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Abstract. In this article a modification of the algorithm for data discretized in the point values
introduced in [S. Amat, J. Ruiz, and C.-W. Shu, Appl. Math. Lett., 105 (2020), pp. 106-298] is
presented. In the aforementioned work, the authors managed to obtain an algorithm that reaches a
progressive and optimal order of accuracy close to discontinuities for WENO-6. For higher orders,
i.e., WENO-8, WENO-10, etc., it turns out that the previous algorithm presents some shadows in
the detection of discontinuities, meaning that the order of accuracy is better than the one attained
by WENO of the same order, but not optimal. In this article a modification of the smoothness
indicators used in the original algorithm is presented. It is oriented to solve this problem and to
attain a WENO-2r algorithm with progressive order of accuracy close to the discontinuities. We also
show proofs for the accuracy and explicit formulas for all the weights used for any order 2r of the
algorithm.
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1. Introduction: Classical WENO algorithm. WENO (weighted essentially
nonoscillatory) algorithm [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] was designed to use the stencil
of the ENO (essentially nonoscillatory) algorithm [11, 12] and to behave in a similar
way close to discontinuities, while improving the accuracy at smooth zones. WENO
is written using a convex combination of all the interpolating polynomials that share
the central interval of the global stencil used. In order to provide an adaptive ap-
proximation, the weights of the combination are nonlinear and based on an efficient
estimation of the smoothness of each substencil using what are called smoothness indi-
cators [2]. In [13] we aimed to provide a WENO-6 algorithm with improved accuracy
close to singularities, while keeping the maximum possible accuracy at smooth zones.
In the past, some attempts have been made to generalize the work in [13] but without
providing satisfactory proofs about the accuracy of the algorithm for any r or explicit
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expressions for the weights or the smoothness indicators [14, 15]. It is known that
the WENO algorithm does not attain the maximum possible accuracy close to dis-
continuities when there is more than one smooth substencil. Although improving the
accuracy of the classical WENO algorithm close to discontinuities, we find that the
technique presented in [14] does not attain the maximum possible accuracy at some
intervals when r grows. In this article we solve this problem using a simple strategy
that has to do with the design of the smoothness indicators of high order and we proof
the accuracy of the new algorithm in general. We also give explicit formulas for all
the weights used in the algorithm for any r. Finally, we particularize the proofs for
low values of r that are most used in practice.

Let’s now introduce how the WENO algorithm works. Let X be a uniform par-
tition of the interval [a,b] in J subintervals,

b—a
-

The point value discretization of the piecewise smooth function f is considered at the
nodes z;,

(1) fi:f(xi)’izov"'a‘L f:{fi};]ZOa

and it is supposed that discontinuities are located far enough from each other, meaning
that in a stencil only one discontinuity can be found.

In order to interpolate in the interval (z;—1,x;), the WENO-2r algorithm uses the
stencil {z;_p,...,Ti1r_1}, that is composed of 2r nodes. Using the previous stencil,
the convex combination

X={x}_y, zi=a+i-h, h=

@ T f) =Y wlpi@)
k=0

can be constructed, with the positive weights wj > 0, £k =0,...,r — 1, and ensuring
that Z};;(l) wj = 1. In expression (2), the rth degree interpolation polynomials are
denoted by pj.(x). Then, the interpolation at the midpoint of the interval (x;_1, ;)

can be constructed and it will be denoted as ;_1,

3) (w13 f) =§WZPZ (%7%)-
k=0

The values of the wj, are forced to be those that allow us to obtain order of accuracy
2r at x;,_1 when the stencil is smooth. When interpolating the discretized function

{f(x:)}?,, the objective is to obtain an interpolation polynomial that satisfies

po ! (%‘—%) =f (%‘—l) + O(h*"),

2

based on the big stencil {z;_,,...,2;4r—1}, through the convex combination of the r
consecutive interpolation polynomials of order 7,

Pk (xi—%) =f (a:i_%) + O(h™ ).

Now, the classical WENO algorithm and its properties can be reviewed. The
classical WENO-2r interpolator, Z (x; f), imposes that the optimal weights are C}, >
0, with k=0,...,r—1, and ZZ;}) O =1, such that
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@ b (ry) = 3 ok ()
k=0

A formula for the optimal weights is obtained in [4],

- 1 2r
[ k=0,...,7—1.
(5) Ck 92r—1 (2]€ + 1)7 Oa T

The weights @], are designed [1] in order to satisfy at smooth zones that
(6) wp=C;+0(Mh"), k=0,...,r—1,

with k < r — 1, ensuring that the interpolation in (3) attains order of accuracy 2r
when k =r — 1, and

(7) Fwiy) =T (wigs f) =0 (),

that matches the accuracy attained by the interpolation polynomial pgrfl(x) of 2r
points. In [1, 2] the authors propose the following expressions for the nonlinear
weights:

~T T

(8) @,::%, Where@ZZCi]iH, k=0,...,7r—1,
>0 & (e+1})

with Zz;é w;, = 1. In the previous expression, the parameter ¢ is an integer that
ensures maximum order of accuracy close to the discontinuities. The parameter € > 0
is introduced to avoid divisions by zero and is usually forced to take the size of
the smoothness indicators at smooth zones. In our numerical tests, we will set it
to € = 10716 (although greater values can be chosen). The values I_]; are called
smoothness indicators for f(x) on each substencil of r points. The expression for the
I7 initially given in [4] is

B r—1 i dl 2
) p-Y e 1 () as
=1 Ti-1
As shown in [16], these smoothness indicators are only capable of detecting jumps
in the function but not in the first derivative. Thus, in section 4 the smoothness
indicators chosen for our algorithm are explained.

In this paper, we generalize and improve the algorithms presented in [14, 13]
achieving maximum order of accuracy in the intervals close to the discontinuities for
any value of 7. We introduce the notation and review the previous results in section 2.
In order to design the new algorithm, the optimal and nonlinear weights are presented
in section 3. Afterward, new smoothness indicators and their properties are proved
in section 4. In section 5, we analyze the accuracy of the new method, and finally
we perform some experiments comparing the new method with the classical WENO
and the new method in section 6. Finally, section 7 is dedicated to presenting the
conclusions.

2. Review of previous results: The cases r = 3 and r = 4. In [14, 13]
a new WENO-2r algorithm was presented that improves the resolution of classical
WENO algorithms close to discontinuities. For WENO-6, i.e., r=3, the pattern of
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accuracy obtained with the new algorithm was ..., O(h%), O(h®),O(h*),0(1),0(h%),
O(h%),0(hY),..., that is the optimal accuracy that can be expected in the presence
of a singularity (the one obtained by the classical WENO is typically ..., O(h%),
O(h*),0(h*),0(1),0(h*),0(h*),O(hS),---). For higher orders, i.e., r = 4,5, ..., and
despite the fact that the new algorithm obtains a better accuracy than the classical
WENO algorithm close to discontinuities, the theoretical pattern of accuracy obtained
was not optimal, being for r = 4, ..., O(h%),0(h"),0(h%),0(h%),0(1),0(h%),O(h%),
O(R™),0(h8) ..., or for r = 5, ..., O(h'%),0(h°),0(h%),0(h®),0(R8),0(1),0(h%),
O(h%),0(h%),0(h?),0(h1?)-- -, and so on.

