bs(up, wy) = 0. (5.15)
0

Q
We can easily check that
B4(wh7 uh) + B5(Uh, wh) = 07

for both of our flux choices (5.8) and (5.9). Then we have (5.10). O
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Theorem 5.2. (Error estimates) Let u be the exact solution of the equation (5.2)
and W = Ugy,, which are sufficiently smooth with bounded derivatives. Let u, and wy,
be solutions of the scheme (5.6)-(5.7) with either (5.8) or (5.9) as the numerical fluzes,
and let V}, be the space of piecewise polynomials P, k > 2, then we have the following

error estimate
lu(t) — unt |y+/ lw(t) — wp (8)]|dE < CHF+, (5.16)

where C' is a constant independent of h and dependent on ||u||kt4, and t.

Proof. The proof is similar to that of Theorem 3.2. By using the projection P;; defined
n (2.4)-(2.5) for k¥ > 2 and then following the line of proof for Theorem 3.2, we can
casily get the result (5.16). O

5.2 Extension to seventh order equations

In this subsection, we will give the formulation of the scheme as well as its theoretical

results for the seventh order wave equation

u —ul” =0, (z,t) €0,27] x (0,7, (5.17)
u(z,0) =up(x), z€R, (5.18)
where ug(z) is a smooth function, as an example of general odd order wave equations.

As mentioned before, we only consider the periodic boundary conditions. Similar to the

sixth order equation, firstly, we rewrite (5.17) into a system:

w— v, =0, (5.20)
UV — Uggy = 0. (5.21)

Then our DG method defined as follows: find uy,, v, wy, € V} such that for all p, s, g €

Vi, we have
((un)es P)j + (Why Powa)j — WeaP ™ |j1 + Waab ;-1 + Waby 11 — Wapg |51
wpmc‘]Jrl + wpa:xl 1 - O (522)
(wn, )5+ (vh, $0)j — U8~ |41 +057[;21 =0, (5.23)
(Vhs @)j + (U Qo) — Uowd ™ |js + Uowd i1 + Tty |1 — gy |51

= Uy |y + U] 1 =0 (5.24)
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the followmg two ChOlceS for these fluxes

T=wy, To=(wn);, Tra=(wn)mr D=0y, A=uf, = (wn), To=(w), (5.25)

or

W=wys We=(wn)ys Wep=(Wn) gy, D=0y, U=y, Up=(un)y s Uow=(n)-  (5.26)

It is crucial that we take v = v, by upwinding, the pair @ and w,, from opposite sides,

the pair , and w, from opposite sides, and the pair u,, and w from opposite sides.

Theorem 5.3. (Stability) Our scheme (5.22)-(5.24) with the choice of fluzes (5.25)
or (5.20) is stable, i.e.

1d [,
i <0. .
5 /Quh(:v,t)dx <0 (5.27)

Proof. Integrating by parts in the scheme (5.22)-(5.24) and summing over j, we have

((uh)t7p)9 - ((wh)mmzyp)ﬂ + B4(wh7p) == 0, (528)
(Wh, 8)a + (vn, 52)a + Bs(vn, s) = 0, (5.29)
(Un, @)a + (Un; @oza)o + Bs(un, q) =0, (5.30)

where Bs, By and Bs are defined in (4.15), (5.13) and (5.14), respectively. Then we take
p = up s = —vy and ¢ = wy, in (5.28), (5.29) and (5.30) respectively, add the three

equations to obtain

1d e
for both of our flux choices (5.25) and (5.26). Then we have (5.27). O

Theorem 5.4. (Error estimates) Let u be the exact solution of the equation (5.17),
and W = Ugppz, UV = Ugzes, Which are sufficiently smooth with bounded derivatives. Let
Up, Vp, wy, be the numerical solutions of (5.22)-(5.24). If we use Vj, as the space with

piecewise polynomials P*, k > 2, then we have the following error estimate:
[u(t) = un ()| + [[o(t) — va () + [Jw(t) — wa()]| < O, (5.32)
where C' is a constant independent of h and dependent on ||ul|k+s, ||ue|lps1, k& and t.

Proof. The proof is similar to that of Theorem 4.2 and is thus omitted to save space. [J
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5.3 Extension to general high order cases

We have introduced the numerical schemes for sixth and seventh order cases. More
generally, we summarize the scheme for any high order case. The proof of stability and
error estimate is similar to the sixth and seventh equations, therefore we just list the
results and omit the proof. Again, we only consider the periodic boundary conditions.

