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Abstract

In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlin-
ear and possibly degenerate parabolic stochastic partial differential equations, which
is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method
for purely hyperbolic equations to parabolic equations and shares with the DG method
its advantage and flexibility. We prove the L?-stability of the numerical scheme for
fully nonlinear equations. Optimal error estimates (O(h**1)) for smooth solutions
of semi-linear stochastic equations is shown if polynomials of degree k are used. We
use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-
valued stochastic ordinary differential equations derived from the spatial discretization.
Numerical examples are given to display the performance of the LDG method.
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1 Introduction

In this paper we present a local discontinuous Galerkin (LDG) method for nonlinear parabolic
stochastic partial differential equations (SPDEs) with a periodic boundary condition and a
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multiplicative noise of the form:

du = {[a(-, 2, t,u, up)u,], + (-, 2z, t,u,uy) } dt + g(-, z, t, u, uy) AWy,
(x,t) € [0,27] x (0, T]; (1.1)

u(z,0) = ug(x), x € |0, 27],
where the terminal time 7" > 0 is a fixed real number, {W;,0 <t < T} is a standard one-
dimensional Brownian motion on a given probability space (2, F,P), {F;,0 <t < T} denotes
its augmented natural filtration, and the real scalar-valued functions a,1) and g are all
F @ B([0,27] x [0,T] x R?)-measurable. Notice that the assumption of periodic boundary
conditions is for simplicity of exposition only and is not essential: the method as well as the

analysis can be easily adapted for non-periodic boundary conditions. We make the following
hypotheses:

(H1) The initial condition uy € L?(0, 27).
(H2) The leading coefficient a is locally Lipschitz continuous in the last two variables. There
exist two nonnegative constants a and A such that

a<a(w,z, t,u,v) <A

for any (w,x,t,u,v) € Q x [0,27] x [0,T] x R2.
(H3) There exist three positive constants By, B, and Bz such that

[Y(w, x, t,u,v) —P(w, x, t,u' 0| < By (Ju— | + [v =)

and
W (w, 2, t,u,0)[> < B3 (1+ [uf*) + BZ|v?

for any (w,z,t;u,u’,v,v") € Q x [0,27] x [0,T] x R*.

(H4) There are four nonnegative constants C; with ¢ = 1,2, 3,4 such that
l9(w, x,t,u,v) — g(w, z, t,u',0")| < Ctlu — u'| + Calv — /|

and
lg(w, z,t,u,0)[* < C5(1+ ul*) + CF vf?

for any (w,x, t;u,u’,v,v") € Q x [0,27] x [0,T] x R*.

Various phenomena and applications (see [36, 39] and the references therein) with stochas-
tic influence in natural or artificial complex systems can be modeled by SPDEs (1.1), in-
cluding stochastic quantization of the free Euclidean quantum field, turbulence, population
dynamics and genetics, neurophysiology, evolution of the curve of interest rate, nonlinear
filtering, movement by mean curvature in random environment, hydrodynamic limit of par-
ticle systems, fluctuations of an interface on a wall, and pathwise stochastic control theory.
In these fundamental applications, several examples of canonical SPDEs arise, such as the
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Zakai equation, reflected stochastic heat equation, stochastic reaction diffusion equations,
stochastic Burgers equation, stochastic Navier-Stokes equation, and stochastic porous media
equation.

Concerning the theoretical study for nonlinear SPDEs with a multiplicative stochastic
forcing term involving a temporary white noise, Pardoux and Peng [37] proved existence
and uniqueness of a classical solution by establishing the connection with backward doubly
stochastic differential equations (BDSDEs). Hofmanové [24] obtained a regularity result for
the strong solution with periodic boundary condition when all the coefficients are sufficiently
smooth. Recently, Du and Liu [18] gave a Schauder estimate for linear SPDEs, which can
be suitably generalized to nonlinear cases. In addition to these, there are also numerous
research activities on nonlinear SPDEs. See e.g. [3, 15, 20, 43]. However, in most cases it
is not available to have explicit solutions to the SPDEs, and numerical solutions of SPDEs
naturally receive a lot of attentions.

In recent years, numerous studies have been focused on advanced and efficient methods
for SPDEs such as finite difference methods [16, 21, 22, 33, 42, 44], finite element methods |1,
17,19, 28, 45, 47], spectral methods [25, 31, 34, 35|, and also some other types of numerical
methods [7, 41]. Concerning discontinuous finite element methods for SPDEs, Cao et al. [4, 5]
developed a discontinuous Galerkin (DG) method to the time-independent elliptic SPDEs
with additive noises. Li et al. [30] proposed a DG method for nonlinear stochastic hyperbolic
conservation laws, in which they investigated the stability for fully nonlinear equations and
the error estimates for semilinear equations. Pazner et al. [38] formulated an LDG scheme
on the basis of fluctuation-dissipation balance to approximate linear parabolic SPDEs driven
by additive noises, which preserves a discrete fluctuation-dissipation structure, but neither
stability nor any error estimate is given. To the best of our knowledge, little attention has
been paid to the stability and error estimates of high-order approximate schemes for fully
nonlinear parabolic SPDEs with multiplicative noises.

The LDG method was introduced by Cockburn and Shu in [14] as a generalization of
the numerical scheme proposed by Bassi and Rebay [2] for the compressible Navier-Stokes
equations. This scheme was in turn an extension of the DG method developed by Cock-
burn et al. [11, 12, 13, 9, 10] for nonlinear hyperbolic systems. With the help of the local
Gauss-Radau projection, the L?-norm stability and optimal error estimates are obtained for
deterministic problems [6, 46], if the alternating numerical fluxes are used. In this paper,
we shall consider stochastic counterparts of these works and propose an LDG scheme for
the nonlinear parabolic SPDEs (1.1). Our numerical scheme shares the following advantages
and flexibilities of the classical DG method: (1) it is easy to design high order approxima-
tions, thus allowing for efficient p-adaptivity; (2) it is flexible on complicated geometries,
thus allowing for efficient h-adaptivity; (3) it is local in data communications, thus allowing
for efficient parallel implementations.

It should be pointed out that our effective computational methods for SPDEs have new
difficulties. A solution of SPDEs, even when it exists, is not time-differentiable in nature,
and is not bounded in general in the path. These new features complicate our calculation and
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analysis. Using the similar techniques for stochastic hyperbolic equations with DG methods
in [30], we properly estimate the quadratic covariation process of the approximating solution
to obtain stability and optimal error estimates.

As an extension of the DG method, the LDG method can not only deal with nonlinear
multiplicative noise containing the unknown variable u itself, but also nicely handle the case
of its first order spatial derivative u, being involved in the stochastic diffusion term g, as long
as the stochastic parabolicity 2 > C? is satisfied. Though few studies are given on unique
solvability and regularity of strong solutions to degenerate nonlinear SPDEs, we can design
the LDG scheme for the degenerate case 2a = C% and prove its stability, which is confirmed
by numerical tests for degenerate SPDEs in Section 7. These numerical experiments further
indicate that our scheme also has optimal order of accuracy even in the degenerate case.

Our high-order approximation scheme can be more efficient for high-accuracy compu-
tation of the smooth case, which is rather attractive in applications. However, for the
discontinuous case, our scheme loses the high order of accuracy and has spurious numerical
oscillations near discontinuous region. In practice, it is worth trying to use limiters to control
oscillations for the discontinuous problems, which remain to be investigated in the future.
Our numerical algorithm and stability analysis are restricted within the one-dimensional
spacial case, but they can be generalized to higher spacial dimensions in a straightforward
way. The optimal error estimate will however be more involved in the multi-dimensional
spacial case, especially on unstructured meshes, which remains to be studied in the future.

The paper is organized as follows. In Section 2, we introduce notations, definitions
and auxiliary results used in the paper. In Section 3, we present the LDG method for
nonlinear parabolic SPDEs (1.1), and study the existence and uniqueness of the solution
to the stochastic differential equations (SDEs) derived from the spatial discretization. In
Section 4, we investigate the L2-stability for the fully nonlinear stochastic equations. In
section 5, we obtain the L?-norm optimal error estimates (O(h*™!)) for semilinear stochastic
equations. In Section 6, we use a derivative-free order 1.5 scheme for matrix-valued SDEs
as time discretization, to collaborate with the semi-discrete LDG scheme. Finally the paper
ends with a series of numerical experiments on some model problems in Section 7, which
confirm the analytical results.

2 Notations, definitions and auxiliary results

In this section, we introduce notations, definitions, and some auxiliary results.

2.1 Notations

We denote the mesh by I; = [a:j_%,:vj%}, for j = 1,..., N. The nodes are denoted by
{xj+%, j=0,1,...., N} with 1 =0 and Tyyl = 2m. The mesh size is denoted by h; =

Tipl =T 1, with h =

il l max h; being the maximum mesh size. We assume that the mesh is
2 <j<

1
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regular, namely the ratio between the maximum and the minimum mesh sizes stays bounded
during mesh refinements. We define the piecewise polynomial space V}, as the space of
polynomials of the degree up to k in each cell [;, i.e.

Vh:{v‘ v € PH(I ) for x € I, jzl,...,N}.

Note that functions in V}, might have discontinuities on an element interface.

We consider the Sobolev space || - ||gm» with periodic boundary condition,
1
2T m dl p P
gme — {u (0,27 = R | ||ul[gme = [/0 <\u(a;)|p + ; —u(#) ) dx] < 00,

u(0) = u(2m), %U(O) = iu(27r), l=1,...,m— 1}.