The construction proposed in [14] was based on a progressive construction of the
building polynomials of the WENO algorithm. This construction was based upon the
observation that Lagrange interpolating polynomials of high order can be constructed
from polynomials of lower order using a dyadic architecture. For example, for r = 3
(stencil of six points) the polynomials of degree 3, p3(z), p3(z), and p3(z) can be used
to write polynomials of degree 4. For a stencil of six points there exist two different
Lagrange interpolating polynomials of degree 4 (stencil of five points) and will be
noted as p3(z),pi(z). There also exists one polynomial of degree 5 (stencil of six
points) that will be noted as pg(z). Now, it is clear that we can proceed to construct
the polynomials of degree 4 using the polynomials of degree 3 as building blocks; the
following notation is used:

n o 3 5 .
Po (%—%) = g,opg (Ii—%) + Cg,lp? (Ii—%) = gpg (%-%) + gpf (%-%) )
5 3
pi (xi—%) = 013,117? (xi—%) + Cing (%—%) = gp? (%’—%) + gpg (%—%) .

And we use the polynomials of degree 4 as building blocks to construct the polynomial
of degree 5,

5 1 1
(11) pg (%‘—%) = Cg,opg (:Ci—%) + Cgﬂ’% (%-%) = 51’3 (Ii—%) + 517411 (Ii—%) :

Once this point is reached, in [14] it is proposed to use the vectors of optimal
weights C3, C$ in the classical WENO algorithm. These vectors have as coordinates
the weights in (10),

(10)

a_(c3 o3 gy (3°®
CO - (CO,O’CO,DO) - (87 870) ’

4 _ 3 3 ) — § §
Cl - (0701,1701,2) - <O7 87 8) .

(12)

The stencil used in this case is composed of data at the positions {x;_3, x;—2, x;_1, z;,
Zit1,Zit2}. It is clear that it is convenient to use Cé when there is a discontinuity
placed in (741, 7;12) and C§ if it is placed in the interval (x;_3,2;_2). The objective is
to obtain the weights in (5) for » = 3 if the stencil does not contain any discontinuities,
so that maximum accuracy is attained everywhere. In [14] the weighted average of
the vectors in (12) is proposed:

1 1 1/3 5 1 5 3
1 4 4 a_Llea g 17035 (g2 2
(13) Co,0Co + Cp1C 2co+ 201 5 <8a8a0> + 3 (078’8)
3 10 3 e s ma A
B (mm@a) = (G3.¢1.63) = C°.
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The reader can observe how the construction reminds us a WENO algorithm that is
computed in several steps in order to grow one at a time the accuracy of the final
interpolant. The obvious pace leads us to define nonlinear weights for replacing the
constant weights in (13). The weights can be written as

~4 ~4
- &p.0 4 Qg1
14 Da o= = —1 W01 = =1 =1
1) 00 &g+ ag o1 &g+ ag
with
C 1/2 g 1/2
al 0,0 ~4 0,1
(15) Qoo = = = = y Qo = =

(€+Ig,o)t (€+Ig,o)t (€+I~§,1)t - (€+I~§,1)t.
The result of this process is an expression for the adapted optimal weights of the
classical WENO algorithm that ensure optimal accuracy for » = 3 and that replace

the classical constant optimal weights C7 in (8),
(16) 63 = (C’S’, éfv Cg’) = @0,003 + C:10,1041{

The smoothness indicators f{ikl, k1 = 0,1 in (15) will be defined in section 4 based
on those introduced in [13, 16], which work well for detecting kinks and jumps in the
function if the data is discretized in the point values (1). Thus, finally, the WENO
algorithm can be applied with the new nonlinear weights:

Zwkpk ( 7,——)

with

~3 43

~ Ok ~3 G
(17) o} = — and & = ‘T
>0 @ (e+ I2)"

where I3, k = 0, 1,2, are the smoothness indicators proposed in [16].

For r = 4 and higher values of r, it is possible to follow similar steps. In order
to design the new WENO-8 algorithm, a stencil of eight points composed of data
placed at the positions {2;_4, T;—3,Ti—2, Ti—1,Ti, Tit1, Tit2, Ti+3} is chosen. In this
case there exist four polynomials of degree 4 (stencil of five points), which will be
noted by pi(z), pi(z), p3(z), pi(x), three of degree 5 (stencil of six points), denoted by
p5(x), pi (), p3(z), two of degree 6 (stencil of seven points), denoted as p§(x), p§(z),
and one of degree 7 (stencil of eight points), denoted as pf(z). The process is similar
as before: obtain nonlinear optimal weights that ensure the optimal accuracy that
the data of the stencil provides. As already done for r = 3, the polynomials of degree
5 are written using the polynomials of degree 4 as building blocks,

(18) pS( 1——) Co opo( z——) JrCo 1P1 ( z—%) = 130 4( z—%) %p% (m )7
Py (xz %) Cl Vo ( T %) Jrcfng (%—%) = %pzll( T %) + ;pg (%—7) )

P (%‘—%) = C§,2P§ ( z—7> +Cy 3193 ( 7> = %pz ( 2—7> 130 3 (%‘—%) .

The polynomials of degree 6 can be written using the polynomials of degree 5 as
building blocks,

k=0,1,2,
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5 7

Py (xi—%) = Cg,opg (%—%) + 03,117? (%—%) 2P o (xi—%) + EZH ( z—%) )
7 5

P (mi—%) = Cir),lpi) ( z—7> +C7 2p2 ( z——) 127 Py (mi—%) EpQ ( z—7> .

In this last step, the polynomial of degree 7 is written in terms of the two polynomials
of degree 6,

(20) Pg< sz) Cy opo( ) +Co 1Py ( 177) = %Pg ( sz) + ;pl ( 277> .

In a similar fashion as done for r = 3, the vectors of weights C5,C$,C3 can be
obtained. They will have as coordinates the constant weights in (18),

(19)

(21)

3 7 11
— (G0 C810.0) = (35.16:00) . CF = (0.0L1.CLa00) = (0.5.5.0).

7 3
5 4 4 —
CZ - (070702,2702,3) - (0 O 10 10)

Now, the previous vectors are multiplied by the constant weights calculated in (19)
and (20) to obtain the weights that ensure optimal accuracy at smooth zones. These
weights are the constant optimal weights used by the classical WENO-8 algorithm,
ie.,

Coo (C50Ch+C5,C3) +C§, (C7,CF + CF ,C3)
7 1

_ 5, 5 5

= (120 +120>+2< ce +120>

_(Lr 7T 71
“\16°167 16" 16

= (Cg,C1,C3,C3) = C*.