5.3.1 General even order case

Let n be a positive even number, and consider the equation
u + (—=1)2u" = 0. (5.33)

Firstly, we rewrite it into a $-th order system,

w+ (—1)3w? =0, (5.34)
w—ug = 0. (5.35)

Then our DG method is defined as follows: find uy,, wy € V}, such that for all p, ¢ € V},,

we have
n_q
((up)e, p); + (Wh,pﬁ)j + Z ((—1)%+m (@‘;%flfm@?)jﬁé — @;%*Pm(pgzn)ﬂj,%)) =0,
" (5.36)
n_q
(wn.)y = (=1 g )y + 3 (0™ (& 277 |y =820 ) = 0.
" (5.37)

Remark 5.1. We choose alternating fluzes. It is crucial that we take w2 " and @,

from opposite sides, m =0,1,--- , 2 — 1.

Theorem 5.5. (Stability) Our scheme (5.36)-(5.37) with the choice of alternating

fluzes in Remark 5.1 is L? stable, i.e.

1d
——/ui(x,t)dm—l—/wi(z,t)da::O. (5.38)

Theorem 5.6. (Error estimates) Let u be the exact solution of the equation (5.33),
and w = u?, which are sufficiently smooth with bounded derivatives. Let wuy,, wy, be the
numerical solutions of (5.36)-(5.37) with alternating fluzes in Remark 5.1. If we use V,
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as the space with piecewise polynomials P*, k > 5 — 1, then we have the following error

estimate:
t
[[u(t) — un(t)|] +/ lw(t) —wn(t)||dt < CRE, (5.39)
0
where C' is a constant independent of h.

5.3.2 General odd order case

Let n be an odd number, and n > 3. We consider the following equation:
up + uly =0, (5.40)

Firstly, we rewrite it into a (25%)-th order system,

n—1
up +w,?> =0, (5.41)
w— v, =0, (5.42)
n—1
v—u,® =0. (5.43)

Then our DG method is defined as follows: find w,, v, w, € V) such that for all
p, s, q € Vi, we have

m=0
(5.44)
(Wh, $); + (Vn, $2); — Vs~ |41 —|—®\s+|j_% =0, (5.45)
n—3
_— n—1 2 n=3_ =3
(Ulm(J)j _ (_1) 2 (uh,%c )] + Z (( 1)m+1 (u 2 (qw ) |j+% — Uy 2 (Qm )+’]_%>) =0
m=0
(5.46)
Remark 5.2. It is crucial that we take v by upwinding, the pairs {va%g_m and u;"™ from
n—3

opposite sides, m =0,1,---,#5=.

Theorem 5.7. (Stability) Our scheme (5.44)-(5.46) with the choice of fluzes in Re-

mark 5.2 s stable, i.e.

1d

el 2 < 0. 4
5% Quh(x,t)d:c_() (5.47)
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Theorem 5.8. (Error estimates) Let u be the exact solution of the equation (5.40),
and v = u?l, w = vy, , which are sufficiently smooth with bounded derivatives. Let uy,,
vp, wy, be the numerical solutions of (5.44)-(5.46) with the choice of fluzes in Remark
5.2. If we use Vi, as the space with piecewise polynomials P*, k > ”7_3, then we have the

following error estimate:
lu(t) = un (@)l + lv(t) = va(@®)]] + lw(t) — wa(®)]] < CRFH, (5.48)

where C' 1s a constant independent of h.

6 Extension to the fourth order equation in multi-

dimensional Cartesian meshes

In this section, we will extend our DG scheme to multi-dimensional Cartesian meshes
for fourth-order equation, as an example of multi-dimensional extension of our schemes.
Without loss of generality, we describe our DG method and prove a priori optimal error
estimates in two dimensions (d = 2), however all the arguments we present in our analysis
depend on the tensor product structure of the meshes and can be easily extended to
higher dimensions (d > 2).

Hence, from now on, we shall restrict ourselves to the following two-dimensional

problem:
u + Au=0, (x,t)€Qx(0,7T], (6.1)
with the periodic boundary condition and initial condition
u(x,0) = up(x),

where ug(x) is a smooth function of x = (z,7), Q € R? is a bounded rectangular domain.

