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Essentially non-oscillatory (ENO) and weighted ENO (WENO) schemes were
designed for solving hyperbolic and convection-diffusion equations with pos-
sibly discontinuous solutions or solutions with sharp gradient regions. The
main idea of ENO and WENO schemes is actually an approximation proce-
dure, aimed at achieving arbitrarily high order accuracy in smooth regions
and resolving shocks or other discontinuities sharply and in an essentially
non-oscillatory fashion. Both finite volume and finite difference schemes have
been designed using the ENO or WENO procedure, and these schemes are
very popular in applications, most noticeably in computational fluid dynam-
ics, but also in other areas of computational physics and engineering. Since
the main idea of the ENO and WENO schemes is an approximation proce-
dure not directly related to partial differential equations (PDEs), ENO and
WENO schemes also have non-PDE applications. In this paper we will sur-
vey the basic ideas behind ENO and WENO schemes, discuss their properties,
and present examples of their applications to different types of PDEs as well
as to non-PDE problems.
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1. Introduction

When numerically solving hyperbolic conservation laws

ut + f(u)x = 0, (1.1)

Hamilton-Jacobi equations

ϕt + f(ϕx) = 0, (1.2)

or convection-diffusions equations

ut + f(u)x = (a(u)ux)x (1.3)

where a(u) ≥ 0 is small and possibly degenerate (i.e. a(u) = 0 for some
values of u), or their multi-dimensional counterparts, a major difficulty is
the possible lack of regularity of the exact solution, namely, the exact solu-
tion may contain discontinuities or sharp gradient regions, or discontinuous
derivatives, regardless of the smoothness of the initial or boundary condi-
tions (Smoller 1983, LeVeque 1990).

If we are satisfied with first order accurate schemes, then the class of
monotone schemes (Crandall and Majda 1980, Crandall and Lions 1984)
has excellent properties. Monotone schemes for scalar conservation laws can
be proved to be nonlinearly stable, measured by an L1 contraction property,
and to satisfy entropy conditions, leading to convergence with error esti-
mates for bounded variation entropy solutions in multi-dimensions. Like-
wise, for Hamilton-Jacobi equations, monotone schemes can be proved to be
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L∞ stable and convergent towards viscosity solutions with error estimates.
However, first order schemes converge very slowly, hence to achieve the de-
sired error level, one often would need to use a very refined mesh, which
might be very inefficient or even impossible for multi-dimensional problems.
On the other hand, traditional high order accurate finite difference, finite
volume, finite element or spectral schemes typically have spurious oscilla-
tions near discontinuities (the Gibbs phenomenon), which may pollute to
smooth regions and may even lead to nonlinear instability, causing blowups
of the schemes. In fact, by the famous Godunov theorem, a linear scheme,
which is defined to be linear for solving the linear conservation law (1.1)
with f(u) = au for a constant a, must be either oscillatory or only first or-
der accurate. Thus to obtain non-oscillatory schemes with higher than first
order accuracy, one must consider nonlinear schemes, namely those schemes
which are nonlinear for (1.1) even with f(u) = au.

In computational fluid dynamics (CFD) and a few other areas of computa-
tional physics and engineering, the class of high resolution schemes, mainly
represented by the total variation diminishing (TVD) schemes (Harten 1983,
Osher and Chakravarthy 1984), have been quite popular. The TVD schemes
are nonlinear schemes satisfying

TV (un+1) ≤ TV (un),

where un refers to the numerical solution at the time level tn, with the total
variation semi-norm of a grid function defined by

TV (u) =
∑

j

|uj+1 − uj |,

where uj refers to the numerical solution at the spatial grid point xj . Usually,
the TVD property is achieved through the application of various nonlinear
limiters such as the minmod limiter (Harten 1983, LeVeque 1990). TVD
schemes can yield sharp and monotone discontinuity transitions and can
achieve arbitrarily high order accuracy in smooth and monotone regions (e.g.
(Osher and Chakravarthy 1996)), however all TVD schemes have degeneracy
of accuracy to first order near smooth extrema (Osher and Chakravarthy
1984). It is clear that, even if the accuracy degenerates to first order only
at one grid point, the global L1 error can be at most second order, hence
TVD or general high resolution schemes are often referred to as second
order schemes, even though they can achieve arbitrarily high order accuracy
in smooth monotone regions (e.g. the very high order TVD schemes in
(Osher and Chakravarthy 1996)). There are attempts in the literature to
overcome this accuracy degeneracy problem, for example, the total variation
bounded (TVB) schemes (Shu 1987) by relaxing the minmod limiter, but
the TVB schemes involve a TVB parameter M , which must be estimated
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or tuned in order to achieve satisfactory performance (Shu 1987, Cockburn
and Shu 1989), which restricts their wide applications.

The essentially non-oscillatory (ENO) schemes, first designed in (Harten,
Engquist, Osher and Chakravarthy 1987), were a fundamental breakthrough
in achieving both arbitrarily high order accuracy in smooth regions and
sharp and essentially non-oscillatory discontinuity transitions. The key idea
of ENO schemes is an approximation procedure, which we will survey in sec-
tion 2. Properties of the ENO procedure will also be discussed in section 2.
The ENO schemes in (Harten et al. 1987) are in the finite volume framework,
to be surveyed in section 4.1. Soon after, efficient implementation of ENO
schemes in the finite difference framework, to be surveyed in section 4.2,
with the so-called TVD Runge-Kutta time discretizations, to be surveyed
in section 7, was developed in (Shu and Osher 1988, Shu and Osher 1989).
ENO schemes have been under continuous development and improvement
since their introduction, and have been popular in applications. This is
demonstrated by the citation data. According to googlescholar, the original
ENO paper (Harten et al. 1987), which was republished in 1997 by Journal
of Computational Physics as a classic paper (Shu 1997, Harten, Engquist,
Osher and Chakravarthy 1997), has been cited 3,614 times. The two finite
difference ENO papers (Shu and Osher 1988, Shu and Osher 1989) have
been cited 4,598 and 2,695 times, respectively.

The weighted ENO (WENO) schemes, first designed in (Liu, Osher and
Chan 1994) and improved and extended in (Jiang and Shu 1996), were im-
proved version of ENO schemes, overcoming some of the shortcomings of
ENO schemes while maintaining their main advantages. The key idea of
WENO schemes is again an approximation procedure, which we will sur-
veyed in section 3. Properties and different variants of the WENO pro-
cedure will also be discussed in section 3. Finite volume WENO schemes
(initialized in (Liu et al. 1994)) and finite difference WENO schemes (ini-
tialized in (Jiang and Shu 1996)) will be surveyed in sections 4.1 and 4.2
respectively. WENO schemes have attracted even more attention than ENO
schemes, both in algorithm development and in applications. According to
googlescholar, the original WENO paper (Liu et al. 1994) has been cited
2,875 times. The WENO paper (Jiang and Shu 1996), which contains the
classical fifth order WENO scheme most popular in applications, has been
cited 4,964 times.

2. The ENO interpolation and reconstruction procedures

The essentially non-oscillatory (ENO) scheme (Harten et al. 1987) is based
on an ENO approximation procedure. In this section we will describe this
procedure, emphasizing the details in the one-dimensional (1D) case and
only sketching the procedure in the two-dimensional (2D) case.
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2.1. The ENO interpolation procedure in 1D

Let us consider a piecewise smooth function u(x), either with compact sup-
port or with periodic boundary condition, hence we do not need to consider
boundary. Assume that we have a mesh

· · · < x1 < x2 < x3 < · · ·

with ∆xi+ 1
2

= xi+1 − xi, and ∆x = maxi∆xi+ 1
2

. We assume that we are

given the point value ui = u(xi) of the function u(x), and we would like to
obtain a high order polynomial approximation pi+ 1

2

(x), defined on Ii+ 1
2

=

(xi, xi+1), which approximates the function u(x) to high order accuracy
when u(x) is smooth. This is a classical interpolation problem. For example,
if we are given a 4-point central stencil

S = {xi−1, xi, xi+1, xi+2} (2.1)

then there is a unique interpolation polynomial pi+ 1
2

(x), of degree at most

3, that interpolates u(x) in the stencil S:

pi+ 1
2

(xj) = uj , j = i− 1, i, i + 1, i + 2.

We can write down this interpolation polynomial pi+ 1
2

(x) in several different

forms, for example in the Lagrange form or in the Newton form.
If the function u(x) is smooth in the stencil S, then we have high order

accuracy

|u(x)− pi+ 1
2

(x)| ≤ C∆x4, x ∈ Ii+ 1
2

. (2.2)

Here and below C would be used as a generic constant independent of the
mesh parameters (here the mesh size ∆x), and it could take different values
in each occurrence. We also have similar high order accuracy for approxi-
mating the derivatives (with one order lower for each order of the derivative)
and the integrals.

The problem, for piecewise smooth u(x), is accuracy near the discontinuity
(or discontinuity of the derivative). If the stencil S contains a discontinuity
of the function u(x), then the high order accuracy (2.2) is no longer valid.
Worse still, if the discontinuity is in S but not in Ii+ 1

2

, the interpolation

polynomial pi+ 1
2

(x) is oscillatory in Ii+ 1
2

, in the sense that it has either an

overshoot or an undershoot in Ii+ 1
2

, with the overshoot/undershoot mag-

nitude being a fixed percentage of the discontinuity size which does not
decrease when the mesh size ∆x goes to zero (this is called the Gibbs phe-
nomenon in the literature, especially in spectral methods). We remark that,
miraculously, if the discontinuity is in the target cell Ii+ 1

2

itself, the interpo-

lation polynomial pi+ 1
2

(x) is monotone in Ii+ 1
2

and does not show the Gibbs
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phenomenon type overshoot or undershoot there, see (Harten, Osher, En-
gquist and Chakravarthy 1986) for a proof of this (somewhat unexpected)
fact.

The ENO idea in (Harten et al. 1987) is to choose the stencil S adaptively
and automatically, based on the local smoothness of the function u(x). As
we have seen from the discussion above, if the discontinuity is not in the
target cell Ii+ 1

2

itself, we should avoid having the stencil S of interpolation

containing this discontinuity. This is of course not possible if the choice
for the pattern of the stencil is fixed for every cell Ii+ 1

2

, for example the

choice of the central stencil in (2.1). If we have the information of the exact
location of the discontinuity, the choice of stencil is apparent. Given that
the two end points of the target cell Ii+ 1

2

must be contained in the stencil,

and if we must choose 4 points in the stencil to obtain a fourth order cubic
interpolation polynomial, then we could make the following choices:

• If there is no discontinuity inside the central stencil S defined in (2.1),
or if the discontinuity is in the target cell Ii+ 1

2

itself, then we would

use the central stencil S defined in (2.1);
• Otherwise, if the discontinuity is in the cell Ii+ 3

2

, then we should choose

the left-biased stencil

S(−2) = {xi−2, xi−1, xi, xi+1}; (2.3)

• Otherwise, if the discontinuity is in the cell Ii− 1
2

, then we should choose

the right-biased stencil

S(0) = {xi, xi+1, xi+2, xi+3}. (2.4)

We remark that the strategy above assumes that discontinuities of the
function u(x) are isolated, hence when the mesh size ∆x is small enough,
we have at most one discontinuity in the stencil S determined by (2.1).
The ENO and WENO procedures are both designed based on this assump-
tion. However, they work well even when two discontinuities of the function
collide, that is, when this assumption is violated, in extensive numerical
experiments in the literature.

The problem with the strategy above is that we would need to know the
existence and location of the discontinuity, based only on the point values ui
of the function. This is difficult, especially when the mesh is coarse, namely
when ∆x is not small enough. The novelty of the ENO procedure in (Harten
et al. 1987) is that, based on extensive numerical experiments, the authors
identified a strategy to automatically choose the stencil S which works well
both in the asymptotic regime (when ∆x is small) and in the pre-asymptotic
regime. The strategy to choose the local stencil Si+ 1

2

, associated with the

cell Ii+ 1
2

to construct the interpolation polynomial pi+ 1
2

(x), is as follows:
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• Compute the Newton divided differences of u(x). For all j = · · · 1, 2, 3, · · · ,

u[j, 0] = uj ,

then for k = 0, 1, ... and all j,

u[j, k + 1] =
u[j + 1, k]− u[j, k]

xj+1+k − xj
.

• Choose the initial stencil S(0) to only contain the two end points of the
target cell Ii+ 1

2

S(0) = {xi, xi+1}.

Then, each time only one point is added to the stencil, the left point or
the right point, depending upon which one gives a “smoother” stencil.
For k = 0, 1, ..., suppose the left-most point in the stencil S(k) is xik ,

then the next stencil S(k+1) is determined as follows.

– If |u[ik − 1, k]| < |u[ik, k]|, then S(k+1) = S(k) ∪ {xik−1};

– Otherwise, S(k+1) = S(k) ∪ {xik+k+2}.

The final stencil is taken as Si+ 1
2

= S(p) where p + 1 is the degree of the

interpolation polynomial that we would like to use. Once the stencil Si+ 1
2

is determined, we can obtain the interpolation polynomial pi+ 1
2

(x) either by

the Newton form or by the Lagrangian form. If we are only interested in
obtaining specific information about the interpolation polynomial pi+ 1

2

(x),

for example its value at the mid-point xi+ 1
2

= 1
2(xi + xi+1) or the deriva-

tive at the left point xi or the right point xi+1, we could also obtain such
information directly from a linear combination of the point values uj in the
stencil Si+ 1

2

without explicitly constructing the polynomial pi+ 1
2

(x). For

explicit formulas and tables associated with this process, we refer to, e.g.
(Shu 1998).