N —

It is clear that the constant weights in (22) can be replaced by nonlinear weights. As
before, they will be represented by @fc_’kl, 5<I<6and0<k<6-1,k =kk+1.
The nonlinear weights are

(23)
~5 ~5 ~5 ~5
-5 0‘3,0 -5 Qg1 -5 a1 -5 Qi o
Wo,0 = =5 5 » Wo,1 = =3 y W11 = =3 ~5 » Wi2 = =3 ~5
Qg0+ Qg1 apo+ag, aj 1+ a7 aj 1+ a7 9
~6 ~6
-6 ap.0 -6 Q.1
wo 0= 36 1467 Wo,1 = =6 |, =6 T )
OZ0,0 0‘0,1 O‘0,0 0‘0,1
with
(24)
5 5 5 5
545 _ CO,O 025 _ C’0,1 645 o 01,1 &5 _ 01,2
0,0 — = ’ 0,1 — z ’ 1,1 — = ’ 1,2 = )
(EJFI(E)),O)t (€+Ig,1)t (EJFIiE),l)t (5+115,2)t
6 6
546 _ CO,O 646 _ CO,l
0,0~ 7 76 3 0,1 = 7 75 7
(e+18o) (e+15,)

which replacing the values of the C,lcy k, given in (22) result in
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(25)
. 5/12 . 7712, 712 . 5/12
o= oy M= me i T e Gl = e
(e+15,) (e+154) (e+17;) (e+17,)
aho= L ali= 2
(e+150)" (e+15,)"

Just as done before, the adapted optimal weights are obtained replacing the fixed
weights in (22) by the nonlinear weights in (23),

(26) C* = (C§,Ct,C3,C5) = Wo 0 (Wo 0Co + W, 1CY) +a;8’,1 (a)ilci’ +@i,2cg) .

The previous expression provides the nonlinear optimal weights C‘,’; that are used
to replace the optimal weights C’,Z in (8) of the classical WENO algorithm. The
smoothness indicators that appear in (26) will be defined in section 4. Analogously to
the case r = 3, the classical WENO algorithm can be applied with the new nonlinear
weights:

I(x
k=0
with
~4 ~4
(27) Df = —h— with dﬁ:ci’z“, k=0,1,2,3,
Zj:oaj (E+Ik)

being fg, k =0,1,2,3, the smoothness indicators defined in [16, 13].

A generalization of this process for any r can be obtained now. The difficulty
lies in constructing smoothness indicators for each level that are able to watch the
discontinuities correctly. In the next section, we present the generalization of the
algorithm for order 2r and explicit expressions for all the weights.

3. General explicit expressions for new WENO-2r weights. Following
the strategy described in the previous section, a WENO-2r algorithm with optimal
accuracy can be constructed for any r. In order to extend the results to any r the
following lemma can be used.

LEMMA 3.1, Let r <1< 2r—2and 0 <k < (2r —2) =1 if C}, and C}, ., are
the values which satisfy

!
(28) Pt ( 177> Ck KDk ( ) +Cy k+1pk+1 ( 177) )
then
2(r—k)—1 2(r—k)—1
29 o, =1-2"8 " ol -, =
( ) k.k 2([ + 1) ) k,k+1 k.k 2([ 4 1)

Proof. Let r <1< 2r—2and 0 < k < (2r —2) — [, and the stencils used to ob-
tain the interpolators le, pl, and pﬁﬁ_l are {Ti—riky s Ticrdh-tltl fy {Timrthy -« s
Tirihtl s AN {Ti—pihttls - Timrtktitl), Tespectively; then using Aitken’s inter-
polation process [17], from z; = a + ih, we get

Ti— —X;_1 Ti— —X;_1
I+1 . i—r+k+1+1 i—1 I ( ) i—r+k i—1 I ( )
P ( _L) = P T;,_ 1) — P T;_1
B\t Ti—rtktl+l — Tirtk AN -Ti rdk4l4+1 — Ti—rtk RN
_2ArkkD 4L 20r — k —1
- 2(1+1) ( ' %) D P (xi—%>
= Cl Dl (3«”1—%) + Ch g 1Pt (l"z %) : o
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The same construction can be done for any r starting by writing the polynomials
of degree 2r — 1 as a combination of polynomials of degree 2r — 2,

p(2)'r 1 (Jci,,) 027‘ 2 2r 2( )+02r 2 27“ 2(%7%),
and repeating the process for degree 2r — 2,
p%r 2 (%77) Cg% 3p(2)r 3 (%;%) +C12r 3 2r 3 (m%%),

p%r—Q (1'1 %) 02r 3 27—3 (%:—%) +02r 3 27« 3 (%—%)7

for degree 2r — 3,

2r—3 2r—4, 2r—4 2r— 4 27 —4

Do (Ii_%) Colo 1o (x %) +Cgh (xi_%) ,
2r—3 21‘ 4 2r 4 2r 4 2T 4

o (xz %) 7’ (mi %) + C7] (mzf%) ,

pgrfg (% ) Czr 4 2r 4( 7) +Czr 4 27“ 4(%‘7%)»

and so on, until the polynomials of degree r + 1 are reached,

p;""rl ( 1—*) Ol lpl < Z—%) +Olr,l+1p;+1 (xl—%) y l: O,...,7’72.

Thus, combining these equations,

1
_ 2r—2, 2r—2
i-1) = 2 : Coljo Plo (xi—%)

(30) pgT_l (z

Jo=0
Jo+1
2r 2r—3, 2r—3
- Z o, Jo Z CJOJl Dy, (ml*%)
Jo=0 J1=Jo
Jo+1 J1+1
_ 2r 2 2r—3 § 2r—4, 2r—4
Z 0,0 Z CJUJl le 2J2 p]z (mZ*%)
Jo=0 J1=Jo J2=Jj1
1 Jo+1 Jr—3+1
_ 2r—2 2r—3 r+1
- Z C 0,0 Z ijjl t 2 : er 3,0r—2
Jjo=0 J1=Jo Jr—2=Jjr—3
Jr—2+1
T
X 2 : CJr 2,Jr— lpj'r‘—l (xl*%)
Jr—1=Jr—2

In Figure 1 this process is shown for any r. It can be observed that the diagram shows
a tree structure where from each node C,l“kl, with k1 = k or k; = k + 1, we obtain

two subnodes of the form O/lchz with ko = k1 and ko = k1 + 1, which allows an easy
construction. The explicit values, C,l%k,l, are calculated using (29) of Lemma 3.1.