For simplicity, we write || - || gm for || - || zm.2, and || - || for the L?(0,27) norm. We denote by
S?(Q x [0,T]; L?), the space of all adapted strongly continuous processes ¢ : Q x [0,T] —
L*(0,27) such that
3
) < 0Q.

An element of R™*? is a n x d matrix, and its Euclidean norm is given by |y| := /trace(yy*)
for y € R4,
The solution of the numerical scheme is denoted by uy, and belongs to the finite element

161l seqeneion) = (E [ sup [[o(0)]?
0<t<T

space V},. We denote by u; . and u;r ! the right and left limits of the function u at z;, 1
respectively.

By C > 0, we denote a generic constant, which in particular does not depend on the
discretization width h and possibly changes from line to line. Since the Ito integral is not
defined in a pathwise sense, the argument w of the integrand as a stochastic process will be

omitted in the rest of this paper if there is no danger of confusion.

2.2 Projection properties

We consider the standard L?-projection (denoted by P), and the local Gauss-Radau projec-
tions R and Q into space V},. For each j, the projections satisfy that

/ [Pu(z) — u(z)|v(z)de =0, Yve Pk(]j),

I;

/ [Ru(z) — u(z)]v(x)de =0, Yve P (I;), and Ru(x;:

and
/IY [Qu(x) — u(x)]v(z)dx =0, Yvec P*YI;), and Qu(x;r%) = u(:vﬁ%). (2.2)
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Furthermore, we have (c.f. [8])
IPu—ull + |Ru — ull + 1| Qu — ull < C'llull grss h*, (2.3)

where the positive constant C' is independent of u and h.

2.3 Properties of the It6 formula

For continuous semi-martingales X and Y, we have
t t

o= XY+ [ Xodvor [ Yiax,+ (ny),,
0 0

where (X,Y) is the quadratic covariation process of X and Y. Note that (X,Y) = (Y, X).
For any locally bounded adapted process H, we have

</0 HSdXS,Y> _ /OtHSd<X,Y>S. (2.4)

Moreover, if X is continuous and is of bounded total variation, we have
(X,)Y)=0. (2.5)

The following lemma is well-known in the martingale theory. See e.g. [23, Theorem 10.19,
page 273].

Lemma 2.1. IfE {(J"OT H? ds)ﬂ < 00, then {fot H,dWw,, 0<t< T} s a martingale.

For more details on the It6 formula, the reader is referred to [23, 40].

3 The LDG method for nonlinear parabolic SPDEs

3.1 The semi-discrete LDG method

In this subsection, we formulate the LDG method for fully nonlinear parabolic SPDEs. As a
special class of the DG methods, the main technique of the method is to rewrite (1.1) into an
equivalent system containing only first-order spatial derivatives, which is further discretized
by the standard DG method with correct definition of numerical fluxes. To do this, firstly,
we rewrite the problem as a first-order system:

du = [wx + 2/J(~,:U,t,u,v)} dt + g(-, z, t,u,v)dWy, (z,t) € [0,2x] x (0,T]; (3.1a)
V= Uy, in Q x [0,27] x (0,7]; (3.1b)
w = a(-,z,t,u,v)v, (x,t) € [0,27] x (0,T]; (3.1c)
u(z,0) = up(x), x € [0, 27]. (3.1d)



The LDG method for (1.1) is now obtained by simply discretizing the above system with
the DG method. We seek an approximation (uy, v, ws)T to the exact solution (u,v,w)™
such that for any (w,t) € Q x [0,T], up(w, -, t), vp(w, -, t) and wp(w, -, t) belong to the finite
dimensional space V},. In order to determine the approximate solution (uy,, vy, wy,)T, we first
note that by multiplying (3.1a), (3.1b), (3.1c), and (3.1d) with arbitrary smooth functions
r, z, p and g, respectively, and integrating over [; with j = 1,2,..., N, we get, after a simple
formal integration by parts in (3.1a) and (3.1b),

/r(x)du(w,a:,t)d:c - {

I;

—/ w(w,x,t) r, (x) do

I;

- +
+w (w,:cﬂé,t) T (l‘j+%> —w (wﬁlfjf%»t) r (xj,%)

—i—/I Y(w, z, t,u(w,z,t),v(w, z,t) r(z) dx} dt

—I—/ g(w,x,t,u(w,x,t),v(w,m,t)) r(x) de dWy,
I

J

/v(w,x,t)z(:v)dx = —/u(w,.:l:,t) 2, (z) dx

I I

_ +
+u <w>$j+%a t) © (xj%) v (w’ ‘Tj‘%’t> ‘ <xﬂ'—%> ’

/w(w,x,t)p(x)dx = /a(w,x,t,u(w,x,t),U(w,x,t))v(w,x,t) p(z) dx,

I; I;

/u(w,as,())q(:r)dx = /uo(:r)q(x)dx.

I I

Next, we replace the smooth functions r, z, p and ¢ with test functions 7y, z,, p, and
qn, respectively, in the finite element space V}, and the exact solution (u,v,w)T with the
approximation (uy, vy, ws)T. Since the functions in Vj, might have discontinuities on an
element interface, we must also replace the boundary terms

w(w,xﬂ%, ), u(w,xj%,t)
with the numerical fluxes
wj—i—% <w7 t) ’ aj—i—% (wu t)
respectively, which will be suitably chosen later. Thus, the approximate solution given by
the LDG method is defined as the solution of the following weak formulation:

/Th(x)duh(W,w,t)dx — {

I

—/ wp (w, x,t) The (x) do
1
) — {Jj_% (w,t) ™ <x;."_%>

+/ @b(w,ﬂf,t,Uh(CU,ZC,t),’Uh(W,QT,t)) Th(x) dx
I
7

;41 (w,t) (x;r%

——
U
~



+ g(w, x, t,up(w, z,t), v (w, T, t)) rp(x) de dWy, (3.2a)

/Uh(waxat)zh(l")dm = -

up (W, x,t) zpe () do

— S

| 1 (w,t) 2, <$j_+%> — U1 (w,t) 2 (mj*_%> . (3.2b)
/IV wp(w, x,t) pp(x) de = /1 [a (-, wn, vn)vn] (W, 2, t) pr(z) de, (3.2¢)

/uh(w,x,O)qh(x)d$ = /I.uo(x)qh(x)dx, (3.2d)

I
for any (v, zn, pn,qn) € (Vi)*. It only remains to choose suitable numerical fluxes. For
7=0,1,..., N, we choose

ﬁJ\jJr% (w,t) := wy (w,x;;%,t) , ﬁjJr% (w,t) := uy (w,x;+%,t) . (3.3)
Note that, by periodicity, we have
@NJF% = W1, U =1Uy,1.

Remark 3.1. The choice of (W, ) in (3.3) is referred to as the alternating fluz, which is
essential for the proof of optimal error estimates. We can also define the numerical flux in
an alternating way as follows:

~ o - ~ o +
Wiy 1 (w,t) = wp (w,xH%,t) , Ujy (w,t) == uy (w,xﬁé,t) )

3.2 The stochastic ordinary differential equation derived from the
spatial discretization

The LDG method, as a spatial discretization, transfers the primal problem into a system
of ordinary stochastic differential equations, which will be specified in this subsection. For
x € I;, the numerical solution should have the form

n(w, z,t) Zul]wtgol x), wvp(w,z,t) = Zvljwtcpl x),
and
n(w, z,t) Zwl]wtapl (),

where {¢7,1 =0,1,...,k} is an arbitrary bas1s of P*(I;).
By periodicity, we define the “ghost” coefficients as follows:

Wo=u,nN, Vio=ViN, Wio=WN,
W N+1 = U1, Vi N+1 = Vi1, WiNy1 = Wi,
Our aim is to solve (3.2) to get the coefficients u(w,t) = [w;(w,t)]ico,...k}.jef0,...N+1}

V(w, t) = [vij(w, t)icqo,..k}.jef0,...N+13 and W(w,t) = [wi;(w, t)]ic(o,... k}.jef0,...N+1}-
8



3.2.1 Representation for v(w,1)

For j =1,2,..., N, by taking z;, := ¢/ for m =0,1,...,k in equality (3.2b), we have

=

= [ S wte el

JnO

/ o ()l (a >das> viy(@,1)

I;

+Zun] w t)gpn( ]-‘,— Spm
n=0

The mass matrix A7 := [A? ] with

K= [ G@elle) ds
I;
is invertible, and its inverse is denoted by A7,
It gives that
vij(w,t) = Vi (u(w, 1),

where

Vl,j( / Z Up,j Spn Z Alm Spmx

Jn()

+Zunj gon J+ ZAlm Som
- Zun,j—l A Co Z Al (=,
n=0

By periodicity, we have

Vio=Vin, Vint1 = Vi1

3.2.2 Representation for w(w,t)

For j =1,2,..., N, by taking pj := ¢!, for m = 0,1, ...,k in equality (3.2c), we have

J

(U

=0

-,

J

(@)} (2) dw) wi(w, 1)

n=0

It turns out that

wii(w,t) = W (w, t,u(w, t)),

9

Zum 1wt

a(thZumwtgon vawtgon )Zvnjwtgpn r) ¢ (1) dx.

