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Abstract Downward longwave radiation (DLR) is often assumed to be an independent forcing
on the surface energy budget in analyses of Arctic warming and land-atmosphere interaction. We use
radiative kernels to show that the DLR response to forcing is largely determined by surface temperature
perturbations. We develop a method by which vertically integrated versions of the radiative kernels
are combined with surface temperature and specific humidity to estimate the surface DLR response to
greenhouse forcing. Through a decomposition of the DLR response, we estimate that changes in surface
temperature produce at least 63% of the clear-sky DLR response in greenhouse forcing, while the changes
associated with clouds account for only 11% of the full-sky DLR response. Our results suggest that surface
DLR is tightly coupled to surface temperature; therefore, it cannot be considered an independent
component of the surface energy budget.

Plain Language Summary Longwave radiation, often referred to as “thermal” or “infrared”
radiation, emitted downward by Earth's atmosphere is a primary contributor to the surface energy budget.
Numerous studies have invoked longwave radiation as a driver of surface warming. This paper shows
that this line of reasoning fails to account for the strong control surface temperature exerts on longwave
radiation. Using radiative kernels, matrices that quantify the longwave radiation response to a climate
perturbation (like global warming), we argue that any surface temperature anomaly will generate a
downward longwave radiation response. This constitutes a feedback between the Earth's surface and
its atmosphere. The kernels show large longwave responses to perturbations in the lowest part of the
atmosphere and almost no response to perturbations at high levels; by vertically integrating the kernels, we
can ignore the vertical structure of climate perturbations. Using this modification, we predict the longwave
radiation response to a warming world using only the surface changes. Our prediction agrees with climate
model output, suggesting that the longwave radiation response is determined primarily by surface
temperature. Further, the cloud contribution to changes in longwave radiation is small. These results
provide clarity on how changes in the surface energy budget should be analyzed.

1. Introduction and Hypothesis
Research on climate feedbacks aims to disentangle the global climate's response to a particular forcing
from the impact of the forcing itself. Studies of climate feedbacks have traditionally analyzed model rep-
resentations of the top of atmosphere (TOA) radiative budget (Bony et al., 2006; Mhyre et al., 2013). Much
less attention is given to the surface energy budget due to large observational uncertainties that obscure
the distinction between forcing and response (Wild et al., 2013). Despite these observational uncertain-
ties, anthropogenic climate forcing will drive important changes to the surface energy budget. For example,
greenhouse warming experiments feature annual mean downward longwave radiation (DLR) increases
between 10 and 40 W/m2 (Stephens et al., 2012); anomalies of the same order of magnitude were observed
during the warm Arctic winter of 2015/2016 (Kim & Kim, 2017). It has been hypothesized (Burt et al., 2016;
Woods & Caballero, 2016) that Arctic warming can be caused by large DLR anomalies. Similarly, studies
using offline land models often consider surface DLR as an independent forcing on Earth's surface energy
budget that can drive surface warming. In this study, we will show that for any process driven by either
internal variability or external forcing, the equilibrated DLR response is driven by the surface temperature
change.
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That DLR is highly sensitive to surface temperature can be inferred from Figure 1a, which shows the zonal
mean of the vertical structure for both the temperature and specific humidity kernels. Both kernels have
their largest values in the lowest atmospheric layers. We show only the values below 500 hPa because no
large values exist above that level in either kernel. Figure 1a strongly suggests that climate perturbations
above the boundary layer have a small impact on surface DLR, while changes near the surface are extremely
important. The temperature kernel (red colors in Figure 1a) increases monotonically with increasing pres-
sure, indicating that DLR is most sensitive to temperature changes that are closest to the surface. The specific
humidity kernel (blue contours in Figure 1a) has values roughly one third those of the temperature ker-
nel, and a local maximum at 925 hPa. Figure 1b shows the zonal mean of the vertically integrated kernels,
obtained by summing each grid box in the vertical column. A feedback of more than 5 W·m−2·K−1 is found in
the tropics, most of it originating below the 850-hPa level. By differentiating the Stephan-Boltzman equation
and multiplying the result by an unperturbed zonal mean surface temperature distribution, we compute
the Planck feedback that is slightly larger than the DLR feedback (compare solid black and dashed black
lines in Figure 1b). The near-blackbody nature of the lower atmosphere suggests a mechanism that connects
surface warming with enhanced DLR.