We remark that, in the choice of the ENO stencil, we start with S(0) which
consists of the two end points of the target interval Ii+ 1

2

. This is actually

needed for the conservation property when ENO is used to form a scheme
for solving the hyperbolic conservation laws (1.1). If the ENO procedure
is used for other purposes, the starting stencil could also contain just one
point (e.g. xi), or more than two points, to suit the particular need of the
applications.

The ENO procedure outlined above may end up with a very biased stencil,
especially when the order of accuracy is high, for certain functions whose
derivatives (and hence divided differences) are monotone. For example, for
the function u(x) = ex, it has its derivatives of all orders being strictly
monotonically increasing, hence the divided differences as a function of the



8 Chi-Wang Shu

first point in the stencil are also monotonically increasing, resulting in an
ENO stencil which is biased to the left. This may cause some stability and
accuracy issues when used to solve time-dependent hyperbolic equations
(Rogerson and Meiburg 1990). To overcome this difficulty, a modified ENO
procedure with the choice biased to a target final stencil was defined in (Shu
1990). The only modification to the classical ENO procedure as outlined
above is: we have a preferred target final stencil Sc, with the left-most
point xic , for example the central stencil S determined in (2.1) for which
xic = xi−1. Before the left-most point of the current stencil S(k) reaches xic ,
we would use a factor to encourage the next stencil S(k+1) to shift to the
left; and when the left-most point of the current stencil S(k) already reaches
or has passed xic , then we would use the factor to discourage this shift. To
be more specific, we choose a biasing factor b > 1 (b = 2 is suggested in
(Shu 1990)). Suppose the left-most point in the stencil S(k) is xik > xic ,

then the next stencil S(k+1) is determined as follows.

• If |u[ik − 1, k]| < b|u[ik, k]|, then S(k+1) = S(k) ∪ {xik−1};
• Otherwise, S(k+1) = S(k) ∪ {xik+k+2}.

On the other hand, if the left-most point in the stencil S(k) is xik ≤ xic ,

then the next stencil S(k+1) is determined as follows.

• If b|u[ik − 1, k]| < |u[ik, k]|, then S(k+1) = S(k) ∪ {xik−1};
• Otherwise, S(k+1) = S(k) ∪ {xik+k+2}.

The final stencil from the modified ENO procedure has better chance to
be the target preferred stencil in the smooth regions of u(x).

2.2. The ENO reconstruction procedure in 1D

While the ENO interpolation procedure as described in section 2.1 is the
most basic one, a slightly different ENO reconstruction procedure is more
relevant for the construction of conservative schemes for solving hyperbolic
conservation laws (1.1). We will describe this reconstruction procedure and
point out its relationship to the ENO interpolation procedure that we have
described in the previous section.

Let us use a slightly different notation, which is more standard for finite
volume schemes. We denote discretization of the line R into cells Ii =
(xi− 1

2

, xi+ 1

2

), where · · · x 1
2

< x 3
2

< x 5
2

< · · · , ∆xi = xi+ 1

2

−xi− 1

2

is the mesh

size of cell Ii, and ∆x = maxi∆xi. We assume that we are given the cell
averages of a piecewise smooth function u(x):

ūi =
1

∆xi

∫ x
i+1

2

x
i− 1

2

u(x)dx, i = · · · 1, 2, 3, · · ·

and we would like to obtain a high order polynomial approximation pi(x),
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defined on Ii, which approximates the function u(x) to high order accuracy
when u(x) is smooth. Similar to an interpolation problem, the reconstruc-
tion problem is based on a stencil, e.g. a central stencil S = {Ii−1, Ii, Ii+1},
and we would like to find a quadratic polynomial pi(x) such that

1

∆xj

∫ x
j+1

2

x
j− 1

2

pi(x)dx = ūj, j = i− 1, i, i + 1.

We could of course use ideas similar to interpolation to establish the exis-
tence and uniqueness of such reconstruction polynomials pi(x) and to obtain
them explicitly. However, it is more convenient to use the so-called “recon-
struction via primitive functions” procedure to convert the reconstruction
problem to the interpolation problem described in the previous section, and
then we can simply use the ENO procedure which has been spelled out there.

Define

U(x) =

∫ x

a

u(ξ)dξ (2.5)

where the lower limit a is not important and could be chosen as a = xi0− 1

2

where Ii0 is the first cell of interest to us, for convenience. We then have
U(xi0− 1

2

) = 0 and, for any i ≥ i0,

U(xi+ 1
2

) =

∫ x
i+1

2

x
i0−

1
2

u(ξ)dξ =
i

∑

j=i0

∫ x
j+1

2

x
j− 1

2

u(ξ)dξ =
i

∑

j=i0

ūj∆xj .

That is, if we know the cell averages ūj of u(x), we also know the point values
U(xi+ 1

2

) of the primitive function U(x) as defined in (2.5). We can then

invoke the interpolation procedure described in section 2.1 for U(x). For
example, if we use a central stencil S̃ = {xi− 3

2

, xi− 1
2

, xi+ 1
2

, xi+ 3
2

}, obtaining

a cubic interpolation polynomial Pi(x) satisfying

Pi(xj+ 1
2

) = U(xj+ 1
2

), j = i− 2, i − 1, i, i + 1

then pi(x) =
d
dx
Pi(x) would be the corresponding quadratic reconstruction
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polynomial for u(x) on the central stencil S = {Ii−1, Ii, Ii+1}, since

1

∆xj

∫ x
j+1

2

x
j− 1

2

pi(ξ)dξ =
1

∆xj

∫ x
j+1

2

x
j− 1

2

d

dx
Pi(ξ)dξ

=
1

∆xj

(

Pi(xj+ 1
2

)− Pi(xj− 1
2

)
)

=
1

∆xj

(

U(xj+ 1
2

)− U(xj− 1
2

)
)

=
1

∆xj





j
∑

ℓ=i0

ūℓ∆xℓ



−





j−1
∑

ℓ=i0

ūℓ∆xℓ





= ūj , j = i− 1, i, i + 1

where in the third equality we have used the fact that j = i − 1, i or
i + 1, hence both xj− 1

2

and xj+ 1
2

are in the interpolation stencil S̃ for the

interpolation polynomial Pi(x).
Because of this relationship between reconstruction and interpolation, we

do not need to consider a separate ENO reconstruction procedure, we can
simply use the ENO interpolation procedure described in the previous sec-
tion for obtaining Pi(x), then take its derivative to obtain the reconstruction
polynomial pi(x). We also note that the first order divided difference of U(x)
is

U

[

i−
1

2
, 1

]

=
U(xi+ 1

2

)− U(xi− 1

2
)

xi+ 1
2

− xi− 1
2

=

∫
x
i+1

2
a u(ξ)dξ −

∫
x
i− 1

2
a u(ξ)dξ

∆xi
=

∫
x
i+1

2
x
i− 1

2

u(ξ)dξ

∆xi
= ūi,

hence the first and higher order divided differences of U(x) can be written as
the divided differences of ū, that is, there is no need to explicitly compute the
divided differences of U(x) at all (since the zeroth order divided difference
of U(x) is not needed when computing pi(x), which is the derivative of the
interpolating polynomial Pi(x)).

We again refer to, e.g. (Shu 1998) for explicit formulas and tables associ-
ated with the ENO reconstruction process.

2.3. Properties of ENO interpolation and reconstruction procedures

Besides the standard approximation properties of the ENO interpolation
and reconstruction polynomials when the function is smooth in the stencil,
we also have several properties of the ENO procedure for piecewise smooth
functions in relation to its (essentially) non-oscillatory performance.
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2.3.1. Total variation bounded property for piecewise smooth functions

In (Harten et al. 1986), the following total variation bounded (TVB) prop-
erty of the ENO interpolation and ENO reconstruction procedures, as de-
scribed in sections 2.1 and 2.2, has been proved.

For a piecewise smooth function u(x) with isolated discontinuities, both
the ENO interpolation polynomial pi+ 1

2

(x) as described in section 2.1, and

the ENO reconstruction polynomial pi(x) as described in section 2.2, have
the following TVB property: These exist a function q(x), satisfying

q(x) = pr(x) +O(∆xk+1), x ∈ Ir

(where r = i + 1
2 for the ENO interpolation and r = i for the ENO recon-

struction), such that

TV (q) ≤ TV (u) +O(∆xk).

Here, TV denotes the bounded variation semi-norm of the function. This
property completely rules out the possibility of Gibbs oscillations near dis-
continuities, and is responsible for the (essentially) non-oscillatory perfor-
mance of ENO approximations.

A crucial fact used in the proof of the TVB property above is that, if
the discontinuity is inside the target cell Ir, then the interpolation or re-
construction polynomial pr(x) is monotone in Ir. The proof of this fact is
also provided in (Harten et al. 1986). Away from the discontinuities, the
ENO interpolation or reconstruction polynomial has a stencil which does not
contain any discontinuity, hence the classical approximation result applies,
giving an error estimate at the truncation error O(∆xk+1).

2.3.2. The sign property

The TVB property described in the previous subsection is an approxima-
tion result for piecewise smooth functions. That is, it holds only if the
point values (for the ENO interpolation) or cell averages (for the ENO re-
construction) are exact from the piecewise smooth function u(x). If the
ENO procedure is used to solve a time-dependent partial differential equa-
tion (PDE), such as the conservation law equation (1.1), at later time the
point values or cell averages of the numerical solution are already polluted
by accumulated numerical errors, hence the TVB property can no longer be
rigorously proved.

It would be desirable to get a stability result for the ENO procedure which
does not depend on the smoothness of the function u(x). The following “sign
property”, which was proved in (Fjordholm, Mishra and Tadmor 2013b),
establishes such a stability result.

Sign Property for the ENO reconstruction: For an ENO reconstruc-
tion procedure described in section 2.2, the jump at the cell interface from
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the ENO reconstruction in two adjacent cells, namely u+
j+ 1

2

= pj+1(xj+ 1

2

)

and u−
j+ 1

2

= pj(xj+ 1
2

), has the same sign as the jump in the given cell aver-
ages:

(ūi+1 − ūi)(u
+
j+ 1

2

− u−
j+ 1

2

) ≥ 0 ∀i.

Moreover, their ratio is uniformly bounded:

0 ≤
u+
j+ 1

2

− u−
j+ 1

2

ūi+1 − ūi
≤ C

where C is a universal constant depending only on the polynomial degree k

used in the ENO interpolation.
Similar result is also valid for the ENO interpolation procedure in terms

of its jumps of the derivatives, as described in section 2.1.
The sign property is somewhat surprising. The ENO reconstruction val-

ues u±
i+ 1

2

are obtained from several neighboring cell averages in the ENO

reconstruction, but the sign of the jump u+
i+ 1

2

−u−
i+ 1

2

is solely determined by

the immediate neighboring cell averages ūi and ūi+1, the other cell averages
further away but still in the ENO reconstruction stencil seem to play no
role in the sign property. This is a very strong stability result. It excludes
the saw-tooth or zigzag pattern in the reconstruction (e.g. the given cell
averages are increasing from cell i to cell i+1, but the reconstructed values
at the cell interface xi+ 1

2

is decreasing). It also guarantees that the jump at

any interface can be at most a fixed factor larger than the difference of the
neighboring cell averages.

Notice that the sign property cannot be proved for the biased ENO pro-
cedure described in section 2.1. It also can only be proved for a very special
class of the WENO procedure (Fjordholm and Ray 2016).

This sign property could be used to obtain arbitrarily high-order accurate
entropy stable ENO schemes for systems of conservation laws (Fjordholm,
Mishra and Tadmor 2013a).

2.4. The ENO procedure based on non-polynomial functions

Similar ENO interpolation and reconstruction procedures can of course also
be designed for non-polynomial approximation functions. In (Christofi 1996),
such ENO procedure was designed for trigonometric polynomial basis func-
tions. A key ingredient in such design is to define suitable divided differ-
ences, which could be linked to derivatives of the function u(x), and hence
can be used to choose the ENO stencil appropriately. Such ENO procedures
could be useful for certain classes of functions, for example high frequency
wave functions, for which trigonometric polynomials could be expected to
provide better approximations than algebraic polynomials. Other types of
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basis functions (such as exponential type functions to resolve better bound-
ary or internal layers with sharp gradients) could of course also be used.

2.5. Multi-dimensions and unstructured meshes

For two and higher dimensions, there is a difference between tensor product
type meshes and unstructured meshes.

