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Abstract: In this paper, we develop a new discontinuous Galerkin method for solving

several types of partial differential equations (PDEs) with high order spatial derivatives.

We combine the advantages of local discontinuous Galerkin (LDG) method and ultra-

weak discontinuous Galerkin (UWDG) method. Firstly, we rewrite the PDEs with high

order spatial derivatives into a lower order system, then apply the UWDG method to the

system. We first consider the fourth order and fifth order nonlinear PDEs in one space

dimension, and then extend our method to general high order problems and two space

dimensions. The main advantage of our method over the LDG method is that we have

introduced fewer auxiliary variables, thereby reducing memory and computational costs.

The main advantage of our method over the UWDG method is that no internal penalty

terms are necessary in order to ensure stability for both even and odd order PDEs. We

prove stability of our method in the general nonlinear case and provide optimal error

estimates for linear PDEs for the solution itself as well as for the auxiliary variables

approximating its derivatives. A key ingredient in the proof of the error estimates is the

construction of the relationship between the derivative and the element interface jump

of the numerical solution and the auxiliary variable solution of the solution derivative.

With this relationship, we can then use the discrete Sobolev and Poincaré inequalities to

obtain the optimal error estimates. The theoretical findings are confirmed by numerical

experiments.
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1 Introduction

In this paper, we propose a new class of discontinuous Galerkin (DG) methods for

solving several types of partial differential equations (PDEs) with high order spatial

derivatives. The first two examples we consider are:

• The fourth order equation

ut + (b(u)uxx)xx = 0, b(u) ≥ 0 (1.1)

• The fifth order equation

ut + f(uxx)xxx = 0. (1.2)

The boundary conditions are assumed to be periodic for simplicity, although most of

our discussions can be adapted for other types of boundary conditions. These equations

are classical model equations for many very important physical applications. The fourth

order problem has wide applications in the modeling of thin beams and plates, strain

gradient elasticity, and phase separation in binary mixtures [14]. The fifth order nonlinear

evolution equation is known as the critical surface-tension model [15].

Discontinuous Galerkin (DG) methods are a class of finite element methods (FEMs)

using completely discontinuous basis functions. The first DG method was introduced

in 1973 by Reed and Hill [20] in the framework of neutron transport. It was later

developed for time-dependent nonlinear hyperbolic conservation laws, coupled with the

Runge-Kutta time discretization, by Cockburn et al [5, 7, 8, 21]. Since then, the DG

method has been intensively studied and successfully applied to various problems in a

wide range of applications due to its flexibility with meshing, its compactness and its high

parallel efficiency. For the equations containing higher order spatial derivatives, there

are several different ways to approximate them by discontinuous Galerkin methods. One

way is to use the local discontinuous Galerkin (LDG) method [9, 10, 13, 17, 25, 27, 28].

The idea of the LDG methods is to rewrite the equations with higher order spatial

derivatives into a first order system, then apply the DG method to this system and

2



design suitable numerical fluxes to ensure stability. Another way is to use the penalty

methods that add penalty terms at cell interfaces in the DG formulation for numerical

stability [11, 19]. The third way is to use the ultra-weak DG (UWDG) methods [3]. It is

based on repeated integration by parts to move all spatial derivatives to the test function

in the weak formulation, and on a careful choice of the numerical fluxes to ensure stability

and optimal accuracy. Unlike the traditional LDG method, the UWDG method can be

applied without introducing any auxiliary variables or rewriting the original equation into

a system. Recently, Liu et al. introduced a mixed DG method [16], by first rewriting

the fourth order PDEs into a second order coupled system and then using a direct DG

discretization for the second order system. L2 stability was obtained without internal

penalty.

In this paper, we design a new class of DG methods, combining the advantages of

LDG and UWDG methodologies, to solve PDEs with high order spatial derivatives.

The two PDEs (1.1) and (1.2) are used first as examples to develop our method. The

method is then extended to a wider class of PDEs both in one and in two dimensions.

Similar to the mixed DG method in [16], we first rewrite the higher order equation into

a lower order (but not all first order) system. For example, we rewrite the fourth order

problem into a second order system and rewrite the fifth order problem into a system with

two second order equations and a first order equation, then we repeat the application

of integration parts, and choose suitable numerical fluxes to ensure stability. For the

equations with spatial derivative order less than or equal to three, our method will be

the same as the LDG methods or ultra-weak DG method, but for higher order PDEs

our method combines the advantages of the two type of methods, and is more efficient.

It is known that the proof of optimal accuracy for LDG methods solving high order

time-dependent wave equations is very difficult. The work in [26] by Xu and Shu might

be the first to prove optimal order of accuracy in L2 for not only the solution but also

the auxiliary variables. In their work, the main idea is to derive energy stability for the

auxiliary variables in the LDG scheme by using the scheme and its time derivatives. In

[12] Fu et al. identified a sub-family of the numerical fluxes by choosing the coefficients

in the linear combinations, so that the solution and some auxiliary variables of the

proposed DG methods are optimally accurate in the L2 norm. In [10] Dong and Shu

proved the optimal error estimates for the higher even-order equations, including the

cases both in one dimension and in multidimensional triangular meshes. In this paper,

we prove the optimal error estimates for both the even order equations and the odd order

equations. The main idea is to use an important relationship between the derivative and
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the element interface jump of the numerical solution and the auxiliary variable numerical

solution of the derivative [22, 23]. Then we can obtain suitable estimates to the auxiliary

variables, which lead to the optimal error estimates for both the numerical solution and

the auxiliary variables. This is a different approach from that in [10, 26], since in this

way we do not need to estimate many energy equations, and can get the relationship

between the solution and auxiliary variables directly.

The organization of the paper is as follows. In Section 2, we introduce some notations

and projections that will be used later. In Section 3, the scheme for the fourth order

equation is discussed, including the discussion on the L2 stability and optimal error

estimates. In Section 4, we follow the lines of Section 3 and consider the fifth order

equation. In Section 5, we extend the schemes in Sections 3 and 4 to arbitrary even

and odd order equations, respectively. We also extend the scheme for the fourth order

equations to multidimensional Cartesian meshes as an example of multi-dimensions in

Section 6. The theoretical results are confirmed numerically in Section 7. In Section 8,

we give some concluding remarks.

2 Notations and projections

In this section, we will introduce some notations, definitions and projections that will

be used later for the one-dimensional equations.

Throughout this paper, we adopt standard notations for the Sobolev spaces such as

Wm,p(D) on the subdomain D ∈ Ω equipped with the norm ‖ · ‖m,p,D. If D = Ω, we

omit the index D; and if p = 2, we set Wm,p(D) = Hm(D), ‖ · ‖m,p,D = ‖ · ‖m,D; and we

use ‖ · ‖D to denote the L2 norm in D.

2.1 Basic notations

Let Ω = [0, 2π] and 0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 2π be N + 1 distinct points on Ω.

For each positive integer r, we define Zr = (1, 2, · · · , r) and denote by

Ij = (xj− 1
2
, xj+ 1

2
), xj =

1

2
(xj− 1

2
+ xj+ 1

2
), j ∈ ZN ,

the cells and cell centers, respectively. Let hj = xj+ 1
2
− xj− 1

2
, and h = max

j
hj. We

assume that the mesh is regular. Define

Vh = {vh : vh|Ij ∈ Pk(Ij), j ∈ ZN}
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to be the finite element space, where Pk denotes the space of polynomials of degree at

most k. For any v ∈ Vh, v+
j+ 1

2

and v−
j+ 1

2

denote the right and left limit values of v at

j + 1
2
, respectively. As usual, the average and the jump of the function v at j + 1

2
are

denoted as

{{v}}j+ 1
2

=
1

2
(v+

j+ 1
2

+ v−
j+ 1

2

), [[v]]j+ 1
2

= v+
j+ 1

2

− v−
j+ 1

2

,

respectively.

2.2 Projections

Next, we will introduce some projections used in the error estimates. For example,

we can choose the Gauss-Radau projections P±h into Vh, such that for any u we have:∫
Ij

uvhdx =

∫
Ij

P±h uvhdx, P±h u
(
x±
j∓ 1

2

)
= u

(
xj∓ 1

2

)
, (2.1)

∀j ∈ ZN , vh ∈ Pk−1(Ij). Furthermore, for k ≥ 1 we can define the projection P±1h into

Vh such that, for any u, the projection P±1hu satisfies: ∀j ∈ ZN∫
Ij

uvhdx =

∫
Ij

P±1huvhdx, (2.2)

for any vh ∈ Pk−2(Ij) and

P±1hu
(
x±
j∓ 1

2

)
= u

(
xj∓ 1

2

)
, (P±1hu)x

(
x±
j∓ 1

2

)
= ux

(
xj∓ 1

2

)
. (2.3)

Similarly, for k ≥ 2 we can define the projection P±2h into Vh such that, for any u, it

satisfies: ∫
Ij

uvhdx =

∫
Ij

P±2huvhdx, (2.4)

and

P±2hu
(
x±
j∓ 1

2

)
= u

(
xj∓ 1

2

)
, (P±2hu)x

(
x±
j∓ 1

2

)
= ux

(
xj∓ 1

2

)
, (P±2hu)xx

(
x±
j∓ 1

2

)
= uxx

(
xj∓ 1

2

)
,

(2.5)

for any j ∈ ZN , vh ∈ Pk−3(Ij). We will use different projections according to the need

in each proof. For all these projections, the following inequality holds [4]:

‖ue‖+ h‖ue‖∞ + h
1
2‖ue‖Γh

≤ Chk+1‖u‖k+1, (2.6)

where ue = π±h u − u, πh = Ph, P1h, P2h, and Γh denotes the set of boundary points of

all elements Ij, and C is a positive constant dependent on k but not on h.
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3 The fourth order problem

We start from the fourth order problem. Firstly, we consider the following one-

dimensional nonlinear equation

ut + (b(u)uxx)xx = 0, b(u) ≥ 0, (x, t) ∈ [0, 2π]× (0, T ], (3.1)

u(x, 0) = u0(x), x ∈ R, (3.2)

where u0(x) is a smooth function. Without loss of generality, we only consider the

periodic boundary conditions.