6.1 The numerical scheme

Firstly, we rewrite the fourth-order equation (6.1) into a system of second-order

equations,

up + Aw = 0, (6.2)
w— Au = 0. (6.3)
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In order to define our DG method for the system (6.2)-(6.3), let us introduce some
notations. Let €2, denote a tessellation of €2 with shape-regular elements K, and the
union of the boundary face of element K € €, denoted as 02 = KéJQh 0K. We denote
the diameter of K by hg, and set h = max hg. The finite element spaces with the mesh

(), are of the form
Wy ={n e L*(9Q) : nlx € Q"(K),VK € 0},

where QF(K) is the space of tensor product of polynomials of degree at most k& > 0 on
K € Q;, in each variable defined on K.

Since the approximation space in discontinuous Galerkin methods consists of piece-
wise polynomials, we need to have a way of denoting the value of the approximation on
the “left” and “right” side of an element boundary e. We give the designation K for
element to the left side of e, and K for element to the right side of e (We refer to [27]
for a proper definition of “left” and “right” in our context, for rectangular meshes these
are the usual left and bottom directions denoted as “left” and right and top directions
denoted as “right”). The normal vector v, and vi on the edge e point exterior to K,
and Ky respectively. Assuming v is a function defined on K and Kg, let )~ denote
(Y|, )|e and ¥+ denote (¢|k,,)]e, the left and right traces, respectively. The DG method
is defined as following: we seek u; and wy, in the finite element space W), x W}, such

that for all p, ¢ € W) we have

((up)e, )i + (wp, Ap) g + <% ‘n,p)ax — (W, Vp-n)sx =0, (6.4)
(wh, )i — (uny AQ) i — (V- 1, q)oxe + (@, Vg - n)gx = 0. (6.5)

Here n denotes the outward unit vector to 0K, and

<mm:4mwmwmm mebéﬁ@WW@wmm (6.6)

for any p, q € H&l To Complete the definition of the DG scheme we need to define the

numerical fluxes u, Vu w, Vw. We can choose the alternating fluxes
i=u, Vu=(Vu,)t, @ =wj, Vo= (Vuw,)", (6.7)
or

u=u,, Vu= (Vu,)", w=w,, Vw= (Vuw,)™. (6.8)
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6.2 L? stability

In this subsection, we will prove the DG method defined in (6.4)-(6.5) for the fourth-

order equation satisfies the following L? stability.

Theorem 6.1. The solution given by the DG method defined by (6.4)-(6.5) satisfies
1d

—— ui(m,t)dac—l—/ wi(x, t)dz = 0. (6.9)
2dt ),

Qp,
Proof. We take the test functions p = uy, ¢ = wy, in (6.4) and (6.5) respectively, and
integrate by parts to obtain
((un)e, un) ik + (wn, wn) K + Hok (un, wp) = 0,
where
Hox (p, q) =(wn, V- n)oxc + (Vw -1, phox — (@, Vp - n)ax — (up, Vwy, - n)ox
—(Vu-n,q)ox + (U, Vg - n)ox.
Next we sum over the K. Since

Hor,me(un, wp) + Horeyne (un, wy) = 0, (6.10)

with the numerical flux (6.7) or (6.8), here we suppose e is an inter-element face shared
with the elements K; and K, we can immediately get the L2-stability result (6.9). [

6.3 Error estimates

In this subsection, we obtain a priori error estimates for the approximation (uy,wy,)
given by the DG scheme (6.4)-(6.5). The proof of optimal error estimate in the multi-
dimensional case is different from that in the one-dimensional case, in the definition and
analysis of suitable projections. Since the projection terms in the error equations do
not vanish as in the one-dimensional case, we need to obtain certain superconvergence

properties of the projections to deal with these terms.

Theorem 6.2. Let u be the solution of the equation (6.1) with periodic boundary condi-
tion, and w = Au. Letuy, and wy, be the numerical solution of the DG scheme (6.4)-(6.5).
If we use Wy, as the space with piecewise polynomials QF, k > 1. Then for Cartesian

meshes, we have
t
[u(t) = un ()] +/ lw(t) —wa(t)||dt < CRETE,
0

Here C depends on ||ul| Lo (0, 1);w2r+6.00), [[te|| oo ((0,m);wh+1.00y, and on t, but is independent
of h.
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6.4 Proof of the error estimates

In this subsection we prove Theorem 6.2 stated in the previous section. To do that,
firstly, we define the special projection in Cartesian meshes, similar to the Gauss-Radau
projections in Cartesian meshes [6, 18, 26].