(3.5)



where

[a (w, x,t, Z umgozl(x), Z Vn,j(“—)SOgL(x))

n=0
k
S Ve 3 )|
n=0

By periodicity, we have
Wio=Wn, Wini =W

3.2.3 Representation for u(w,t)
For j =1,2,..., N, by taking rj, :== ¢’ for m = 0,1, ...,k in equality (3.2a), we have

()

( )d:z:) dug j(w,t)

n=0
k
+) [Wn,m(w,t)@%“ ( %> Ph (mj%) — Wyi(w, 1)) (%;) e (xj—%)] dt
n=0
k
+/w<th2umwtwn vawtgpn )>¢Zn(x)d:vdt
1 n=0
+/g<th2umwt@n Zvnjwtgpn ))gofn(x)dxth.
1 n=0

Then we obtain the following SDE of u:
du(t) = F (-, t,u(t)) dt + G (-, t,u(t)) dW,, (3.6)

where for j =1,2,... Nand [ =0,1, ..., k,

k k
FZJ (w’t>u) = /Iw (w’%lszun,j@%(x)vzv ) ZAlm ‘:07'71
/ZWnJWtUQOH ZAlm (pm:c

Ij n=0

—l—ZWmetu 9“( >ZAzm gom( )

n=0

_ iwn,j(w,t, u)), (%—g) Z A o ( J—%)
n=0 m=0
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and

k k k
G (w,t,0) == / 9 (w,:z:,t,zun,j@fl(x), Zvn,j (u) 90 )) Z Aj;n ( ) dz,
I n=0

n=0 m=0

with periodic settings Fj o = Fi n, Finy1 = Fi1,Gio = Gin, and Gy yy1 = Gi .

Lemma 3.1. Let Assumptions (H2) - (H4) hold. Then for any N € N, the functions F
and G are locally Lipschitz continuous in the variable u, i.e., for any M € N, there is a
positive constant Ly (M) such that

|F(w,t,u) - F<wat7u/>| + |G(w7t7u) - G(Wat7u/>| < LN(M) |1_l - u,|
for all (w,t) € Q x [0,T] and all u,uw’ € REFVXNF2) yith ju| + [0'] < M.

Proof. We only show the local Lipschitz continuity of F' for fixed N € N, and that of G' can
be proved in a similar way. The proof consists of the following three steps:

Step 1. We first show the uniform Lipschitz continuity of V for fixed N € N. For any
u,u’ € REFDXWN+2) "1 =0 1,... k,and j = 1,2, ..., N, we have

Vig(w) = Vi () = By + By + By,

where

k
Ei7j = /Z Up,j — n] QDn ZAlm Somx €,

Jn

k
Eéd = Z (unuj - TL] Son ]—i—l ZAlm (Pm )
n=0
E:lsd = Z (un,jfl - uzz,j—l) 90%71(5’5];%) Z Ag%f‘ﬁfn(mjf%)-

n=0 m=0

Then we have

Lj

b k
< 3 [ 10 X [ehalo)] 07 o v
n=0""J m—0

2

k k
< ZCN |, — ;] < O (Z [ — u;z,j‘2> ’
n=0 n=0

where Cy is a positive constant which depends on N. Next, we have

k k
< 2 A >

!/

SOTL n 7j

Lj

] (xj+1)
2

‘um —u
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1
2

k k
< Y COnlun;—u), | < Cy (Z |ty — “%,jf) :
n=0 n=0

By similar calculation, we get that

1
2

k
2
!
<COn D wyr =] ]
n=0

It turns out that for any [ =0,1,....,k, j =1,2,.... N

l7j

"2 1j|? 1il? 1j|?
Vig(w) = Vi) <3 (B0 + B8] + | By
k
2 2
S CNZ (‘un,j — ufn,j| + ‘un,j_l — u;w»_l‘ ) . (37)
n=0
Then by the periodicity, it holds that
k N+1
2 2
V() = V) = [Vi(w) = Vi)
1=0 j=0
k N+1 k , ,
<D > G (‘uw' = g - )
= 2(k+1)C%u—u']’. (3.8)

Step 2. Next we consider the local Lipschitz continuity of W with respect to the variable
u for fixed N € N. Note that for any [ =0,1,....k, j =1,2,.... N, u,u’ € RE+DXN+2) with
luf v |ju'[ < M,

W, (w,t,u) — W (w, t,u) = By’ + B,

where

Ei’j = /
I

{a (w, x,t, Z u, ¢l (x), Z Vo, (u)gpfl(x)>

n=0

k k
—a (w,x,t,zu;l,j%(@, Zvn,j(u’)sof;(x)> }
n=0 n=0
XY Vi (W)el(x) Y Al (2) da. (3.9)
n=0 m=0
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From (H2) and (3.7), we have

k k
< A [ 1A@] Y [ehla)| do |47 [Vas(a) = Vi (a)
n=0""J m=0

l?j

k & 1
< Z Cn |V,i(u) =V, ;(u)] < Cx (Z V,.i(a) — ij(u/”z)
n=0 n=0
k , NE
< Oy Z (|U.n,j - 11;1,]" + |un,j71 - ujm,l} >] . (3.10)
n=0

Using Cauchy-Schwartz inequality, we have

2 i . k .
< / a <waxata > el (), ZVn,j(U)@i(w))
1; n=0 n=0

=

2

k k
—a (W,I’,t, Zu;@]wgl(x)?ZV”,J(u/)gpiL(x)> dx
k - B 2
X /1 Z vV, ;) Z AT ()| da
J |n=0

<CN|V(u’)]2/I‘La( <Z W, — ;) ¢h(a Z n ( ))w%(@)dw
<OV OS> (s — [+ Vs () — Vi () )
< Cn(M) (|un,j N u;m,_1|2> ,

where L, (M) is the local Lipschitz constant of the function a.
For any [ = 0,1, ...,k with j = 1,2,..., N, we have

12 12
Wi (.t 0) — Wi (w, £, 0 < 2 (‘Efl’] +| By )
4 2 2
M) (Juan g = w[* o+ a1 = w0 [). (3.11)
n=0

Thus
‘W(w7t7 u) - W(M,t, U.,)|2 < CN(M) |11 - u,|2 :

Step 3. We are now ready to prove the local Lipschitz continuity of the function F' for fixed
N € N. Note that for any [ =0,1,...,k and j =1,2,..., N,

Fj(w, t,u) — Fj(w,t,w') = EY + EY + EY 4+ Y
13



where

k k
B = = [ 3D (Wosleotow) = Wi (e tow)) o) D A" s (0)
J n=0 m=0

. k k .

By = Z (Whji(w,t,u) = Wi (w, t,u')) ¢l ( g+§> Z A, (ijr%) ,
n=0 m=0

. k k .

Eéj = = Z (Wn,j(wv t Ll) - Wn,j(wu t u/))@% (xj—%> Z Ag;;l%pin <xj—%> )
n=0 m=0

k k
I <w,x,t,zun,j¢z;<x>,zvn,j<u>soz;<x>>
I; n=0 n=0
k ‘ k ‘
o S 3V 00 | 3
n=0 n=0

Similar to (3.7), we have

L 2 Li 2
‘Eg] + ‘Eg] +

k
< CN(M) Z <|Wn7j (w7 t, u) - Wn,j (w7 t, u/)|2 + |Wn7j+1 (w7 t, u) - Wn,j-i-l (w7 t, u/)|2> '

n=0

¥ 2
‘EB’

In view of the Lipschitz continuity of W (see (3.11)), we have

Lj 2 Lj 2 L 2
B+ B+ | B
k
, 2 ;2 , 2
< Cn(M) E : W1 = | [y — | [ )
n=0

Similar to Step 2, using the Lipschitz continuity of ¥ and V, we have
k

12
B < On Y (Juns = w4 [Vag(w) = Vi ()P?)
n=0
F 2 2
< CNZ (‘“n,j = [ — ) .
n=0

At last, by the periodicity of the numerical solution wuy, we see that for any N, M € N,
there exists a constant Ly (M) such that, for all (w,t) € Qx[0,7] and all u,u’ € REFD*N+2)
with |u| V [u'| < M,

|F (wyta ll) —F (wvta 11,)| < LN(M) |11 - 11/| :
The proof is complete. O

Similar to the proof of Lemma 3.1, we obtain that the coefficients of SDE (3.6) satisfy

the linearly growing condition.
14



Lemma 3.2. Let Assumptions (H2) - (Hj) hold. Then for any N € Ny, F and G are
linearly growing in the variable u, i.e., there exists a positive constant C'y such that, for all
(w,t) € Q2 x [0,T] and all u € REFD*N+2),

|F (w, t,u)| V|G (w,t,u)] < Cyn (14 |ul),
where the constant C'y may depend on N.

Proof. We only show the linear growth of F' for fixed N € N, and that of G’ can be proved
in a similar way.
Note that V(0) = 0. Then by (3.8), we know that there exists a constant Cy such that

for any u € REFDX(N+2),

V()| < Cy|ul. (3.12)

By the fact W(w,t,0) = 0, taking u’ = 0 in (3.9) and (3.10), we have for any [ =
0,1,k j=1,2,...N

k
Wy j(w, t,u)]* < Cy Z (s * + w1 [) -
n=0
Thus
k N+1
W(w,t,u)? =" [Wy;(w t,u)]* < Cyul’. (3.13)
=0 j=0

Similar to the calculation in Step 3 of the proof of Lemma 3.1, by the linear growth of
1, we have

k
Fjw.tw) < O 1+ P + Vo) + W j(w, £ )P + (W i (w, 2, 1))

n=0

k
< Oy Z (1 + ’un,jfl|2 + ’un7j\2 + |un’j+1\2)

n=0

forany [ =0,1,...,k and j = 1,2,..., N. Therefore,
|F(w,t,u)| < Cn (1+ |u]).