3.1 The numerical scheme

Before we introduce our DG method, we rewrite the fourth order equation (3.1) into

a system of second order equations

ut + vxx = 0, (3.3)

v − b(u)w = 0, (3.4)

w − uxx = 0. (3.5)

Notice that, unlike the LDG method, we stop at second order equations and do not

go all the way to a first order system. Our DG method is defined as follows: find

uh, vh, wh ∈ Vh such that for all p, s, q ∈ Vh, we have

((uh)t, p)j + (vh, pxx)j + ṽxp
−|j+ 1

2
− ṽxp+|j− 1

2
− v̂p−x |j+ 1

2
+ v̂p+

x |j− 1
2

= 0, (3.6)

(vh, s)j − (b(uh)wh, s)j = 0, (3.7)

(wh, q)j − (uh, qxx)j − ũxq−|j+ 1
2

+ ũxq
+|j− 1

2
+ ûq−x |j+ 1

2
− ûq+

x |j− 1
2

= 0. (3.8)

Here (u, v)j =

∫
Ij

uvdx and v̂, ṽx, û, ũx are the numerical fluxes. The terms involving

these fluxes appear from repeated integration by parts, and a suitable choice for these

fluxes is the key ingredient for the stability of the DG scheme. We can take either of the

following four choices of alternating fluxes for these four fluxes

v̂ = v−h , ṽx = (vh)−x , û = u+
h , ũx = (uh)+

x ; (3.9)

v̂ = v+
h , ṽx = (vh)+

x , û = u−h , ũx = (uh)−x ; (3.10)
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v̂ = v−h , ṽx = (vh)+
x , û = u−h , ũx = (uh)+

x ; (3.11)

v̂ = v+
h , ṽx = (vh)−x , û = u+

h , ũx = (uh)−x . (3.12)

It is crucial that v̂ and ũx come from the opposite sides, and ṽx and û come from the

opposite sides (alternating fluxes).

Remark 3.1. For the numerical fluxes, we can also take the following numerical fluxes

v̂ = θv−h + (1− θ)v+
h , ṽx = θ(vh)−x + (1− θ)(vh)+

x , (3.13a)

û = θu+
h + (1− θ)u−h , ũx = θ(uh)+

x + (1− θ)(uh)−x , (3.13b)

where 0 ≤ θ ≤ 1. For θ = 1/2, we would have the central fluxes as in [16] for the linear

case. We note that, unlike in the UWDG method [3], here we do not need to add extra

internal penalty terms to ensure stability.

3.2 Stability analysis

In this subsection, we will show the stability property of the scheme (3.6)-(3.8) with

the choice of fluxes (3.9)-(3.13).

Theorem 3.1. Our numerical scheme (3.6)-(3.8) with the choice of fluxes (3.9)-(3.13)

is L2 stable, i.e.

1

2

d

dt

∫
Ω

u2
h(x, t)dx+

∫
Ω

b(uh)w2
h(x, t)dx = 0. (3.14)

Proof. We integrate by parts in the scheme (3.6) and (3.8) and sum over j to obtain

((uh)t, p)Ω − ((vh)x, px)Ω +B1(vh, p) = 0, (3.15)

(vh, s)Ω − (b(uh)wh, s)Ω = 0, (3.16)

(wh, q)Ω + ((uh)x, qx)Ω +B2(uh, q) = 0, (3.17)

where

B1(vh, p) =
N∑
j=1

(
v−h p

−
x |j+ 1

2
− v+

h p
+
x |j− 1

2
+ ṽxp

−|j+ 1
2
− ṽxp+|j− 1

2

−v̂p−x |j+ 1
2

+ v̂p+
x |j− 1

2

)
, (3.18)

B2(uh, q) =
N∑
j=1

(
−u−h q

−
x |j+ 1

2
+ u+

h q
+
x |j− 1

2
− ũxq−|j+ 1

2
+ ũxq

+|j− 1
2
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+ûq−x |j+ 1
2
− ûq+

x |j− 1
2

)
. (3.19)

Then we take p = uh, s = −wh and q = vh and add the three equalities (3.15)-(3.17) to

obtain

1

2

d

dt

∫
Ω

u2
h(x, t)dx+

∫
Ω

b(uh)w2
h(x, t)dx+B1(vh, uh) + B2(uh, vh) = 0. (3.20)

However,

B1(vh, uh) + B2(uh, vh)

=
N∑
j=1

(
v−h (uh)−x − v+

h (uh)+
x + ṽxu

−
h − ṽxu

+
h − v̂(uh)−x + v̂(uh)+

x

−u−h (vh)−x + u+
h (vh)+

x − ũxv−h + ũxv
+
h + û(vh)−x − û(vh)−x

)
|j− 1

2

= 0, (3.21)

for all of our flux choices (3.9)-(3.13). Then we have (3.14).

3.3 Error estimates

In this subsection, we state the error estimates of our scheme in the linear case,

namely b(u) = 1. In this case, (3.7) in the scheme becomes a trivial statement vh = wh.

Theorem 3.2. Let u be the exact solution of equation (3.1) with b(u) = 1, and w = uxx,

which are sufficiently smooth with bounded derivatives. Let uh and wh be solutions of

(3.6), (3.8), with any choice of fluxes (3.9)-(3.12), and let Vh be the space of piecewise

polynomials Pk, k ≥ 1, then we have the following error estimate:

‖u(t)− uh(t)‖+

∫ t

0

‖w(t)− wh(t)‖dt ≤ Chk+1, (3.22)

where C is a constant independent of h and dependent on ‖u‖k+3, and on t.

Proof. Without loss of generality, we choose the flux (3.9). Let

eu = u− uh, ew = w − wh

be the errors between the numerical and exact solutions. Since u and w clearly satisfy

the scheme (3.6) and (3.8) as well, we can obtain the cell error equations: for all p, q ∈ Vh

((eu)t, p)j + (ew, pxx)j + (ew)−x p
−|j+ 1

2
− (ew)−x p

+|j− 1
2
− e−wp−x |j+ 1

2
+ e−wp

+
x |j− 1

2
= 0,

(3.23)
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(ew, q)j − (eu, qxx)j − (eu)+
x q
−|j+ 1

2
+ (eu)+

x q
+|j− 1

2
+ e+

u q
−
x |j+ 1

2
− e+

u q
+
x |j− 1

2
= 0. (3.24)

Since k ≥ 1, we can choose a projection P±1h defined in (2.2) and (2.3). Denote

ηu = u− P+
1hu, ξu = uh − P+

1hu, ηw = w − P−1hw, ξw = wh − P−1hw,

and take p = ξw and q = ξu in (3.23) and (3.24) respectively. By the stability and

property of projection P±1h we have

((ξu)t, ξu)Ω + (ξw, ξw)Ω = ((ηu)t, ξu)Ω + (ηw, ξw)Ω. (3.25)

Then

d

dt
‖ξu‖2 + ‖ξw‖2 ≤ Chk+1‖ξu‖+ Chk+1‖ξw‖.

Next we use Gronwall’s inequality and choose uh(0) = P+
1hu(0) to obtain

‖ξu‖(t) +

∫ t

0

‖ξw‖dt ≤ Chk+1,

and

‖eu‖(t) +

∫ t

0

‖ew‖dt ≤ ‖ξu‖(t) +

∫ t

0

‖ξw‖dt+ ‖ηu‖(t) +

∫ t

0

‖ηw‖dt ≤ Chk+1,

where C is a constant independent of h and dependent on ‖u‖k+3, ‖ut‖k+1, k and t.

4 The fifth order problem

Next we study the DG method for the following one-dimensional nonlinear fifth order

equation

ut + f(uxx)xxx = 0, (x, t) ∈ [0, 2π]× (0, T ], (4.1)

u(x, 0) = u0(x), x ∈ R, (4.2)

with periodic boundary conditions, where u0(x) is a smooth function.

4.1 The numerical scheme

Similar to the fourth order problem (3.1), we rewrite (4.1) into a system:

ut + wxx = 0, (4.3)
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w − f(v)x = 0, (4.4)

v − uxx = 0. (4.5)

Then our DG method is defined as follows: find uh, wh, vh ∈ Vh such that for all

p, s, q ∈ Vh, we have

((uh)t, p)j + (wh, pxx)j + w̃xp
−|j+ 1

2
− w̃xp

+|j− 1
2
− ŵp−x |j+ 1

2
+ ŵp+

x |j− 1
2

= 0, (4.6)

(wh, s)j + (f(vh), sx)j − f̂ s−|j+ 1
2

+ f̂ s+|j− 1
2

= 0, (4.7)

(vh, q)j − (uh, qxx)j − ũxq−|j+ 1
2

+ ũxq
+|j− 1

2
+ ûq−x |j+ 1

2
− ûq+

x |j− 1
2

= 0. (4.8)

Here ŵ, w̃x, f̂ , û, ũx are numerical fluxes. We can take either of the following two choices

for these five fluxes

ŵ = w−h , w̃x = (wh)−x , f̂ = f̂(v−h , v
+
h ), û = u+

h , ũx = (uh)+
x , (4.9)

or

ŵ = w+
h , w̃x = (wh)+

x , f̂ = f̂(v−h , v
+
h ), û = u−h , ũx = (uh)−x , (4.10)

where f̂(v−, v+) is a monotone flux for f(v). Here monotone flux means that the function

f̂ is a non-decreasing function of its first argument and a non-increasing function of its

second argument. It is also assumed to be at least Lipschitz continuous with respect

to each argument and to be consistent with the physical flux f(v) in the sense that

f̂(v, v) = f(v).

Remark 4.1. It is crucial that ŵ and ũx come from the opposite sides, w̃x and û come

from the opposite sides. We have at least four choices of these alternating fluxes or simi-

lar fluxes in (3.13), as in fourth order case. But here we just give the rule of alternating,

and list part of them for simplicity.

4.2 Stability analysis

In this subsection, we will show the stability property of the scheme (4.6)-(4.8) with

the choice of fluxes (4.9) or (4.10).