On a rectangle K, ; = I; x J;, for u € Wh*(K), we define

Tu .= P, ® P u, (6.11)

with the subscripts indicating the application of the one-dimensional operators Plih with
respect to the corresponding variable. To be more specific, we shall list explicitly the for-
mulations for II"u, on a rectangular element K; ; = I; x J; := (:1:2;%, xH%) X (yjfé, ijr%).
We have

/ I u(x, y)op(x, y)dedy = / u(z, y)vp(z,y)dzdy, (6.12a)
Ki,j Kij

/1- T u(x, y;+%)vh(x, yj’%)dac = /1 u(z, y];%)vh(a:, yjjr%)dx, (6.12b)

/I(H_u)y(a:,y;r;)vh(x,yj;;)dx = /1 uy(a:,y];%)vh(z,y;r%)dx, (6.12¢)

} Wl y)oale, 1, y)dy = /Jj u(z, sy, s y)dy, (6.12d)

/ w1 y)un@ 1 y)dy = | wel@ 1 y)on(z, 1, y)dy, (6.12e)
Jj 2 2 J; 2 2

T u(x %,yjf %) =u(r %,yjjr%), (6.12f)

(I w)o(z, Y5 = U (2,1, Yir) (6.12g)

(H_u)y(x; %,y;r%) = uy(:c;rl,y;%), (6.12h)

(I ) gy (7 L yj;%) = ny(9€;+%,y;+%), (6.121i)

for all v, € QF2(K) and K € Q. Similarly, we can define the projection I1T. Existence
and the optimal approximation property of the projection IIT are established in the

following lemma.

Lemma 6.1. Assume u is sufficiently smooth, then there exists a unique II"u € Wy,

satisfying (6.12). Moreover, there holds the following approximation property
[v =T 2 (i) + hllo = T iy < CRE | grsn -

Proof. Assume that u = 0, then by (6.12b), (6.12f) and (6.12g) we have



Furthermore, by (6.12¢), (6.12h) and (6.12i) we get

(7w, (2,47, 1) = 0.

2

Similarly, we have II"u(z, 1,y) = 0, and (II"u),(z ,,y) = 0, then we obtain
2 2

IMu = (ZIZ' - xl_+%)2<y - yj_+%)2Q($7 y)? Q(l‘, y) € Qk72-

Finally, we take v, = Q(z,y) in (6.12a) to get Q(z,y) = 0, therefore II"u = 0, and we

have finished the proof of the uniqueness and also existence. Since the one-dimensional

operators P satisfy || P ul| o1y < Cllul|poo(1.y, similarly in the two-dimensional case we
P 1h y 1h (Z3) (1;) y

also have ||[IT*ul| ok, ;) < Cllull L=k, ), here C is a constant independent of h. Again,

standard approximation theory implies the optimal approximating estimates.

To prove Theorem 6.2, firstly we need to write the error equations. Let

eu:U—Uh:nu_ém ew:w_wh:nw_gw

with
nuZU—H+U7 nw:w_H_wa é.u:uh_H_Fua fw:wh_H_w7
then
((€u)t> Pk + Bic(&w, p) =(()e, P) i + Bic (1w, p),
(gwa Q)K - B?{(fm Q) :(nun q)K - B%((nua Q)Ka
where

B}((w,p) - (w7 AP)K - <w_7 (vp ) n)>3K + <(VU}_ : n)7p>3K’
Bi(u,q) = (u,Aq)x — (u", (Vg -n))ox + (Vu' - n), q)ox.

]

(6.15)
(6.16)

Besides the standard approximation results, we will also prove superconvergence re-

sults for the projections II* in Lemma 6.2 and 6.3. The proof is using similar strategies

and skills in [6].

Lemma 6.2. Let B} (1n,,p) and B%(n.,q) be defined by (6.15) and (6.16). Then we

have for k > 1,

Bk(nw,p) =0, Bf((nu,q) =0, Yu,w € Pk+2(K), p, q € Qk(K).
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Proof. The proof of the results for B}, and B% are analogous; therefore we just prove the
one for B%(n.,q). Let us consider the rectangular element K;; = I; X J; = (:Ei_%,mH%) X

(Y;-1.9;;1). By the definition of B (1., q) we have

B?{(T/ua Q) :/ (u - H+u)(Qmm + ny)dxdy
K,

-
&,

Yl

(v =) (@, y) Day(,yy, 1) = (u=Tu) (@ y gy (e, y) ) )de

1 _1
2 J=3

Since I is polynomial preserving operator, (6.17) holds true for every u € QF(K).
Therefore, we have to consider the cases u(x,y) = o+, yrTl gh+2 of 2 phtly g htly,
Let us start with u(x,y) = 2", We have (u — I*u),(z,y) = 0, by (6.12f) and

(6.128), u(e ,.y) = Tru(a?, ., y), walwh, . y) = (Tu), (e, y). Then
2 2 2 2

Yl
[ - mra el e ) - - T el )dy =
Yy

%
Yi+d
/ (w =T u)o (el s y)alr), o y) — (=)o@l y)a(e,,y)dy = 0,
Y.