For tensor product type meshes, if a finite difference ENO interpolation
is desired, it is usually sufficient just to use one dimensional interpolations,
keeping all the other spatial variables fixed. This would be the case for, e.g.
the finite difference ENO scheme in multi-dimensions to be described in sec-
tion 4.2. If a finite volume ENO reconstruction is desired, it is usually a pro-
cedure to obtain point values of a function from the given multi-dimensional
cell averages (we use two dimensions as examples):

˜̄ui,j =
1

∆xi∆yj

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

u(x, y)dxdy

where Ii,j = (xi− 1
2

, xi+ 1
2

)× (yj− 1
2

, yj+ 1
2

) is a two dimensional tensor product

cell, with mesh sizes ∆xi = xi+ 1

2

− xi− 1

2

and ∆yj = yj+ 1

2

− yj− 1

2

. Here, we

use bar to denote the cell averaging operator in x, and tilde to denote the cell
averaging operator in y. If we apply an one-dimensional ENO reconstruction
procedure in x, with the y index j fixed, we would be able to “de-cell average”
in the x variable to obtain the “point values” (relative to the x variable),
which are in fact still a cell average in y. For example, we could get

ũ−
i+ 1

2
,j
=

1

∆yj

∫ y
j+1

2

y
j− 1

2

(x−
i+ 1

2

, y)dy

Then, we could fix the x index (i+ 1
2)

−, and apply another one-dimensional
ENO reconstruction procedure in y, to “de-cell average” in the y variable
to obtain the point values of the function u(x) at, e.g. u(x−

i+ 1

2

, yj+β),

where yj+β could be a Gauss quadrature point along the cell boundary
(yj− 1

2

, yj+ 1
2

). This would be the case for, e.g. the finite volume ENO scheme

in multi-dimensional tensor product meshes to be described in section 4.1.3.
For unstructured meshes, for example triangular meshes in two dimen-

sions, we cannot use one-dimensional ENO procedures directly. However,
the basic ENO philosophy is still valid, namely we obtain interpolation or
reconstruction based on several fixed stencils containing enough triangles to
build polynomial approximations either by exact interpolation or reconstruc-
tion, or by a least square procedure, then we choose a final “smoothest” sten-
cil to obtain the ENO approximation polynomial. A key ingredient in such
design is still to define suitable “divided differences”, which could be linked
to derivatives of the function u(x, y), and hence can be used to choose the
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ENO stencil appropriately. Such an ENO scheme on unstructured meshes
was first constructed in (Abgrall 1994).

For more details about the two (and higher) dimensional ENO reconstruc-
tion procedures, we refer to the references listed above and to the lecture
notes (Shu 1998).

3. The WENO interpolation and reconstruction procedures

While the ENO interpolation and reconstruction procedures described in
section 2 are very popular in applications, they do have a few shortcom-
ings. The first is that several candidate stencils have been considered in
the ENO stencil choice process, however only one of them is finally adopted
and the remaining ones have been abandoned. While this certainly makes
sense near discontinuities as we do not want interpolation or reconstruc-
tion across discontinuities, in smooth regions (which form the majority part
in the computational domain for piecewise smooth functions) it might be
more beneficial to use information from all the candidate stencils, as none
of them contains any discontinuity. Also, the “digital” way of choosing the
stencil and hence the ENO approximation makes the procedure less smooth:
the interpolated or reconstructed value is at most Lipschitz continuous with
respect to the given data, but not smoother. This might cause problems
in steady state convergence. Finally, the ENO stencil choice process might
choose “downwind-biased” stencils systematically, hence affecting the stabil-
ity and achieved order of accuracy, as showed by the numerical experiments
in (Rogerson and Meiburg 1990). Even though the biased ENO procedure
(Shu 1990) reviewed in section 2.1 addresses this issue, it would be better to
have a more systematic way of ensuring stable stencils for solving hyperbolic
conservation laws.

The weighted ENO (WENO) procedure, which is an extension of the
ENO procedure, could overcome the shortcomings mentioned above, while
maintaining the good properties of ENO approximations. The idea is to
use a convex combination of interpolations or reconstructions from different
candidate stencils, rather than using only one of them as is the case for
ENO. Of course, the crucial ingredient is then the choice of the combination
coefficients, also called nonlinear weights, which should be chosen to fulfill
the following two properties: (1) When the solution is smooth in all can-
didate stencils, the nonlinear weights should be chosen to be very close to
the so-called “linear weights”, which could provide the highest possible or-
der of accuracy from the combined stencil; (2) When a particular candidate
stencil contains a discontinuity, while there is at least one other candidate
stencil which does not contain any discontinuity, then the candidate stencil
containing a discontinuity should be assigned a very small weight, hence its
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influence towards the approximation is negligible. This would avoid spurious
oscillations in the same way as ENO.

The first WENO procedure was introduced in (Liu et al. 1994), in which a
third order WENO reconstruction procedure was developed and used to form
a finite volume scheme for solving hyperbolic conservation laws. The proce-
dure in (Liu et al. 1994) can produce a (k+1)-th order WENO scheme from
the same stencils from a k-th order ENO scheme. In (Jiang and Shu 1996),
a general framework in forming a (2k + 1)-th order WENO approxima-
tion from a k-th order ENO stencil was established, and a finite difference
WENO scheme, which is more efficient for solving multi-dimensional conser-
vation laws than finite volume schemes, was constructed based on the fifth
order WENO approximation procedure. The fifth order WENO scheme con-
structed in (Jiang and Shu 1996) has been the most commonly used WENO
scheme in applications. Later on, there have been numerous papers on ex-
tending, adapting, and applying WENO schemes in the literature. In this
section we will describe briefly the basic ideas and various versions of WENO
approximation procedures.

3.1. The classical WENO procedures

The classical WENO approximation procedure, initialized in (Liu et al. 1994)
and generalized in (Jiang and Shu 1996), will be summarized in this sub-
section. A k-th order ENO scheme can be “upgraded” to a (2k + 1)-th
order WENO approximation as follows. To make the presentation simple,
we concentrate on the k = 3 case, that is, the fifth order WENO procedure
in (Jiang and Shu 1996).

Let us look at the third order ENO reconstruction procedure in section
2.2. The third order ENO approximation pi(x) in cell Ii, which is a quadratic
polynomial, could be one the following three polynomials:

• p(1)(x), corresponding to the quadratic reconstruction polynomial over
the left-biased stencil S(1) = {Ii−2, Ii−1, Ii} ;

• or p(2)(x), corresponding to the quadratic reconstruction polynomial
over the central stencil S(2) = {Ii−1, Ii, Ii+1} ;

• or p(3)(x), corresponding to the quadratic reconstruction polynomial
over the right-biased stencil S(1) = {Ii, Ii+1, Ii+2} .

The idea of WENO is to form a convex combination of the three ENO
candidate polynomials p(1)(x), p(2)(x) and p(3)(x). Typically, we are only
interested in a particular value of the reconstruction, e.g. the approximation
at the right boundary of cell Ii, hence we would like to form a convex
combination

u−
i+ 1

2

= w1p
(1)(xi+ 1

2

) + w2p
(2)(xi+ 1

2

) +w3p
(3)(xi+ 1

2

) (3.1)
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where the nonlinear weights satisfy

wℓ ≥ 0,

3
∑

ℓ=1

wℓ = 1. (3.2)

Clearly, for any such choices of the nonlinear weights, we have at least third
order accuracy

u−
i+ 1

2

= u(xi+ 1
2

) +O(∆x3)

if the function u(x) is smooth in the combined big stencil S = {Ii−2, Ii−1, Ii, Ii+1, Ii+2},
since each p(ℓ)(xi+ 1

2

) is third order accurate and
∑3

ℓ=1wℓ = 1. However,

it would be desirable if we could get higher than third order accuracy by
putting some constraints on the nonlinear weights wℓ besides

∑3
ℓ=1wℓ = 1.

In (Liu et al. 1994), a strategy to upgrade the order by one was developed.
In (Jiang and Shu 1996), a general framework to upgrade the order from k

to 2k + 1 was introduced. For the current k = 3 case, one can find positive
constants γℓ, called linear weights, such that

p(xi+ 1
2

) =

3
∑

ℓ=1

γℓp
(ℓ)(xi+ 1

2

)

where p(x) is the fourth degree reconstruction polynomial over the big stencil
S = {Ii−2, Ii−1, Ii, Ii+1, Ii+2}, and γ1 = 1

10 , γ2 = 3
5 and γ3 = 3

10 . So if we
take the nonlinear weights to be equal to the linear weights wℓ = γℓ, we
would achieve fifth order accuracy, however the reconstruction would then
be oscillatory near discontinuities. The idea is then to design the nonlinear
weights reflecting the smoothness of the function u(x) in each of the small
stencils S(ℓ), so that in the smooth case wℓ is chosen close to the linear
weight γℓ to secure upgraded accuracy, and near discontinuities wℓ is chosen
close to zero to minimize its effect towards the WENO reconstruction. This
is achieved by the so-called smoothness indicators (sometimes also called,
perhaps more accurately, as roughness indicators), taken as

βℓ =
2

∑

r=1

∆x2r−1
i

∫ x
i+1

2

x
i− 1

2

(

dr

dxr
p(ℓ)(x)

)2

dx (3.3)

The smoothness indicator βℓ defined in (3.3) is a scaled square sum of the L2-
norms of derivatives of the reconstruction polynomial p(ℓ)(x) over the target
interval Ii, starting from the first derivative and ending by the highest non-
zero derivative of the k-th degree polynomial (here k = 2). The scaling factor
∆x2r−1

i is introduced to make the final smoothness indicator βℓ independent
of the mesh size ∆x on uniform meshes (on nonuniform meshes, βℓ depends
only on the relative ratios of mesh sizes in the stencil but is still independent
of the largest mesh size ∆x). On uniform meshes, one can work out βℓ from
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(3.3) to get the explicit formulas:

β1 =
13

12
(ūi−2 − 2ūi−1 + ūi)

2 +
1

4
(ūi−2 − 4ūi−1 + 3ūi)

2

β2 =
13

12
(ūi−1 − 2ūi + ūi+1)

2 +
1

4
(ūi−1 − ūi+1)

2 (3.4)

β3 =
13

12
(ūi − 2ūi+1 + ūi+2)

2 +
1

4
(3ūi − 4ūi+1 + ūi+2)

2

Clearly, βℓ are quadratic functions of the cell averages of u(x) in the relevant
stencils, which is natural from the definition (3.3). With these smoothness
indicators, we define the nonlinear weights as

wℓ =
w̃ℓ

∑3
r=1 w̃r

, with w̃r =
γr

(ε+ βr)2
. (3.5)

Here ε is a small positive number to avoid the denominator to become zero
and is typically chosen as ε = 10−6 in actual calculations. Notice that,
when βr = 0, the denominator of w̃r becomes ε2 = 10−12, which is close
to the machine zero in double precision. With these choices of nonlinear
weights, (2k + 1)-th order accuracy (here, k = 2, corresponding to fifth
order accuracy) can be achieved in smooth regions. Near discontinuities,
that is, if one of the small stencils S(ℓ) contains a discontinuity, but at least
one other small stencil does not contain any discontinuity, then the corre-
sponding nonlinear weight wℓ = O(∆x4) is very small, hence the resulting
WENO reconstruction is essentially non-oscillatory. Note that, if all three
small stencils contain a discontinuity, then all three reconstructions p(ℓ)(x)
are monotone in the target cell Ii which contains this discontinuity, hence
the WENO reconstruction, being a convex combination of these three re-
constructions, is also essentially non-oscillatory, regardless of the values of
the nonlinear weights.

Higher order ((2k + 1)-th order, with k = 3, 4, 5, ...) WENO reconstruc-
tion procedures were developed in (Balsara and Shu 2000). It appears that
the fifth, ninth and thirteenth order WENO schemes perform better than
the third, seventh and eleventh order ones (that is, the improvement from
third order WENO to fifth order WENO is more apparent than the improve-
ment from fifth order WENO to seventh order WENO, etc.), according to
extensive numerical experiments.

A similar WENO interpolation procedure extending the ENO interpola-
tion in section 2.1 can be defined along the same lines. We skip the details
and refer the readers to (Shu 1998, Shu 2009).

3.2. Variants of the WENO procedures

Since the publication of (Liu et al. 1994) and (Jiang and Shu 1996), there
have been numerous papers making modifications and improvements of the
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WENO procedure. However, it appears that the benefits of these modifi-
cations and improvements are not universal in all applications. We would
advise a new user of WENO for solving a practical problem to use the classic
fifth order one in (Jiang and Shu 1996), at least at the beginning, as it is
relatively simple to code and would generate stable and accurate results in
most cases.

The variants of the WENO modifications and improvements will be briefly
surveyed in this section. This survey is not exhaustive.

3.2.1. Improving accuracy in smooth regions
One aspect of the classical WENO schemes in (Jiang and Shu 1996) which
could be improved is the achievable order of accuracy in smooth regions.
In (Jiang and Shu 1996), it was proved and numerically tested that the
scheme can achieve the designed fifth order accuracy in smooth regions, in-
cluding at smooth extrema. However, it was pointed out in (Henrick, Aslam
and Powers 2005) that the order of accuracy could degenerate for functions
with certain types of extrema. A mapped WENO procedure, which keeps
the smoothness indicator (3.3) unchanged but modifies the formula for the
nonlinear weights in (3.5) through a mapped function, was introduced in
(Henrick et al. 2005) to enhance the accuracy in such cases. However, for
most test cases the degeneracy of the order of accuracy could become ap-
parent only when ε is taken as an extremely small number, e.g. ε = 10−10

or even smaller, which is not necessary in practical computation. Another
attempt to enhance the accuracy of the WENO procedure was developed
in (Borges, Carmona, Costa and Don 2008, Castro, Costa and Don 2011),
which was termed WENO-Z. It was based on nonlinear weights which take
into account of the smoothness indicators of all sub-stencils in the recon-
struction. Other attempts exist along similar directions and will not be
discussed here.

3.2.2. Treatment of negative weights
One difficulty with the classical WENO procedure in (Jiang and Shu 1996) is
that the linear weights are uniquely determined by the accuracy requirement
and can be negative, or even fail to exist. This is especially the case for
WENO reconstructions, as for WENO interpolations, it is proved in (Carlini,
Ferretti and Russo 2005) that the linear weights always exist and are always
positive for the procedure in section 2.1 regardless of where in the target
cell Ii+ 1

2

we are evaluating this interpolation.