Therefore, it is easy to prove that the weights and the vector Cffl with 0 <k <
r — 2 are
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T T
C'o,opo
1
CT-‘r <
T T
Co1P1
i T
et 01,1171
CRites c<
\\\ r '
o 1,2P2
2r—3
Co,o
T 7
PR 02,2172
C2r 4_ -7 Cr+1<
\\\ T '
o C2,3p3
027‘ 2
T T
et Cl,lpl
- cr+1<
S r r
o 01,2p2
CQT 3
T ‘s
PR 02,2172
CQT 4 e CT+1 <
\\\ r r
o C'2,3173
T T
PR 02,2272
027“ 4 -7 Cr+1<
\\\ T ‘s
o 02,3193
2r—3
C’1,1
T 7
PR 03,3273
C2r 4 -7 Cr+1<
\\\ r '
D 03,4174
027' 2
2r—4 -
02,2 N
021” 3
s T
e Ol _3.r—3Dr—3
2r 4 e r4-1
C2,3 S Cr73,r73

RS T ‘s
o Cr—?),r—2pr—2

T T
Cr—2,r—2pr—2
r+1
Or73,r72

T T
Cr—?,r—lpr—l

Fic. 1. Diagram showing the structure of the optimal weights needed to obtain optimal order
of accuracy.
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3 2r —1
Cyt = (Ch,,Ch1,0,0,...,0) = 0,0,...,0
0 ( 0,00 ~0,1» Y ¥ ) ) (2(7‘+1),2(’1"+1)’ s Yy ) )a

5 2 —3
ctl=(0,¢7,,C7.,,0,....0)= (0 0,...,0
1 (7 1,1>~1,2> % ) ) (72(’!‘4—1),2(7’4—1)7 ) ) )7

(31)

2r—3 )
Crti=(0,... r " =1(0,...
r—3 (07 >07 Cr—B,r—Sa Cr—S,r—Qa O) <Oa ) Oa 2(7“ + 1) ) 2(7" + 1) ) 0) )

2r — 1 3
ctl=(o0,...,0,0,C"_, ., C" =1{0,...,0,0 .
2= (0,:,0,0,C7 5,5, Clp,1) <’ Y ’2(r+1)’2(r+1))

Hence, by construction, these weights satisfy

(32)
1 Jo+1 jit+1 Jr_3+1
2r—2 2r—3 2r—4 r+1 r+1
Yoo ot X g LGh
Jo=0 J1=Jo J2=J1 Jr—2=jr—3

=(Cy,CY,...,Cr_,,Cr_y) =C" .

In order to design the nonlinear weights, the values C’,lc’k1 are replaced in (32), for
l=r+1,...,2r—2and 0< k< (2r—2)—1, ks =k,k+1, by
51

-l Xk ke _
Opky = 77> k1=k k+1,
Qg g+ Qg g
(33) o
Bhpy = ——=— ki =k, k+1
k.kw — ’ 1 — Ry )

(e+ fllc,kl)t

where I ,lc r, are the smoothness indicators introduced in [13] and will be analyzed in
detail in section 4.1. Thus, the nonlinear weights are defined as

(34)
N~ (AT AT ~r ~r
C _( 0701""7 r—2 1'—1)
1 Jo+1 Ji+1 Jr—3+1
o ~2r—2 ~2r—3 ~2r—4 ~r+1 r+1
B Z “o,j0 Z Wi, i1 Z Witga | e Z ij737jr72C.jr72
Jo=0 J1=Jo J2=J1 Jr—2=jr—3

Finally, for these weights, the WENO algorithm described in section 1 is applied using
the nonlinear optimal weights in (34), i.e., we compute

T, g5 ) = @i (wiy)
k=0

with
& o, Cp
(35) wk:T, Wlth ak:7’“r7 k:07...7'f—17
Zj:(l) O[j (€+Ik)t
where again the f,z, k=0,...,r, are the smoothness indicators defined in [16, 13].

In order to clarify this construction, the case r = 5 is presented because r = 3
and r = 4 have already been displayed in the previous section.
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3.1. The case r = 5. In order to construct the nonlinear weights for r = 5,
first, the vectors C8 can be calculated with k = 0,1,2,3, thus

(36)

Cg = (08,0703,1707070) = (1 5

100 0) C$ = (0,C11,C12,0,0) =
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CG = (0707025,27025,37 ) (0

7 5

0, 0) C§ = (0,0,0,C54,C5,) = (0,070

127127

Second, the expressions of the following vectors can be obtained:

(37)
(:)6 . 64(6),0 (:16 . 048 1 (:]6 _ 64(15’1 (:)6 a?’z
0,0 ™ =6 | ~6 ° 0, _~77 1= =6 |, ~6 2 = =
a4 + a5, ' ago+ag, b ag, +af, ! ab +af,
~6 Oég 2 ~6 Oég 3
Woo= == Was= =g =5
as 5 +as 5 as o +as 5
o7 — a0 o = Qg o7 = af 5 af,
0,0 — =7 | ~7 > 0,1 — =7 | ~7 1,1 — = — s 1,2 — —
&g+ 64 &g+ 64 &fp + a7, &y + a7,
~8 a0 ~8 ag
Wo,0 = =8 , =8 » W01 = =g =8
’ af o+ ag ’ af o+ ag
with
(38)
58  — LGJ’ 6 _ Cg,l ~6 016,1 ~6 C?,z
a0,0 - ING +? aO,l - I~6 PR al,l - IN ’ a1,2 IN )
(e +15,) (e+151) (e+17,) (e+17,)
&6 — 03;2 6{6 _ 05373
e+ I8, T (e I8,y
s 5/14 s 9/14 o 1)2 » 1/2
Qo0 = ( _|_f6 P 0,1 I~6 )t’ a1 ( i ) 1,2 ( I~6 )
e+15,) (e+15, e+ 17, e+ 17,)
9/14 5/14
~6 -6
Qo0 = %6 ¢ 01~ % 2’
(e+15,) (e+153)
~7 Cg,o ~7 Cg,l ~7 017,1 7 017,2
0‘0,0—7< 7 )tv Qg1 ( 7 )t, a1,1—( ny; ) 1,2 ( +f7)
€T 20,0 €T 1o, €+ 11 e+1{,
. 7/16 . 9/16 . 9/16 : 7/16
OZO,O - f? )t’ OéO,l - ( + j‘7 P al,l - + j7 1,2 ( + j‘7 )t’
(e+ 150 €+ 151) (e+1{4) €+ 1io
~8 Cg,o ~8 __ 03,1
Qo0 = T Qo1 = Cranw
(e+150)" 7 (e+15,)"
1/2 5 1/2
B "
(e+15,0)" ’ (e+154)

where Ikk , with [ = 6,7,8, £ = 0,1,2, and k; = k,k + 1, are the smoothness
indicators that will be defined in section 4.1. All in all, we get the new nonlinear

weights,
@¢
5:(687015,05,05,05?)

+ @g,l ((’DII (‘:’?710(; +

o
N
N———

= @(8),0 (‘:’g,o (‘I’g,ocg + ‘1’0,10?) + ‘Dg,l (@?,10? + ‘1’1,203))
@?7203,2) + 0717,2 (@S)ch + @2,3Cg)) .
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Now the classical WENO method can be applied using these weights as optimal
weights. In the next section, the properties of the smoothness indicators used in the
algorithm for any value of r are explained and proved.