Surface temperature and humidity changes are efficiently communicated throughout the boundary layer by
turbulent energy fluxes; as such, the surface and boundary layer temperature respond to forcing in concert
and with equal magnitude. Given the lower atmosphere's large DLR sensitivity illustrated by the radiative
kernels, we can infer that turbulent fluxes of heat and moisture to the boundary layer will induce a large DLR
response whenever a surface temperature anomaly is present. Therefore, any surface temperature anomaly
will generate a DLR response; the processes that initiated the surface temperature anomaly—whether inter-
nal or forced—is irrelevant. Instead of being considered an independent forcing on the surface, the kernels
suggest that DLR responds to surface temperature through efficient boundary layer mixing of heat and
moisture.

In section 2, we present two methods for decomposing clear-sky DLR changes into responses to temperature
and specific humidity changes; both methods use the radiative kernels. The first method uses the vertical
structure of atmospheric temperature and specific humidity perturbations; we refer to this as the traditional
approach. The second uses only the temperature and specific humidity perturbations at the surface; we refer
to this as the vertically integrated approach. We then demonstrate that both methods can produce the surface
DLR responses to greenhouse warming in an ensemble of models. In section 3, we quantify various contri-
butions to the surface DLR response to greenhouse warming. Section 4 contains a summary and discussion
of major results.

2. The Preeminence of the Boundary Layer Control on DLR
A radiative kernel is a matrix that assigns radiative responses to climactic perturbations. For the temperature
kernel, the perturbation is a 1◦ warming, while for the specific humidity kernel, it is the increase in specific
humidity associated with a 1◦ warming under the assumption that relative humidity remains constant every-
where in the atmosphere (see Soden & Held, 2006; Soden et al., 2008). To compliment their TOA cousins,
surface radiative kernels have been developed to quantify the response of surface radiation to changes in
atmospheric temperature and specific humidity (Pendergrass et al., 2018; Previdi, 2010). In this study, we
use the clear- and full-sky temperature and specific humidity kernels from Previdi (2010).

The traditional approach requires three-dimensional climate model output because the vertical structure of
climate perturbations is of extreme importance to the TOA radiative response (Hansen et al., 2005). However,
the kernels shown in Figure 1a suggest that only the near-surface temperature and specific humidity matter
for surface DLR. We test this hypothesis in this section by comparing the changes in surface DLR simulated
by climate models in response to greenhouse gas forcing to those estimated from (i) the radiative kernels
using the full 3-D temperature and specific humidity changes and from (ii) the vertically integrated kernels
assuming temperature and specific humidity changes that are uniform with height and equal to those at the
surface.

We analyze the change in surface DLR climatology (ΔDLR) between two 10-year periods (2010–2019 and
2090–2099) of the RCP8.5 global warming scenario in the GFDL-CM3 model. The GFDL-CM3 model was
chosen at random, though we intentionally did not analyze output from the ECHAM5 model because it
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Figure 1. (a) Zonally averaged clear-sky surface radiative kernels for temperature (shading) and specific humidity
(contour interval 0.1 W·m−2·K−1) as a function of pressure level from Previdi (2010). The specific humidity kernel has
been normalized such that values displayed show the longwave radiative response induced by the water vapor
equivalent of a 1 K warming under the constant relative humidity assumption. (b) Vertically integrated temperature
(red) specific humidity (blue) kernels. Also shown are the sum of the two kernels (solid black) and the Planck feedback
(dashed black). A nearly identical figure for the full-sky kernels is shown in Figure A1.