If the standard WENO procedure is used when some of the linear weights
are negative, for solving hyperbolic conservation laws, oscillations and insta-
bility may appear (Shi, Hu and Shu 2002). A procedure to systematically
modify the WENO procedure so that it is still stable and non-oscillatory in
the presence of negative weights is developed in (Shi et al. 2002) and has
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been used in many later works, for example in (Qiu and Shu 2002) where this
technique is used to construct high order central WENO schemes, in (Puppo
and Russo 2006) where it is used to construct high order staggered finite
difference WENO schemes, in (Carstro, Gaallardo and Parés 2006) where it
is used to construct high order WENO schemes for solving non-conservative
hyperbolic systems, and in (Noelle, Pankratz, Puppo and Natvig 2006, Xing
and Shu 2006b, Xing and Shu 2006c) where it is used to construct well-
balanced high order WENO schemes for a class of balance laws including
the shallow water equations.

Another way to avoid this difficulty is to have only positive linear weights.
For example, if we would be satisfied with the WENO approximation (3.1)
having the same third order accuracy as any one of the ENO approximation
p(ℓ)(xi+ 1

2

), then any positive linear weights γℓ, resulting in the nonlinear

weights wℓ (3.5) satisfying (3.2), would be fine. This approach is particularly
attractive for WENO approximations on moving meshes for which the linear
weights would change from different time levels, or for constructing finite
volume WENO schemes on unstructured meshes, we will comment on this
later in section 3.3.

3.2.3. WENO procedures with unequal-sized sub-stencils
The classical WENO schemes in (Liu et al. 1994, Jiang and Shu 1996, Bal-
sara and Shu 2000), as described in section 3.2.1, use several small stencils of
the same size to make up the big stencil. Another class of WENO approxi-
mations uses one large stencil and several smaller stencils. For example, one
could use a big stencil

S(1) = {Ii−2, Ii−1, Ii, Ii+1, Ii+2},

and two smaller stencils

S(2) = {Ii−1, Ii}, S(3) = {Ii, Ii+1},

and form three reconstruction polynomials: a fourth order polynomial p(1)(x)
satisfying

1

∆xj

∫ x
j+1

2

x
j− 1

2

p(1)(x)dx = ūj , j = i− 2, i − 1, i, i + 1, i+ 2,

and two linear polynomials p(2)(x) and p(3)(x) satisfying

1

∆xj

∫ x
j+1

2

x
j− 1

2

p(2)(x)dx = ūj, j = i− 1, i,

and
1

∆xj
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j+1

2

x
j− 1

2

p(3)(x)dx = ūj, j = i, i+ 1.
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We then choose three arbitrary positive linear weights γ1, γ2 and γ3, and
use the identity

p(1)(x) = γ1

(

1

γ1
p(1)(x)−

γ2

γ1
p(2)(x)−

γ3

γ1
p(3)(x)

)

+ γ2p
(2)(x) + γ3p

(3)(x)

to form our WENO approximation. If we denote

q(1)(x) =
1

γ1
p(1)(x)−

γ2

γ1
p(2)(x)−

γ3

γ1
p(3)(x)

which is also a fourth degree polynomial, then we can change the original
high order reconstruction on the large stencil S(1), which is

p(1)(x) = γ1q
(1)(x) + γ2p

(2)(x) + γ3p
(3)(x)

into a WENO reconstruction

p(x) = w1q
(1)(x) + w2p

(2)(x) + w3p
(3)(x) (3.6)

with the nonlinear weights wℓ computed by the same recipe (through the
smoothness indicators of p(ℓ)(x)) as in the regular WENO procedure detailed
in section 3.1. Because the two lower order polynomials p(2)(x) and p(3)(x)
are only second order approximations to u(x), the requirement on the close-
ness of wℓ to the linear weights γℓ in smooth regions is more stringent than
that for the classical WENO schemes. Hence in practice, a procedure with
enhanced accuracy such as the mapped WENO (Henrick et al. 2005) or the
WENO-Z (Borges et al. 2008, Castro et al. 2011) would be preferable.

Since the linear weights can be chosen as arbitrary positive numbers, they
are usually chosen in a way that the large stencil has a relatively large linear
weight like 0.8 or 0.9, and the smaller stencils share equally the remaining
to make the total sum of the linear weights to be one. Another advantage
of the WENO procedure above is that the final WENO reconstruction (3.6)
is a polynomial (of the same degree as the polynomial p(1)(x) over the large
stencil) throughout the target interval Ii, while on the other hand, the clas-
sical WENO reconstruction can only be obtained for specific points inside
Ii or for specific functionals such as the integration over the cell Ii or the
derivative at a certain point in Ii.

The idea of this type of WENO reconstructions described above first
appeared in the context of central WENO schemes, in (Levy, Puppo and
Russo 1999, Levy, Puppo and Russo 2000, Capdeville 2008). Later, Zhu
and Qiu constructed finite difference and finite volume WENO schemes
based on this type of WENO reconstructions in (Zhu and Qiu 2016, Zhu
and Qiu 2017). More recently, Zhu and Shu developed a class of multi-
resolution WENO schemes based on this idea (Zhu and Shu 2018, Zhu and
Shu 2019a, Zhu and Shu 2019b), in which all the stencils are central, and (in
1D) if the large stencil has 7 cells, then the following smaller stencils have
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5, 3 and 1 cell(s), respectively. The multi-resolution WENO schemes are
particularly attractive for unstructured meshes (Zhu and Shu 2019a, Zhu
and Shu 2019b), because of their simplicity both in the choice of the stencil
and in the freedom of arbitrary positive linear weights.

3.2.4. Hermite type WENO procedure

If we would like to have a narrower stencil but require each cell or point
to contain more than one piece of information (e.g. each cell contains the
information of both its cell average and its first order moment, or each point
contains the information of both its point value and the value of the first
derivative), then a high order Hermite type ENO or WENO polynomial can
be reconstructed or interpolated in this narrower stencil. This procedure
has the advantage particularly as a limiter for discontinuous Galerkin (DG)
methods, to be reviewed in section 4.3, to fit the more compact DG data
structure. It can also be used as stand-along solver for PDEs. We refer to,
e.g., (Qiu and Shu 2003b, Qiu and Shu 2005b, Qiu and Shu 2005c) for more
details.

3.3. Multi-dimensions and unstructured meshes

For tensor product type meshes, the WENO procedure is similar to the
ENO procedure as described in section 2.5, namely either using the one-
dimensional WENO approximation in a dimension by dimension fashion (for
finite difference schemes), or using the one-dimensional WENO reconstruc-
tion first in one direction to “de-cell average” in that direction, followed by
the one-dimensional WENO reconstruction in the other direction to “de-cell
average” in the other direction.

For unstructured meshes, for example triangular meshes in two dimen-
sions and tetrahedral meshes in three dimensions, the classical WENO pro-
cedure is quite complicated (Hu and Shu 1999, Zhang and Shu 2009), aiming
at using several small stencils to form a higher order approximation from
the combined large stencil at particular points (usually quadrature points
along cell boundaries for evaluating numerical fluxes, see section 4 below for
more details) through linear weights, smoothness indicators, and nonlinear
weights similar to the one-dimensional procedure. The main complication
is that the linear weights are different for different quadrature points and
different mesh structure, and they could easily become negative, resulting
in large computational cost and the necessity to use the special treatment
for negative weights (Shi et al. 2002).

One possible remedy to reduce the computational cost of multi-dimensional
WENO schemes on unstructured meshes is to relax on the achievable ac-
curacy from the convex combination of approximations on small stencils.
If we would only require the same order of accuracy in the large combined
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stencil as that from each of the small stencils, then the choice of linear
weights could be arbitrary, with the only restriction that they sum to one.
This approach is particularly attractive for WENO approximations on mov-
ing meshes for which the linear weights would change from different time
levels, for example in Lagrangian type methods (Cheng and Shu 2008b);
and / or for constructing finite volume WENO schemes on unstructured
meshes for which linear weights are very difficult to determine, for example
in (Friedrichs 1998, Dumbser and Käser 2007, Dumbser, Käser, Titarev and
Toro 2007). It is also used in (Levy et al. 1999) to construct high order cen-
tral WENO schemes, for which the linear weights may fail to exist for some
cases if we would insist on the maximum attainable order of accuracy. In
(Liu and Zhang 2013), this approach is combined with the classical WENO
procedure in (Zhang and Shu 2009) to obtain more robust and less expensive
WENO schemes on three-dimensional tetrahedrons.

The procedure of using stencils with different sizes to form WENO ap-
proximations, which allows the choice of linear weights to be arbitrary with
the only restriction that they sum to one, as described in section 3.2.3,
is a better choice for constructing WENO approximations on unstructured
meshes and / or on moving meshes. These WENO approximations are not
only easy to construct, they also provide a polynomial in the target cell,
rather than just individual approximations at different quadrature points
from the classical WENO procedure. We would advocate in particular the
multi-resolution WENO schemes developed in (Zhu and Shu 2019a, Zhu and
Shu 2019b), which have provided a simple and effective WENO approxima-
tion procedure for both two and three dimensional unstructured meshes.

For more details about the two (and higher) dimensional WENO recon-
struction procedures, we again refer to the references listed above and to
the lecture notes (Shu 1998).

3.4. Other WENO procedures

The WENO interpolation and reconstruction procedures described in previ-
ous sections are the most commonly used WENO procedures in applications.
However, other WENO procedures can be similarly defined.

3.4.1. WENO approximations to derivatives
We could use WENO interpolation to approximate the first, second or higher
order derivatives of the piecewise smooth function u(x), given its point values
ui = u(xi). By the classical WENO procedure, this would involve different
linear weights than those for interpolation, which could often become nega-
tive (Liu, Shu and Zhang 2009b, Liu, Shu and Zhang 2011b), hence requiring
the special treatment for negative weights (Shi et al. 2002). Another point
requiring particular attention is that in the definition of the smoothness in-
dicator (3.3), the summation should start from r = m+1 for approximating



ENO and WENO Schemes 23

m-th order derivative, since one should not include m-th order derivative
itself in the measurement of smoothness indicator if one is approximating
the m-th order derivative. This is a common mistake which may cause poor
performance both in accuracy loss and in spurious oscillations.

The procedure of using stencils with different sizes to form WENO ap-
proximations, which allows the choice of linear weights to be arbitrary with
the only restriction that they sum to one, as described in section 3.2.3, is
a good choice for constructing WENO approximations to derivatives of dif-
ferent orders. Since the resulting WENO approximation is a polynomial
in the target cell, the approximation to the m-th derivatives can be read-
ily obtained just by taking the m-th derivative of the WENO polynomial,
paying attention only in the computation of the smoothness indicator (3.3),
whose summation must start from r = m + 1. We would again advocate
in particular the multi-resolution WENO procedure developed in (Zhu and
Shu 2018, Zhu and Shu 2019a, Zhu and Shu 2019b) for this purpose.

3.4.2. WENO approximations to integration

We could use WENO interpolation to approximate the integration of the
piecewise smooth function u(x) over the target cell, given its point values
ui = u(xi). By the classical WENO procedure, this would again involve
different linear weights than those for interpolation, which could often be-
come negative (Shu 2009, Chou and Shu 2006, Chou and Shu 2007), hence
requiring the special treatment for negative weights (Shi et al. 2002). Once
more, the procedure of using stencils with different sizes to form WENO
approximations, which allows the choice of linear weights to be arbitrary
with the only restriction that they sum to one, as described in section 3.2.3,
is a good choice for constructing WENO integration. Since the resulting
WENO approximation is a polynomial in the target cell, the approximation
to the integration over the target cell can be readily obtained just by taking
the integration of the WENO polynomial. We would once more advocate
in particular the multi-resolution WENO procedure developed in (Zhu and
Shu 2018, Zhu and Shu 2019a, Zhu and Shu 2019b) for this purpose.

4. ENO and WENO schemes for conservation laws

The most important application of the ENO and WENO approximation
procedure outlined in sections 2 and 3 is to perform spatial discretizations for
solving the hyperbolic conservation laws (1.1), Hamilton-Jacobi equations
(1.2) or convection-diffusions equations (1.3). In this section we describe the
procedure for solving hyperbolic conservation laws.
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4.1. Finite volume schemes for conservation laws

One of the most important classes of numerical schemes for solving hyper-
bolic conservation laws is the class of finite volume schemes. We will describe
ENO and WENO finite volume schemes in this subsection.

4.1.1. One dimensional scalar equations

If we integrate the conservation law (1.1) over the cell Ii = (xi− 1
2

, xi+ 1
2

), we

obtain its integral form

d

dt
ūi +

1

∆xi

(

f(ui+ 1
2

)− f(ui− 1
2

)
)

= 0 (4.1)

where ūi = 1
∆x

∫
x
i+1

2
x
i− 1

2

u(x, t)dx is the spatial cell average of the solution

u(x, t) in the cell Ii as defined in section 2.2. To convert the equality (4.1)
into a finite volume scheme, we would take our computational variables as
the cell averages {ūi} and use the ENO or WENO reconstruction procedures
described in sections 2.2 or 3.1 respectively, to obtain an approximation to
the point values ui+ 1

2

. For the purpose of stability, we actually compute two

reconstructed values u±
i+ 1

2

, corresponding to the ENO or WENO approxi-

mations (which are piecewise polynomials) in the cell Ii and in the cell Ii+1

respectively. We can then feed them into a numerical flux

f̂

(

u−
i+ 1

2

, u+
i+ 1

2

)

to obtain the semi-discrete finite volume scheme

d

dt
ūi = −

1

∆xi

[

f̂

(

u−
i+ 1

2

, u+
i+ 1

2

)

− f̂

(

u−
i− 1

2

, u+
i− 1

2

)]

. (4.2)

The choice of the numerical flux f̂(u−, u+) is based on exact or approxi-
mate Riemann solvers. In the scalar case they are chosen from the class
of monotone fluxes. Examples of monotone fluxes include the Godunov
flux, the Engquist-Osher flux, and the Lax-Friedrichs flux. We refer to, e.g.
(LeVeque 1990) and references therein for a detailed discussion of monotone
fluxes.