4. Smoothness indicators of high order. This section presents the smooth-
ness indicators chosen, which allow us to obtain optimal order of accuracy close to
the discontinuities. The ones introduced in [16] are appropriate, as they work well for
detecting kinks and jumps in the function if the data is discretized in the point values
(1). They can be defined as

~ r T dl 2
(40) 1, :th*l/ (dxlpZ(x)) de, k=0,...,7m—1
1=2 x

i—1

For r = 2,3, these weights satisfy several properties that allow us to obtain the
condition shown in (6) (see [16]). In this section these results are extended for any
r. In [14] the proof of the following theorem is given. It is reproduced here for
completeness.

THEOREM 4.1. Let 0 < k < 7 — 1 and let pj, be the interpolator polynomial of
f of degree v > 3 that uses the nodes of the stencil S}; then at smooth zones, the
smoothness indicator obtained through (40) satisfies

Iz = (w0 (o)) 0+ 00

Proof. Let 0 < k <r—1 and let pj, be the interpolator polynomial of f of degree
r > 3 that uses the nodes of the stencil Si. It is an r times continuously differentiable

function in a neighborhood of the point x;_1 = z; — h/2. Then, (p,(cl)(x))2 can be
written using the Taylor expansion of py(z) as

(00@)" = (60 () + 60 (o) () w0 (o= 5y)))
= (@07 (i) + (00 (ricy) (2= 2cy))’

1
2
t2? oy ) 00 (o1y) (2= 2y

200 () 00 (5 ) (2= y) 0 (o))

Integrating the previous expression between z;_; and z;, replacing in (40), and sim-
plifying, the result is obtained, as for [ > 2 all the terms of the summation have a size
smaller than or equal to O(h®),

=y | T (00O@) =3 (KD ® (x4)) - 1+ 00
1=2 Ti—1 1=2
= (00" (s:-y)) -1+ 0w 0
The following proposition is proved in [16].

PROPOSITION 4.2. Let be 0 < k < r, 1 < t, and @}, be the nonlinear weights
defined in (35). Then,
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wp =0(1) if f is smooth in Sy,
QF = O(h®™) if f is not smooth in S}

with m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in
the first derivative.

In what follows, the explicit form of f,: with £ = 0,...,r — 1 for r = 3,4 is
given. The second order undivided differences are noted by 62 = fi — 2 fis1 + fit2,
63 =62, — 62, and &} = 62, | — 7. Taking into account the previous notation for the
differences, the smoothness indicators in (40) for r = 3 are

5 10 213
3= 3 2 192 2
0 3 <6 061—3) + 40 (51—3) ?

5 4 35\, 13
(1) =3 (0 302) + 5000,

. 3 13
3 _ = 3 _ 752 2
‘[2 - 3 (611 8511> + 16(61 1) .

2 2
- 22 (81 15 2107 440
=6, + 08 5 — (0 4+ =02
°7 3 (88 im0t g 520 % T g07”

3 (27, o \° 3901, ., o
( 5 0y + 561’—4) + 6321 (6;_4)"

-, 10 2 s47 80 2
g Y 4 3 9 9 0%l 2
Iy = 3 < 051 303+ 051 3) T 510 (5 + 54751 3>

3 . 21561, .,
( 5t 5+ 307 )+1641(6i3)’

YR 289 ?
a_ 2 1 3 2
Iy = 3 ( 1651—2 +0i o+ 85’ 2) 20 (51 2~ 2675 )

3 2 781
- <§l 2+5z 2) +7(5i2—2)27

., 4 > 547 80 2
Aoz 2 4 2
I3 3( - 861 1) 210 (5 * 5a7i- 1)
2
1561,
16 (_ Oia 0L ) * 101 0-1)

Once the smoothness indicators for the level r are defined, the rest of the indi-
cators for each level can be constructed from 2r — 2 to r + 1. Theorem 4.1 allows
us to have a clearer vision about the behavior of the smoothness indicators. We can
see that they get a value that is O(h*) at smooth zones. As they can be expressed
in terms of differences, they get a value that is O(1) when their stencil contains a
discontinuity.

In [14], in order to reduce the computational cost of the calculation of smoothness
indicators of high order through (40), it is proposed to use a function of the smoothness
indicators implemented by the classical WENO algorithm. For r» = 3 the smoothness
indicators of five points were given by
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(43) jg,O :jg—’_jfa
fg,l == jig’ + j23.

These smoothness indicators provide optimal accuracy for 7 = 3 in the sense that the
pattern of accuracy obtained close to a discontinuity is ..., O(h%),O(h®), O(h*),O0(1),
O(h*),0(h%),0(h®),.... For r = 4, the smoothness indicators of six and seven points

150,15 1,17 5, 1§ o, I§ | were defined as

y Bo=li el By=I=Tie it =T+ i
) o= 4 BB I8, =04 I I
In this case, these smoothness indicators do not provide optimal accuracy, provid-
ing the typical pattern of accuracy close to the discontinuity ..., O(h®), O(h7), O(h?),
O(Rh®),0(1),0(h%),0(h%),0(h7),0(h?),--- instead of the optimal one ...,O(h?),
O(R"),0(h%),0(h%),0(1),0(h%),0(h8),0(h"),0(h®),.... The reason is the follow-
ing. Let’s observe Figure 2, which represents the stencil of eight points considered for
r = 4. This figure represents a discontinuity in the interval (z;y1,2;4+2) (the case for
the discontinuity in the interval (x;_3,2;_2) is symmetric). Let’s now recall the ex-
pression of the interpolation proposed in [14] and reproduced in (26). The smoothness
indicators —fg,o and fgﬁl in (44) use the data placed at the positions {z;—4,..., 212}
and {x;_3,...,%;13}, respectively. Looking at their expressions in (44), it is clear
that the weights ©f o and ©f ; in (25) are both affected by the discontinuity, so both
of them will have O(1) accuracy. For a good approximation of the case represented in
Figure 2, ©f o ~ 1 and &f ; =~ 0 in order to keep the final weights close to the optimal
ones. The problem would be solved if (Dil ~ 0 and ‘1’32 ~ 0 but this is not possible,
as the algorithm balances the weights in pairs of two; thus, if one is close to zero the
other one must be close to one. The problem is solved in this case if the smoothness
indicators are selected in pairs as

fg,o = fg, fg,1 = f§7
(45) INO5,O = iga fg,l = ig’
fil:ff, in:fé{

Now it is clear that &f , watches the discontinuity and it gets a value @§ , ~ 1 while
@01 = 0, cleaning the garbage introduced if (44) is used and similarly for &7 , ~with
k=0,1,k; =k + 1. With this strategy only the smoothness indicators of degree r
are computed, which are the ones used by the classical WENO algorithm, improving
the computational efficiency.

In the following subsection a general formula is given for computing the smooth-
ness indicator for any 7.