By (3.2d), the initial condition of the SDE (3.6) is determined by ug as follows:

k
u,;(w,0) == Z APt /uo(ac)goﬁn(a:) dz. (3.14)
m=0 Ij

Since ug is deterministic, we know that u(-,0) is a deterministic matrix. Thus for any p > 1,
we have
E [Ju(-,0)["] < oo. (3.15)
The following lemma is a classical result of stochastic differential equations. See e.g. [32,
Chapter 3].
15



Lemma 3.3. If the initial value u(-,0) is LP(Q))-integrable, and the coefficients F,G are
locally Lipschitz continuous and linearly growing, then the underlying SDE admits a unique
solution {u(t) }o<i<r such that for any p > 1,

E [ sup |u(t)|p] < oo. (3.16)

0<t<T

Thus, by virtue of (3.15), Lemma 3.1 and Lemma 3.2, we know that for any fixed N € N,

SDE (3.6) has a unique solution {u(¢)}o<;<r such that (3.16) holds. By the linear growth of
the functions V and W (see (3.12) and (3.13)), we get that for any p > 1,

< 00, E [ sup |w(t)|p} < 00. (3.17)

0<t<T

E{mpwwv

0<t<T

4 Stability analysis for the fully nonlinear equations

We have known that the approximating equation (3.2) has a unique solution (uy, vy, wy,) for
any fixed N € N, where (up, vy, wp)" (w, -, t) € (V)3 for each (w,t) € Q x [0,T]. Next we
show the stability result for the numerical solutions. We first consider the nondegenerate
case that 2a > C3.

Theorem 4.1. Suppose that the assumptions (H1)-(Hj) are satisfied. Moreover, we assume
that 2ac > C2. Then there exists a constant C > 0 such that

T
sup E [l (0] + 2 | [ o) as] <€ (14 s 0F),
0<t<T 0

where the constant C' is independent of h, and depends on the terminal time T.

Proof. For any N € N, and (w,t) € Q x [0,T], by setting r, = up(w,-,t) in (3.2a),
zp = wp(w, -, t) in (3.2b), and multiplying (3.2b) with dt, adding the resulting equations, we
have

/uh(x,t)duh(x,t) da:—l—/ vp(x, t)wp(x, t) dedt

I; I;

— { /Ij U(z, t,up(z,t), op(,t)) up(a, t) do

+ - + +
— wy (T, ) upe(z, t)de +w” . u, . , —w'. ,u .
/I' h( ’ ) hw( ’ ) h’]+% h»]+% hvjfé h’]fé
J
- - - +
— up (x,t) whpe(x,t)der+u, . ,w, . |, —u, . ,w,. dt
J

+/ g(a:,t,uh(x,t),vh(a:,t)) up(x, t) de dWy,
I

J

16



where
+ + + +
uh7j+%—uh<w,xj+%,t>, h+1—wh<w,mj+%,t>.
For simplicity of notation, for j = 1,2, ..., N and piece-wisely smooth functions v and v, we

define

Hf(u,v) = —/1 u(z) vg(z)dr +u (xj;%) v <$j_+%> —u <xf_%> v <£B;—_%) . (4.1)

J

Thus we have

/uh(x,t)duh(a:,t)dx—l—/ vp(x, t)wp(x,t) dedt

= {/I'w(a:,t,uh(x,t),vh(x,t)) up(v,t) dv
HH (wp (w, 1) s up (w, 1)) + Hj (un (w, -5 t)  wn (w, -,t))} dt
+/1 g(z, t,up(z, t), vp(z, 1)) up(z, t) do dW. (4.2)

J

By taking pp, = vp(w, -, t) in (3.2¢), it holds that

[/ /% (2, 8) wn(z s)dxds]
E[/O /O%CL(J:,S,U;L(J:,S),Uh(x,s))\Uh(x,s)|2 dids|

Using It6’s formula, we have

|uh(x,t)]2 = |uh(q:,0)]2 + 2/0 up(z, s) dup(z, s) + (up(z, ), up(z, ), -

Thus, after summing over j from 1 to N in (4.2), integrating in time from 0 to ¢ and
taking expectation, we have

E [||uh(7t)||2} +2E [/0 /0 7Ta(x, s,up (2, 8) v (2, 8) ) |un (z, s)|? d:vds}
lun (-, )" + Tu(t) + Ta(t) + Ta(t) + Ta(t),

where

70 =8| [ e )t ), ]

-
_ U / (2, 5, un(z, 5), vn (. ) wn(z, 5) dxds} ,

/ .x s, up(z,s), vh(m,s)) up(x, s)dx dWs} ;



and

- /0Z{Hj(wh<w,~,s>,uh<w,.,s>)+Hj<uh<w,.,s>,wh<w,.,s>)}ds |

The terms 7;(t) for i = 1,...,4 are estimated as follows.

e The estimate of 71(t).
In view of (3.2a) and (3.2d), we have for any r, € V},

/Irh(x)uh(x,t)d = Z(w, 1) / / z, 8, up (2, 8), va(x, 8)) 7 () da AWV,

J

=(w,1) = /Ot{—/wh(w,x,s)rhx(x)d:c—i-@  (@,5) (9{:

1
) +3
I

+/ w(w,x,s,uh(w,x,s),vh(w,x s
I

J

H’_/

ds + Jug(x)dz.

Note that = is a continuous stochastic process with bounded total variation. By (2.5), for
any continuous semimartingale Y, we have

which leads to for any r, € V},,

/Ij ra(z) (up(x,-),Y), doe = </1 ri(x)up(, -) dr, y>

J

</O /Ijg(ﬁf,sauh(%s)wh(% s)) rn(x) dxdWS,Y> : (4.3)

t

It turns out that

/1. (un(z, ), un(, ), dz = /

. <uh<$")7zul,j(')@{(x)> dx
Z/sol ()., d

Z</O /Ivg(:E’S’Uh(x’S)’Uh(x’S)) go{(x) ddeS,uu(.)> ’

t

where {¢],1 =0,1,...,k} is a basis of P*(I;).

18



According to (2.4) and the properties of the L? projection, we have

/ (un(, ), un(a, ), da
— / / . s,up(7,8), v (2, 8)) ¢l (x) de d (W, u5(0)),

_ Z//P[Q( s, un (-, 8), (-, 8))] () @ (2) do d (W 5(-)),

1=0 70 /15

Plg(w,-, s, un(w,,s), va(w, -, s))] (z) = Zglﬁj(w,s) ol (x), r € 1.

By (4.3), we get

/1. (un(, ), un(z, ), de = /1

| </0 > 81i(s) @] (@) AW, un(z, -)> dz

= zi:/@ ol (x) <Uh(:v,-),/0. g;(s) dW8>t dx
_ l§;</0 /Ijg(x,s,uh@,s),vh(x,s))gog'(g;)dxdws,/o'gl,j(s)dws>t

— Z/ /g(:p,s,uh(x,s),vh(:v,s))gpf(x)da:gw(s)d(l/[/,W)S

k
—// x, 8, up(z, s), vy(z, s) ;gu x)dzds
= /0 /Ijg x, s, up(x, s), vp(x, s )73 [g( s, up(+, 8), vn(, ))] (x)dx ds.

After summing over j from 1 to N, by the Cauchy-Schwartz inequality we have

/ng (i) ) do < t / o, un(es ), on(, )| do ds.
19
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According to (H4), after taking expectation, we have

Ti(t) = E UOZW (un(z, ), un(z, ), d:v]

E Ut /% lg(z, s, un(z, 5), vn(z, )| dxds}
C2E [// (14 |up(z, )| )dxds}—i—cﬂ [// lon (2, 8)|* dz ds

P e / E [|fun(-, )|I?] ds + C2 / (o (-, )]17] ds

IN

IN

e The estimate of T5(t).
From (3.16) and (3.17), we have for any fixed N € N,

B | swp {lluC o+ ot 9l

0<s<T
Thus by (H4) and the Cauchy-Schwartz inequality we know that

(1 )

/0 7rg(ﬁ, s, up(x, s), vp(x, ) up(z, s) do

< E </ lun(- s)||? / (z, s, un(z, s), Uh(l’78>)‘2 dxds) ]
27 3
< CE | sup |lun(-,9)|l </ / 1+ lun (z, 8)|* + |vn(, s)|2) dxds) ]
0<s<T

N

IN

o (& | s, Huh<-,s>u2])é (=] [ (1 e+ ot P ) ]

According to Lemma 2.1, the process

t 21
{/ / g(x,s,uh(x, s),vh(x,s)) up(x,s)dedW,, 0<t< T}
0o Jo

is a martingale. It turns out that

T5(t) = 2E {/Ot /O%g(g;,s,uh(x,s),vh(g;,s))uh(g;,s) dg;dWs} =

e The estimate of 73(t).
Note that according to (H3), for any ¢ > 0, it holds that

/271— ’Qb(l’, t Uh(l', t)v Uh($7 t)) U’h(x7 t) dx
0
20



3

27 1 21
< ¢ / [ (2,1, un(z, £), on(z, )| de + — / fun(z, )2 da
2 Jo 2¢ Jo

27

€ 1

—/ [B3 + B3lun(x,t)]* + B3|va(x, 1) ] dr + o lun(-, 1)
0

IN

2
eB2 eB: 1
= Sl e (4 ) ol

Then

Ts(t) = 2E {/t /%w(x, s, up(z, s), vp(x, ) up(z, s) d:cds]

1 t
< eBiE {/ o (-, )| dsl + 2en BT + (832 6>/0 E [Huh(,S)Hﬂ ds.

e The estimate of T4(t).