was used to make the Previdi kernels and we wanted to demonstrate the model-independent nature of our
hypothesis. Figures S1 and S2 in the supporting information show similar results to those below for four
additional models, demonstrating the model-independent nature of our hypothesis. Studies using radiative
kernels to evaluate climate feedbacks have verified that they are insensitive to the choice of model (e.g., Held
& Shell, 2012; Soden et al., 2008), so we have no reason to believe that extending the analysis to a wider set
of models would impact our results.
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Figure 2. Scatter plots of the change in clear-sky downward longwave radiation (DLR; ΔDLRc) produced by the
(a) traditional and (b) vertically integrated kernels versus the ΔDLRc modeled by GFDL-CM3. The red dashed lines
show regressions of the temperature contributions to ΔDLRc (equations (A1) and (A2)), while the green dashed
lines show regressions of the specific humidity contributions to ΔDLRc (equations (A3) and (A4)). The orange dashed
lines show the sum of the two regressions, while the solid black line is the 1:1 line. The variance explained by each
method is shown in the bottom right corner of the plot.

We focus, for now, on the clear-sky DLR response (ΔDLRc) because there are no kernels to explicitly estimate
the cloud contribution. We quantify the cloud contributions to full-sky ΔDLR in section 3. Figure 2a shows
a scatter plot of each model grid box's value for ΔDLRc produced by the traditional kernel method as a
function of modeled ΔDLRc. A linear regression of the temperature component (equation (A1)) is shown
with the red dashed line, while an analogous regression of the specific humidity component (equation (A3))
is shown with the green dashed line.

A regression of the total kernel-produced clear-sky ΔDLRc, given by the sum of the temperature and specific
humidity components, is shown in Figure 2a by the dashed orange line, and the solid black line indicates
one-to-one correspondence. This regression and the scatter plot both show that ΔDLRc is underpredicted
by the traditional kernel approach. Shell et al. (2008) have argued that correlations between temperature
and atmospheric emissivity due to increases in specific humidity could cause the kernel underprediction of
ΔDLRc; we show evidence for this hypothesis in section 3. A doubling in atmospheric CO2 also contributes
to ΔDLRc, but Andrews et al. (2009) and Colman (2015) found that the CO2 forcing on surface longwave
radiation is at most 1 W/m2, and observational evidence suggests a trend of only 0.2 W/m2 per decade from
2000 to 2010 (Feldman et al., 2015). CO2 forcing is extremely small compared to the DLR response shown
in Figure 2, and the fact that the kernel approach does not account for it cannot explain the underpredic-
tion. Still, the traditional kernel method explains an impressive 94% of the clear-sky ΔDLRc variance in
GFDL-CM3; we found similar values in two other climate models (see supporting information Figure S1).

The vertical structure of the radiative kernels suggests that only changes in atmospheric temperature and
specific humidity at the surface are relevant to surface DLR. To test this hypothesis, we sum the kernel val-
ues for the entire atmospheric column over a particular grid box to generate the vertically integrated kernels.
The resultant vertically integrated kernels (W·m−2·K−1) represent the DLR adjustment if surface anoma-
lies propagated through the entire atmospheric column. We assume that surface perturbations penetrate
through the entire atmosphere, but the supporting information (Figure S3) shows that our results are largely
insensitive to the upper integration limit on the vertically integrated kernels, as long as this limit is above the
boundary layer. After the integration, we perform the same convolutions from the traditional approach but
use the vertically integrated kernels and surface GFDL-CM3 output for temperature and specific humidity.