4.1. General smoothness indicators. In this subsection a general formula
is provided in order to obtain any smoothness indicator I ,lc x1 in terms of the clas-

F1G. 2. Representation of the values considered in the stencil and a discontinuity placed in the
interval [Ti41,Tit2].
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sical WENO smoothness indicators I7 for 7. We follow the same construction pre-
sented previously in this section. The different weights are defined using the following
formulas.

DEFINITION 4.1. Let be [ = r+1,...,2r — 2, and f,:, with k = 0,...,r — 1 the
smoothness indicators showed in (40); then the smoothness indicators at level | can

be defined as

Ihw=1If, k=0,...,02r—2)—1,

(46) . -
Logor =1 iy k=0, (2r—2) -1

The idea is to detect in what part of the tree diagram the discontinuity is placed
and to force this branch to be automatically discarded through the values of the
smoothness indicators and, consequently, the weights. Then continue with the follow-
ing subbranch and again force the automatic discarding of this branch if the stencil
contains a discontinuity. This process is repeated in each pass until only one branch
free of discontinuities is found.

The smoothness indicators for r = 3 and r = 4 already have been described. For
r =5, using (46),

ig,o = fé’, f0871 = IE,
(47) fg,O = ig? fg,l = jga j17,1 = jit)a f17,2 = jéi
jg,o = —fos’ jg,l = j25a j?,l = jir)a 1:?,2 = —f35
Finally, we prove the following important results that will be used in the next
section in order to analyze the accuracy of the new method.
LEMMA 4.3. Let be 0 < k, k1 <r—2, and ig, n =k, k1, be smoothness indicators
of f on the stencil ST = {ZTitn—ry--sTiznt- If f € C"([Titn—r, Titn]), then
I, = Iy, = O(h™?),

Proof. Let py,py, be the two interpolating polynomials of f of degree r > 3 at
nodes in the stencil S;,, n = k, k1, at a distance O(h). Then if [ > 2, the sketch of the
proof presented in [4] can be followed, and thus from (f() — (p7)® = O(h™+1 ), we
get

(r) - (o) =~ ((f‘” —w®) 2 (@ - 1) f(”>

(48) 9] (hT+1—l))2 + (O (hr-i-l—l))O(l)

= (
=0 (n1y,

and replacing in (40), we obtain

Fro r — Zi o 2 r - x; ) 2_ " )
Ir ;hz 1/m_1 (f (x)) dz| < ;}ﬂ 1/9“_1 ((pn) (x)) (f (J;)) de
= i: o (hr+1—l)
:lO:(QhTHS)'
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Finally,
(49)
i£*f121 < ~1:*Zh2l71/ i (f(l)(-’ﬂ))de + I~;Z+1 thzlfl/ ' (f<l)(x))2dx
1=2 Ti—1 1—2 i1
=O0(h"?). a

PROPOSITION 44. Let be r +1 <1 < 2r—2, 0 <k < (2r—2)—1 and IN}C’k
and ]:,lc’kJrl be smoothness indicators defined in Definition 4.1, which can be expressed,
following Theorem 4.1, through Taylor expansion as f,ik = (h2p”(xi7%))2(1 +0(h?))
if the stencil is smooth, f,lcyk = O(1) if the stencil is affected by a discontinuity in
the function, and f,ik = O(h) if the stencil is affected by a discontinuity in the first
derivative. In this case, any weights expressed as

~1 ~1
(50) (:jl _ ak,k (:Jl _ ak’k+1
kk = 51 1§l ) Rkl =
Qp g T O 1 R S
with
Cl Cl
(51) &= kk al . kk+1
k,k — 71 +) k,k+1 — 71 t
(€+Ik,k) (€+Ik,k+1)

with C}C’k + C,lc7k+1 = 1 will fall under one of the following cases:
1. If neither IN}C’k nor f,lc’kﬂ is affected by a discontinuity, then @é’k = C’é’k +
O({lril) and ‘ch,lwrl = Cllc,k+1 +O(h ).
2. If I,i,,ﬂ_l is affected by a singularity, then d)fM =1+ O(h*™) and d)fc,,ﬁ_l =
O(tht). )
3. Symmetrically, if I,lﬂ’k is affected by a singularity, then &ch,kﬂ =1+ O(h*™?)
and @y ;, = O(h*™").
4. Iff,?k and f}mkﬂ are affected by a singularity, then d}ék =0(1) and ‘%,k-&-l =
0(1).
Here m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is in
the first derivative.

Proof. The ideas presented in [4] can be followed. Let » +1 <1 < (2r — 2) and
0 < k < (2r —2) —I; by Definition 4.1,

(52) fllc,k = f,:, fllc,k+1 = INIT—(T—l)—i-k = igla

where k1 =1 — (r — 1) + k, doing algebraic manipulations,

L 1 = S =\ J

(e+1})" + (e+ip)r  Ip = Iy S (6—’—[/;1)

1 - T 7 b
(e_i_f;l)t €+ I]: =0 €+ I]:

then, using Lemma 4.3, the previous equality transforms into

1 14+0(m 1)

(53) (€+I~Iz)f (€+I~l:1)t
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If there is no singularity affecting f,:’k =17 or fg’kﬂ = f,:l then, using (53),

Ok ol Clx (1+0(h" 1)
Lbfg . (e+I} ) _ (5+f;)f _ (e+1))*
' Cllc,lc Cllc,m—l Cllc'lk C%c,fe+1 Oxlc,k(lﬂomwl)) Cllc‘~k+1

(54) O G N s LN CS L (e+If )t (e+If )t

. i+ omh)

Cllc,k(l +O(h 1)) + Cllc,k+1

=Chy+ O,

Analogously,

Okkr1 = Chpr + OB,

If, following Theorem 4.1, f,ik = K(1+O(h?)) if the stencil is smooth and f,lgk =0(1)

if the stencil is affected by a discontinuity and considering that e is small enough, then

1. if the stencil contains a singularity that only affects the smoothness indicator

I s then I}y = (B2 (,_1))%(1 + O(h?)) = O(h®™) with m = 2 if the

discontinuity is in the function and m = 1 if the discontinuity is in the first
derivative, and 1:,27k+1 = O(1); then,

(55)
ol C]lit,k(e + Illc,k+1)t B Cllc,k(€+IIlc,k+1)t
kk = = = = = —
Cllc,k(€+jllc,k+1)t+cllc,k+1(€ + Illf,k)t Cllc,k(e + I}i,k+1)t+0(h2 t)
_ Cllc,k(e+illv7k+l)t 1
e I t __O@mt)
k(€ T ) 1+ CLA (Tl orn)?
=1 + O<h2mt)7
- Cl (e + 14" O(h?™t) .
S = ' ’ - - o).