The ENO reconstruction procedure to obtain u−
i+ 1

2

starts with the cell Ii

in the stencil, and then adding one cell at a time with the ENO process until
the desired number of cells is reached, as outlined in section 2.2. The ENO
reconstruction procedure to obtain u+

i+ 1
2

is mirror symmetric (with respect

to the location xi+ 1
2

), namely starting with the cell Ii+1 in the stencil, and

then adding one cell at a time with the ENO process until the desired number
of cells is reached.
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Likewise, the WENO reconstruction procedure to obtain u−
i+ 1

2

uses a left-

biased stencil, e.g. {Ii−2, Ii−1, Ii, Ii+1, Ii+2} in the fifth order case, and the
WENO procedure as outlined in section 3.1. The WENO reconstruction
procedure to obtain u+

i+ 1
2

is mirror symmetric (with respect to the location

xi+ 1

2

), namely using a right-biased stencil, e.g. {Ii−1, Ii, Ii+1, Ii+2, Ii+3} in

the fifth order case, and the WENO procedure.
Notice that the mesh for the finite volume scheme can be non-uniform, and

also the numerical flux f̂(u−, u+) needs only to be a Lipschitz continuous
function with respect to u− and u+, thus many less smooth fluxes such
as the Godunov flux or the Roe flux could be used. We again refer to
(LeVeque 1990) and references therein for a detailed discussion of these
fluxes.

4.1.2. One dimensional systems
For an one-dimensional conservation law system (1.1), u is a vector and
f(u) is a vector function. There is a requirement that the Jacobian matrix
f ′(u) is diagonalizable, with only real eigenvalues and a complete set of
eigenvectors. Let us assume that R(u) consists of the right eigenvectors of
f ′(u) as its columns, hence L(u) = R−1(u) exists (which actually consists
of the left eigenvectors of f ′(u) as its rows). We also denote the diagonal
matrix Λ(u) which contains the eigenvalues of f ′(u) in its diagonal line, then
we have f ′(u)R(u) = R(u)Λ(u), or L(u)f ′(u)R(u) = Λ(u).

The ENO or WENO finite volume scheme is still (4.2). The numerical

flux f̂(u−, u+) could be based on exact or approximate Riemann solvers.
Typical choices include the Godunov flux, the Lax-Friedrichs flux, the Roe
flux, and the HLLC flux. We refer to (LeVeque 1990, Toro 1997) for more
details of Riemann solvers and numerical fluxes for the system case.

As to the reconstruction to obtain u±
i+ 1

2

from the cell averages ūj , we could

perform the ENO or WENO reconstruction procedure on each component
of the vector ūj , then it would just be using the scalar reconstruction algo-
rithm m times for each of the m components of the vector ūj. This would
produce satisfactory results for many test cases, with smooth solutions or
with solutions of weak shocks. However, for problems with strong shocks,
especially for problems which has multiple discontinuities (such as a shock
and a contact discontinuity) resulting from a single discontinuity initially
(this would be the case of many Riemann problems), the component-wise
ENO or WENO reconstruction could lead to spurious oscillations. A more
robust, albeit more expensive, way to perform the reconstruction is to per-
form it in the local characteristic directions, which is summarized below. To
obtain the approximation u±

i+ 1
2

, we have the following steps:

1 Determine an approximate middle-point value of u at xi+ 1
2

, denoted
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by ui+ 1

2

. Do not confuse this with the final reconstruction values u±
i+ 1

2

.

This approximate middle-point value ui+ 1

2

is used only as a reference to

perform local characteristic decompositions, hence it does not need to
be a high order approximation of u at xi+ 1

2

. Most often, we will take

the so-called Roe average between ūi and ūi+1 (Roe 1978) as ui+ 1
2

.

When the Roe average is not available, we could simply choose the
arithmetic mean ui+ 1

2

= 1
2(ūi + ūi+1). We denote the right eigenvector

matrix R(ui+ 1
2

) and the left eigenvector matrix L(ui+ 1
2

) of the Jacobian

matrix f ′(ui+ 1
2

) as R and L below. This will not cause confusion since

all the steps here are used to compute u±
i+ 1

2

for fixed i.

2 Project all the cell averages needed in the ENO or WENO procedure
to compute u±

i+ 1
2

into the characteristic fields determined by R and L.

For example, if we perform a fifth order WENO reconstruction to get
u±
i+ 1

2

, we would need to do

v̄j = Lūj, j = i− 2, i− 1, i, i + 1, i + 2, i + 3.

3 Perform the scalar ENO or WENO reconstruction procedure on each
component of v̄j, to obtain v±

i+ 1

2

.

4 Project v±
i+ 1

2

back to the original vector space

u±
i+ 1

2

= Rv±
i+ 1

2

.

4.1.3. Multi-dimensional problems

For a multi-dimensional conservation law

ut +∇ · f(u) = 0, (4.3)

a finite volume scheme approximates its integrated version

ūi +
1

|∆i|

∫

∂∆i

f(u) · nds = 0, (4.4)

where ∆i is a cell (e.g. a rectangle or triangle in 2D), ūi =
1

|∆i|

∫

∆i
u(x)dx

is the cell average of u in the cell ∆i, |∆i| is the size of the cell ∆i (area
in 2D and volume in 3D), ∂∆i is the boundary of the cell ∆i (edges in 2D
and surfaces in 3D), and n is the outward unit normal along ∂∆i. The
integrated version (4.4) can be obtained from the PDE (4.3) by integrating
over the cell ∆i and using the divergence theorem. To convert the integrated
version (4.4), which is satisfied by the exact solution of the PDE (4.3),
into a finite volume scheme, we would take our computational variables as
the cell averages {ūi}. The integrals along the boundary of the cell ∂∆i

in (4.4) are replaced by their quadrature numerical integrations (typically,
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Gaussian quadrature rules are used if possible), and the physical flux f(u) ·n
is replaced by an one-dimensional numerical flux ĝ(uint(Di), uext(Di)), where
uint(Di) and uext(Di) refer to numerical approximations of the point value u

at the quadrature point inside the cell Di and outside the cell Di (hence
inside the neighboring cell), respectively. The one-dimensional numerical
flux ĝ(u−, u+) is the same as those discussed in the one-dimensional case
in sections 4.1.1 and 4.1.2 respectively. Finally, we obtain the point values
uint(Di) and uext(Di) from the cell averages ūj by a multi-dimensional ENO
or WENO reconstruction procedure, the two-dimensional versions having
been described in sections 3.3. For the system case, we can carry out a
similar reconstruction in the local characteristic fields, determined by the
Jacobian matrix of the one-dimensional physical flux f(u) · n.

4.2. Finite difference schemes for conservation laws

Different from finite volume schemes which use cell averages as the com-
putational variables, finite difference schemes use point values as the com-
putational variables. We will describe conservative ENO and WENO finite
difference schemes below.

4.2.1. One dimensional scalar equations
We use xi to denote a uniform mesh point and ui to denote the numerical
approximation of u(xi, t). Unlike finite volume schemes which can be applied
to any non-uniform meshes, the conservative finite difference scheme of order
at least 3 can only be designed for uniform of smooth meshes. We will assume
the mesh is uniform for simplicity, hence ∆x = xi+1 − xi is a constant. The
conservative finite difference scheme approximating (1.1) is of the form

d

dt
ui +

1

∆x

(

f̂i+ 1
2

− f̂i− 1
2

)

= 0 (4.5)

where f̂i+ 1
2

is a numerical flux which depends on several neighboring point

values, for example, for a fifth order WENO scheme, it depends on ui−2,
ui−1, ui, ui+1, ui+2 and ui+3. Superficially, the finite difference scheme (4.5)
seems to be totally different from the finite volume scheme (4.2). However,
the following simple Lemma by Shu and Osher in (Shu and Osher 1989) sets
up a direct link between these two types of schemes.

Lemma 3.1: If h(x) = h∆x(x) is implicitly defined as

1

∆x

∫ x+∆x
2

x−∆x
2

h(ξ)dξ = f(u(x)) (4.6)

then
1

∆x

(

h(xi+ 1

2

)− h(xi− 1

2

)
)

= f(u)x|x=xi
.
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The proof is straightforward: just take an x derivative on both sides of (4.6)
and evaluate the results at x = xi.

This simple lemma allows us to take the numerical flux in the finite dif-
ference scheme (4.5) as

f̂i+ 1
2

= h(xi+ 1
2

) (4.7)

to ensure r-th order accuracy, if the function h(x) in the Lemma can be
computed to r-th order accuracy.

Of course, the issue seems to remain as how to compute a good approxi-
mation to h(xi+ 1

2

). Notice that the definition (4.6) of h(x) implies that

h̄i ≡
1

∆x

∫ x
i+1

2

x
i− 1

2

h(ξ)dξ = f(ui),

which is known for a finite difference scheme, since the point values ui are
the computational variables. Therefore, we are given the cell averages h̄i =
f(ui) of the function h(x) and we would need to approximate its point

values h(xi+ 1
2

) to high order accuracy to obtain the numerical flux f̂i+ 1
2

in

(4.7). This is exactly the reconstruction problem that we discussed in section
2.2. Hence we can use the same ENO or WENO reconstruction procedure
discussed in section 2.2 or section 3.1, which has been used for finite volume
schemes in the previous sections. This implies that a finite difference ENO or
WENO code for the scalar one dimensional conservation law (1.1) shares the
main reconstruction subroutine with a finite volume ENO or WENO code.
The only difference is the input-output pair: for a finite volume scheme, the
input is the set of cell averages {ūi} and the output is the reconstructed
values of the solution at the cell interfaces {ui+ 1

2

}; for a finite difference

scheme, the input is the set of the point values of the physical flux {f(ui)}

and the output is the numerical fluxes at the cell interfaces {f̂i+ 1
2

}.

Another issue for finite difference schemes is the way to ensure upwinding
and stability. For this purpose, the finite difference procedure described
above is applied to f+(u) and f−(u) separately, where f±(u) correspond to
a flux splitting

f(u) = f+(u) + f−(u) (4.8)

with
d

du
f+(u) ≥ 0,

d

du
f−(u) ≤ 0. (4.9)

The reconstruction for f+(u) uses a biased stencil with one more point to
the left, and that for f−(u) uses a biased stencil with one more point to
the right, to obey correct upwinding. For ENO schemes, the stencil choice
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to evaluate f̂+
i+ 1

2

starts with a single point f+(ui) in the stencil, and then

adding one point at a time by the ENO process until the desired number
of points is reached; while the stencil choice to evaluate f̂−

i+ 1
2

starts with a

single point f−(ui+1) in the stencil, and then adding one point at a time
by the ENO process until the desired number of points is reached. For the
fifth order WENO schemes, the big stencil for reconstructing f̂+

i+ 1
2

contains

{f+(ui−2), f
+(ui−1), f

+(ui), f
+(ui+1), f

+(ui+2)}, and the big stencil for re-

constructing f̂−
i+ 1

2

contains {f−(ui−1), f
−(ui), f

−(ui+1), f
−(ui+2), f

−(ui+3)}.

We would also require that f±(u) are smooth functions of u. The most com-
monly used flux splitting is the Lax-Friedrichs splitting

f±(u) =
1

2
(f(u)± αu)

with

α = max
u

|f ′(u)|.

We remark that for any flux splitting (4.8) satisfying (4.9), f̂(u−, u+) =
f+(u−) + f−(u+) is a monotone flux in the scalar case.

An alternative formulation of the finite difference flux f̂i+ 1
2

is based on

ENO or WENO interpolation, not reconstruction, but with more com-
plicated formulas involving not only the point values from the interpola-
tion, but also all the even order derivatives of the flux function (Shu and
Osher 1988, Jiang, Shu and Zhang 2013). One advantage of this alternative
formulation is that it allows the usage of all monotone fluxes, regardless
of their smoothness. Other advantages will be commented upon in later
sections.

4.2.2. One dimensional systems

Similar to finite volume schemes, the conservative finite difference ENO or
WENO scheme for one-dimensional systems is almost the same as that for
the scalar case. The only exception is the reconstruction on local charac-
teristic field. If this is needed, it is performed in the same way as that for
finite volume schemes as described in section 4.1.2.

4.2.3. Multi-dimensional problems

A major advantage of finite difference schemes over finite volume schemes
is the efficiency in multi-dimensions. Conservative finite difference schemes
of order higher than 2 can only be defined on uniform tensor product or
smooth curvilinear meshes. We use two dimensional tensor product uniform
meshes as an example. We have a mesh (xi, yj) where ∆x = xi+1 − xi and
∆y = yj+1− yj are both constants. A finite difference scheme approximates



30 Chi-Wang Shu

the PDE form (4.3) directly and can proceed dimension by dimension. The
scheme is

duij(t)

dt
= −

1

∆x
(f̂i+ 1

2
,j − f̂i− 1

2
,j)−

1

∆y
(ĝi,j+ 1

2

− ĝi,j− 1
2

)

where the numerical flux f̂i+ 1
2
,j can be computed from {uij} with fixed j

in exactly the same way as in the one dimensional case described in section
4.2.1. Likewise for ĝi,j+ 1

2

. Therefore, the computational cost is exactly the

same as in the one-dimensional case per point per direction. This is much
more efficient than finite volume schemes. We refer to (Casper, Shu and
Atkins 1994) for a comparison of finite difference and finite volume ENO
schemes.