Figure 2b shows how faithfully the vertically integrated kernels reproduce surface ΔDLRc in GFDL-CM3,
along with the same three linear regressions from Figure 2a. The vertically integrated approach explains
84% of the clear-sky ΔDLRc variance; similar results are obtained using output from four other climate
models (see supporting information Figure S2). While the vertically integrated method generally under-
predicts ΔDLRc, there are some notable overpredictions. These are mainly in the high northern latitudes,
where changes in surface temperature are greater than changes in boundary layer temperature due to a
near-surface inversion. The polar inversion is known to flip the sign of the lapse rate feedback by trapping
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Figure 3. Changes to surface downward longwave radiation (DLR) in the five-model ensemble mean, along with
various contributions. Panels (a) and (b) show changes in clear- and full-sky DLR, respectively. Panel (c) shows the
change in clear-sky DLR (ΔDLRc) obtained from the vertically integrated kernel method. Panel (d) shows the cloud
contributions to DLR changes (see Appendix A for explanation). Panel (e) shows the difference in ΔDLRc estimated
using the vertically integrated kernels and that simulated by the model: panel (a) minus (c). Panel (f) shows the
difference in ΔDLRc estimated using the traditional kernels and that simulated by the model.

warming near the surface (Colman, 2015; Feldl & Roe, 2013). This biases our vertically integrated method
toward overpredictingΔDLRc in the Arctic. Still, the agreement between the two scatter plots in Figure 2 val-
idates our hypothesis that most of the DLR response to greenhouse forcing is driven by increases in surface
temperature. The supporting information (Figure S4) shows a map of the difference between the vertically
integrated and traditional method's prediction of ΔDLRc that demonstrates their similarity.

3. Sources of the DLR Response to Greenhouse Forcing
We now quantify the surface temperature, specific humidity, and cloud contributions to the DLR response
to greenhouse forcing in an ensemble of climate models (for ensemble members, see supporting informa-
tion Table S1). Figures 3a and 3b show maps of the clear- and full-sky DLR response averaged over our
five-member ensemble. Both maps show a large response between the two periods with maximum values
in the Arctic of over 40 W/m2.

Figure 3c shows the DLRc response produced by convolving the surface changes in temperature and spe-
cific humidity with the vertically integrated kernels; it has a similar spatial pattern to the ensemble mean
response shown in Figure 3a. While our formulation of the specific humidity component (see equation (A4))
relies on surface specific humidity model output, we combine the two components in Figure 3c and ascribe
the surface specific humidity increases to surface warming. Under the fixed relative humidity assumption,
changes in specific humidity are purely “thermodynamic” and can be attributed to temperature changes
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(Held & Shell, 2012; Held & Soden, 2006). Using temperature changes and the fixed relative humidity
assumption to predict the evolution of surface specific humidity introduces a globally averaged difference
of 0.92 W/m2 in the results from Figure 3c (see supporting information Figure S5). Therefore, we assume
that surface temperature drives both components; combined, they account for 63% of the globally averaged
DLRc response.

Figure 3e shows the error in the vertically integrated approach given by subtracting Figure 3c from Figure 3a.
The error has a strong meridional structure, with the largest kernel underpredictions in the tropics, where
Pendergrass et al. (2018) also found the largest errors in surface longwave radiation in their kernel-based
study. This is likely due to the correlation between specific humidity and temperature changes that is largest
in the hottest, most humid regions. If so, it may be safe to assume that the residual term in Figure 3e should
be combined with the surface temperature and specific humidity components, but we will refrain from doing
so here. Whatever the source of error, it does not stem from neglecting the vertical structure of the radia-
tive perturbations, as the error structure for the traditional method shown in Figure 3f is almost identical
to Figure 3e, with the exception of the vertically integrated method's overprediction associated with polar
surface inversions.