Cllc,k<€+l~ll€,k+1)t+cll@,k+1(€ + izlc,k)t ~ 0(1)+0(h2m)

2. the case when the stencil contains a singularity that only affects the smooth-
ness indicator Iy ; can be obtained by symmetry;
3. if If%k and I,l€7,€_i_1 are affected by a singularity, then

(56)
Clo(e+1, ) CL(e41L 1)t
o, = “k k ko k1 _ _ ok ko k1
7 Clli:,k(6+lll§,k+1)t+cllc,k+l(6+Illc,k)t C/lg,k(E + Iilc,k+1)t + O(h2m?)
Cl o (e+ 17 t 1
_ ek ( Fkt1) _ o),

= O(h2mt
l?,k(e + Illc,k-',-l)t 1+ Oth'rnt;

Cl €+I~l t
Dl = . = k’kﬂt( nk’k) =— = O0(1). 0
Cronlet Iy )+ O (et 17 )

5. Analysis of the accuracy. Let us try to analyze now the accuracy of each
individual dyadic WENO algorithm that we perform at every step of the new con-
struction. In general, to prove the accuracy of this algorithm three steps are needed:

1. Obtaining the value that the nonlinear optimal weights get for each position
of the discontinuity.
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2. Checking the error obtained between the weights of the classical WENO (that
is performed at the last step) obtained using the nonlinear optimal weights
and the weights that provide optimal accuracy.

3. Checking the accuracy obtained by classical WENO interpolation.

5.1. Analysis of the accuracy for any r. This section presents a general
study of the accuracy of the new algorithm using the formulas described in section 3.
Therefore, the weights are given by

(06’ CNT? et é:—27 CN(:—l)

Jo+1 Ji+1 Jr—3+1
_ ~2r—2 ~2r—3 ~2r—4 Z ~r+1 r+1
2 : 0,50 2 : Yo, 2 : Wige |- wjr—ijr72C.jr72 T )
Jjo=0 J1=Jjo J2=J1 Jr—2=jr—3

where the values oﬁfc,kl withl=r+1,....,2r =2, 0< k< 2r-2)-L ks =k+1
and C."! being 0 < k < r — 2, are defined in (33) and (31). The coordinates of the

vector (&, ...,0N_1) have been defined in (35), i.e
o = Zf"; —, k=0, —1,
ar
(57) =
ay = k. k=0,...,r—1
(e+1Ip)

The different possibilities can be analyzed.
e First, we suppose that any discontinuity does not cross the stencil {z;_,,...,
Ziyr—1}; then by Proposition 4.4, we get forall I =r+1,...,2r—2,0< k <
(2r —2) — 1, and k; = k + 1 that

@i,kl = éilc,kl +O(h™ ).
Then, by construction of the optimal weights, (30),

(@6 @r1) = (GG, Cly) + O(R )

Jjo+1 Jj1+1

1 Jr—3+1
~2r—2 ~27r—3 ~2r—4
Z Wo,jo Z Wi .41 Z Wipgz | - Z
Jjo=0

J1=jo Jj2=J1 Jr—2=Jjr—3

x5 ZCL*2> ))) +O(h"™)

1 Jjo+1 ji+1 Jr—s+1
_ 2r—2 2r—3 2r—4
- ZCOJO Z CJO Ji Z C]l ,J2 o Z

Jjo=0 Ji1=Jjo J2=J1 Jr—2=Jjr—3
r41 r+1 r—1
XCJr 3:Jr— Qer2> ))) +O(h )
= (é(;a LR _:"—1) + O(h”‘*l).

o If there exists a discontinuity at [z;_1,z;] by Proposition 4.4, for all [ =
r+1,...,2r—=2,0<k<(2r—2)—1I,and k& =k + 1 we get

Wkklfo( )-
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e Using symmetry arguments, we only need to analyze the case when there

exists an isolated discontinuity at an interval [x;_141,, Zit1,], lo=1,...,7—1
(analogously, the equivalent symmetric results for [@;—,tiy, Timrtig+1]), lo =
0,...,7 — 2 can be obtained). In order to study these cases, the following

results are shown.

LEMMA 5.1. Let&p, k=0,...,r—1, be the nonlinear weights defined in (35). If
there exists 0 <lop <1 —1 such that I} is affected by a discontinuity and

(Co,... CT ) = (C5+O(h®),...,CL_, + O(h%), 0(hF™), ..., O(h¥™))

with 220:_01 Cr =1,1<s5<2mt, m =2 if the discontinuity is in the function and
m =1 if the discontinuity is in the first derivative, then

@ =Cp+0(h®), 0<k<l,
OF = O0(h*™), Iy <k<r—1.

Proof. This is a direct consequence of the fact that Zl[’ el Cp=1. ]

LEMMA 5.2. Let be 0 < lop < r—1. If there exists a discontinuity at [Titiy—1, Titio)s
then for all lo + (r — 1) <1 < 2r — 2 the nonlinear weights defined in (33) satisfy

(58) (:J(l),o =1+ O(h2mt)> ‘D(l) 1= O(tht)v

where m = 2 if the discontinuity is in the function and m = 1 if the discontinuity is
in the first derivative.

Proof. 1t is clear that as [y > 0, then the smoothness indicator f(’)’ is not affected
by the discontinuity. However, if Iy + (r — 1) <1 < 2r — 2, then

I—(r=1)—-r<0<ly=lp+(r—-1)—(r—-1)<l—(r—1).

Thus, the discontinuity crosses the stencil used to calculate I ( ) and then, by the
definition of the smoothness indicators in (46), we get

I(l),o =1y, I(l),1 = Izr—(r—1)v
and by Proposition 4.4 the result is obtained, i.e.,
o =1+0(0™), &b, =0, 0
LEMMA 5.3. Let 0 < lg <r —1. If there exists a discontinuity at [T;11,—1, Titi,],
then for all r +1 <1 <ly+ (r — 2) the nonlinear weights defined in (33) satisfy

(59)
Wk = Ch kT O™ b, @ k1l = Cllﬁ,kJrl +OM™™Y), 0<k<ly+(r—2)—1,

where Cy ;. with ky =k, k+ 1 defined in (29).

Proof. In order to prove this lemma, we only have to analyze if the discontinuity
crosses the stencils used to calculate I7 & and I 1)k In the first case, the stencil

is {x277”+k7 o 7xl+k}v as

kSlo‘F(T*Q)*lSlo‘F(T*Q)*(T‘Fl):lofg,
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and then the discontinuity does not cross it. In second case the stencil is {4 (r 1yt —r,
Tiyi—(r—1)+k}, from

I—(r=1D)+k<l—(r—-1)+l+(r—2)—1l=1l—1.