L

and [ (u—II"u)qy,drdy = 0. Next we integrate by parts
ij

/ (u — IT"u) gy, dzdy
K

2%

_ [T + - - + + +
_/I 1 (u—T1 u)(x,ijr%)qy(x,ijr%) —(u—1T1I u)(x,yj_%)qy(x,yj_%)dx.
i=3

Therefore, sum all the parts in the definition of B%(1,, q), we have

B2(14,q) = 0.

Next, we consider the case u(z,y) = z¥1y, in this case [Itu = P, (z*)y, and

/ (u — ) gupdady = / y(o" — P (25 qpedady = 0,
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and

/ (u — T u) gy, dzdy
K;

»J

(41 = P )ay .y

T, 1 -
:/ Yy (@ = PRy (@) — )

xT. 1
)

T, 1
- [ PG Dt

xr. 1
-3

N

) = (@ = P (")) gl v

)dz.

D=
N|=

Then summing all the parts in the definition of B%(n,,q), we have

B2 (14, q) = 0.

The proof of the cases u(z,y) = y*+, 2**2 y**2 and u(z, y) = y**'a are analogous. This
completes the proof of (6.17). O

Lemma 6.3. Let By (1, p) and B3(n.,q) defined by (6.15) and (6.16). Then we have

1Bk (0w, p)| < CH* 2 ||w|| s acs ) 1P]| 22050 (6.18)
| By (11, @) < CRH*2||ullwansace o) llall 220 (6.19)

where p, q € QF(K) and the constant C' is independent of h.
Proof. On each element K = I; x .J;, consider the Taylor expansion of u around (z;, y;)
u="Tu+ Ry,

where

k+2 1

u(zs, v,
T“:ZZ : oul ij])(x—ﬂfi)l_m(y—yj)m,

_ l—mAH,ym
et (I — m)!m! ozl=mdy

k43 _ 1 k+3 S 5,8
(& — 2)" "y — y)" pr2 00 )

Ris = (k+3)> (3 )il (=) s mgym %

m=0

with § = z; + s(x — 2;), y§ = y; + s(y —y;). Clearly, Tu € P*"* and by Lemma 6.2 we
have
Bi(Tu — 1" (Tu), q) = 0,

then we have
B:(u,q) =Ty + Ty + Ts + Ty + T,
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7= / (Rk+3 - H+Rk+3)(pmc + pyy)dxd%
K,

1
1

Y+l _
1; = —/ (Rprs — H+Rk+3)(x;:_%7y)px(xi+%ay) — (Riss — H+Rk+3)($t%, y)px(xt%,y)dy,
Y

1

i=3
Tl
T3 - _/ ? (Rk+3 - H+Rk+3><x7 yj_i_l)py(x? y]-_+1) - (Rk+3 —1I Rk+3)<x7 y;__l)py(x7 y;__l)dxa
. 1 2 2 2
-3
Y1 B
T, =/ (Rivs — I Risy)o (@) y)p( 10 y) — (Riws — T Riga)o ()1, y)pla 1 y)dy,
Y1
it+d
T5 = / ’ (Rks+3 —1I Rk+3>y(x7y +§)p($7yj_+;) - (Rk+3 - H+Rk+3) (x, Y. %)p(x,y;,’_%)dx

which will be estimated one by one below. From the approximation properties of the

projection I, we have
| Rits — I Riall 2y < OB Ricysllwisnoo ),
and
| Rierallwrrioo(,) = max [ R llwnsroo iy < Ch2||u||w2k+4,oo(szh)-

Combining the above two estimates, we arrive at

[Riss — I Riys| 2y < O Juf|wansace(qy)- (6.20)
Similarly, we have that

[Rirs — T Ryysl iy < OB [l wansace gy (6.21)
It follows from the Cauchy-Schwartz inequality, and the inverse inequality that

Ty < |[Riys — T Ryl 2 || gea | 2 ) < CR*2|Jullworsace (o gl 2 () -

In order to estimate the remaining terms we need to use the trace inequality to get

| Ricss — I Riysll 200y < CRF 3 [uflyparra g,

and

5
| Rirs — I Ryys|| m or) < O 2 |Jullywanraeq,,)

Next, by the Cauchy-Schwartz inequality and the inverse inequality, we arrive at
o] < || Riys — 1" Riysl r20m) 16| 2oy < CRM 2 [lullworssce() lldll 22 -
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Analogously, we have that
| Ton| < CR* 2 |ullwasace @ llallz),  m = 3,4,5.