Figure 3d shows the cloud component of the surface full-sky DLR response, obtained by taking the difference
between the full- and clear-sky ΔDLR model output and removing the effect of cloud masking using the
full-sky kernels (see Appendix A). The cloud component is negative everywhere except in the high latitudes
where clouds increase DLR slightly. This spatial pattern agrees broadly with the cloud impacts on DLR
described in Colman (2015), but importantly, for our driving question, the magnitude of the cloud-induced
DLR response is much smaller than the response attributed to surface temperature changes by the radiative
kernels. In the global average, the magnitude of the cloud component is roughly 11% of the full-sky DLR
response, indicating that clouds play a relatively minor role in the DLR response to greenhouse warming.
Colman (2015) found this spatial pattern of cloud feedbacks on surface DLR with a model not used in our
analysis using only increases in sea surface temperature associated with CO2 forcing. Thus, it is possible
that some of these cloud changes are associated with increased surface temperature. However, the kernels
are not able to definitively attribute the DLR cloud response to temperature or humidity perturbations and
we refrain from doing so here. Such an attribution exercise falls outside the scope of this study.

4. Conclusions
In summary, we have presented the surface DLR kernels from Previdi (2010) and argued that the DLR
response to greenhouse forcing is controlled primarily by increases in surface temperature. Calculations
show that 84% of the variance in ΔDLRc can be explained using only surface temperature, surface specific
humidity, and the vertically integrated kernels. The traditional kernel approach explains 94% of the vari-
ance. Hence, very little information on ΔDLRc is provided by the vertical structure of climate and radiative
perturbations. While the kernels reproduce the modeled ΔDLRc fairly accurately, both approaches have a
systemic underprediction likely due to the correlation between temperature and specific humidity. Despite
this underprediction, we attribute more than 60% of the predicted DLRc response in our five-model ensem-
ble to changes in surface temperature under the assumption of fixed relative humidity. The cloud changes
account for only 11% of the full-sky DLR response.

We are not arguing that DLR anomalies are incapable of driving surface temperature changes. Warm air
intrusions and atmospheric moisture convergence events can certainly generate surface warming by increas-
ing DLR. However, the equilibrated DLR response to any forcing will be governed by the surface temperature
rather than the forcing (whatever the forcing may be due to, e.g., changes in shortwave, longwave, and
albedo). The purely radiative response to an increase in atmospheric CO2 is instructive: a doubling of atmo-
spheric CO2 causes a 1-W/m2 increase in DLR at the surface. After adjustment, the surface temperature
increases by 2 ◦C and the net 1-W/m2 longwave forcing is balanced by net change in upward longwave of
1 W/m2 that is accomplished by a (Planck) feedback of 10 W/m2 and an increased DLR feedback of 9 W/m2.
Of course, in the real world, turbulent energy fluxes (particularly evapotranspiration) compensate for the
reduced effectiveness of radiative cooling caused by the large DLR feedback (e.g., Andrews et al., 2009).

An increase in surface temperature both warms and moistens the boundary layer through fast acting tur-
bulent energy fluxes, so a surface warming will always be associated with a positive DLR response. This
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constitutes a feedback between Earth's surface and the atmosphere that is not accounted for in “offline”
experiments using land surface or sea ice model simulations that decouple DLR from surface temperature.
In particular, offline or “land-only” simulations have been used to create soil moisture data proxies (e.g.,
Rodell et al., 2004; Zhao & Dirmeyer, 2003) and to investigate the impacts of land use change on the global cli-
mate (Lawrence et al., 2016). The cloud component of the DLR response that cannot be directly attributed to
surface temperature changes with the radiative kernels constitutes a relatively small fraction of the full-sky
response to greenhouse warming in our model ensemble. Therefore, a more accurate offline surface forcing
would include the independent radiative forcing of clouds while accounting for the DLR response to surface
temperature.

In conclusion, we stress that DLR and surface temperature anomalies are tightly coupled. Studies using
uncoupled land and sea ice models frequently consider DLR an independent component of the surface
energy budget; this fails to account for the influence of surface temperature on DLR highlighted in this
paper. The assumption that DLR is an independent forcing on the surface is particularly prevalent in stud-
ies of land-atmosphere interaction and arctic climate, where surface temperature anomalies are frequently
ascribed to enhancements in DLR. While DLR anomalies can certainly drive surface warming, the forcing
and the response are difficult to distinguish because of the short equilibration timescale. We argue that sur-
face temperature anomalies will always be associated with DLR anomalies through efficient boundary layer
mixing and that surface temperature can exert a large influence on DLR through a strong lower atmosphere
feedback. Any argument that DLR is driving surface temperature must carefully consider the origin of both
anomalies, along with the certainty that any surface warming will generate a large DLR response.