Theorem 4.1. Our scheme (4.6), (4.7) and (4.8) with the choice of fluxes (4.9) or

(4.10) is stable, i.e

1

2

d

dt

∫
Ω

u2
h(x, t)dx ≤ 0. (4.11)
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Proof. Integrate by parts in the scheme (4.6), (4.8) and sum over j, we obtain

((uh)t, p)Ω − ((wh)x, px)Ω +B1(wh, p) = 0, (4.12)

(wh, s)Ω + (f(vh), sx)Ω +B3(f, s) = 0, (4.13)

(vh, q)Ω + ((uh)x, qx)Ω +B2(uh, q) = 0, (4.14)

where B1 and B2 have been defined before in (3.18) and (3.19), and

B3(f, s) =
N∑
j=1

(
−f̂ s−|j+ 1

2
+ f̂ s+|j− 1

2

)
. (4.15)

Then we take p = uh, s = −vh and q = wh and add the three equations to obtain

1

2

d

dt

∫
Ω

u2
h(x, t)dx− (f(vh), (vh)x)Ω +B1(wh, uh) + B3(f,−vh) + B2(uh, wh) = 0.

(4.16)

By (3.21), we have B1(wh, uh) + B2(uh, wh) = 0, then

1

2

d

dt

∫
Ω

u2
h(x, t)dx+

N∑
j=1

(Ĝj+ 1
2
− Ĝj− 1

2
+ Θj− 1

2
) = 0, (4.17)

where

Ĝj+ 1
2

= (−F (v−h ) + f̂v−h )
∣∣∣
j+ 1

2

, F (vh) =

∫ vh

f(τ)dτ, (4.18)

Θj− 1
2

= (F (v+
h )− F (v−h ) + f̂v−h − f̂v

+
h )
∣∣∣
j− 1

2

, (4.19)

for both of our flux choices (4.9) and (4.10). By the monotonicity of the fluxes f̂ and

periodic boundary condition we obtain

Θj− 1
2
≥ 0. (4.20)

Then we have (4.11).

Remark 4.2. We can also choose the central flux for nonlinear term f(v)

f̂j− 1
2

=
F (v+

h )− F (v−h )

v+
h − v

−
h

∣∣∣
j− 1

2

,

then our scheme will be conservative, that means Θj− 1
2

= 0 in (4.20) and

d

dt

∫
Ω

u2
h(x, t)dx = 0.
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4.3 Error estimates

In this subsection we consider the linear case, f(v) = v. Then we have the following

optimal error estimate:

Theorem 4.2. Let u be the exact solution of equation (4.1) with f(v) = v, and w = uxxx,

v = uxx, which are sufficiently smooth with bounded derivatives. Let uh, vh, wh be the

numerical solutions obtained from the scheme (4.6)-(4.8) with the choice of fluxes (4.9)

or (4.10) and f̂(v) = v−. If we use the Vh space with piecewise polynomials Pk, k ≥ 1,

then we have the following error estimate:

‖u(t)− uh(t)‖+ ‖v(t)− vh(t)‖+ ‖w(t)− wh(t)‖ ≤ Chk+1, (4.21)

where C is a constant independent of h and dependent on ‖u‖k+4, ‖ut‖k+1, k and t.

To prove Theorem 4.2 we need some lemmas, addressing the relationship between the

derivative and the element interface jump of the numerical solution and the auxiliary

variable numerical solution of the derivative. This plays an important role in the error

estimates analysis. Firstly, we have Lemma 4.1, which was proved in [22] for the LDG

method and extended to the multi-dimensional case in [23].

Lemma 4.1. [22] Suppose (wh, vh) ∈ Vh × Vh is the solution of the scheme (4.7) with

f(v) = v, then there exists a positive constant C which is independent of h, such that

∀j ∈ ZN

‖(vh)x‖Ij + h−
1
2 |[[vh]]|j− 1

2
≤ C‖wh‖Ij . (4.22)

Next, we establish similar results for wh in the equation (4.6) as in [22].

Lemma 4.2. Suppose (uh, wh) ∈ Vh × Vh is the solution of the scheme (4.6), then there

exists a positive constant C which is independent of h, such that ∀j ∈ ZN

‖(wh)xx‖Ij + h−
1
2 |[[(wh)x]]|j+ 1

2
+ h−

3
2 |[[wh]]|j+ 1

2
≤ C‖(uh)t‖Ij . (4.23)

Proof. Without loss of generality, we choose the flux (4.10)

ŵ = w+
h , w̃x = (wh)+

x , f̂ = v−, û = u−h , ũx = (uh)−x .

Recalling the equation (4.6), after integration by parts we have

((uh)t, p)j + ((wh)xx, p)j − [[wh]]j+ 1
2
(px)−

j+ 1
2

+ [[(wh)x]]j+ 1
2
p−
j+ 1

2

= 0. (4.24)

12



Let Lk be the standard Legendre polynomial of degree k in [−1, 1], we have Lk(1) = 1

and Lk is orthogonal to any polynomials with degree at most k − 1. First we take

p(x)|Ij = (wh)xx(x) + ALk(ξ) + BLk−1(ξ),

in (4.6), with ξ =
2(x− xj)

hj

A = −
hj(wh)xxx(x−

j+ 1
2

)

2k
+
L
′

k−1(1)(wh)xx(x−
j+ 1

2

)

k
,

and

B =
hj(wh)xxx(x−

j+ 1
2

)

2k
−
L
′

k−1(1)(wh)xx(x−
j+ 1

2

)

k
− (wh)xx(x−

j+ 1
2

),

p(x) ∈ Vh and is well defined since k ≥ 1 in our function space. Clearly, there hold

p(x−
j+ 1

2

) = 0, px(x−
j+ 1

2

) = 0, and ((wh)xx, p)j = ((wh)xx, (wh)xx)j. By (4.24) we have

((uh)t, p)j + ((wh)xx, (wh)xx)j = 0.

Thus

‖(wh)xx‖2
j ≤ ‖(uh)t‖j (‖(wh)xx‖j + |A|‖Lk(ξ)‖j + |B|‖Lk−1(ξ)‖j)

≤ C‖(uh)t‖j‖(wh)xx‖j,

where the first inequality is obtained by using the Cauchy-Schwartz inequality and the

second is derived by using the inverse inequality and the fact ‖Lk(ξ)‖j ≤ Ch
1
2 . Therefore,

‖(wh)xx‖j ≤ C‖(uh)t‖j. (4.25)

Next we take p = 1 in (4.24) to obtain

((uh)t, 1)j + ((wh)xx, 1)j + [[(wh)x]]j+ 1
2

= 0,

then, by (4.25) and the Cauchy-Schwartz inequality we get

|[[(wh)x]]j+ 1
2
| ≤ h

1
2 (‖(uh)t‖j + ‖(wh)xx‖j) ≤ Ch

1
2‖(uh)t‖j. (4.26)

Our next choice of the test function is p = ξ in (4.24), which gives

((uh)t, ξ)j + ((wh)xx, ξ)j −
2

hj
[[wh]]j+ 1

2
+ [[(wh)x]]j+ 1

2
= 0.

By (4.25), (4.26) and the Cauchy-Schwartz inequality we get

|[[wh]]j+ 1
2
| ≤ Ch

3
2 (‖(uh)t‖j + ‖(wh)xx‖j) ≤ Ch

3
2‖(uh)t‖j. (4.27)

Finally, we get the desired result (4.23).
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Based on the relationship constructed in the Lemma 4.1 and Lemma 4.2, we can

easily use the discrete Poincaré inequalities [1, 2] to estimate wh and vh.

Lemma 4.3. Let (uh, vh, wh) ∈ Vh be the solutions of the scheme (4.6)-(4.8), then there

exists a positive constant C which are independent of h, such that

‖(wh)x‖ ≤ C‖(uh)t‖, (4.28)

‖wh‖ ≤ C‖(uh)t‖, (4.29)

‖vh‖ ≤ C‖wh‖. (4.30)

With all these preparations, we can start the proof of Theorem 4.2.

Proof. (The proof of Theorem 4.2)

Without loss of generality, we choose the flux (4.10). Let

eu = u− uh, ev = v − vh, ew = w − wh

be the errors between the numerical and exact solutions. Since u, v and w clearly satisfy

(4.6)-(4.8) we can obtain the cell error equations: for all p, s, q ∈ Vh

((eu)t, p)j + (ew, pxx)j + (ew)+
x p
−|j+ 1

2
− (ew)+

x p
+|j− 1

2
− e+

wp
−
x |j+ 1

2
+ e+

wp
+
x |j− 1

2
= 0,

(4.31)

(ew, s)j + (ev, sx)j − e−v s−|j+ 1
2

+ e−v s
+|j− 1

2
= 0, (4.32)

(ev, q)j − (eu, qxx)j − (eu)−x q
−|j+ 1

2
+ (eu)−x q

+|j− 1
2

+ e−u q
−
x |j+ 1

2
− e−u q+

x |j− 1
2

= 0. (4.33)

Since k ≥ 1 we choose the projections P±1h, and P−h , which are defined in (2.1)-(2.3).

Denote

ηu = u− P−1hu, ξu = uh − P−1hu,

ηw = w − P+
1hw, ξw = wh − P+

1hw,

ηv = v − P−h v, ξv = vh − P−h v.

Furthermore by the error equations (4.31)-(4.33) and Lemma 4.1, Lemma 4.2 and Lemma

4.3 we have

‖ξw‖ ≤ C‖(eu)t‖ ≤ C‖(ξu)t‖+ Chk+1, (4.34)

‖ξv‖ ≤ C‖ew‖ ≤ C‖ξw‖+ Chk+1. (4.35)

• Error estimates for the initial condition.
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We choose the initial condition uh(x, 0) such that

wh(x, 0) = P+
1hw(x, 0), w(x, 0) = uxxx(x, 0). (4.36)

Then we have

‖w(x, 0)− wh(x, 0)‖ ≤ Chk+1.

By (4.34) and (4.35) we get

‖ξv‖ ≤ ‖ξw‖+ Chk+1 ≤ Chk+1,

‖ξu‖ ≤ ‖ξv‖+ Chk+1 ≤ Chk+1,

and we have the following estimates:

‖u(x, 0)− uh(x, 0)‖+ ‖v(x, 0)− vh(x, 0)‖+ ‖w(x, 0)− wh(x, 0)‖ ≤ Chk+1. (4.37)

Next we choose t = 0 in (4.31), due to the choice of wh(x, 0) we have

(ut(0)− (uh)t(0), p)j = 0.