The estimates for B'(n,,q) now follows by collecting the results for T,, m = 1,2,3,4,5

obtained above. The proof of Lemma is thus completed. O]
Next, we will use these lemmas to prove our final result, Theorem 6.2.

Proof. (The proof of Theorem 6.2). We take p = ¢, and ¢ = &, in the error equations
(6.13)-(6.14), to obtain

((gu)tvgu)gh + (nggw)Qh = ((Uu)mfu)m + (Wwafw)ﬂh + Z(B}((nungu) - B?{(ﬁu»fw))

Then by the Cauchy-Schwartz inequality and Lemma 6.3, we have

Nl lull” < ORI + OB

Next, by Gronwall’s inequality and choosing u(0) = II; u(0), we have

&0 /HM|ﬁ<ﬂW1

and

leall (1) /mmm<mm /n@w+mm /WMW<CMH

where C' is a constant independent of h and dependent on ||u||y2e+6,00, ||t¢][yyrt1.0 and
t. [l

7 Numerical results

In this section, we present numerical examples to verify our theoretical convergence
properties of the DG method for high order PDEs.

Firstly, we consider the one-dimensional linear fourth and fifth order time-dependent
equations with the periodic boundary condition in Examples 7.1 and 7.2, respectively.
Time discretization is not our major concern in this paper, hence we use the spectral
deferred correction (SDC) [24] time discretization for its simplicity. Our computation is
based on the flux choice (3.9) and (4.9), respectively. The errors and numerical orders
of accuracy for P* elements with 1 < k < 3 are listed in Table 7.1 and Table 7.2. We
observe that our scheme gives the optimal (k 4 1)-th order of the accuracy when k > 1.
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Example 7.1. (Accuracy test for a linear fourth-order problem.) We consider the fol-
lowing fourth-order time-dependent problem

Ut + Ugggy = 0, (x,t) € 0,27] x (0, 1],

u(zx,0) = sin(z).

The exact solution is

u(z,t) = e "sin(x).

Table 7.1: Errors and the corresponding convergence rates for Example 7.1 when using
P* polynomials and SDC time discretization on a uniform mesh of N cells. Final time
t=1.

N L order L? order L order
PL10  2.97E-02 — 3.61E-02 - 9.45E-02 —
20 7.66E-03 196 9.31E-03 196 2.39E-02 1.98
40 1.93E-03 199 2.35E-03 1.99 6.04E-03 1.99
80 4.83E-04 2.00 5.88E-04 2.00 1.51E-03 2.00
160 1.21E-04 2.00 1.47E-04 2.00 3.79E-04 2.00
320 3.02E-05 2.00 3.68E-05 2.00 9.46E-05 2.00
P2 10 2.63E-02 - 2.92E-02 - 4.19E-02 -
20 3.57E-03 2.88 3.97E-03 2.88 5.70E-03 2.88
40 4.54E-04 298 5.04E-04 298 7.18E-04 2.99
80 5.68E-05 3.00 6.31E-05 3.00 &8.98E-05 3.00
160 7.10E-06 3.00 7.88E-06 3.00 1.12E-05 3.00
320 8.87E-07 3.00 9.85E-07 3.00 1.40E-06 3.00
P3 10 1.54E-03 - 1.71E-03 — 2.44E-03 -
20 1.40E-04 3.46 1.55E-04 3.46 2.22E-04 3.46
40 9.35E-06 3.90 1.04E-05 3.90 1.49E-05 3.90
80 5.99E-07 3.96 6.66E-07 3.96 9.54E-07 3.96
160 3.76E-08 3.99 4.18E-08 3.99 5.99E-08 3.99
320 2.36E-09 4.00 2.62E-09 4.00 3.75E-09 4.00

Example 7.2. (Accuracy test for a linear fifth-order problem.) We consider the following

linear fifth-order time-dependent problem.
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u(z,0) = sin(z).

The exact solution is

u(z,t) = sin(x — t).

Table 7.2: Errors and the corresponding convergence rates for Example 7.2 when using
P* polynomials and SDC time discretization on a uniform mesh of N cells. Final time
t=1.