According to the periodicity, we have for any u,v € V,

ZN: [m(u v) + H.(fu,u)]

J=1
N
+ ot SR + ot - - -t
= E fu v AU v U U U U — U, U
( g iy T Y T Vi T Y T e ey T Y Yy
J=1
N
= E (—u v +utv +u+v_—u+v++v_u_—v_u+> = 0. (4.5)
j=1 i+3

Thus

t N
=2E / Z{Hf(wh(w,-,s),uh(w,-,s))—i—Hj’(uh( 5 8),wp ( )}ds] =0.
0 =
Concluding the above, we get that for any ¢ > 0,
t 2
E [||uh(,t)||2] +2E {/ / a(z,s,up (z,s),on (,)) |vp (z,5)|? dxds]
o Jo
1 t
< E[|lun(-,0)|]%] +27TCE + 2en BT + (C§ +eB; + g) / E [|lun(-, s)||”] ds
0
t
+(C; +eB3)E [/ lon (-, 9)|1? ds] : (4.6)
0
By (H2) we know that a(w,z, s, u,v) > a. Since 2a > C?, we take

1 1,
EI:B—?%(CY—§C4)>O.
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Then there exists a positive constant C' which is independent of h, such that for any
t € 10,17,

B [lunte )+ (o= 363V B[ [ o) ] < fun 0 +C€ [ B [funte )] s

Using Gronwall’s inequality, we have for any ¢ € [0, T7,

B [l O] + 2| [ Tont.o)1Pds]| <€ (14l 0)1F) e

This completes the proof. O

Our above stability result does not involve the regularity of the solution of the original
SPDEs, and applies to the degenerate case of 2a = C?. In particular, it applies to the
special case of & = 0, as long as the constants C4y and Bz vanish. When the function 1 is
uniformly bounded with respect to the last argument, as an immediate consequence of (4.6)
with € = 1, we have the following stability result for the degenerate case.

Theorem 4.2. If the assumptions (H1)-(Hj) hold with 2ac = C% and Bz = 0, then there
exists a constant C' > 0 such that

sup E [[lun(-)I*] < C (1+ [Jun(-, 0)[%),

0<t<T
where the constant C' is independent of h and depends on the terminal time T'.

Remark 4.1. The inequality 2a > C?, used to derive our stability of the numerical schemes,
is the so-called stochastic parabolicity, which is crucial in the theory of parabolic SPDEs (see
e.g. [37, 39]). The numerical experiments in Section 7 also illustrate its necessity.

Remark 4.2. Following the ideas in [26] and [30], we can extend our method to the more
general SPDEs with a nonlinear convection term f(-):

du = { [a(-, z,t, U,U:p)uxh — f(u)y + (-, z, t,u,ux)}dt +g(-, . t,u,uy ) dWy,
(x,t) € ]0,27] x (0, TY;
u(z,0) = up(x), x € [0, 27],

. . . . . . 2
where f(-) is locally Lipschitz continuous and can be super-linearly growing, such as f(u) = &
considered in section 7.3. Using the monotone numerical fluz for the nonlinear convection
term f(-), we can also get similar stability results even for the degenerate case. A numerical

test is reported for the stochastic viscous Burgers equation in Section 7.35.

5 Optimal error estimates for semilinear equations

In this section, we consider the convergence of numerical methods for strong solutions with
enough smoothness and integrability. We prove the optimal error estimates (O(h**1)) for

22



the following semi-linear SPDE

du = [aum + (-, 2, t, u, ux)] dt + g(-, z, t,u,u, ) dWy, (x,t) € [0,27] x (0,T7;

(5.1)
u(z,0) = up(x), x € [0, 27|
when the leading coefficient a is a positive constant. We rewrite (5.1) as follows:
du = [avw + w(-,ﬁ,t,u,v)] dt + g(-, z, t,u,v)dW;, (z,t) € [0,27] x (0,77;
v(x,t) = uy(z, 1), (x,t) € [0,27] x (0,T]; (5.2)

u(zx,0) = ug(x), x € [0, 27].

From (3.2c¢), we have that wy, = avy,. Then the LDG method (3.2) is written as follows.
For any (w,t) € Q x [0, 7], find up(w, -, t),vp(w, -, t) € V}, such that for any rp,, z, € Vj,

/ ri(x)duy(w, z,t) dr

I

= [CLH;_(U}L(M,~,75),T}L)+/ ¢(w,x,t,uh(w,x,t),vh(w,x,t)) rp(x) dx| dt

I
—l—/ g(w,m,t,uh(w,x,t),vh(w,x,t)) rp(x) dx dWy, (5.3a)
1
/ vn(w, z,t)zn () de = H; (up(w, -, ), zn), (5.3b)
I

where the bilinear functionals H ]i are defined by (4.1). Then, we state the error estimates
of the semi-discrete LDG scheme (5.3).

Theorem 5.1. Suppose that ug € H*Y, assumptions (H3) and (H{) hold with 2a > C2,
and equation (5.1) has a unique strong solution u such that

(H5) uw € L* (2 x [0,T]; H*3) N S* (2 x [0,T); L*) (L™ (0, T; L*(; H*));

(H6) (G ('7u(')7 ux()) » 9 ('7u(')7 u;r()) €L (Q X [07 TL Hk+1)'
Then, there is a positive constant C' such that

1 T 2
sup (E [JuC,0) ~ w0+ (B [ o) uol® as] ) < et
t€[0,7) 0

where the constant C' is independent of h and depends on the terminal time T and the exact
solution u.

Proof. Note that the scheme (5.3) is also satisfied when the numerical solution (u(-), vs(+))
is replaced with the exact solution (u(-),v(-)): for any (w,t) € Q x [0,T] and 74, 2, € V},, we
have

/rh(x)du(-,$,t)d:v = aH}“(v(-,-,t),rh)dt+/w(-,x,t,u(-,x,t),v(-,x,t))rh(as)dxdt

I; I
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+/ g(-,$7t,u(-,$,t),v(-7x,t)) rp(x) dx dW,
I

J

/U(w,a:,t)zh(x)dx = Hj (uw(w, 1), 2n).

I
Define
eu(w,x,t) = (u—up)(w,x,t) = (& — M) (w, 7, 1),
and
ep(w, z,t) == (v —vp)(w,x,t) = (§& — M) (W, 2, 1)
with
Cu(w,z,t) = (Qu —up)(w, z,t), nu(w,z,t):=(Qu—u)(w,x,t)
and

&o(w,x,t) = (Rv —wvp)(w, x,t), ny(w,z,t) = (Rv—0)(w,z,t),

where R and Q are the projections from H**' onto V}, defined in Section 2.
Then the error equation is

/1 ro(@)deq (2, t) do

J

- {aHj(eU(.,t),rh)+/I {¢(~,u,v)—w(-,uh,uh)}(x,t)rh(x)dx}dt

J

—i—/I {g(x,t,u(x,t),v(x,t)) —g(x,t,uh(x,t),vh(x,t))} rp(x) dedWy,  (5.4a)

/Ij eu(, 1) 2n(x) dz = H (eu(-,1), 20). .
Taking 7, = &,(w, -, t) in (5.4a) and z, = a&,(w, -, ¢) in (5.4b), we have
/Ij Eul, t)dEy(x,t) dr + a/}j €, (x, 8)[2 dadt
- /I]_ Sul@, )dnu(@,t) do + a/lj n(x, )€, (2, ) dadt
M [Hf(g”("t)’fu(wt)) - Hf(m(-,t)jiu(-,t))] dt
; / [w(x a0, 0) = ot )0 0) [
o [HJ Gl 6ol H-‘(m(-,tm(-,w)] it

+ [g z,tu(z, t),v(z,t)) — g(x,t,uh(x,t),vh(x,t))] Eu(z,t) do dW;.

I;

24



Using the 1t6’s formula, we have

d |£U($7 t>|2 = 2£u(x7t) dfu(l’, t) +d <£U('T7 ‘),fu(l’, )>t :

E [[I6a(-, t)]7] +2aEU/ &, (x, 5)[? dxds]

= &GO + Tit) + To(t) + To(t) + Talt) + To(t) + To(t) + Tr(t)

Then, we have

" Tilt) = 2E { / K / ', 5)dna () dx},
70 =B [ [ (6o, 6utr ), d]
(t) = 2F [ /0 t /0 (e, )62 9) dxds} ,
70 =20 | [ i (B (600 50,6 9)) + Hy (6u19). (- 5)] ds] ,
0= <202 [ S5 0o 6 5. 9] .
_9g { / t/:” [ (5,4, ), 0(2,5)) — (2,5, un (@, ), (e, ) | Euls ) dm} |
and

Ta(t) == 2E [/Ot/o% 9 (2, 5,u(x,5),v(x, 5)) — g (2, 5, un(z, 5), v (2, 5)) | €u(2, 5) d dWs] :

The terms 7;(t) fori=1,..., 7 are estimated as follows.

e The estimate of 71(t).