Now, we choose p = (uh)t(0)− P (ut(0)), P is the standard L2 projection, and obtain

‖ut(x, 0)− (uh)t(0)‖ ≤ Chk+1. (4.38)

• Error estimates for t > 0.

Then we take p = ξu, s = −ξv and q = ξw, and add the three equations (4.31)-(4.33)

and also sum over j. By the stability and the properties of the projections we can obtain

((ξu)t, ξu)Ω +
N∑
j=1

[[ξv]]
2
j− 1

2
= ((ηu)t, ξu)Ω − (ηw, ξv)Ω + (ηv, ξw)Ω.

Next, we take the time derivative of the three error equations (4.31)-(4.33), and take

p = (ξu)t, s = −(ξv)t and q = (ξw)t to obtain

((ξu)tt, (ξu)t)Ω +
N∑
j=1

[[(ξv)t]]
2
j− 1

2
= ((ηu)tt, (ξu)t)Ω − ((ηw)t, (ξv)t)Ω + ((ηv)t, (ξw)t)Ω.

Now, combining the energy equations we get

1

2

d

dt
(‖ξu‖2 + ‖(ξu)t‖2) +

N∑
j=1

([[ξv]]
2
j− 1

2
+ [[(ξv)t]]

2
j− 1

2
) = Υ + Λ, (4.39)
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where

Υ = ((ηu)t, ξu)Ω − (ηw, ξv)Ω + (ηv, ξw)Ω + ((ηu)tt, (ξu)t)Ω,

Λ = −((ηw)t, (ξv)t)Ω + ((ηv)t, (ξw)t)Ω.

By (4.34), (4.35) we have the estimate

‖ξv‖ ≤ C‖ξw‖+ Chk+1, ‖ξw‖ ≤ C‖(ξu)t‖+ Chk+1,

then we can easily get

Υ ≤ Chk+1‖ξu‖+ Chk+1‖(ξu)t‖+ Ch2k+2.

Next, integrating Λ with respect to time between 0 and t, we can get the following

equation after integration by parts:∫ t

0

Λdt = −((ηw)t, ξv)Ω|t0 +

∫ t

0

((ηw)tt, ξv)Ωdt+ ((ηv)t, ξw)Ω|t0 −
∫ t

0

((ηv)tt, ξw)Ωdt.

We can easily get the following estimates using the approximation property of the pro-

jections and the estimates for the initial condition∣∣∣∣∫ t

0

Λdt

∣∣∣∣ ≤ Ch2k+2 + ‖ξv‖2 + ‖ξw‖2 +

∫ t

0

(‖ξv‖2 + ‖ξw‖2)dt

≤ Ch2k+2 + Chk+1

∫ t

0

‖(ξu)t‖dt.

Now we integrate (4.39) with respect to the time between 0 to t, using the Cauchy-

Schwartz inequality and (4.37), (4.38) to obtain

1

2
(‖ξu‖2 + ‖(ξu)t‖2) ≤ 1

4

∫ t

0

‖ξu‖2 + ‖(ξu)t‖2dt+ Ch2k+2.

After employing the Gronwall’s inequality, we get

max
t
‖ξu‖+ max

t
‖(ξu)t‖ ≤ Chk+1,

and also

max
t
‖ξw‖+ max

t
‖ξv‖ ≤ Chk+1.

After using the standard approximation results, we can get (4.21).
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5 Extension to high order equations

The DG method introduced in the previous sections as well as the theoretical analysis

for the stability and error estimates can be extended to more general high order PDEs,

and to multidimensional cases. Firstly, we consider the extension to the general high

order equations,

ut + (−1)[n
2

]unx = 0, (5.1)

with n being any positive integer. Here unx denotes the n-th derivative of u with respect

to x, and [n
2
] is the integer part of n

2
.

In the first two subsections, we will give two specific examples to introduce our scheme

to sixth and seventh order equations. Then we will summarize to the general case.

5.1 Extension to sixth order equations

In this subsection, we will consider the sixth order equation:

ut − u(6)
x = 0, (x, t) ∈ [0, 2π]× (0, T ], (5.2)

u(x, 0) = u0(x), x ∈ R, (5.3)

where u0(x) is a smooth function, as an example of even order diffusive equations. For

simplicity of discussion, we will again only consider the periodic boundary conditions.

Firstly, we rewrite the sixth order equation into a system of third order equations

ut − wxxx = 0, (5.4)

w − uxxx = 0. (5.5)

Then our DG method is defined as follows: find uh, wh ∈ Vh such that for all p, q ∈ Vh,

we have

((uh)t, p)j + (wh, pxxx)j − w̃xxp
−|j+ 1

2
+ w̃xxp

+|j− 1
2

+ w̃xp
−
x |j+ 1

2
− w̃xp

+
x |j− 1

2

− w̃p−xx|j+ 1
2

+ w̃p+
xx|j− 1

2
= 0, (5.6)

(wh, q)j + (uh, qxxx)j − ũxxq−|j+ 1
2

+ ũxxq
+|j− 1

2
+ ũxq

−
x |j+ 1

2
− ũxq+

x |j− 1
2

− ûq−xx|j+ 1
2

+ ûq+
xx|j− 1

2
= 0. (5.7)

Here w̃, w̃x, w̃xx, ũx, ũx, and ũxx are the numerical fluxes. The terms involving these

numerical fluxes appear from repeated integration by parts. We can take either of the
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following two choices for these six fluxes

w̃=w−h , w̃x =(wh)−x , w̃xx =(wh)−xx, û=u+
h , ûx =(uh)+

x , ûxx =(uh)+
xx, (5.8)

or

w̃=w+
h , w̃x =(wh)+

x , w̃xx =(wh)+
xx, û=u−h , ûx =(uh)−x , ûxx =(uh)−xx. (5.9)

It is crucial that we take the pair û and w̃xx from opposite sides, the pair ûx and w̃x

from opposite sides, and the pair ûxx and w̃ from opposite sides.

Theorem 5.1. (Stability) Our scheme (5.6)-(5.7) with the choice of fluxes (5.8) or

(5.9) is L2 stable, i.e.

1

2

d

dt

∫
Ω

u2
h(x, t)dx+

∫
Ω

w2
h(x, t)dx = 0. (5.10)

Proof. Integrating by parts in the scheme (5.6)-(5.7) and summing over j, we have

((uh)t, p)Ω − ((wh)xxx, p)Ω +B4(wh, p) = 0, (5.11)

(wh, q)Ω + (uh, qxxx)Ω +B5(uh, q) = 0, (5.12)

where

B4(wh, p) =
N∑
j=1

(
w−h p

−
xx|j+ 1

2
− w+

h p
+
xx|j− 1

2
− (wh)−x p

−
x |j+ 1

2
+ (wh)+

x p
+
x |j− 1

2

+(wh)−xxp
−|j+ 1

2
− (wh)+

xxp
+|j− 1

2
− w̃xxp

−|j+ 1
2

+ w̃xxp
+|j− 1

2

+w̃xp
−
x |j+ 1

2
− w̃xp

+
x |j− 1

2
− w̃p−xx|j+ 1

2
+ w̃p+

xx|j− 1
2

)
, (5.13)

B5(uh, q) =
N∑
j=1

(
−ûxxq−|j+ 1

2
+ ûxxq

+|j− 1
2

+ ûxq
−
x |j+ 1

2
− ûxq+

x |j− 1
2

−ûq−xx|j+ 1
2

+ ûq+
xx|j− 1

2

)
. (5.14)

Then we take p = uh and q = wh and add the two equations (5.11)-(5.12) to obtain

1

2

d

dt

∫
Ω

u2
h(x, t)dx+

∫
Ω

w2
h(x, t)dx+B4(wh, uh) + B5(uh, wh) = 0. (5.15)

We can easily check that

B4(wh, uh) + B5(uh, wh) = 0,

for both of our flux choices (5.8) and (5.9). Then we have (5.10).
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Theorem 5.2. (Error estimates) Let u be the exact solution of the equation (5.2)

and w = uxxx, which are sufficiently smooth with bounded derivatives. Let uh and wh

be solutions of the scheme (5.6)-(5.7) with either (5.8) or (5.9) as the numerical fluxes,

and let Vh be the space of piecewise polynomials Pk, k ≥ 2, then we have the following

error estimate

‖u(t)− uh(t)‖+

∫ t

0

‖w(t)− wh(t)‖dt ≤ Chk+1, (5.16)

where C is a constant independent of h and dependent on ‖u‖k+4, and t.

Proof. The proof is similar to that of Theorem 3.2. By using the projection P±2h defined

in (2.4)-(2.5) for k ≥ 2 and then following the line of proof for Theorem 3.2, we can

easily get the result (5.16).

5.2 Extension to seventh order equations

In this subsection, we will give the formulation of the scheme as well as its theoretical

results for the seventh order wave equation

ut − u(7)
x = 0, (x, t) ∈ [0, 2π]× (0, T ], (5.17)

u(x, 0) = u0(x), x ∈ R, (5.18)

where u0(x) is a smooth function, as an example of general odd order wave equations.

As mentioned before, we only consider the periodic boundary conditions. Similar to the

sixth order equation, firstly, we rewrite (5.17) into a system:

ut − wxxx = 0, (5.19)

w − vx = 0, (5.20)

v − uxxx = 0. (5.21)

Then our DG method defined as follows: find uh, vh, wh ∈ Vh such that for all p, s, q ∈
Vh, we have

((uh)t, p)j + (wh, pxxx)j − w̃xxp
−|j+ 1

2
+ w̃xxp

+|j− 1
2

+ w̃xp
−
x |j+ 1

2
− w̃xp

+
x |j− 1

2

− w̃p−xx|j+ 1
2

+ w̃p+
xx|j− 1

2
= 0, (5.22)

(wh, s)j + (vh, sx)j − v̂s−|j+ 1
2

+ v̂s+|j− 1
2

= 0, (5.23)

(vh, q)j + (uh, qxxx)j − ûxxq−|j+ 1
2

+ ûxxq
+|j− 1

2
+ ûxq

−
x |j+ 1

2
− ûxq+

x |j− 1
2

− ûq−xx|j+ 1
2

+ ûq+
xx|j− 1

2
= 0. (5.24)
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Here w̃, w̃x, w̃xx, v̂, û, ûx, ûxx are numerical fluxes. For example, we can take either of

the following two choices for these fluxes

w̃=w−h , w̃x =(wh)−x , w̃xx =(wh)−xx, v̂=v−h , û=u+
h , ûx =(uh)+

x , ûxx =(uh)+
xx, (5.25)

or

w̃=w+
h , w̃x =(wh)+

x , w̃xx =(wh)+
xx, v̂=v−h , û=u−h , ûx =(uh)−x , ûxx =(uh)−xx. (5.26)

It is crucial that we take v̂ = v−h by upwinding, the pair û and w̃xx from opposite sides,

the pair ûx and w̃x from opposite sides, and the pair ûxx and w̃ from opposite sides.