Appendix A: Kernel Equations
The clear-sky surface kernels used in this analysis are adopted from Previdi (2010). For the traditional
method, we simply multiplied changes in the model output at each location (x,y,p) with its corresponding
kernel value. For the vertically integrated method, we assumed vertically invariant changes in temperature
and specific humidity equal to the changes modeled at the surface. The surface radiative kernels have their
largest weighting in the boundary layer, so the vertically integrated method yields results that are relatively
insensitive to the level through which the surface perturbations are assumed to penetrate (see supporting
information Figure S3). We chose to sum the entire column, but any upper integration limit above the
boundary layer (850 hPa) gives a very similar answer.

In the traditional method, the temperature component (ΔDLRT) at each grid box is given by

ΔDLRT =
∑

k
KT

k ΔTk . (A1)

The subscript k represents vertical pressure levels and KT
k indicates the temperature kernel value at the

pressure level k. In the vertically integrated method, the temperature component is given by

ΔDLRT = ΔTs

∑
k

KT
k . (A2)

Here, the subscript s represents a surface value.

Rather than a simple difference in specific humidity, the water vapor component in both methods is multi-
plied by the difference in ln q. In the traditional method, the specific humidity component (ΔDLRq) at each
grid box is given by

ΔDLRq =
∑

k
Kq

kΔ ln qk . (A3)

Similar to equation (A1), Kq
k is the specific humidity kernel value at pressure level k. In the vertically

integrated method, the surface specific humidity component is given by

ΔDLRq = Δ ln qs

∑
k

Kq
k . (A4)

To isolate the cloud component, we define two separate impacts of clouds on surface DLR. First, clouds are
nearly perfect blackbodies in the longwave, so an increase in cloud cover (particularly at lower atmospheric
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Figure A1. (a) Zonally averaged full-sky surface radiative kernels for temperature (shading) and specific humidity
(contour interval 0.1 W·m−2·K−1) as a function of pressure level from Previdi (2010). The specific humidity kernel has
been normalized such that values displayed show the longwave radiative change induced by the water vapor equivalent
of a 1 K warming under the constant relative humidity assumption. (b) Differences between full- and clear-sky kernels
(bracketed terms in equation (A5)). Colors show the difference between the two temperature kernels; contours show
the difference between the two specific humidity kernels. The contour interval for the specific humidity kernel is
0.05 W

m2 K , also note the color bar change for the temperature kernel.

levels) should have a positive impact on DLR; this is the cloud impact we would like to isolate. However,
because clouds act as nearly perfect blackbodies, they also mask the temperature and humidity changes that
occur above them. These masking effects are reflected in the different structures of the full-sky and clear-sky
radiative kernels. To remove the effect of masking and thus properly estimate the true cloud component
associated with changes in full-sky DLR, we start by subtracting the full-sky DLR from the clear-sky DLR and
define this difference at ΔC̄, which includes both blackbody and masking impacts. Next, we use the full-sky
and clear-sky kernels combined with the three-dimensional temperature and humidity fields to remove the
effect of masking as follows:

ΔC = ΔC̄ −
∑

k

[
KT,c

k − KT,𝑓
k

]
ΔTk −

∑
k

[
Kq,c

k − Kq,𝑓
k

]
Δ ln qk . (A5)

The c and f superscripts denote the clear- and full-sky kernels, respectively. Figure A1 shows the full-sky
version of the kernels used in equation (A5) along with the difference between the full- and clear-sky ker-
nels. Small though these differences are, they contribute to masking effects of clouds that we remove in our
assessment of the cloud contribution to full-sky ΔDLR.
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