4.2.4. Weighted compact schemes

To get better wave resolution capability with a (nominally) narrower sten-
cil, we could use the so-called compact schemes (Lele 1992). However,
for solutions with strong shocks, the compact schemes could also gener-
ate spurious oscillations. To overcome this difficulty, hybrid compact-ENO
or compact-WENO schemes and weighted compact schemes were designed,
e.g. in (Adams and Shariff 1996, Mahesh, Lele and Moin 1997, Deng and
Maekawa 1997, Deng and Zhang 2000, Jiang, Shan and Liu 2001, Zhang,
Jiang and Shu 2008).

4.3. WENO reconstruction as a limiter for discontinuous Galerkin methods

Discontinuous Galerkin (DG) methods, especially the Runge-Kutta DG
(RKDG) methods (Cockburn and Shu 1989, Cockburn and Shu 1998, Cock-
burn and Shu 2001), are also a popular class of methods for solving hy-
perbolic conservation laws and general convection dominated convection-
diffusion equations, especially for unstructured meshes in multi-dimensions.
The algorithm formulation of the RKDG methods is very similar to that
of finite volume methods, except that the RKDG methods do not have a
reconstruction step to reconstruct the piecewise polynomial solution from
the cell averages, rather they evolve the whole polynomial solution in time.
As such, the RKDG methods may suffer from spurious oscillations or even
nonlinear instability when the solution contains strong shocks. One possible
way to remedy this is to apply a nonlinear limiter, that is, to modify the
DG solution in the so-called “troubled cells” to another polynomial of the
same degree, which is less oscillatory, and is hopefully also as high order
accurate as the original DG polynomial in case the “troubled cell” turns
out to be a smooth cell of the solution (although there are numerous pa-
pers on the choice of troubled cell indicators (Qiu and Shu 2005a), none
of them is bullet-proof in selecting all and only shocked cells, especially in
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coarser meshes, hence we must assume that the troubled cell indicator could
mistakenly identify a good, smooth cell as a troubled cell).

The WENO reconstruction would serve as a good limiter for RKDG
schemes in troubled cells, as it could maintain the original high order ac-
curacy if mistakenly used in smooth cells, and it can keep the cell average
unchanged, hence ensuring conservation. Earlier WENO limiters for RKDG
schemes (Qiu and Shu 2005d, Qiu and Shu 2003b, Qiu and Shu 2005b) used
wider stencils than the original communication structure of DG methods
(the DG methods only communicate with immediate neighboring cells via
numerical fluxes), hence they have problems in the original DG code struc-
ture, especially for parallel implementations. Later, more compact WENO
limiters, which use only the information from immediate neighboring cells,
were designed (Zhong and Shu 2013, Zhu, Zhong, Shu and Qiu 2017). We
mention in particular the recently developed compact WENO limiters (Zhu,
Qiu and Shu 2019a) based on the multi-resolution WENO procedure in
(Zhu and Shu 2018, Zhu and Shu 2019a), which appear to be quite robust
for RKDG methods of various orders.

5. ENO and WENO schemes for Hamilton-Jacobi equations

In the one-dimensional case, the conservation law equation (1.1) and the
Hamilton-Jacobi equation (1.2) are equivalent, if we identify u = ϕx. The
entropy solution u of (1.1) corresponds to the viscosity solution ϕ of (1.2)
with u = ϕx. Therefore, successful ENO and WENO algorithms for solving
conservation laws discussed in the previous sections can be easily adapted to
solve Hamilton-Jacobi equations. Notice that there is no advantage in using
finite volume schemes (those evolving the cell averages of ϕ) for Hamilton-
Jacobi equations, as finite difference schemes (those evolving the point values
of ϕ) can handle non-uniform meshes and unstructured meshes well and are
simpler to design than finite volume schemes.

In one space dimension, the finite difference ENO or WENO schemes for
solving the Hamilton-Jacobi equation (1.2) take the following form

d

dt
ϕi + f̂(u−i , u

+
i ) = 0 (5.1)

where ϕi is the approximation to the point value ϕ(xi, t), u
± are the ap-

proximations to the derivative ϕx(xi, t) with stencils biased to the right and

to the left, respectively, and f̂(u−, u+) is a monotone Hamiltonian, which is
the same as a monotone flux for the conservation law case. To obtain u±i
in (5.1), we use the ENO or WENO approximations to the first derivative
of ϕ at the point xi, as described in section 3.4.1. For ENO, the approxi-
mation of u−i starts with a stencil containing the two points {ϕi−1, ϕi} and
then with one point added to the stencil at each step in the ENO fashion,
until the desired number of points is reached; while the approximation of
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u+i starts with a stencil containing the two points {ϕi, ϕi+1} and then with
one point added to the stencil at each step in the ENO fashion, until the
desired number of points is reached. For the fifth order WENO, the stencil
for the approximation of u−i is {ϕi−3, ϕi−2, ϕi−1, ϕi, ϕi+1, ϕi+2}, while the
stencil for the approximation of u+i is {ϕi−2, ϕi−1, ϕi, ϕi+1, ϕi+2, ϕi+3}.

For multi-dimensional Hamilton-Jacobi equations, e.g. the two-dimensional
version

ϕt + f(ϕx, ϕy) = 0, (5.2)

the ENO and WENO schemes still follow similar framework. For tensor
product meshes, which are not necessarily uniform, we can obtain the finite
difference scheme in the form

d

dt
ϕi,j + f̂(u−i,j, u

+
i,j ; v

−
i,j, v

+
i,j) = 0 (5.3)

where ϕi,j is the approximation to the point value ϕ(xi, yj, t), u
± are the ap-

proximations to the derivative ϕx(xi, yj, t) with stencils biased to the right
and to the left, respectively, v± are the approximations to the derivative
ϕy(xi, yj, t) with stencils biased to the top and to the bottom, respectively,

and f̂(u−, u+; v−, v+) is a monotone Hamiltonian. We refer to (Crandall
and Lions 1984, Osher and Sethian 1988, Osher and Shu 1991) for examples
of two-dimensional monotone Hamiltonians. The ENO and WENO approx-
imations to obtain u±i,j are identical to the one-dimensional case in the x-

variable, with the index j fixed. Likewise for v±i,j. For unstructured meshes,

we refer to (Abgrall 1996) for the construction of monotone Hamiltonians,
and to (Zhang and Shu 2003) for high order WENO schemes. We also have
Hermite type WENO schemes designed for solving Hamilton-Jacobi equa-
tions in, e.g. (Qiu and Shu 2005c, Zheng, Shu and Qiu 2017, Zheng, Shu and
Qiu 2019). We refer to (Osher and Sethian 1988, Osher and Shu 1991, Jiang
and Peng 2000, Shu 2007) for more details on ENO and WENO schemes for
solving Hamilton-Jacobi equations.

6. ENO and WENO schemes for convection-diffusion

equations

For the convection-diffusion equation (1.3), the simplest method is to use
ENO or WENO approximations described in previous sections to discretize
the convection term f(u)x, and then use central difference approximations
of suitable order of accuracy to discretize the diffusion term (a(u)ux)x. This
procedure works fine for most cases, except for the case with degenerate
diffusion terms, that is, a(u) = 0 at certain values of u. Degenerate diffu-
sion terms could lead to hyperbolic-like features in the solutions, such as
discontinuous derivatives or even discontinuities in the solutions themselves.
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In such cases, it would be prudent to also use ENO or WENO approxima-
tions to treat the diffusion term (a(u)ux)x. The procedure is similar to that
for the convection term, with some difference in the design of smoothness
indicators etc. We refer to (Liu et al. 2011b) for more detailed discussions.

7. Time discretizations

Up to now, we have only discussed spatial discretizations using ENO or
WENO procedures. In practice, we would certainly also need to discretize
the time variable. The simplest and perhaps most widely used approach is to
adopt the explicit total variation diminishing (TVD) (Shu and Osher 1988,
Shu 1988), also called strong stability preserving (SSP) (Gottlieb, Shu and
Tadmor 2001) Runge-Kutta or multi-step time discretizations, which would
preserve stability in any norm, semi-norm or convex functional enjoyed by
the first order Euler forward time discretization. The most popular one
in this class is the third order TVD or SSP time discretization (Shu and
Osher 1988):

ū(1) = ūn +∆tL(ūn)

ū(2) =
3

4
ūn +

1

4
ū(1) +

1

4
∆tL(ū(1)) (7.1)

ūn+1 =
1

3
ūn +

2

3
ū(2) +

2

3
∆tL(ū(2))

where L(u) is the spatial discretization operator. We refer to (Gottlieb
et al. 2001, Gottlieb, Ketcheson and Shu 2009, Gottlieb, Ketcheson and
Shu 2011) for more details of the TVD or SSP time discretizations.

An alternative method of time discretization is via the Lax-Wendroff pro-
cedure, namely performing a Taylor expansion in time and converting all
time derivatives to spatial derivatives by repeatedly using the PDE, and
finally discretizing all the spatial derivatives to the correct order of accu-
racy. The ADER schemes and GRP schemes also belong to this class.
See, e.g. (Harten et al. 1987, Titarev and Toro 2005, Ben-Artzi, Li and
Warnecke 2006, Qiu and Shu 2003a). This procedure can be combined with
the Runge-Kutta framework to obtain hybridized multi-stage Lax-Wendroff
time discretizations (also called multiderivative time integrators), see, e.g.
(Seal, Guclu and Christlieb 2014, Li and Du 2016).

For some applications, e.g. those with significantly varying mesh sizes,
an implicit time discretization might be advantageous. We refer to, e.g.
(Gadiou and Tenaud 2004, Gottlieb, Mullen and Ruuth 2006) for discussions
of implicit time discretization for WENO schemes.
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8. Boundary conditions

So far, we have only discussed periodic or compactly supported boundary
conditions for simplicity. In many application problems, there are physi-
cal boundaries where suitable numerical boundary conditions must be used.
The numerical boundary treatment should ensure both stability and accu-
racy, and should also maintain important physical properties such as con-
servation. For high order ENO or WENO approximations, which involve a
wide stencil, suitable ghost point values outside the computational domain
usually need to be prescribed. For some of the physical boundaries, such as
a solid wall (reflecting boundary condition) or a symmetry line, the ghost
point values can be prescribed by symmetry or anti-symmetry, using values
of the corresponding points inside the computational domain. For outflow
boundaries, it can be shown that the standard extrapolation of suitable or-
ders of accuracy will give a stable scheme (Goldberg 1977). However, at
the inflow, it is a challenge to obtain a stable scheme with high order ex-
trapolation. This is especially the case when the domain boundary does not
coincide with the grid points, and when the first grid point is very close to
the domain boundary (the so-called “cut-cell” problem (Berger, Helzel and
LeVeque 2003)). In (Huang, Shu and Zhang 2008, Tan and Shu 2010), a gen-
eral procedure is developed to treat the inflow boundary conditions. Termed
the inverse Lax-Wendroff (ILW) procedure, this boundary treatment relies
on converting spatial derivatives at the boundary to time derivatives using
the PDE, and then using these spatial derivatives in a Taylor expansion in
space to obtain the ghost point values. It reverses the roles of space and time
from the standard Lax-Wendroff procedure for time discretization, explain-
ing the name “inverse Lax-Wendroff procedure”. We refer to (Goldberg and
Tadmor 1978, Goldberg and Tadmor 1981) for earlier discussions on this
procedure. This procedure has been generalized to moving boundaries in
(Tan and Shu 2011), and to convection-diffusion equations in (Lu, Fang,
Tan, Shu and Zhang 2016). A simplified version, for which the (more ex-
pensive) ILW procedure is only applied to several lower order derivatives
and standard extrapolation is applied to the remaining ones, has been intro-
duced in (Tan, Wang, Shu and Ning 2012) and analyzed for stability in (Li,
Shu and Zhang 2016, Li, Shu and Zhang 2017). We refer to these references
for more details.

9. Bound-preserving WENO schemes

The ENO and WENO schemes for solving hyperbolic conservation laws are
in general very stable and robust. They can be used to compute problems
with very strong shocks and complicated interactions of solution structures,
essentially without oscillations. Usually, no additional limiter, such as the
total variation bounded limiter (Shu 1987), is needed.
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However, there are certain problems, especially high speed problems such
as the astrophysical jet flows with Mach numbers as high as 2000 (Ha,
Gardner, Gelb and Shu 2005), which may lead to the appearance of negative
pressure and eventually this may lead to nonlinear instability and blowup
of the code. The problem is that, for Euler equations, the total energy is
one of the conserved computational variables, and internal energy, hence
pressure, is obtained from the difference of total energy and the kinetic
energy. For high speed flows, the total energy and the kinetic energy are
almost equal, as the internal energy is only a tiny fraction of the total energy.
Hence, as the difference of two large and close numbers, the internal energy
is subject to severe numerical error and may easily become negative in the
computation. This is more likely to happen if we use a higher order ENO
or WENO scheme, since the numerical dissipation would be smaller. In
(Ha et al. 2005), a third order WENO scheme was used successfully in the
simulation, but a fifth order WENO scheme would fail for the same test
case.