In view of (5.1), we have

d(Qu) (-, t) = Q(deu)(-, 1)
= 9 [auwﬂc( ) )] dt +Q [7/)( t?“('vt>a ux(at))] dt +Q [g('7tvu(" t)vux('v t))] th
(5.5)

Therefore,

dny(-,t) = a(Qugy — Uge) () dt + (Q — D) (-, t,ul(-, 1), ug (-, t)) dt
+(Q_I)g('7tvu('7t)>ux('at))th
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with Z being the identity operator.
It turns out that

/0 7rfu(x,t) dn,(x,t) dx
= Aﬂ@@J%ﬂQ%fﬂmM%0+@%JQW@uﬂw%%@ﬂﬂ@”Mﬁ
[t (Q=D ottt sl )] o) do

According to Lemma 2.1, by virtue of (3.16), g (-, u(),u.(-)) € L* (2 x [0,T]; L?) and
u(-) € 8*(Q x [0,T]; L?), we get that the process

/Ot/O% &u(2,8) (Q=1) [g(-, s, u(+,8),us (-, 8))] () dwdW,, 0<t<T

is a martingale. Thus according to the property of the projection (2.3), we have
Tit) = m{ / / €02, 8) [ Qutas — ] (1, s)d:pds]

128/ [ [ 6005 (@~ 2) [t ) o)) 2]

< G| [ (6 o + 1(Quar = 1) ()P s
[ €4 (-, 5) |+HQ I¢(MA@UA£MDM}
< € [l (o) s+ P8 [ [ () ]

—I—Ch2k+2E |:/0 ||1/J(',S,U(',S),u:c('7s))||Hk+1 dS:| .

Since

ue L*(Qx[0,T); H*?), O (ul), ug(r) € L* (2 x [0, T); H*)

we have

t
Ti(t) < C / E|[|&0 (- 5)| ds + CR*FE [/ [t (-, 8) |5 ds}
0
+Or 7] [ ot st s) st ) e
0
t
= C/ E (|6 (-, 9)[° ds + C h+2,
0

e The estimate of T5(t).
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In view of (5.5), we have that for any r, € V},

/1 rp(x)dQu(x,t) dx

J

- / Th(l’){Q[auxw('at)} (ZL’) + Q[w('vt7u('7t)av("t))} (:E)}dl’dt

I;

+/ () Qlg(- t,u(-, ), v(-,1))] (z) dz dW,. (5.6)
1
From (5.3a) and (5.6), we obtain that for any r, € V},,

/1 rp(x)dé,(x,t) do

J

B {/ @) Quna -, 1)] (@) da — a H (4, 1), 1)

I;

+/[ Th(*r) {QW('%U('J)W('J))] - w('atvuh('vt)vvh('at))} (I) dl‘} dt

J

+/] Th<x) {Q[g('atu('at)vv('vt))} - g('vtauh<'7t)avh('7t))} (ZE) dx dVVt (57)

J

Since &, (w, -, t) € V}, for any (w,t) € 2 x [0, T}, &, should have the form

(W, 2, 1) Zfljwt €l
Similar to (4.4), we have from (5.7) that
/ (€, ), ul, ), do
- [ / (PAQlot.svut.5), 0 )] = a5 C,5) )} 0)
QLo s 9) 0,50 = 9 unle 9 ) o) ) s
< [ [ 1000t vs)] = o os)oante ) o) s
Then, we have forj any ¢ > 0,

70 =B [ (et 6o, d
U/ Qg s, )] = g (s, un(,8),0n(,9) (@) dxds]

<1+g) M/OZW 0-T)g -,s,u(-,s),v(-,s))‘Q(x)dxds}
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+(1+¢)E U/ (z,s,u(z, s),v(z, s)) —g(:v,s,uh($,s),vh(:x,s))fdxds} :

According to (H4) and the property of the projection, we have
1 t
70 < (14 2) 0 | [ gt uteo) o) e ds
0
i 1 2 2 2
+(1+¢)E Cil 14+ =) |ew(x,s)|”" +C5 (1 +¢€)|ey(z,s)|"| deds
0Jo €
t
(1 + é) h2k+2E |:/ ||g(7 S,U(', 8)7 U('a S))H?{’“Fl d8:|
0
1 t
r2(046) (14 2) CIE [ [OF*2 ut 9l + 16 9 s
0
1 t
+(1+¢) (1 + —) CIE [/ Ch**2 o (-, 8)||3kin ds]
+(1+¢)°C2E U 1€,(-, 9)|)° ds] :

Since u € L? (Q x [0,T]; H*™3), we have

IN

v=u, € L* (Qx [0,T]; H*?) C L* (2 x [0,T); H**"),

which yields that

To(t) < C <1 + é) [1 F(14e)+(1+ 5)2] j,2k+2

+0(1+g>(1+§>/0t lew( )l ds + (1 + ) OQEU 16, ( )| ds].

Since 2a > C%, taking

1
2a+ C3\3
= —-1>0
) ( 203 ) |

we have

T < oo B[t ds+ (a+502)| [ t 6.l s

e The estimate of T3(t).
Since v € L? (Q x [0,T); H’““), we have

70 = 202 [ [Tt ot deis]

4a? ¢ 9 2a
——E o (s d
e | [ ol as] +
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da’ ' 2 2a
= 2a — C%Ch2k+2E {/0 HU(’? S)HHkH ds] +

2a — C3 !
< o 2G| g ol as].

e The estimate of T4(t).

Ze[ [ et

In view of (4.5), we see that for any u,v € V},

i [Hj(u,v) +Hj(v,u)} = 0.

Therefore,

Tu(t) = 2aE

/0 Z [HJ—F(&)(7 S)?&L('a 8)) + Hj_ (§u(, S),&,(', S))} dS] =0.

e The estimate of T5(t).

By the definition of the projections @ and R (see (2.1) and (2.2)), we see that for any
(w,s) € Q2 x[0,T],7=1,2,...,N, and rp, 2z, € V3,

Hj_(nu(-,s),rh) =0, H;“(m(-, s), h) 0.

Since &,(w, -, 5), & (w, -, s) € V3, we have

T5(t) = —2aE

/0 Z [H (00 8), € 8)) + Hf (- 5), &0, 5))] ds] = 0.

e The estimate of Tg(t).

We have from (H3) and Young’s inequality that
27
Ts(t) = 2E [// (z, s, u(z, s),v(z, s)) — ¥ (z, s, up(x, s), va(z, 5)) | &, ) da:ds]

< 2B,E [ / / (a4 malas 5)| + 16, 5)| + Il ) €ul, )| da ds]

< nzlf / e ) + I )] dods]
e[ [ (1 52 )ttt + 2 e | ras]
< CE [ [l o) + ) + e o) s + 2L [ e as]
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Using the property of projection (2.3), we have

7—6<t) < Oh2k+2E |:/ HU ||Hk+1 d8:| + Ch2k+2E |:/ ||U ||Hk+1 d8:|
CE t1f,2d] 2 { (e, 8 d}.
n {Ans<w|s+ /Hf 9|2 ds
t 2 t
ni0) < crec [Blacs a2 e | [ lecolras)
0 0

According to Lemma 2.1, by virtue of (3.16), (3.17), g (-, u(-),u.(-)) € L*(Q x [0,T}]; L?)
and u(-) € §%(Q x [0,T7]; L?), we see that the process

Therefore,

e The estimate of 77(t).

// (x,s,u(z, s),v(x,s))) — g (x,s,up(x,s),vn(x,s))] &z, s)dedWs, 0<t<T

is a martingale. Thus,

_%{// xsux@vuﬁ»—ﬂ%&m@@mmgﬁﬂg@@¢mw4:0

022152 {/t/% &0(2, 5))? dxds]
0J0

S|mumW+mW“+0/Em@uwﬂw

0

Concluding the above, we have

E [[léa(- 6)]2] + 22

Since [|€.(+,0)| = ||Quo — Pugl|| < CA* |lug|| jyr41, we have from Gronwall’s inequality
that

(B [le- DIF])* < CR-He,

( U / (. ) da:dsD P

Since u € L* (0, T; L*(Q; H*™)), we have

which yields

(E [l 8)12]) 2 < € (B [ul 8)2pens])? BEH < CRFH,

It turns out that

(E [Hu(,t) - Uh(',t)HQ])% < (E [ng(’t)HQD% + (E [||77u( ol ])% CeCtpkt1
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Since v € L* (Q x [0, T]; H*™*), we have

t p2m % t %
(E [// |77v(x,s)|2dwds]) <C (IE [/ ||2;(.,5)||2k+1 ds}) REHL < Opkt
0Jo 0

Thus, we have

G
( U/ e(a )1 dm])% (E Uot/o%|gv(x,s)|2dxds])égghkﬂe(;t_

Remark 5.1. The error estimate is optimal regarding the polynomial degree k but may be
not optimal regarding the required high-reqularity of the exact solution u in Assumption (H5),
whose integrability and differentiability are used to derive our error estimate. Note that the
high regularities required in (H5) can be found in [18, 24] for some special SPDFEs (1.1), like
the linear SPDEs (1.1) in [18] and the semilinear SPDEs (1.1) in [24] where a(-) does not
depend on (u,u,) and g(-) does not depend on u,.