N L! order L? order L> order
Pl 10 8.13E-02 - 9.08E-02 - 1.44E-01 —
20 2.22E-02 1.87 247E-02 188 3.97E-02 1.86
40 5.68E-03 197 6.32E-03 1.97 1.08E-02 1.88
80 1.43E-03 199 1.59E-03 1.99 281E-03 1.94
160 3.57E-04 2.00 3.98E-04 2.00 7.15E-04 1.98
320 8.92E-05 2.00 9.95E-05 2.00 1.80E-04 1.99
P2 10 7.25E-02 —  807E-02 -  1.14E-01 -
20 9.74E-03 290 1.08E-02 290 1.53E-02 2.90
40 1.23E-03 298 1.37E-03 298 1.94E-03 2.98
80 1.54E-04 3.00 1.71E-04 3.00 2.42E-04 3.00
160 1.93E-05 3.00 2.14E-05 3.00 3.03E-05 3.00
320 2.41E-06 3.00 2.68E-06 3.00 3.79E-06 3.00
P3 10  5.44E-03 - 6.04E-03 — 8.56E-03 -
20 4.13E-04 3.72 4.59E-04 3.72 6.49E-04 3.72
40 2.60E-05 3.99 289E-05 3.99 4.08E-05 3.99
80 1.64E-06 3.99 1.82E-06 3.99 2.58E-06 3.99
160 1.02E-07 4.00 1.14E-07 4.00 1.61E-07 4.00
320 6.41E-09 4.00 7.12E-09 4.00 1.01E-08 4.00

Example 7.3. (Accuracy test for a nonlinear fourth-order problem.) We consider the

following nonlinear fourth-order time-dependent problem.
wp + (U Uy ) gz = f, x € [0, 27].
The source term f is chosen so that the exact solution is
u(x,t) = e "sin(z).
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We test this example by the DG scheme (3.6)-(3.8). Both errors and orders of ac-

curacy are listed in Table 7.3. We again observe that our scheme gives the optimal

(k + 1)-th order of the accuracy for this nonlinear problem.

Table 7.3: Errors and the corresponding convergence rates for Example 7.3 when using

P* polynomials on a uniform mesh of N cells. Final time t = 0.1.

N Lt order L? order L> order
PY 4 147E-01 -  193E-01 -  397E-01 -
8 6.74E-02 1.12 &8.10E-02 1.25 228E-01 0.80
16 1.94E-02 1.80 2.58E-02 1.65 8.21E-02 147
32 5.05E-03 1.94 6.36E-03 202 245E-02 1.75
64 1.19E-03 2.08 1.41E-03 217 4.33E-03 2.50
P2 4 4.85E-02 — 6.72E-02 — 2.63E-01 -
8 2.63E-03 4.21 3.77E-03 4.16 1.37E-02 4.26
16 8.22E-04 1.68 1.38E-03 1.45 5.87E-03 1.23
32 1.19E-04 2.79 2.12E-04 271 1.00E-03 2.55
64 1.55E-05 294 268E-05 299 1.58E-04 2.67
P34 4.86E-03 - 5.91E-03 — 1.81E-02 -
8 1.07E-03 2.19 1.75E-03 1.75 8.99E-03 1.01
16 3.54E-05 492 6.61E-05 4.73 4.42E-04 4.35
32 1.16E-06 4.93 2.04E-06 5.02 1.68E-05 4.71
64 4.65E-08 4.64 6.99E-08 4.87 5.99E-07 4.81

Example 7.4. (Accuracy test for a nonlinear fifth-order problem.)

following nonlinear fifth-order time-dependent problem

:f7

x € |0, 27],

where the source term f is chosen such that the exact solution is

u(x,t) = sin(x —t).

We consider the

We test this example by the DG scheme (4.6)-(4.8). Both the errors and the numerical
orders of accuracy are listed in Table 7.4. We once again observe the designed (k+ 1)-th

order of accuracy for this nonlinear problem.

The last example we consider is a two-dimensional fourth-order problem.
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Table 7.4: Errors and the corresponding convergence rates for Example 7.4 when using

P* polynomials on a uniform mesh of N cells. Final time ¢ = 0.1.