Recently, a framework has been developed (Zhang and Shu 2010a, Zhang
and Shu 2010b, Zhang, Xia and Shu 2012, Zhang and Shu 2011) that guaran-
tees positivity of pressure and density for the computation of Euler equations
(or boundedness of other physical quantities in different applications), via
a very simple and local scaling limiter, which can be proved to maintain
the high order accuracy of the original scheme in smooth regions includ-
ing at smooth extrema. The technique applies most conveniently to finite
volume schemes (Zhang and Shu 2010a, Zhang and Shu 2010b, Zhang et
al. 2012, Zhang and Shu 2011) (they are discussed in these papers mostly
in the framework of discontinuous Galerkin methods, but the papers also
point out that the technique can be applied to finite volume methods with-
out change), but they can also be adapted to finite difference schemes under
stronger assumptions (Zhang and Shu 2012). We refer to these references
for more details.

10. Applications

The ENO and WENO schemes have been widely used in diverse applica-
tion fields, including computational fluid dynamics, magnetohydrodynam-
ics, computational cosmology, semiconductor device simulation, traffic flow
models, and computational biology, just to name a few. The ENO and
WENO schemes are particularly attractive for solving problems containing
both strong shocks or other discontinuities and complicated solution struc-
tures, such as compressible turbulent flows. A study on the resolution of
high order WENO schemes for complicated flow structures can be found
in (Shi, Zhang and Shu 2003). A more detailed, quantitative study was
performed in (Zhang, Shi, Shu and Zhou 2003b).
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As an indication of the wide popularity of ENO and WENO schemes in
applications, we have looked at a small sample of journal papers from the
Web of Science database, among the more than 250 papers published in the
less than one year period since 2019 which have cited the classical WENO
paper (Jiang and Shu 1996). Most of them have involved further improve-
ments and applications of ENO and WENO algorithms in the simulations of
diverse physical and engineering problems. Among them we could highlight
the following:

• Simulations of turbulent flows. Turbulent duct flow with polymers was
simulated in (Shahmardi, Zade, Ardekani, Poole, Lundell, Rosti and
Brandt 2019); turbulent nonpremixed “cool” flames with flamelet mod-
els were simulated in (Novoselov, Law and Mueller 2019a); the coupling
of vibrational nonequilibrium and turbulent mixing was numerically in-
vestigated in (Fievet, Raman, Voelkel and Varghese 2019); Reynolds
stresses in high Mach number turbulent boundary layers was predicted
in (Wang, Huang, Duan and Xiao 2019b); non-equilibrium models in
large eddy simulation of turbulent mixing and combustion were dis-
cussed in (Jain and Kim 2019); a spatially developing highly compress-
ible mixing layer was simulated in (Zhang, Tan and Yao 2019a); free
surface turbulence damping in RANS simulations was investigated in
(Kamath, Fleit and Bihs 2019); topological evolution near the tur-
bulent / non-turbulent interface in turbulent mixing layer was stud-
ied in (Yu and Lu 2019); surface-averaged quantities in turbulent re-
acting flows and relevant evolution equations were explored in (Yu
and Lipatnikov 2019); turbulent flow topology in supersonic bound-
ary layer with wall heat transfer was investigated in (Sharma, Shadloo
and Hadjadj 2019); and decomposition of the mean skin-friction drag in
compressible turbulent channel flows was studied in (Li, Fang, Modesti
and Cheng 2019b).

• Shock waves, explosive flows, chemically reactive flows and multi-species
flows. Shock-cylinder interaction was studied in (Ou and Zhai 2019);
alternative setups of the double Mach reflection problem were dis-
cussed in (Vevek, Zang and New 2019); partial characteristic decom-
position for multi-species Euler equations was used in (Wang, Pan, Hu
and Adams 2019a); vortex surfaces in non-ideal flows were tracked in
(Hao, Xiong and Yang 2019); liquid-water-drop explosion was simu-
lated in (Paula, Adami and Adams 2019); chemically reacting flow in
a shock tube was numerically studied in (Chen, Sun, Klioutchnikov
and Olivier 2019a); shock-disturbances interaction in high-speed com-
pressible inviscid flow over a blunt nose was simulated in (Hejranfar
and Rahmani 2019); numerical investigation of planar shock wave im-
pinging on spherical gas bubble with different densities was studied in
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(Zhu, Yang, Luo, Pan and Pan 2019c); thin reaction zones in constant-
density turbulent flows at low Damkohler numbers were investigated
in (Sabelnikov, Yu and Lipatnikov 2019); numerical simulation of the
interaction of two shear layers in double backward-facing steps was
performed in (Deng, Han, Liu, Ding, Weng and Jiang 2019); a mul-
tispecies, multifluid model for laser-induced counterstreaming plasma
simulations was developed in (Ghosh, Chapman, Berger, Dimits and
Banks 2019); Rayleigh-Taylor instability-induced flows were simulated
in (Rahman and San 2019); a mesoscale study on explosively dispersed
granular material was performed in (Mo, Lien, Zhang and Cronin 2019);
flame evolution in shock-accelerated flow under different reactive gas
mixture gradients was simulated in (Zhu, Gao, Luo, Pan, Pan and
Zhang 2019b); interaction of two-dimensional free-stream disturbances
with an oblique shock wave was studied in (Huang and Wang 2019);
and a multi-species modeling framework for describing supersonic jet-
induced cratering in a granular bed was developed in (Balakrishnan
and Bellan 2019).

• Supersonic and hypersonic flow simulations. Transverse jet in super-
sonic crossflow was numerically investigated in (Yang, Wang, Sun,
Wang and Wang 2019b); turbulence Models in a hypersonic cold-wall
turbulent boundary layer were investigated in (Huang, Bretzke and
Duan 2019); effect of a rough element on the hypersonic boundary
layer receptivity was studied in (Shi, Xu, Wang and Lv 2019); flame
flashback phenomenon in a supersonic crossflow with ethylene injec-
tion upstream of cavity flameholder was investigated in (Zhao, Sun,
Wu, Cui and Wang 2019); effects of dimensional wall temperature on
velocity-temperature correlations in supersonic turbulent channel flow
of thermally perfect gas were studied in (Chen, Li and Zhu 2019c); a
comparative study of Reynolds stress budgets of thermally and calor-
ically perfect gases for high-temperature supersonic turbulent channel
flow was carried out in (Chen, Dou, Liu, Zhu and Zhang 2019b); dis-
tribution characteristics and mixing mechanism of a liquid jet injected
into a cavity-based supersonic combustor were studied in (Li, Li, Wang,
Sun, Liu, Wang and Huang 2019a); numerical simulation of hypersonic
flow past a flat plate in near-continuum regime was performed in (Ou
and Chen 2019); and turbulent premixed flame kernels in supersonic
flows were studied in (Ochs, Ranjan, Ranjan and Menon 2019).

• Multi-phase and multi-material flows. A conservative Allen-Cahn equa-
tion for multiphase flows is simulated in (Aihara, Takaki and Takada
2019); compressible multiphase approach for viscoelastic fluids and
solids with relaxation and elasticity was pursued in (Rodriguez and
Johnsen 2019); the collapse of a cloud with gas bubbles in a liquid was
computed in (Rasthofer, Wermelinger, Karnakov, Sukys and Koumoutsakos
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2019); and a multiscale formulation of two-phase flow at the pore scale
was investigated in (Mehmani and Tchelepi 2019).

• Aerodynamics and magnetohydrodynamics. The problem of flow past
projected bodies for determining their aerodynamic coefficients was nu-
merically studied in (Lipanov, Rusyak, Korolev and Karskanov 2019);
validation of higher-order interactional aerodynamics simulations on
full helicopter configurations was performed in (Petermann, Jung, Baeder
and Rauleder 2019); and an adaptive finite volume method for mag-
netohydrodynamics was developed in (Freret, Ivan, Sterck and Groth
2019).

• Astrophysical flows. Astrophysical MHD problems were simulated in
(Verma, Teissier, Henze and Muller 2019); Euler equations with grav-
ity was computed by high order well-balanced schemes in (Klingenberg,
Puppo and Semplice 2019); density waves and the viscous overstability
in Saturn’s rings were studied in (Lehmann, Schmidt and Salo 2019);
a Simflowny-based high-performance 3D code for the generalized in-
duction equation was developed in (Vigano, Martinez-Gomez, Pons,
Palenzuela, Carrasco, Minano, Arbona, Bona and Masso 2019); a scal-
able fifth-order constrained-transport magnetohydrodynamics code for
astrophysical applications was developed in (Donnert, Jang, Mendy-
gral, Brunetti, Ryu and Jones 2019); solar p-mode damping rates were
investigated in (Belkacem, Kupka, Samadi and Grimm-Strele 2019);
numerical simulations of neutron star-black hole binaries in the near-
equal-mass regime were performed in (Foucarta, Duez, Kidder, Nis-
sanke, Pfeiffer and Scheel 2019); merger of compact stars in the two-
families scenario was studied in (Pietri, Drago, Feo, Pagliara, Pasquali,
Traversi and Wiktorowicz 2019); and turbulence dynamo in the strati-
fied medium of Galaxy clusters was simulated in (Roh, Ryu, Kang, Hai
and Jung 2019).

• Atmospherical and climate sciences. Nonhydrostatic atmospheres on
planets were simulated in (Li and Chen 2019); and possible climate
transitions from breakup of stratocumulus decks under greenhouse warm-
ing were investigated in (Schneider, Kaul and Pressel 2019).

• Water waves. Berm breakwater optimization was investigated in (Sasikumar,
Kamath, Musch, Bihs and Arntsen 2019); the Degasperis-Procesi equa-
tion was simulated in (Guo, Yang, Zhang, Wang and Song 2019);
well balanced schemes for shallow water equations were developed in
(Carstro and Semplice 2019); research on dam-break flow induced front
wave impacting a vertical wall was performed in (Li and Yu 2019); dis-
persive high frequency acoustic waves in water-filled pipes were simu-
lated in (Louati and Ghidaoui 2019); extreme wave generation, break-
ing, and impact were simulated in (Bihs, Kamath, Chella and Arntsen
2019b); efficient wave modeling using nonhydrostatic pressure distribu-
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tion and free surface tracking was investigated in (Bihs, Kamath, Ag-
garwal and Pakozdi 2019a); fully coupled free-surface flow and sediment
transport modeling of flash floods in a desert stream were studied in
(Khosronejad, Kang and Flora 2019); numerical modeling of breaking
wave kinematics and wave impact pressures on a vertical slender cylin-
der were investigated in (Chella, Bihs, Myrhaug and Arntsen 2019b);
and well-balanced schemes for shallow water flows along channels with
irregular geometry were investigated in (Wang, Li, Qian, Li and Wang
2019c).

• Detonation, combustion and flames. Interaction between the premixed
flame front and the three-dimensional Taylor-Green vortex was simu-
lated in (Zhou, You, Xiong, Yang, Thevenin and Chen 2019); pareto-
efficient combustion modeling for improved CO-emission prediction in
LES of a piloted turbulent dimethyl ether jet flame was simulated in
(Wu, Ma, Jaravel and Ihme 2019a); characteristic patterns of ther-
modiffusively unstable premixed lean hydrogen flames were obtained in
(Berger, Kleinheinz, Attili and Pitsch 2019); pulsation in one-dimensional
H2 − O2 detonation was simulated in (Han, Wang and Law 2019b);
combustion noise analysis of a turbulent spray flame was performed
in (Pillai and Kurose 2019); the role of transversal concentration gra-
dient in detonation propagation was studied in (Han, Wang and Law
2019c); detonation simulations were performed in (Dong, Fu, Zhang,
Liu and Liu 2019); a parallel chemistry acceleration algorithm applied
to gaseous detonation was developed in (Wu, Dong and Li 2019b);
a flamelet model for a three-feed non-premixed combustion system
was studied in (Yu, Watanabe, Zhang, Kurose and Kitagawa 2019a);
oblique detonation waves attached to cone were simulated in (Han,
Wang and Law 2019d); numerical study of combustion effects on the
development of supersonic turbulent mixing layer flows was performed
in (Liu, Gao, Jiang and Lee 2019); evolution of averaged local pre-
mixed flame thickness in a turbulent flow was studied in (Yu, Nill-
son, Bai and Lipatnikov 2019b); convergence properties of detonation
simulations were explored in (Qian, Wang, Liu, Brandenburg, Hau-
gen and Liberman 2019); bifurcation of pulsation instability in one-
dimensional H2−O2 detonation with detailed reaction mechanism was
studied in (Han, Ma, Qian, Wen and Wang 2019a); experimental mea-
surements, direct numerical simulation, and manifold-based combus-
tion modeling were performed for turbulent nonpremixed cool flames
in (Novoselov, Reuter, Yehia, Won, Fu, Kokmanian, Hultmark, Ju and
Mueller 2019b); and simulations of gaseous detonation were carried out
in (Wu, Dong and Li 2019c).

• Radiative transfer and kinetic equations. Neutron transport equation
was computed in (Wang and Byambaakhuu 2019); and high dimen-
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sional Vlasov equations were simulated in (Banks, Odu, Berger, Chap-
man, Arrighi and Brunner 2019).