O

6 Time discretization

The LDG method incorporates the spatial discretization and reduces the primal SPDE into
a system of SDEs, which needs to be coupled with a high-order time discretization. We
will propose a numerical scheme which avoids the usage of derivatives in much the same
way that Runge-Kutta schemes do in the deterministic setting. For notational simplicity,
we shall mainly state the schemes for the autonomous case. Consider the following matrix-
valued SDE:

X} = a(X,)dt 4+ 0% (X)) dW,, t>0;
Xé’j — xf)j,
where i = O7 1,...kand j = 0,1,..., N + 1. We aim to use Y,/ to approximate X;”. Define
Yy = af Suppose we already have {Y“" .:i=0,1,...,kand j =0,1,..., N + 1}.
We use an explicit derivative-free strong scheme of order 1.5 from Kloeden and Platen [27].

For convenience of the reader, we give a detailed description here.
Define

tni1
An = tn+1 — tn, AWn = th+1 — Vth, AZn = / (WS — th) ds.
tn

We set /
V;n’l = YnmJ + amJ(Yn)An + bmJ(Yn) An ’
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and
ot = £ M () VA,

Then, an explicit order 1.5 strong scheme has the form

YA = Y 4 a(Y,)A, + 0 (Y,) AW,

(order 0.5)
o (9900~ OO @I - 8,)
(order 1. O)
il {a 25+ 0] A

+ﬁ {a"(7y) = )} AZ,

1 -
toAT {67 (74) — 2677 (Yy) 4+ 077 (v=) } {AW,LA, — AZ,}

b (09660) = 19(00) =09 + 9900} {3 (W) = A} AW
(order 1.5) (6.1)

Here, the additional random variable AZ,, is normally distributed with the following mean,
variance and correlation:

E[AZ,) =0, E[(AZ,)’]= %Af;, E[AW,AZ,] = %Ai,

respectively. We note that there is no difficulty in generating the pair of correlated normally
distributed random variables AW,, and AZ, using the transformation

1 1 1 3
W, = Az, AZ, = -, —Cno | A2,
n Cn,l 9 (C 1 + \/gc ,2)

where (,1 and (2 are independent and N(0; 1) distributed random variables.

7 Numerical experiments

In this section we consider the application of the numerical method, which we have defined in
section 3, on some model problems. Here, M is the number of realizations of the stochastic
approximate solutions. We use the average of M realizations to approximate the mathemat-
ical expectation. The degree of the piecewise polynomial space V}, is k. The positive real
number T is the terminal time. Since the considered problems are second order SPDEs, in
all experiments, we need to adjust the time step to At ~ (Ax)2 to guarantee the stability
for the explicit time discretization. Moreover, by setting At ~ (Aw)z, the scheme in time is
effectively third-order.
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7.1 Nondegenerate linear SPDEs

We consider the following linear equation

du = Ugg dt + bu dW, in Q x [0, 2] x (0,T7;
(7.1)
u(z,0) = sin(z), z € [0, 27].

The exact solution of (7.1) is
uw(w, z,t) = sin(x)ebW*(“)_%bZt_t.
In both Tables 1 and 2, we show the L?-errors for the linear equation (7.1) with M = 1000
realizations. We see that the scheme has (k +1)-th order of accuracy. The L*-error increases

as the stochastic coefficient b increases. All the numerical results coincide with the conclusion
of Theorem 5.1.

Table 1: Verification of optimal convergence for nondegenerate linear SPDEs (7.1) with
multiplicative noise: k=1, M = 1000.

b=0.1 b=10.5 b=1.0

N | L? Error order | L? Error order | L? Error order
10 | 3.87E-02 - 3.91E-02 - 4.06E-02 -
20 | 9.65E-03 2.01 | 9.76E-03 2.00 | 1.01E-02 2.01
40 | 2.41E-03 2.00 | 2.44E-03 2.00 | 2.53E-03 2.00
80 | 6.03E-04 2.00 | 6.10E-04 2.00 | 6.35E-04 2.00
160 | 1.51E-04 2.00 | 1.53E-04 1.99 | 1.60E-04 1.99
10 | 2.60E-02 - 2.76E-02 - 3.36E-02 -
20 | 6.48E-03 2.00 | 6.86E-03 2.01 | 8.17E-03 2.04
40 | 1.62E-03 2.00 | 1.72E-03 2.00 | 2.01E-03 2.02
80 | 4.06E-04 2.00 | 4.31E-04 2.00 | 5.22E-04 1.95
160 | 1.01E-04 2.00 | 1.09E-04 1.99 | 1.30E-04 2.01
10 | 1.58E-02 - 1.79E-02 - 2.67E-02 -
20 | 3.94E-03 2.00 | 4.41E-03 2.02 | 6.17TE-03 2.11
40 | 9.85E-04 2.00 | 1.10E-03 2.00 | 1.46E-03 2.08
80 | 2.46E-04 2.00 | 2.79E-04 1.98 | 4.04E-04 1.85
160 | 6.18E-05 1.99 | 7.02E-05 1.99 | 9.71E-05 2.06

7.2 Linear SPDEs with derivative in the diffusion term

In the following we test the accuracy of the LDG method on the linear equation with first
order spatial derivative involved in the diffusion term as follows,

1
du = ~Ugg dt + bu, dW;, in © x [0,27] x (0,77;

2 (7.2)
u(zx,0) = ug(x), x € 0, 27].
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Table 2: Verification of optimal convergence for nondegenerate linear SPDEs (7.1) with
multiplicative noise: £ =2, M = 1000.

b=0.1 b=0.5 b=1.0
N | L? Error order | L? Error order | L? Error order
10 | 1.94E-03 - 1.96E-03 - 2.03E-03 -
T—01 20 | 2.43E-04 3.00 | 2.47E-04 2.98 | 2.58E-04 2.97
40 | 3.03E-05 3.00 | 3.07E-05 3.01 | 3.20E-05 3.01
80 | 3.80E-06 3.00 | 3.85E-06 3.00 | 4.02E-06 2.99
160 | 4.75E-07  3.00 | 4.83E-07 2.99 | 5.056E-07 2.99
10 | 1.30E-03 - 1.38E-03 - 1.67E-03 -
T—05 20 | 1.64E-04 299 | 1.75E-04 2.97 | 2.12E-04 2.97
40 | 2.04E-05 3.01 | 2.17E-05 3.01 | 2.64E-05 3.01
80 | 2.55E-06 3.00 | 2.73E-06 2.99 | 3.41E-06 2.95
160 | 3.19E-07 3.00 | 3.43E-07 299 | 4.18E-07 3.03
10 | 7.91E-04 - 8.90E-04 - 1.32E-03 -
T_10 20 | 9.96E-05 299 | 1.14E-04 2.97 | 1.71E-04 2.95
40 | 1.24E-05 3.01 | 1.41E-05 3.01 | 2.09E-05 3.03
80 | 1.55E-06 3.00 | 1.79E-06 2.98 | 2.83E-06 2.88
160 | 1.94E-07 3.00 | 2.23E-07 3.00 | 3.26E-07 3.12

If b =1, then (7.2) is a degenerate linear SPDE satisfying 2a = C%. The exact solution

is
u(w, z,t) = up(z + Wy(w)).

In Table 3, we show the L%-errors for the linear equation (7.2) with b = 1, M = 100
realizations and smooth initial condition ug(z) = sin(z). For different terminal time 7', the
scheme has the expected (k + 1)-th order of accuracy.

We also consider the case that the initial condition is discontinuous

1, if 2 <a<3
up(z) = (7.3)
0, if0§x<§or3§<x§2w.
For this discontinuous case, we compute the solution up to 7' = 1.0 with only one

realization M = 1. The results are shown in figure 1. We observe that the scheme converges
to the true solution when N increases. There are oscillations arising near the discontinuities
of the solution.

Remark 7.1. If we set b > 1 in our codes, i.e., the condition 2ac — C? > 0 in Theorem 4.1
and Theorem 4.2 is not satisfied, then we find that the L?>-norm of the numerical solutions
would explode, which confirms the necessity of the stochastic parabolicity condition.

Remark 7.2. The L?-stability is very helpful in this discontinuous case, but is not enough
to control the spurious numerical oscillations near the discontinuous region. In practice,
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Table 3: Verification of optimal convergence for degenerate linear SPDEs (7.2) with smooth
initial value: b =1, M = 100, ug(x) = sin(z).

k=1 k=2
N | L? Error order | L? Error order
10 | 4.27E-02 - 2.29E-03 -
T—01 20 | 1.07E-02 2.00 | 2.73E-04 3.07
40 | 2.66E-03 2.00 | 3.36E-05 3.02
80 | 6.65E-04 2.00 | 4.20E-06 3.00
160 | 1.66E-04 2.00 | 5.24E-07  3.00
10 | 4.32E-02 - 2.27E-03 -
T 05 20 | 1.07TE-02 2.02 | 2.74E-04 3.05
40 | 2.67E-03 2.00 | 3.39E-05 3.01
80 | 6.66E-04 2.00 | 4.19E-06 3.02
160 | 1.66E-04 2.00 | 5.24E-07  3.00
10 | 4.43E-02 - 2.23E-03 -
T 10 20 | 1.07E-02 2.05 | 2.75E-04 3.02
40 | 2.67E-03 2.01 | 3.43E-05 3.00
80 | 6.66E-04 2.00 | 4.20E-06 3.03
160 | 1.66E-04 2.00 | 5.24E-07  3.00

it is worth trying to use limiters to control oscillations for the problems containing strong
discontinuities, which will be investigated in the future.