Theorem 5.3. (Stability) Our scheme (5.22)-(5.24) with the choice of fluxes (5.25)

or (5.26) is stable, i.e.

1

2

d

dt

∫
Ω

u2
h(x, t)dx ≤ 0. (5.27)

Proof. Integrating by parts in the scheme (5.22)-(5.24) and summing over j, we have

((uh)t, p)Ω − ((wh)xxx, p)Ω +B4(wh, p) = 0, (5.28)

(wh, s)Ω + (vh, sx)Ω +B3(vh, s) = 0, (5.29)

(vh, q)Ω + (uh, qxxx)Ω +B5(uh, q) = 0, (5.30)

where B3, B4 and B5 are defined in (4.15), (5.13) and (5.14), respectively. Then we take

p = uh, s = −vh and q = wh in (5.28), (5.29) and (5.30) respectively, add the three

equations to obtain

1

2

d

dt

∫
Ω

u2
h(x, t)dx+

1

2

N∑
j=1

([[vh]])2
j− 1

2
= 0, (5.31)

for both of our flux choices (5.25) and (5.26). Then we have (5.27).

Theorem 5.4. (Error estimates) Let u be the exact solution of the equation (5.17),

and w = uxxxx, v = uxxx, which are sufficiently smooth with bounded derivatives. Let

uh, vh, wh be the numerical solutions of (5.22)-(5.24). If we use Vh as the space with

piecewise polynomials Pk, k ≥ 2, then we have the following error estimate:

‖u(t)− uh(t)‖+ ‖v(t)− vh(t)‖+ ‖w(t)− wh(t)‖ ≤ Chk+1, (5.32)

where C is a constant independent of h and dependent on ‖u‖k+5, ‖ut‖k+1, k and t.

Proof. The proof is similar to that of Theorem 4.2 and is thus omitted to save space.
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5.3 Extension to general high order cases

We have introduced the numerical schemes for sixth and seventh order cases. More

generally, we summarize the scheme for any high order case. The proof of stability and

error estimate is similar to the sixth and seventh equations, therefore we just list the

results and omit the proof. Again, we only consider the periodic boundary conditions.

5.3.1 General even order case

Let n be a positive even number, and consider the equation

ut + (−1)
n
2 unx = 0. (5.33)

Firstly, we rewrite it into a n
2
-th order system,

ut + (−1)
n
2w

n
2
x = 0, (5.34)

w − u
n
2
x = 0. (5.35)

Then our DG method is defined as follows: find uh, wh ∈ Vh such that for all p, q ∈ Vh,

we have

((uh)t, p)j + (wh, p
n
2
x )j +

n
2
−1∑

m=0

(
(−1)

n
2

+m
(
w̃x

n
2
−1−m(pmx )−|j+ 1

2
− w̃x

n
2
−1−m(pmx )+|j− 1

2

))
= 0,

(5.36)

(wh, q)j − (−1)
n
2 (uh, q

n
2
x )j +

n
2
−1∑

m=0

(
(−1)m+1

(
ûx

n
2
−1−m(qmx )−|j+ 1

2
− ûx

n
2
−1−m(qmx )+|j− 1

2

))
= 0.

(5.37)

Remark 5.1. We choose alternating fluxes. It is crucial that we take w̃x

n
2
−1−m and ûx

m

from opposite sides, m = 0, 1, · · · , n
2
− 1.

Theorem 5.5. (Stability) Our scheme (5.36)-(5.37) with the choice of alternating

fluxes in Remark 5.1 is L2 stable, i.e.

1

2

d

dt

∫
Ω

u2
h(x, t)dx+

∫
Ω

w2
h(x, t)dx = 0. (5.38)

Theorem 5.6. (Error estimates) Let u be the exact solution of the equation (5.33),

and w = u
n
2
x , which are sufficiently smooth with bounded derivatives. Let uh, wh be the

numerical solutions of (5.36)-(5.37) with alternating fluxes in Remark 5.1. If we use Vh
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as the space with piecewise polynomials Pk, k ≥ n
2
− 1, then we have the following error

estimate:

‖u(t)− uh(t)‖+

∫ t

0

‖w(t)− wh(t)‖dt ≤ Chk+1, (5.39)

where C is a constant independent of h.

5.3.2 General odd order case

Let n be an odd number, and n ≥ 3. We consider the following equation:

ut + unx = 0, (5.40)

Firstly, we rewrite it into a (n−1
2

)-th order system,

ut + w
n−1
2

x = 0, (5.41)

w − vx = 0, (5.42)

v − u
n−1
2

x = 0. (5.43)

Then our DG method is defined as follows: find uh, vh, wh ∈ Vh such that for all

p, s, q ∈ Vh, we have

((uh)t, p)j + (−1)
n−1
2 (wh, p

n−1
2

x )j +

n−3
2∑

m=0

(
(−1)m

(
w̃x

n−3
2
−m(pmx )−|j+ 1

2
− w̃x

n−3
2
−m(pmx )+|j− 1

2

))
= 0.

(5.44)

(wh, s)j + (vh, sx)j − v̂s−|j+ 1
2

+ v̂s+|j− 1
2

= 0, (5.45)

(vh, q)j − (−1)
n−1
2 (uh, q

n−1
2

x )j +

n−3
2∑

m=0

(
(−1)m+1

(
ũx

n−3
2
−m(qmx )−|j+ 1

2
− ũx

n−3
2
−m(qmx )+|j− 1

2

))
= 0.

(5.46)

Remark 5.2. It is crucial that we take v̂ by upwinding, the pairs w̃x

n−3
2
−m and ũx

m from

opposite sides, m = 0, 1, · · · , n−3
2

.

Theorem 5.7. (Stability) Our scheme (5.44)-(5.46) with the choice of fluxes in Re-

mark 5.2 is stable, i.e.

1

2

d

dt

∫
Ω

u2
h(x, t)dx ≤ 0. (5.47)
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Theorem 5.8. (Error estimates) Let u be the exact solution of the equation (5.40),

and v = u
n−1
2

x , w = vx, , which are sufficiently smooth with bounded derivatives. Let uh,

vh, wh be the numerical solutions of (5.44)-(5.46) with the choice of fluxes in Remark

5.2. If we use Vh as the space with piecewise polynomials Pk, k ≥ n−3
2

, then we have the

following error estimate:

‖u(t)− uh(t)‖+ ‖v(t)− vh(t)‖+ ‖w(t)− wh(t)‖ ≤ Chk+1, (5.48)

where C is a constant independent of h.

6 Extension to the fourth order equation in multi-

dimensional Cartesian meshes

In this section, we will extend our DG scheme to multi-dimensional Cartesian meshes

for fourth-order equation, as an example of multi-dimensional extension of our schemes.

Without loss of generality, we describe our DG method and prove a priori optimal error

estimates in two dimensions (d = 2), however all the arguments we present in our analysis

depend on the tensor product structure of the meshes and can be easily extended to

higher dimensions (d > 2).

Hence, from now on, we shall restrict ourselves to the following two-dimensional

problem:

ut + ∆2u = 0, (x, t) ∈ Ω× (0, T ], (6.1)

with the periodic boundary condition and initial condition

u(x, 0) = u0(x),

where u0(x) is a smooth function of x = (x, y), Ω ∈ R2 is a bounded rectangular domain.

6.1 The numerical scheme

Firstly, we rewrite the fourth-order equation (6.1) into a system of second-order

equations,

ut + ∆w = 0, (6.2)

w −∆u = 0. (6.3)
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In order to define our DG method for the system (6.2)-(6.3), let us introduce some

notations. Let Ωh denote a tessellation of Ω with shape-regular elements K, and the

union of the boundary face of element K ∈ Ωh, denoted as ∂Ω = ∪
K∈Ωh

∂K. We denote

the diameter of K by hK , and set h = max
K

hK . The finite element spaces with the mesh

Ωh are of the form

Wh = {η ∈ L2(Ω) : η|K ∈ Qk(K), ∀K ∈ Ωh},

where Qk(K) is the space of tensor product of polynomials of degree at most k ≥ 0 on

K ∈ Ωh in each variable defined on K.

Since the approximation space in discontinuous Galerkin methods consists of piece-

wise polynomials, we need to have a way of denoting the value of the approximation on

the “left” and “right” side of an element boundary e. We give the designation KL for

element to the left side of e, and KR for element to the right side of e (We refer to [27]

for a proper definition of “left” and “right” in our context, for rectangular meshes these

are the usual left and bottom directions denoted as “left” and right and top directions

denoted as “right”). The normal vector νL and νR on the edge e point exterior to KL

and KR respectively. Assuming ψ is a function defined on KL and KR, let ψ− denote

(ψ|KL
)|e and ψ+ denote (ψ|KR

)|e, the left and right traces, respectively. The DG method

is defined as following: we seek uh and wh in the finite element space Wh ×Wh, such

that for all p, q ∈ Wh we have

((uh)t, p)K + (wh,∆p)K + 〈∇̃w · n, p〉∂K − 〈w̃,∇p · n〉∂K = 0, (6.4)

(wh, q)K − (uh,∆q)K − 〈∇̂u · n, q〉∂K + 〈û,∇q · n〉∂K = 0. (6.5)

Here n denotes the outward unit vector to ∂K, and

(p, q)K :=

∫
K

p(x, y)q(x, y)dxdy, 〈p,∇q · n〉 =

∫
∂K

p(x, y)(∇q(x, y) · n)ds, (6.6)

for any p, q ∈ H1
Ωh

. To complete the definition of the DG scheme we need to define the

numerical fluxes û, ∇̂u, w̃, ∇̃w. We can choose the alternating fluxes

û = u+
h , ∇̂u = (∇uh)+, w̃ = w−h , ∇̃w = (∇wh)−, (6.7)

or

û = u−h , ∇̂u = (∇uh)−, w̃ = w+
h , ∇̃w = (∇wh)+. (6.8)
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6.2 L2 stability

In this subsection, we will prove the DG method defined in (6.4)-(6.5) for the fourth-

order equation satisfies the following L2 stability.