• Fluid and structure interactions and elasticity. Shock and elastic ob-
stacles interactions were simulated in (Mouronval, Tie, Hadjadj and
Moebs 2019); full Eulerian deformable solid-fluid interaction was simu-
lated for large-scale parallel computing in (Nishiguchi, Bale, Okazawa
and Tsubokura 2019); wave impact pressure and kinematics due to
breaking wave impingement on a monopile were studied in (Chella,
Bihs and Myrhaug 2019a); hyperelastic and hypoelastic formulations
for Eulerian non-linear elastoplasticity were investigated in (Peshkova,
Boscheri, Loubere, Romenski and Dumbser 2019); non-Newtonian flu-
ids and plastic solids were simulated in (Jackson and Nikiforakis 2019);
droplet dynamics on a solid surface with insoluble surfactants was nu-
merically studied in (Zhang, Liu and Ba 2019b); the bipolar charge
transport model was simulated in (Ren, Li, Li, Liu and Wang 2019);
space charge accumulation and decay in dielectric materials with dual
discrete traps were investigated in (Xing, Zhang, Cui, Hai, Wu and
Min 2019); and incompressible flow with elastic boundaries was simu-
lated in (Cheng, Liu, Zhang and Wang 2019).

• Neuron networks, traffic flows, and process engineering. Population
density model based on quadratic integrate-and-fire neuron was simu-
lated in (Singh, Kumar and Koksal 2019); population density neuron
model was studied in (Kumar and Singh 2019); modeling and simula-
tion of urban air pollution from the dispersion of vehicle exhaust were
investigated in (Yang, Li, Wong, Shu and Zhang 2019a); and powder
electrification during pneumatic transport was simulated in (Ceresiat,
Grosshans and Papalexandris 2019).

• Computational biology. A spatio-temporal predator-prey model with
infected prey was simulated in (Burger, Chowell, Gavilan, Mulet and
Villada 2019); tumor growth and calcification were studied in (Chen
and Lowengrub 2019); and blood flow in elastic vessels and their appli-
cation to collapsed states were investigated in (Murillo, Navas-Montilla
and Garcia-Navarro 2019).

Apart from the samples we have taken from the most recent (i.e. in 2019)
publications, we would also want to highlight the following selected influen-
tial examples of applications of ENO and WENO schemes in applications:

• The ghost fluid method, which is a non-oscillatory Eulerian approach
to interfaces in multimaterial flows, uses WENO for its discretization
(Fedkiw, Aslam, Merriman and Osher 1999). An Eulerian formulation
for solving partial differential equations along a moving interface was
developed in (Xu and Zhao 2003), which used WENO in its spatial dis-
cretization. A level-set method for interfacial flows with surfactant was



ENO and WENO Schemes 41

developed in (Xu, Li, Lowengrub and Zhao 2006), which usedWENO in
its spatial discretization. Application of a level set method for simula-
tion of droplet collisions was studied in (Tanguy and Berlemont 2005),
which used WENO in its spatial discretization. A level set method for
vaporizing two-phase flows, using WENO in its discretization, was dis-
cussed in (Tanguy, Menard and Berlemont 2007). A level set approach
for the numerical simulation of dendritic growth using WENO approx-
imation was explored in (Gibou, Fedkiw, Caflisch and Osher 2003). A
conservative modification to the ghost fluid method for compressible
multiphase flows was made in (Liu, Yuan and Shu 2011a). A WENO
scheme with subcell resolution was designed to compute nonconserva-
tive Euler equations with applications to one-dimensional compressible
two-medium flows in (Xiong, Shu and Zhang 2012).

• WENO schemes for Hamilton-Jacobi equations, which have wide ap-
plications in level set methods, image processing, control theory and
differential games, were designed in (Jiang and Peng 2000). A high-
order WENO finite difference scheme for the equations of ideal mag-
netohydrodynamics was developed in (Jiang and Wu 1999), which has
stimulated extensive following research. ENO schemes were designed
to solve equations of viscoelasticity with fading memory in (Shu and
Zeng 1997).

• Pluto (Mignone, Bodo, Massaglia, Matsakos, Tesileanu, Zanni and
Ferrari 2007), which is a numerical code widely used in computational
astrophysics, has both ENO and WENO modules in the reconstruction
portion of the solution solver. See also (Mignone, Zanni, Tzeferacos,
van Straalen, Colella and Bodo 2012) for the implementation of adap-
tivity. An Eulerian conservative high-order framework for general rela-
tivistic magnetohydrodynamics and magnetodynamics, named ECHO,
was developed in (Zanna, Zanotti, Bucciantini and Londrillo 2007),
in which WENO was implemented as one of the options for spatial
discretization. The magnetic connection between the convection zone
and corona in the quiet sun was studied in (Abbett 2007), in which
WENO was used in the discretization. Off-axis gamma-ray burst af-
terflow modeling based on a two-dimensional axisymmetric hydrody-
namics simulation using WENO was discussed in (van Eerten, Zhang
and MacFadyen 2010). A hybrid cosmological hydrodynamic/N-body
code based on a weighted essentially nonoscillatory scheme was devel-
oped in (Feng, Shu and Zhang 2004). Numerical simulation of high
Mach number astrophysical jets with radiative cooling was performed
in (Ha et al. 2005). A WENO algorithm for the radiative transfer and
ionized sphere at reionization was developed in (Qiu, Shu, Feng and
Fang 2006). A WENO algorithm of the temperature and ionization
profiles around a point source was developed in (Qiu, Feng, Shu and
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Fang 2007). A WENO algorithm for the growth of ionized regions at
the reionization epoch was studied in (Qiu, Shu, Liu and Fang 2008).
A WENO algorithm for radiative transfer with resonant scattering and
the Wouthuysen-field coupling was developed in (Roy, Qiu, Shu and
Fang 2009a, Roy, Xu, Qiu, Shu and Fang 2009b). Resonant scatter-
ing and Lyα radiation emergent from neutral hydrogen halos were
studied in (Roy, Shu and Fang 2010), Effect of dust on Lyα photon
transfer in optically thick halo was investigated in (Yang, Roy, Shu
and Fang 2011). Angular distribution of Lyα resonant photons emerg-
ing from optically thick medium was studied in (Yang, Roy, Shu and
Fang 2013). Turbulence in the intergalactic medium was investigated
in (Zhu, Feng, Xia, Shu, Gu and Fang 2013), addressing the solenoidal
and dilatational motions and the impact of numerical viscosity.

• A unified model for the prediction of laminar flame transfer functions,
for a comparison between conical and V-flame dynamics, was devel-
oped in (Schuller, Durox and Candel 2003b). WENO approximation
was used for the convection terms in the model. Modeling tools for
the prediction of premixed flame transfer functions were discussed in
(Schuller, Ducruix, Durox and Candel 2003a), advocating the usage
of WENO approximations. High resolution WENO simulation of 3D
detonation waves was performed in (Wang, Shu, Han and Ning 2013).

• A three-dimensional multispecies nonlinear tumor growth model was
designed in (Wise, Lowengrub, Frieboes and Cristini 2008). WENO
approximation was used for the convection terms in the model. See
also (Macklin and Lowengrub 2007) for a nonlinear simulation of the
effect of microenvironment on tumor growth. An immersed bound-
ary method for complex incompressible flows was developed in (Choi,
Oberoi, Edwards and Rosati 2007), in which WENO is used in its spa-
tial discretization.

• Conservative hybrid compact-WENO schemes for shock-turbulence in-
teraction were designed in (Pirozzoli 2002). A bandwidth-optimized
WENO scheme for the effective direct numerical simulation of com-
pressible turbulence was developed in (Martin, Taylor, Wu and Weirs
2006). A direct numerical simulation and analysis of a spatially evolv-
ing supersonic turbulent boundary layer by a WENO scheme was car-
ried out in (Pirozzoli, Grasso and Gatski 2004). Hybrid tuned center-
difference-WENO method for large eddy simulations in the presence of
strong shocks was developed in (Hill and Pullin 2004).

• BOUT++, which is a framework for parallel plasma fluid simulations,
was developed in (Dudson, Umansky, Xu, Snyder and Wilson 2009).
It uses WENO in its spatial discretization. WENO schemes in com-
pressible multicomponent flow problems were implemented and ap-
plied in (Johnsen and Colonius 2006). Shock mitigation and drag
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reduction by pulsed energy lines to save energy have been simulated
in (Kremeyer, Sebastian and Shu 2006) by the multi-domain WENO
schemes in (Sebastian and Shu 2003).

• Well-balanced finite volume schemes of arbitrary order of accuracy for
shallow water flows were designed in (Noelle et al. 2006), in which
WENO was used for spatial discretization. A high-order well-balanced
finite volume WENO schemes for shallow water equation with moving
water was developed in (Noelle, Xing and Shu 2007). High order well-
balanced finite volume WENO schemes for a class of hyperbolic systems
with source terms were developed in (Xing and Shu 2006b). High order
finite volume schemes based on reconstruction of states for solving hy-
perbolic systems with nonconservative products, with applications to
shallow-water systems, were designed in (Carstro et al. 2006), which
used WENO in its spatial discretization. High order finite difference
WENO schemes with the exact conservation property for the shallow
water equations were designed in (Xing and Shu 2005), which involved
a clever decomposition of the source term to facilitate the design of well-
balanced property without involving derivatives or jumps of the numer-
ical solution (which, if used, might affect the Lax-Wendroff condition
for convergence to weak solutions). See also (Xing and Shu 2006a) for
an extension to a general class of balance laws. High-order finite volume
WENO schemes for the shallow water equations with dry states were
designed in (Xing and Shu 2011). High-order well-balanced schemes
were designed and applied to non-equilibrium flow in (Wang, Shu, Yee
and Sjögreen 2009, Wang, Shu, Yee, Kotov and Sjögreen 2015). High
order well-balanced WENO scheme for the gas dynamics equations un-
der gravitational fields was designed in (Xing and Shu 2013).

• Electrification of a small thunderstorm with two-moment bulk micro-
physics was simulated in (Mansell, Ziegler and Bruning 2010), in which
WENO is used in the approximation of the wind components. Acean-
sea ice data assimilation system for the North Atlantic and Arctic,
named TOPAZ4, was described in (Sakov, Counillon, Bertino, Lisaeter,
Oke and Korablev 2012), which contains WENO approximation in the
algorithms.

• A dynamic continuum model for pedestrian flow was investigated in
(Huang, Wong, Zhang, Shu and Lam 2009), in which WENO was used
in its spatial discretization. A multi-class Lighthill-Whitham-Richards
traffic flow model was simulated by a high order WENO scheme (Zhang,
Shu, Wong and Wong 2003a), which revealed multiple small step fea-
tures otherwise missed by first order solvers if not in extremely refined
meshes. A weighted essentially non-oscillatory numerical scheme for a
multi-class traffic flow model on an inhomogeneous highway was de-
signed in (Zhang, Wong and Shu 2006a). High-order computational
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scheme for a dynamic continuum model for bi-directional pedestrian
flow was designed in (Xiong, Zhang, Shu, Wong and Zhang 2011).

• A WENO-solver for the transients of Boltzmann-Poisson system for
semiconductor devices was developed in (Carrillo, Gamba, Majorana
and Shu 2003, Carrillo, Gamba, Majorana and Shu 2006). ENO and
WENO approximations were used in other semi-conductor device sim-
ulations in (Fatemi, Jerome and Osher 1991, Jerome and Shu 1995,
Chen, Jerome and Shu 1998, Cercignani, Gamba, Jerome and Shu 1998,
Banoo, Rhew, Lundstrom, Shu and Jerome 2001). Related work on the
simulation of hydrodynamic model of temperature change in open ionic
channels was carried out in (Chen, Eisenberg, Jerome and Shu 1995).

• ENO and WENO schemes were used to simulate the interactions of
shocks with vortices, which involve both strong discontinuities and com-
plicated smooth structures, especially suitable for using high order non-
oscillatory schemes. See (Erlebacher, Hussaini and Shu 1997, Zhang,
Zhang and Shu 2005, Zhang, Zhang and Shu 2006b, Zhang, Jiang,
Zhang and Shu 2009a, Zhang, Zhang and Shu 2009b, Zhang, Li, Liu,
Zhang and Shu 2013). Effects of shock waves on Rayleigh-Taylor in-
stability was studied in (Zhang, Shu and Zhou 2006c).

• WENO approximation of hyperbolic models for chemosensitive move-
ment was developed in (Filbet and Shu 2005). A high order WENO
scheme for a hierarchical size-structured population model was designed
in (Shen, Shu and Zhang 2007). High order finite difference WENO
schemes with positivity-preserving limiter for correlated random walk
with density-dependent turning rates were developed in (Jiang, Shu
and Zhang 2015).

• Lagrangian ENO and WENO schemes and related remapping problems
were developed in (Cheng and Shu 2007, Cheng and Shu 2008a, Cheng
and Shu 2008b, Liu, Cheng and Shu 2009a, Cheng, Shu and Zeng 2012),
which could resolve well the material interface for multi-material flows.
Positivity-preserving Lagrangian scheme for multi-material compress-
ible flow was developed in (Cheng and Shu 2014). Conservative high
order semi-Lagrangian finite difference WENO methods for advection
in incompressible flow were developed in (Qiu and Shu 2011a). Con-
servative semi-Lagrangian finite difference WENO formulations with
applications to the Vlasov equation were investigated in (Qiu and
Shu 2011b).

• Geometric shock-capturing ENO schemes were designed for subpixel
interpolation, computation and curve evolution in image processing in
(Siddiqi, Kimia and Shu 1997).
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11. Concluding remarks

In this paper we have attempted to give a survey of high order ENO and
WENO schemes, from algorithm design, analysis, implementation to appli-
cations, for solving convection dominated PDEs and other problems. The ex-
tensive list of sample applications, many of them in the past year, mentioned
in this paper or contained in the references and their references therein,
would hopefully convince the readers the wide applicability of ENO and
WENO schemes. More research on algorithm improvements and applica-
tions of ENO and WENO schemes can be expected in the coming years.
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