Using Proposition 4.4, the result is obtained. ]

LEMMA 5.4. Letbel < ly < r—1. If there exists a discontinuity at [Titiy—1, Titio)s
then

(067 C’{y RN C’:fl)
Jjo+1 Jig—3+1
_ ~r—241 ~r—3+1 ~r+1 r+1 2mt
Z %o,50 ’ Z “Yio,41 N RS Z wjzo—37jzo—2cj10_2 o + O(h )
Jo=0 J1=Jjo Jlg—2=J19-3
with Cffl, k=0,...,7 —1, defined in (31) and

l Cl
60 ol :#, o7 L S R S
(60 BT A o (e+ 1} 4,)" '

where I,C w, are the smoothness indicators defined in section 4.1, C}, Ky U defined in

(29), m = 2 if the discontinuity is in the function, and m =1 zf the dzscontmuzty 15
in the first derivative.
Also,
(61)
((:)67(:)1‘, s aa);’"‘—l)

= (C5+O0 1), CT+ 0™ Y),...,Cl _y + O(h™=1),0(h*™),...,0(h*™)),

lo—l
. A
p00+r ! (%‘—%) = E Crpy (%‘—%) :
k=0

Proof. Supposing that 1 < ly <r — 1, we can write

pé()ﬁ*’r’fl( ) § Cl(’);;r 2 l()Jr’r’ 2 <$27%)

Jo=0
Jo+1
lo+7‘ 2 Z lo+7r—3_lo+r—3
Z 0,50 CJ07]1 Dy (Z—%)
Jo=0 Ji1=Jjo
Jo+1 Jig—3+1
lo+r 2 Z lo+7r—3 Z r4+1
(62) Z 0,jo0 Ojo7j1 sz()fs,jzofz
Jo=0 Ji1=Jjo Jig—2=J19—3

Jig—2+1

T T
x E : Clig ity 1Ping 1 (zz’—é>

Jlg—1=J1g—2

lo—1

= > Cimp (niy) -
k=0

Then, by (34) and Lemma 5.2,
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(é(g?éI? R} C:“—l)

1 jo+1 Jig—3+1
_ ~7r—2+41g ~r—3+lo ~r+1 r+1 2mt
- Z “o,50 z : Wio.41 o z : wjzofg,jlofzcjlof2 T + O(h )

Jo=0 J1=Jjo Jlg—2=J1g—3
And by Lemmas 5.1 and 5.3, we obtain
(@F, @7, ..., @r_4)
= (Co+ O™, Cr +O(h™1),...,Ch_  + O(h" 1), 0(h*™*),...,0(h*™")). O

THEOREM 5.5. Let 1 < Iy < r — 1 and &@j, defined in (35); if f is smooth in
[Tir, Tigr—1] \ Q and f has a discontinuity at Q, then

— ., o) if Q=0;
(63) I;kapk <$27%> - f (xzfé) = { O(hr+lg) Zf 0= [$i+lo—17$i+lo]-

Proof. Let 1 <ly <r —1; then

k=0
_ lo_l(a),g —¢n) (p; (x,) .y (m,)) + f oopl (x,) + O(h o)
k=0 k=lo
— (A"~ 4 O(R2™) + O (k7o)
— O(h o), 0

Finally, if [ = 1, then the WENO classic interpolation is obtained and the order
in the interval [z;, z;41] is O(R"T1).
Now, let’s try to determine the value of the parameter ¢ in (8). The polynomial
obtained with the new WENO technique must satisfy the following properties:
e It is a piecewise interpolation polynomial composed of polynomials of degree
.
e Every polynomial must satisfy the following property, which is equivalent to
the ENO property [13], but that ensures a progressive order of accuracy:
— The classical WENO weight related to any smooth stencil will verify

wp = 0(1).
— If the function f has a singularity, then the corresponding @j, will verify
op=0(h"").

COROLLARY 5.6. The new WENO algorithm satisfies the previous property if t >
r for jumps in the function and the first derivative.
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Proof. The proof is straightforward from (61) in Lemma 5.4. It can be seen that
ensuring that 2mt¢ > 2r — 1 is enough. If ¢ = r the previous inequality is satisfied for
jumps in the function or the first derivative. In fact, for jumps in the function it is
enough if ¢t = ceil (2’”2_ 1), ceil being the operation of rounding to the upper closest

integer. O

6. Numerical experiments. This section presents some numerical experiments
used to test the theoretical results obtained in previous sections. In particular, the
results related to the order of accuracy and the computational time of WENO-6,
WENO-8, and WENO-10 algorithms are shown.

The accuracy will be checked through a grid refinement analysis. Let’s consider
the function

(64)
flz) = 210 — 2% + 2® — 42" + 2% + 2% + 2t + 23 + 522 + 3z, a<x<0,
7\ n— (20— 22° + 328 — 827 — 22% + 2° — 22* — 32% — 52> + 052), 0<az<b,

where 7 takes the values n = 0, 1. In the first case the function presents a discontinuity
in the first derivative and in the second case a discontinuity in the function. Let’s set
n = 0 and consider the interval (a,b) = (—%,1 — &). This configuration is chosen in
order to force, if possible, that at all the stages of the grid refinement analysis, the
singularity does not fall at a grid point. If the discontinuity does fall at a grid point,
then the classical WENO strategy (or the new one) always provides an approximation
of order O(h™1), as there is always one smooth stencil, and the grid refinement
analysis does not show the real accuracy of the algorithms. If 7 = 1, then the interval
(a,b) = (=0.5,0.5) can be considered. For all the experiments ¢t = r and ¢ = 10716
have been chosen in (8) and (33) (greater values can be chosen for € to obtain similar
results, for example, e = 1071Y).

Tables 1 and 2 present a grid refinement analysis for the new WENO-6 and
the classical WENO-6. Tables 3 and 4 present the same refinement analysis for the
WENO-8 algorithms. Tables 5 and 6 present the results for the WENO-10 algorithms.
All these tables have been obtained for the function in (64) with n = 0, which presents
a jump in the first derivative.

Tables 7 and 8 (WENO-6), 9 and 10 (WENO-8), and 11 and 12 (WENO-10) show
the same analysis but, in this case, for 7 = 1, so (64) presents a jump in the function.

In all the aforementioned tables 2° initial points are used. The errors e; are pre-
sented for interpolated data at grid points around the discontinuity. The interval that
contains the discontinuity is always denoted as ;. It is clear that the accuracy is
reduced step by step using the new algorithm. The classical WENO-2r algorithm is
not capable of this adaption and typically attains O(h"*1) accuracy at the interpola-
tions whose stencils cross the discontinuity. Tables 3, 4, 5, 6, 9, 10, 11, and 12 only
present complete results to the left of the discontinuity as the accuracy is symmetric.
In order to obtain the computational time, 2000 executions of each subroutine are
performed to obtain the mean. The computational times obtained show that the cost
is similar for both algorithms for small values of r but that it slightly grows for the
new algorithm as r grows.

7. Conclusions. In this work the algorithm introduced in [13, 14] has been
generalized for data discretized in the point values. Explicit expressions for all the
weights have been given and also a general proof that shows that the accuracy at-
tained with this new WENO-2r strategy is optimal for any value of r. In addition,
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we have proposed a strategy to use the smoothness indicators of order r, i.e., those
used by the classical WENO algorithm, as smoothness indicators of high order, using a
tree structure, in order to optimize the computational cost of the new algorithm. The
numerical results presented support the theoretical conclusions reached. The numer-

ical

estimations of the computational times presented show that the new algorithm

and the classical WENO algorithm perform very similarly.
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