Theorem 6.1. The solution given by the DG method defined by (6.4)-(6.5) satisfies

1

2

d

dt

∫
Ωh

u2
h(x, t)dx +

∫
Ωh

w2
h(x, t)dx = 0. (6.9)

Proof. We take the test functions p = uh, q = wh in (6.4) and (6.5) respectively, and

integrate by parts to obtain

((uh)t, uh)K + (wh, wh)K +H∂K(uh, wh) = 0,

where

H∂K(p, q) =〈wh,∇uh · n〉∂K + 〈∇̃w · n, p〉∂K − 〈w̃,∇p · n〉∂K − 〈uh,∇wh · n〉∂K
− 〈∇̂u · n, q〉∂K + 〈û,∇q · n〉∂K .

Next we sum over the K. Since

H∂K1∩e(uh, wh) +H∂K2∩e(uh, wh) = 0, (6.10)

with the numerical flux (6.7) or (6.8), here we suppose e is an inter-element face shared

with the elements K1 and K2, we can immediately get the L2-stability result (6.9).

6.3 Error estimates

In this subsection, we obtain a priori error estimates for the approximation (uh, wh)

given by the DG scheme (6.4)-(6.5). The proof of optimal error estimate in the multi-

dimensional case is different from that in the one-dimensional case, in the definition and

analysis of suitable projections. Since the projection terms in the error equations do

not vanish as in the one-dimensional case, we need to obtain certain superconvergence

properties of the projections to deal with these terms.

Theorem 6.2. Let u be the solution of the equation (6.1) with periodic boundary condi-

tion, and w = ∆u. Let uh and wh be the numerical solution of the DG scheme (6.4)-(6.5).

If we use Wh as the space with piecewise polynomials Qk, k ≥ 1. Then for Cartesian

meshes, we have

‖u(t)− uh(t)‖+

∫ t

0

‖w(t)− wh(t)‖dt ≤ Chk+1.

Here C depends on ‖u‖L∞((0,T );W 2k+6,∞), ‖ut‖L∞((0,T );Wk+1,∞), and on t, but is independent

of h.
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6.4 Proof of the error estimates

In this subsection we prove Theorem 6.2 stated in the previous section. To do that,

firstly, we define the special projection in Cartesian meshes, similar to the Gauss-Radau

projections in Cartesian meshes [6, 18, 26].

On a rectangle Ki,j = Ii × Jj, for u ∈ W 1,∞(K), we define

Π±u := P±1hx ⊗ P
±
1hyu, (6.11)

with the subscripts indicating the application of the one-dimensional operators P±1h with

respect to the corresponding variable. To be more specific, we shall list explicitly the for-

mulations for Π−u, on a rectangular element Ki,j = Ii×Jj := (xi− 1
2
, xi+ 1

2
)×(yj− 1

2
, yj+ 1

2
).

We have ∫
Ki,j

Π−u(x, y)vh(x, y)dxdy =

∫
Ki,j

u(x, y)vh(x, y)dxdy, (6.12a)∫
Ii

Π−u(x, y−
j+ 1

2

)vh(x, y−
j+ 1

2

)dx =

∫
Ii

u(x, y−
j+ 1

2

)vh(x, y−
j+ 1

2

)dx, (6.12b)∫
Ii

(Π−u)y(x, y
−
j+ 1

2

)vh(x, y−
j+ 1

2

)dx =

∫
Ii

uy(x, y
−
j+ 1

2

)vh(x, y−
j+ 1

2

)dx, (6.12c)∫
Jj

Π−u(x−
i+ 1

2

, y)vh(x−
i+ 1

2

, y)dy =

∫
Jj

u(x−
i+ 1

2

, y)vh(x−
i+ 1

2

, y)dy, (6.12d)∫
Jj

(Π−u)x(x−
i+ 1

2

, y)vh(x−
i+ 1

2

, y)dy =

∫
Jj

ux(x−
i+ 1

2

, y)vh(x−
i+ 1

2

, y)dy, (6.12e)

Π−u(x−
i+ 1

2

, y−
j+ 1

2

) = u(x−
i+ 1

2

, y−
j+ 1

2

), (6.12f)

(Π−u)x(x−
i+ 1

2

, y−
j+ 1

2

) = ux(x−
i+ 1

2

, y−
j+ 1

2

), (6.12g)

(Π−u)y(x
−
i+ 1

2

, y−
j+ 1

2

) = uy(x
−
i+ 1

2

, y−
j+ 1

2

), (6.12h)

(Π−u)xy(x
−
i+ 1

2

, y−
j+ 1

2

) = uxy(x
−
i+ 1

2

, y−
j+ 1

2

), (6.12i)

for all vh ∈ Qk−2(K) and K ∈ Ωh. Similarly, we can define the projection Π+. Existence

and the optimal approximation property of the projection Π± are established in the

following lemma.

Lemma 6.1. Assume u is sufficiently smooth, then there exists a unique Π−u ∈ Wh,

satisfying (6.12). Moreover, there holds the following approximation property

‖v − Π±v‖L2(K) + h‖v − Π±v‖H1(K) ≤ Chk+1‖u‖Hk+1(K).

Proof. Assume that u ≡ 0, then by (6.12b), (6.12f) and (6.12g) we have

Π−u(x, y−
j+ 1

2

) = 0.
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Furthermore, by (6.12c), (6.12h) and (6.12i) we get

(Π−u)y(x, y
−
j+ 1

2

) = 0.

Similarly, we have Π−u(x−
i+ 1

2

, y) = 0, and (Π−u)x(x−
i+ 1

2

, y) = 0, then we obtain

Π−u = (x− x−
i+ 1

2

)2(y − y−
j+ 1

2

)2Q(x, y), Q(x, y) ∈ Qk−2.

Finally, we take vh = Q(x, y) in (6.12a) to get Q(x, y) ≡ 0, therefore Π−u ≡ 0, and we

have finished the proof of the uniqueness and also existence. Since the one-dimensional

operators P±1h satisfy ‖P±1hu‖L∞(Ij) ≤ C‖u‖L∞(Ij), similarly in the two-dimensional case we

also have ‖Π±u‖L∞(Ki,j) ≤ C‖u‖L∞(Ki,j), here C is a constant independent of h. Again,

standard approximation theory implies the optimal approximating estimates.

To prove Theorem 6.2, firstly we need to write the error equations. Let

eu = u− uh = ηu − ξu, ew = w − wh = ηw − ξw

with

ηu = u− Π+u, ηw = w − Π−w, ξu = uh − Π+u, ξw = wh − Π−w,

then

((ξu)t, p)K +B1
K(ξw, p) =((ηu)t, p)K +B1

K(ηw, p), (6.13)

(ξw, q)K − B2
K(ξu, q) =(ηw, q)K − B2

K(ηu, q)K , (6.14)

where

B1
K(w, p) = (w,∆p)K − 〈w−, (∇p · n)〉∂K + 〈(∇w− · n), p〉∂K , (6.15)

B2
K(u, q) = (u,∆q)K − 〈u+, (∇q · n)〉∂K + 〈(∇u+ · n), q〉∂K . (6.16)

Besides the standard approximation results, we will also prove superconvergence re-

sults for the projections Π± in Lemma 6.2 and 6.3. The proof is using similar strategies

and skills in [6].

Lemma 6.2. Let B1
K(ηw, p) and B2

K(ηu, q) be defined by (6.15) and (6.16). Then we

have for k ≥ 1,

B1
K(ηw, p) = 0, B2

K(ηu, q) = 0, ∀u,w ∈ Pk+2(K), p, q ∈ Qk(K). (6.17)
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Proof. The proof of the results for B1
K and B2

K are analogous; therefore we just prove the

one for B2
K(ηu, q). Let us consider the rectangular element Kij = Ii×Jj = (xi− 1

2
, xi+ 1

2
)×

(yj− 1
2
, yj+ 1

2
). By the definition of B2

K(ηu, q) we have

B2
K(ηu, q) =

∫
Ki,j

(u− Π+u)(qxx + qyy)dxdy

−
∫ y

j+1
2

y
j− 1

2

(u− Π+u)(x+
i+ 1

2

, y)qx(x−
i+ 1

2

, y)− (u− Π+u)(x+
i− 1

2

, y)qx(x+
i− 1

2

, y)dy

−
∫ x

i+1
2

x
i− 1

2

(u− Π+u)(x, y+
j+ 1

2

)qy(x, y
−
j+ 1

2

)− (u− Π+u)(x, y+
j− 1

2

)qy(x, y
+
j− 1

2

)dx

+

∫ y
j+1

2

y
j− 1

2

(u− Π+u)x(x+
i+ 1

2

, y)q(x−
i+ 1

2

, y)− (u− Π+u)x(x+
i− 1

2

, y)q(x+
i− 1

2

, y)dy

+

∫ x
i+1

2

x
i− 1

2

(u− Π+u)y(x, y
+
j+ 1

2

)q(x, y−
j+ 1

2

)− (u− Π+u)y(x, y
+
j− 1

2

)q(x, y+
j− 1

2

)dx.

Since Π+ is polynomial preserving operator, (6.17) holds true for every u ∈ Qk(K).

Therefore, we have to consider the cases u(x, y) = xk+1, yk+1, xk+2, yk+2, xk+1y, yk+1x.