7.3 Stochastic viscous Burgers equation

Although we cannot give error estimates for fully nonlinear equations, it is worth trying
to apply the LDG method to solve some nonlinear equations. The next example is the
stochastic viscous Burgers equation,

2 1
du — [%Um -3 (UQ)J dt + (ouy + b) dW,, in © x [0, 27] x (0,T7;

(7.4)
u(z,0) = sin(z), x € [0, 27].
The exact solution of (7.4) is
t
u(w,z,t) =v (x — b/ Wsds + oW, t) + bW,
0
where v is the solution of the following deterministic inviscid Burgers equation
dv+3(v?), dt = 0 in [0,27] x (0,7T),
(7.5)
v(z,0) = sin(z), x € [0, 27].
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true solution true solution
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Figure 1: Performance of LDG scheme for degenerate linear SPDEs (7.2) with discontinuous
initial value (7.3) and one fixed path: b=1, M =1, T = 1.

Note that the solution of (7.5) has an infinite slope - the wave “breaks” and a shock
forms at _q
Ty = ——+——=1.
*~ minv)(z)
See [29]. So the exact solution of the stochastic viscous Burgers equation (7.4) also has a
shock at 1, = 1.
u?

We use the simple Lax-Friedrichs flux for the nonlinear convection term f(u) = %,

—~ 1 1 _
Flumut) = 1{ )"+ ()} = 5a (w" —u).
where
a:mjax{’u;% , u;.:% }

In Table 4, we show the L%-errors for equation (7.4) with b = ¢ = 1 and M = 100
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realizations. We see that the order of accuracy converges to k+ 1 when T' < T},. The scheme
loses the order of accuracy as T' = 1.2 since the problem involves a shock when 7" > Tj,.

Table 4: Verification of optimal convergence for stochastic viscous Burgers equation (7.4)
with linear multiplicative noise: b =0 =1, M = 100.

k=1 k=2
N | L? Error order | L? Error order
10 | 4.21E-02 - 2.40E-03 -
T—01 20 | 1.07E-02 1.97 | 2.90E-04 3.05
40 | 2.65E-03 2.02 | 3.62E-05 3.00
80 | 6.69E-04 1.99 | 4.54E-06 3.00
160 | 1.69E-04 1.99 | 5.65E-07 3.01
10 | 5.87TE-02 - 5.83E-03 -
T 04 20 | 1.46E-02 2.01 | 8.48E-04 2.78
40 | 3.64E-03 2.00 | 1.01E-04 3.07
80 | 9.10E-04 2.00 | 1.22E-05 3.06
160 | 2.29E-04 1.99 | 1.51E-06 3.02
10 | 2.21E-01 - 7.98E-02 -
T—08 20 | 9.94E-02 1.15 | 2.57E-02 1.63
40 | 3.74E-02 1.41 | 5.97E-03 2.11
80 | 1.14E-02 1.71 | 1.05E-03 2.50
160 | 2.83E-03 2.01 | 9.00E-05 3.55
10 | 5.58E-01 - 4.02E-01 -
T—19 20 | 4.31E-01 0.37 | 3.16E-01 0.35
40 | 3.37E-01 0.36 | 2.38E-01 0.41
80 | 2.62E-01 0.36 | 1.91E-01 0.32
160 | 2.20E-01  0.25 | 1.56E-01  0.29

To see the behavior of numerical solution with 7" > Ty, we plot the approximate solution
and the true solution at T" = 1.2 with b = ¢ = 1 and only one realization M = 1 to get
figure 2. We observe that the LDG scheme converges nicely to the exact solution for fixed
stochastic path w. Again, some oscillations appear near the discontinuous region.

7.4 Numerical test for studying the necessity of the stochastic
parabolicity condition 2« > C% for the LDG scheme

Next we examine our numerical scheme on the following nonlinear SPDE to investigate the

necessity of the stochastic parabolicity condition
2

b
du = | (vPug)  — ug + 3u® — <2 + 5) u} dt + bu,dW,;, in Q x [0,27] x (0, T); (7.6)

u(z,0) = sin(z), x € |0, 27].
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Figure 2: Performance of LDG scheme for stochastic viscous Burgers equation (7.4) with
linear multiplicative noise and one fixed path: b=1, 6 =1, M =1,T = 1.2.

One of the exact solutions of (7.6) is
u(w,z,t) =sin (z + bW, — ). (7.7)

Notice that in this case « is equal to 0 and |b| is greater than 0, so the stochastic parabolic
condition 2a > C? in Theorem 4.1 and Theorem 4.2 is not satisfied, and instability appears
for our scheme in this numerical test. Table 5 and Table 6 display the L?-errors for the
nonlinear equation (7.6) with M = 100 realizations. We see that the LDG scheme works
well when the terminal time 7" and the stochastic coefficient b are small, in which the order
of accuracy is k + 1. When T and b are large enough, similar to the situation we described
in Remark 7.1, we lose the order of accuracy and the scheme seems unstable, which again
suggests the necessity of the stochastic parabolicity condition 2a > C2.
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Table 5: Verification of stability and convergence for nonlinear SPDEs (7.6) with multiplica-
tive noise: k=1, M = 100.

b=0.05 b=0.1 b=0.5
N | L? Error order | L? Error order | L? Error order
10 | 3.17E-02 - 3.17E-02 - 3.25E-02 -

20 | 1.04E-02 1.61 | 1.04E-02 1.61 | 1.06E-02 1.62
40 | 2.73E-03  1.92 | 2.74E-03 1.92 | 3.95E-03 1.42
80 | 7.02E-04 1.96 | 7.11E-04 1.94 | 1.43E-03 1.47
160 | 1.77E-04 199 | 1.78E-04 2.00 | 1.69E-04 3.08
10 | 4.83E-02 - 4.83E-02 - 4.94E-02 -

20 | 1.21E-02 2.00 | 1.22E-02 1.99 | 1.41E-02 1.81

T =0.01

r=0l 40 | 3.03E-03 2.00 | 3.11E-03 1.97 | 1.03E-02 0.45
80 | 7.04E-04 2.01 | 8.01E-04 1.96 | 1.01E-02 0.03
160 | 1.82E-04 2.05 | 1.84E-04 2.12 | 1.79E-01 -4.15
10 | 5.52E-02 - 5.57E-02 - 6.44E-02 -

T— 05 20 | 1.27E-02 2.11 | 1.29E-02 2.11 | 1.79E-02 1.85

40 | 3.15E-03 2.02 | 3.22E-03 2.00 | 1.62E-02 0.15
80 | 7.84E-04 2.00 | 8.33E-04 1.95 | 2.36E-01 -3.87
160 | 1.94E-04 2.01 | 2.51E-04 1.73 | 5.92E-01 -1.33

7.5 Nondegenerate nonlinear SPDEs

Note that (7.7) is also the exact solution of the following nondegenerate nonlinear equation,

2

b
du = [(uQUx)x + (2 + 5) Upy — Uy + 3u3] dt + bu,dW; in Q x [0,27] x (0,T7;

u(z,0) = sin(z), z € [0, 27].

(7.8)

We see that in this case the constant o equals to 2 + %, which implies that the condition
a— % = 2 > 0 is satisfied.

In Table 7, we show the L2-errors for the equation (7.8) with b = 1 and M = 100
realizations, which indicates that the LDG method gives the expected (k + 1)-th order of
accuracy for the nondegenerate nonlinear problems.

8 Concluding remarks

In this article, we present a semi-discrete LDG scheme for fully nonlinear parabolic SPDEs.
The L?-stability results of the scheme are obtained, and the optimal error estimates of order
O(h**1) for semilinear stochastic equations are proved. We combine an explicit derivative-
free order 1.5 time discretization scheme to perform several numerical experiments on some
model problems to confirm the analytical results.
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Table 6: Verification of stability and convergence for nonlinear SPDEs (7.6) with multiplica-
tive noise: k=2, M = 100.

b=0.05 b=0.1 b=0.5
N | L? Error order | L? Error order | L? Error order
10 | 1.78E-03 - 1.78E-03 - 1.88E-03 -

20 | 2.67E-04 2.74 | 2.68E-04 2.74 | 3.08E-04 2.61
40 | 3.65E-05 2.87 | 3.67E-05 2.87 | 1.02E-04 1.60
80 | 4.57E-06 3.00 | 4.67E-06 2.97 | 2.71E-03 -4.73
160 | 5.57E-07  3.04 | 5.91E-07 2.98 | 2.51E-01 -6.53
10 | 4.70E-03 - 4.71E-03 - 5.33E-03 -

20 | 4.46E-04 3.39 | 4.52E-04 3.38 | 1.13E-03 2.23

T =0.01

P=011 40 | 444805 333 | 450E05 333 | 2.38E-02 -4.39
80 | 4.84E-06 3.20 | 5.03E-06 3.16 | 4.62E-01 -4.28
160 | 5.61E-07 3.11 | 2.48E-06 1.02 | 6.09E-01 -0.40
10 | 4.18E-03 - |430E-03 - |[815E-03 -
;_ g5 | 20| 435E-04 326 | 460E-04 3.23 | 215E-02 -1.40
40 | 4.62E-05 324 | 473E-05 3.28 | 5.43E-01 -4.66
80 | 4.89E-06 3.24 | 5.70E-06 3.05 | NaN  NaN
160 | 5.72E-07 3.10 | 3.53E-03 -9.27 | 6.97E-01 NaN
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