Lt order L? order L>® order

Pl 4 206E-01 - 233E-01 —  5.05E-01 —
8 5.44E-02 192 6.94E-02 1.75 2.09E-01 1.28

16 1.64E-02 1.73 2.01E-02 1.79 6.13E-02 1.77

32 3.67E-03 216 4.47E-03 2.16 1.42E-02 2.11

64 1.19E-03 1.62 1.44E-03 1.63 4.17E-03 1.77
P2 4 3.06E-02 -  4.39E-02 -  1.72E-01 -
8 4.14E-03 2.88 6.34E-03 2.79 2.80E-02 2.62

16 4.01E-04 3.37 5.56E-04 3.51 244E-03 3.52

32 4.73E-05 3.08 6.78E-05 3.04 3.29E-04 2.89

64 5.57E-06 3.09 8.34E-06 3.02 4.07E-05 3.02
P34 491E-03 —  645E-03 —  2.00E-02 -
8 142E-04 5.12 196E-04 5.04 1.03E-03 4.28

16 8.95E-06 3.98 1.25E-05 3.98 6.73E-05 3.93

32 5.06E-07 4.15 7.38E-07 4.08 4.21E-06 4.00

Example 7.5. (Accuracy test for a two-dimensional linear fourth-order problem.) We
consider the following fourth-order time-dependent problem with the periodic boundary
condition
up + A%u =0, (x,y) € [0,27] x [0, 27],
u(z,0) =sin(z + y).
The exact solution is
u(z,t) = e sin(x +y).

Our computation is based on the flux choice (6.7). The errors and numerical orders of
accuracy for the QF elements with 1 < k < 3 are listed in Table 7.5. We observe that
our scheme gives the optimal (k + 1)-th order of the accuracy when k > 1.

8 Concluding remarks

In this paper, we have constructed a new class of discontinuous Galerkin methods
combining the LDG and UWDG methods for solving high order PDEs, namely time-
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Table 7.5: Errors and the corresponding convergence rates for Example 7.5 when using

QF polynomials on a uniform mesh of N x N cells. Final time ¢ = 1.

N x N L order L? order L> order
o' 4x4 1.67E-01 — 2.46E-01 — 1.13E4-00 —
8 x8 529E-02 1.66 7.93E-02 1.63 4.04E-01 1.49
16 x 16 1.25E-02 2.08 2.03E-02 1.97 1.07E-01 1.92
32 x 32 3.02E-03 2.05 5.09E-03 2.00 2.70E-02 1.98
64 x 64 T7.46E-04 2.02 1.27E-03 2.00 6.78E-03 2.00
Q? 2x2 341E-01 - 5.14E-01 — 2.55E4+00 —
4x4 449E-02 292 T7.29E-02 2.82 5.20E-01 2.29
8x 8 541E-03 3.05 9.03E-03 3.01 6.73E-02 2.95
16 x 16 6.70E-04 3.01 1.12E-03 3.01 8.45E-03 2.99
32 x 32 835E-05 3.00 1.40E-04 3.00 1.06E-03 3.00
64 x 64 1.04E-05 3.00 1.75E-05 3.00 1.32E-04 3.00

dependent PDEs with high order spatial derivatives. The idea is to rewrite the PDE
into a lower order system, but not to a system with only first order spatial derivatives as
in LDG methods. The ideas in designing numerical fluxes to obtain stable and accurate
DG schemes from both the LDG schemes and the UWDG schemes, including the usage
of alternating and upwinding numerical fluxes when appropriate, are then used to obtain
stable and optimally convergent DG schemes for a wide variety of linear and nonlinear
PDEs with high order spatial derivatives in both one and two spatial dimensions. The
main advantage of our method over the LDG method is that we have introduced fewer
auxiliary variables, thereby reducing memory and computational costs. The main ad-
vantage of our method over the UWDG method is that no internal penalty terms are
necessary in order to ensure stability for both even and odd order PDEs. Detailed algo-
rithm formulation, stability analysis and optimal L? error estimates are given for several
examples, including fourth order linear and nonlinear equations in one dimension and
a fourth order linear equation in two dimension, and fifth order linear and nonlinear
wave equations in one dimension. In our error estimates, a key ingredient is the study of
the relationship between the derivative and the element interface jumps of the numer-
ical solution and the auxiliary variable numerical solution of the derivative. With this
relationship and by using the discrete Sobolev and Poincaré inequalities, we can obtain

optimal error estimates for both even order diffusive PDEs and odd order wave PDEs.
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Numerical examples are provided both for linear and nonlinear equations and both in

one dimension and in two dimensions, to verify the theoretical results. Extension of the

optimal error estimates to the nonlinear equations is highly nontrivial and is left for

future work.
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