Let us start with u(x, y) = xk+1. We have (u − Π+u)y(x, y) = 0, by (6.12f) and

(6.12g), u(x+
i+ 1

2

, y) = Π+u(x+
i+ 1

2

, y), ux(x+
i+ 1

2

, y) = (Π+u)x(x+
i+ 1

2

, y). Then∫ y
j+1

2

y
j− 1

2

(u− Π+u)(x+
i+ 1

2

, y)qx(x+
i+ 1

2

, y)− (u− Π+u)(x+
i− 1

2

, y)qx(x+
i− 1

2

, y)dy = 0,∫ y
j+1

2

y
j− 1

2

(u− Π+u)x(x+
i+ 1

2

, y)q(x+
i+ 1

2

, y)− (u− Π+u)x(x+
i− 1

2

, y)q(x+
i− 1

2

, y)dy = 0,

and
∫
Kij

(u− Π+u)qxxdxdy = 0. Next we integrate by parts∫
Ki,j

(u− Π+u)qyydxdy

=

∫ x
i+1

2

x
i− 1

2

(u− Π+u)(x, y−
j+ 1

2

)qy(x, y
−
j+ 1

2

)− (u− Π+u)(x, y+
j− 1

2

)qy(x, y
+
j− 1

2

)dx.

Therefore, sum all the parts in the definition of B2
K(ηu, q), we have

B2
K(ηu, q) = 0.

Next, we consider the case u(x, y) = xk+1y, in this case Π+u = P+
1hx(xk+1)y, and∫

Kij

(u− Π+u)qxxdxdy =

∫
Kij

y(xk+1 − P+
1hx(xk+1))qxxdxdy = 0,
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and ∫
Ki,j

(u− Π+u)qyydxdy

=

∫ x
i+1

2

x
i− 1

2

yj+ 1
2
(xk+1 − P+

1hx(xk+1))qy(x, y
−
j+ 1

2

)− y+
j− 1

2

(xk+1 − P+
1hx(xk+1))qy(x, y

+
j− 1

2

)dx

−
∫ x

i+1
2

x
i− 1

2

(xk+1 − P+
1hx(xk+1))q(x, y−

j+ 1
2

)− (xk+1 − P+
1hx(xk+1))q(x, y+

j− 1
2

)dx.

Then summing all the parts in the definition of B2
K(ηu, q), we have

B2
K(ηu, q) = 0.

The proof of the cases u(x, y) = yk+1, xk+2, yk+2 and u(x, y) = yk+1x are analogous. This

completes the proof of (6.17).

Lemma 6.3. Let B1
K(ηw, p) and B2

K(ηu, q) defined by (6.15) and (6.16). Then we have

|B1
K(ηw, p)| ≤ Chk+2‖w‖W 2k+4,∞(Ωh)‖p‖L2(K), (6.18)

|B2
K(ηu, q)| ≤ Chk+2‖u‖W 2k+4,∞(Ωh)‖q‖L2(K), (6.19)

where p, q ∈ Qk(K) and the constant C is independent of h.

Proof. On each element K = Ii × Jj, consider the Taylor expansion of u around (xi, yj)

u = Tu+Rk+3,

where

Tu =
k+2∑
l=0

l∑
m=0

1

(l −m)!m!

∂lu(xi, yj)

∂xl−m∂ym
(x− xi)l−m(y − yj)m,

Rk+3 = (k + 3)
k+3∑
m=0

(x− xi)k+3−m(y − yj)m

(k + 3−m)!m!

∫ 1

0

(1− s)k+2
∂k+3u(xsi , y

s
j )

∂xk+3−m∂ym
ds

with xsi = xi + s(x− xi), ysj = yj + s(y − yj). Clearly, Tu ∈ Pk+2 and by Lemma 6.2 we

have

B2
K(Tu− Π+(Tu), q) = 0,

then we have

B2
K(ηu, q) = T1 + T2 + T3 + T4 + T5,
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where

T1 =

∫
Kij

(Rk+3 − Π+Rk+3)(pxx + pyy)dxdy,

T2 = −
∫ y

j+1
2

y
j− 1

2

(Rk+3 − Π+Rk+3)(x+
i+ 1

2

, y)px(x−
i+ 1

2

, y)− (Rk+3 − Π+Rk+3)(x+
i− 1

2

, y)px(x+
i− 1

2

, y)dy,

T3 = −
∫ x

i+1
2

x
i− 1

2

(Rk+3 − Π+Rk+3)(x, y+
j+ 1

2

)py(x, y
−
j+ 1

2

)− (Rk+3 − Π+Rk+3)(x, y+
j− 1

2

)py(x, y
+
j− 1

2

)dx,

T4 =

∫ y
j+1

2

y
j− 1

2

(Rk+3 − Π+Rk+3)x(x+
i+ 1

2

, y)p(x−
i+ 1

2

, y)− (Rk+3 − Π+Rk+3)x(x+
i− 1

2

, y)p(x+
i− 1

2

, y)dy,

T5 =

∫ x
i+1

2

x
i− 1

2

(Rk+3 − Π+Rk+3)y(x, y
+
j+ 1

2

)p(x, y−
j+ 1

2

)− (Rk+3 − Π+Rk+3)y(x, y
+
j− 1

2

)p(x, y+
j− 1

2

)dx.

which will be estimated one by one below. From the approximation properties of the

projection Π+, we have

‖Rk+3 − Π+Rk+3‖L2(K) ≤ Chk+2‖Rk+3‖Wk+1,∞(Ωh),

and

‖Rk+3‖Wk+1,∞(Ωh) = max
K
‖Rk+3‖Wk+1,∞(K) ≤ Ch2‖u‖W 2k+4,∞(Ωh).

Combining the above two estimates, we arrive at

‖Rk+3 − Π+Rk+3‖L2(K) ≤ Chk+4‖u‖W 2k+4,∞(Ωh). (6.20)

Similarly, we have that

‖Rk+3 − Π+Rk+3‖H1(K) ≤ Chk+3‖u‖W 2k+4,∞(Ωh). (6.21)

It follows from the Cauchy-Schwartz inequality, and the inverse inequality that

|T1| ≤ ‖Rk+3 − Π+Rk+3‖L2(K)‖qxx‖L2(K) ≤ Chk+2‖u‖W 2k+4,∞(Ωh)‖q‖L2(K).

In order to estimate the remaining terms we need to use the trace inequality to get

‖Rk+3 − Π+Rk+3‖L2(∂K) ≤ Chk+ 7
2‖u‖W 2k+4,∞(Ωh)

and

‖Rk+3 − Π+Rk+3‖H1(∂K) ≤ Chk+ 5
2‖u‖W 2k+4,∞(Ωh)

Next, by the Cauchy-Schwartz inequality and the inverse inequality, we arrive at

|T2| ≤ ‖Rk+3 − Π+Rk+3‖L2(∂K)‖qx‖L2(∂K) ≤ Chk+2‖u‖W 2k+4,∞(Ωh)‖q‖L2(K).
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Analogously, we have that

|Tm| ≤ Chk+2‖u‖W 2k+4,∞(Ωh)‖q‖L2(K), m = 3, 4, 5.

The estimates for B1(ηu, q) now follows by collecting the results for Tm, m = 1, 2, 3, 4, 5

obtained above. The proof of Lemma is thus completed.

Next, we will use these lemmas to prove our final result, Theorem 6.2.

Proof. (The proof of Theorem 6.2). We take p = ξu and q = ξw in the error equations

(6.13)-(6.14), to obtain

((ξu)t, ξu)Ωh
+ (ξw, ξw)Ωh

= ((ηu)t, ξu)Ωh
+ (ηw, ξw)Ωh

+
∑
K

(B1
K(ηw, ξu)− B2

K(ηu, ξw)).

Then by the Cauchy-Schwartz inequality and Lemma 6.3, we have

1

2

d

dt
‖ξu‖2 + ‖ξw‖2 ≤ Chk+1‖ξu‖2 + Chk+1‖ξw‖2.

Next, by Gronwall’s inequality and choosing uh(0) = Π+
h u(0), we have

‖ξu‖(t) +

∫ t

0

‖ξw‖(t)dt ≤ Chk+1,

and

‖eu‖(t) +

∫ t

0

‖ew‖dt ≤ ‖ξu‖(t) +

∫ t

0

‖ξw‖dt+ ‖ηu‖(t) +

∫ t

0

‖ηw‖dt ≤ Chk+1,

where C is a constant independent of h and dependent on ‖u‖W 2k+6,∞ , ‖ut‖Wk+1,∞ and

t.

7 Numerical results

In this section, we present numerical examples to verify our theoretical convergence

properties of the DG method for high order PDEs.

Firstly, we consider the one-dimensional linear fourth and fifth order time-dependent

equations with the periodic boundary condition in Examples 7.1 and 7.2, respectively.

Time discretization is not our major concern in this paper, hence we use the spectral

deferred correction (SDC) [24] time discretization for its simplicity. Our computation is

based on the flux choice (3.9) and (4.9), respectively. The errors and numerical orders

of accuracy for P k elements with 1 ≤ k ≤ 3 are listed in Table 7.1 and Table 7.2. We

observe that our scheme gives the optimal (k + 1)-th order of the accuracy when k ≥ 1.
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Example 7.1. (Accuracy test for a linear fourth-order problem.) We consider the fol-

lowing fourth-order time-dependent problem

ut + uxxxx = 0, (x, t) ∈ [0, 2π]× (0, 1],

u(x, 0) = sin(x).

The exact solution is

u(x, t) = e−t sin(x).

Table 7.1: Errors and the corresponding convergence rates for Example 7.1 when using

Pk polynomials and SDC time discretization on a uniform mesh of N cells. Final time

t = 1.

N L1 order L2 order L∞ order

P1 10 2.97E-02 – 3.61E-02 – 9.45E-02 –

20 7.66E-03 1.96 9.31E-03 1.96 2.39E-02 1.98

40 1.93E-03 1.99 2.35E-03 1.99 6.04E-03 1.99

80 4.83E-04 2.00 5.88E-04 2.00 1.51E-03 2.00

160 1.21E-04 2.00 1.47E-04 2.00 3.79E-04 2.00

320 3.02E-05 2.00 3.68E-05 2.00 9.46E-05 2.00

P2 10 2.63E-02 – 2.92E-02 – 4.19E-02 –

20 3.57E-03 2.88 3.97E-03 2.88 5.70E-03 2.88

40 4.54E-04 2.98 5.04E-04 2.98 7.18E-04 2.99

80 5.68E-05 3.00 6.31E-05 3.00 8.98E-05 3.00

160 7.10E-06 3.00 7.88E-06 3.00 1.12E-05 3.00

320 8.87E-07 3.00 9.85E-07 3.00 1.40E-06 3.00

P3 10 1.54E-03 – 1.71E-03 – 2.44E-03 –

20 1.40E-04 3.46 1.55E-04 3.46 2.22E-04 3.46

40 9.35E-06 3.90 1.04E-05 3.90 1.49E-05 3.90

80 5.99E-07 3.96 6.66E-07 3.96 9.54E-07 3.96

160 3.76E-08 3.99 4.18E-08 3.99 5.99E-08 3.99

320 2.36E-09 4.00 2.62E-09 4.00 3.75E-09 4.00

Example 7.2. (Accuracy test for a linear fifth-order problem.) We consider the following

linear fifth-order time-dependent problem.

ut + uxxxxx = 0, (x, t) ∈ [0, 2π]× (0, 1],
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u(x, 0) = sin(x).

The exact solution is

u(x, t) = sin(x− t).

Table 7.2: Errors and the corresponding convergence rates for Example 7.2 when using

Pk polynomials and SDC time discretization on a uniform mesh of N cells. Final time

t = 1.

N L1 order L2 order L∞ order

P1 10 8.13E-02 – 9.08E-02 – 1.44E-01 –

20 2.22E-02 1.87 2.47E-02 1.88 3.97E-02 1.86

40 5.68E-03 1.97 6.32E-03 1.97 1.08E-02 1.88

80 1.43E-03 1.99 1.59E-03 1.99 2.81E-03 1.94

160 3.57E-04 2.00 3.98E-04 2.00 7.15E-04 1.98

320 8.92E-05 2.00 9.95E-05 2.00 1.80E-04 1.99

P2 10 7.25E-02 – 8.07E-02 – 1.14E-01 –

20 9.74E-03 2.90 1.08E-02 2.90 1.53E-02 2.90

40 1.23E-03 2.98 1.37E-03 2.98 1.94E-03 2.98

80 1.54E-04 3.00 1.71E-04 3.00 2.42E-04 3.00

160 1.93E-05 3.00 2.14E-05 3.00 3.03E-05 3.00

320 2.41E-06 3.00 2.68E-06 3.00 3.79E-06 3.00

P3 10 5.44E-03 – 6.04E-03 – 8.56E-03 –

20 4.13E-04 3.72 4.59E-04 3.72 6.49E-04 3.72

40 2.60E-05 3.99 2.89E-05 3.99 4.08E-05 3.99

80 1.64E-06 3.99 1.82E-06 3.99 2.58E-06 3.99

160 1.02E-07 4.00 1.14E-07 4.00 1.61E-07 4.00

320 6.41E-09 4.00 7.12E-09 4.00 1.01E-08 4.00

Example 7.3. (Accuracy test for a nonlinear fourth-order problem.) We consider the

following nonlinear fourth-order time-dependent problem.

ut + (u2uxx)xx = f, x ∈ [0, 2π].

The source term f is chosen so that the exact solution is

u(x, t) = e−t sin(x).
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We test this example by the DG scheme (3.6)-(3.8). Both errors and orders of ac-

curacy are listed in Table 7.3. We again observe that our scheme gives the optimal

(k + 1)-th order of the accuracy for this nonlinear problem.

Table 7.3: Errors and the corresponding convergence rates for Example 7.3 when using

Pk polynomials on a uniform mesh of N cells. Final time t = 0.1.

N L1 order L2 order L∞ order

P1 4 1.47E-01 – 1.93E-01 – 3.97E-01 –

8 6.74E-02 1.12 8.10E-02 1.25 2.28E-01 0.80

16 1.94E-02 1.80 2.58E-02 1.65 8.21E-02 1.47

32 5.05E-03 1.94 6.36E-03 2.02 2.45E-02 1.75

64 1.19E-03 2.08 1.41E-03 2.17 4.33E-03 2.50

P2 4 4.85E-02 – 6.72E-02 – 2.63E-01 –

8 2.63E-03 4.21 3.77E-03 4.16 1.37E-02 4.26

16 8.22E-04 1.68 1.38E-03 1.45 5.87E-03 1.23

32 1.19E-04 2.79 2.12E-04 2.71 1.00E-03 2.55

64 1.55E-05 2.94 2.68E-05 2.99 1.58E-04 2.67

P3 4 4.86E-03 – 5.91E-03 – 1.81E-02 –

8 1.07E-03 2.19 1.75E-03 1.75 8.99E-03 1.01

16 3.54E-05 4.92 6.61E-05 4.73 4.42E-04 4.35

32 1.16E-06 4.93 2.04E-06 5.02 1.68E-05 4.71

64 4.65E-08 4.64 6.99E-08 4.87 5.99E-07 4.81

Example 7.4. (Accuracy test for a nonlinear fifth-order problem.) We consider the

following nonlinear fifth-order time-dependent problem

ut + (uxx)3
xxx = f, x ∈ [0, 2π],

where the source term f is chosen such that the exact solution is

u(x, t) = sin(x− t).

We test this example by the DG scheme (4.6)-(4.8). Both the errors and the numerical

orders of accuracy are listed in Table 7.4. We once again observe the designed (k+ 1)-th

order of accuracy for this nonlinear problem.

The last example we consider is a two-dimensional fourth-order problem.
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Table 7.4: Errors and the corresponding convergence rates for Example 7.4 when using

Pk polynomials on a uniform mesh of N cells. Final time t = 0.1.

N L1 order L2 order L∞ order

P1 4 2.06E-01 – 2.33E-01 – 5.05E-01 –

8 5.44E-02 1.92 6.94E-02 1.75 2.09E-01 1.28

16 1.64E-02 1.73 2.01E-02 1.79 6.13E-02 1.77

32 3.67E-03 2.16 4.47E-03 2.16 1.42E-02 2.11

64 1.19E-03 1.62 1.44E-03 1.63 4.17E-03 1.77

P2 4 3.06E-02 – 4.39E-02 – 1.72E-01 –

8 4.14E-03 2.88 6.34E-03 2.79 2.80E-02 2.62

16 4.01E-04 3.37 5.56E-04 3.51 2.44E-03 3.52

32 4.73E-05 3.08 6.78E-05 3.04 3.29E-04 2.89

64 5.57E-06 3.09 8.34E-06 3.02 4.07E-05 3.02

P3 4 4.91E-03 – 6.45E-03 – 2.00E-02 –

8 1.42E-04 5.12 1.96E-04 5.04 1.03E-03 4.28

16 8.95E-06 3.98 1.25E-05 3.98 6.73E-05 3.93

32 5.06E-07 4.15 7.38E-07 4.08 4.21E-06 4.00

Example 7.5. (Accuracy test for a two-dimensional linear fourth-order problem.) We

consider the following fourth-order time-dependent problem with the periodic boundary

condition

ut + ∆2u = 0, (x, y) ∈ [0, 2π]× [0, 2π],

u(x, 0) = sin(x+ y).

The exact solution is

u(x, t) = e−4t sin(x+ y).

Our computation is based on the flux choice (6.7). The errors and numerical orders of

accuracy for the Qk elements with 1 ≤ k ≤ 3 are listed in Table 7.5. We observe that

our scheme gives the optimal (k + 1)-th order of the accuracy when k ≥ 1.

8 Concluding remarks

In this paper, we have constructed a new class of discontinuous Galerkin methods

combining the LDG and UWDG methods for solving high order PDEs, namely time-
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Table 7.5: Errors and the corresponding convergence rates for Example 7.5 when using

Qk polynomials on a uniform mesh of N ×N cells. Final time t = 1.

N ×N L1 order L2 order L∞ order

Q1 4× 4 1.67E-01 – 2.46E-01 – 1.13E+00 –

8× 8 5.29E-02 1.66 7.93E-02 1.63 4.04E-01 1.49

16× 16 1.25E-02 2.08 2.03E-02 1.97 1.07E-01 1.92

32× 32 3.02E-03 2.05 5.09E-03 2.00 2.70E-02 1.98

64× 64 7.46E-04 2.02 1.27E-03 2.00 6.78E-03 2.00

Q2 2× 2 3.41E-01 – 5.14E-01 – 2.55E+00 –

4× 4 4.49E-02 2.92 7.29E-02 2.82 5.20E-01 2.29

8× 8 5.41E-03 3.05 9.03E-03 3.01 6.73E-02 2.95

16× 16 6.70E-04 3.01 1.12E-03 3.01 8.45E-03 2.99

32× 32 8.35E-05 3.00 1.40E-04 3.00 1.06E-03 3.00

64× 64 1.04E-05 3.00 1.75E-05 3.00 1.32E-04 3.00

dependent PDEs with high order spatial derivatives. The idea is to rewrite the PDE

into a lower order system, but not to a system with only first order spatial derivatives as

in LDG methods. The ideas in designing numerical fluxes to obtain stable and accurate

DG schemes from both the LDG schemes and the UWDG schemes, including the usage

of alternating and upwinding numerical fluxes when appropriate, are then used to obtain

stable and optimally convergent DG schemes for a wide variety of linear and nonlinear

PDEs with high order spatial derivatives in both one and two spatial dimensions. The

main advantage of our method over the LDG method is that we have introduced fewer

auxiliary variables, thereby reducing memory and computational costs. The main ad-

vantage of our method over the UWDG method is that no internal penalty terms are

necessary in order to ensure stability for both even and odd order PDEs. Detailed algo-

rithm formulation, stability analysis and optimal L2 error estimates are given for several

examples, including fourth order linear and nonlinear equations in one dimension and

a fourth order linear equation in two dimension, and fifth order linear and nonlinear

wave equations in one dimension. In our error estimates, a key ingredient is the study of

the relationship between the derivative and the element interface jumps of the numer-

ical solution and the auxiliary variable numerical solution of the derivative. With this

relationship and by using the discrete Sobolev and Poincaré inequalities, we can obtain

optimal error estimates for both even order diffusive PDEs and odd order wave PDEs.
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Numerical examples are provided both for linear and nonlinear equations and both in

one dimension and in two dimensions, to verify the theoretical results. Extension of the

optimal error estimates to the nonlinear equations is highly nontrivial and is left for

future work.
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