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Abstract

In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlin-

ear and possibly degenerate parabolic stochastic partial differential equations, which

is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method

for purely hyperbolic equations to parabolic equations and shares with the DG method

its advantage and flexibility. We prove the L2-stability of the numerical scheme for

fully nonlinear equations. Optimal error estimates (O(hk+1)) for smooth solutions

of semi-linear stochastic equations is shown if polynomials of degree k are used. We

use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-

valued stochastic ordinary differential equations derived from the spatial discretization.

Numerical examples are given to display the performance of the LDG method.
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1 Introduction

In this paper we present a local discontinuous Galerkin (LDG) method for nonlinear parabolic

stochastic partial differential equations (SPDEs) with a periodic boundary condition and a
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multiplicative noise of the form:
du = {[a(·, x, t, u, ux)ux]x + ψ(·, x, t, u, ux)} dt+ g(·, x, t, u, ux) dWt,

(x, t) ∈ [0, 2π]× (0, T ]; (1.1)

u(x, 0) = u0(x), x ∈ [0, 2π],

where the terminal time T > 0 is a fixed real number, {Wt, 0 ≤ t ≤ T} is a standard one-

dimensional Brownian motion on a given probability space (Ω,F ,P), {Ft, 0 ≤ t ≤ T} denotes

its augmented natural filtration, and the real scalar-valued functions a, ψ and g are all

F ⊗ B([0, 2π] × [0, T ] × R2)-measurable. Notice that the assumption of periodic boundary

conditions is for simplicity of exposition only and is not essential: the method as well as the

analysis can be easily adapted for non-periodic boundary conditions. We make the following

hypotheses:

(H1) The initial condition u0 ∈ L2(0, 2π).

(H2) The leading coefficient a is locally Lipschitz continuous in the last two variables. There

exist two nonnegative constants α and Λ such that

α ≤ a(ω, x, t, u, v) ≤ Λ

for any (ω, x, t, u, v) ∈ Ω× [0, 2π]× [0, T ]× R2.

(H3) There exist three positive constants B1, B2, and B3 such that

|ψ(ω, x, t, u, v)− ψ(ω, x, t, u′, v′)| ≤ B1 (|u− u′|+ |v − v′|)

and

|ψ(ω, x, t, u, v)|2 ≤ B2
2

(
1 + |u|2

)
+B2

3 |v|
2

for any (ω, x, t;u, u′, v, v′) ∈ Ω× [0, 2π]× [0, T ]× R4.

(H4) There are four nonnegative constants Ci with i = 1, 2, 3, 4 such that

|g(ω, x, t, u, v)− g(ω, x, t, u′, v′)| ≤ C1|u− u′|+ C2|v − v′|

and

|g(ω, x, t, u, v)|2 ≤ C2
3

(
1 + |u|2

)
+ C2

4 |v|
2

for any (ω, x, t;u, u′, v, v′) ∈ Ω× [0, 2π]× [0, T ]× R4.

Various phenomena and applications (see [36, 39] and the references therein) with stochas-

tic influence in natural or artificial complex systems can be modeled by SPDEs (1.1), in-

cluding stochastic quantization of the free Euclidean quantum field, turbulence, population

dynamics and genetics, neurophysiology, evolution of the curve of interest rate, nonlinear

filtering, movement by mean curvature in random environment, hydrodynamic limit of par-

ticle systems, fluctuations of an interface on a wall, and pathwise stochastic control theory.

In these fundamental applications, several examples of canonical SPDEs arise, such as the
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Zakai equation, reflected stochastic heat equation, stochastic reaction diffusion equations,

stochastic Burgers equation, stochastic Navier-Stokes equation, and stochastic porous media

equation.

Concerning the theoretical study for nonlinear SPDEs with a multiplicative stochastic

forcing term involving a temporary white noise, Pardoux and Peng [37] proved existence

and uniqueness of a classical solution by establishing the connection with backward doubly

stochastic differential equations (BDSDEs). Hofmanová [24] obtained a regularity result for

the strong solution with periodic boundary condition when all the coefficients are sufficiently

smooth. Recently, Du and Liu [18] gave a Schauder estimate for linear SPDEs, which can

be suitably generalized to nonlinear cases. In addition to these, there are also numerous

research activities on nonlinear SPDEs. See e.g. [3, 15, 20, 43]. However, in most cases it

is not available to have explicit solutions to the SPDEs, and numerical solutions of SPDEs

naturally receive a lot of attentions.

In recent years, numerous studies have been focused on advanced and efficient methods

for SPDEs such as finite difference methods [16, 21, 22, 33, 42, 44], finite element methods [1,

17, 19, 28, 45, 47], spectral methods [25, 31, 34, 35], and also some other types of numerical

methods [7, 41]. Concerning discontinuous finite element methods for SPDEs, Cao et al. [4, 5]

developed a discontinuous Galerkin (DG) method to the time-independent elliptic SPDEs

with additive noises. Li et al. [30] proposed a DG method for nonlinear stochastic hyperbolic

conservation laws, in which they investigated the stability for fully nonlinear equations and

the error estimates for semilinear equations. Pazner et al. [38] formulated an LDG scheme

on the basis of fluctuation-dissipation balance to approximate linear parabolic SPDEs driven

by additive noises, which preserves a discrete fluctuation-dissipation structure, but neither

stability nor any error estimate is given. To the best of our knowledge, little attention has

been paid to the stability and error estimates of high-order approximate schemes for fully

nonlinear parabolic SPDEs with multiplicative noises.

The LDG method was introduced by Cockburn and Shu in [14] as a generalization of

the numerical scheme proposed by Bassi and Rebay [2] for the compressible Navier-Stokes

equations. This scheme was in turn an extension of the DG method developed by Cock-

burn et al. [11, 12, 13, 9, 10] for nonlinear hyperbolic systems. With the help of the local

Gauss-Radau projection, the L2-norm stability and optimal error estimates are obtained for

deterministic problems [6, 46], if the alternating numerical fluxes are used. In this paper,

we shall consider stochastic counterparts of these works and propose an LDG scheme for

the nonlinear parabolic SPDEs (1.1). Our numerical scheme shares the following advantages

and flexibilities of the classical DG method: (1) it is easy to design high order approxima-

tions, thus allowing for efficient p-adaptivity; (2) it is flexible on complicated geometries,

thus allowing for efficient h-adaptivity; (3) it is local in data communications, thus allowing

for efficient parallel implementations.

It should be pointed out that our effective computational methods for SPDEs have new

difficulties. A solution of SPDEs, even when it exists, is not time-differentiable in nature,

and is not bounded in general in the path. These new features complicate our calculation and
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analysis. Using the similar techniques for stochastic hyperbolic equations with DG methods

in [30], we properly estimate the quadratic covariation process of the approximating solution

to obtain stability and optimal error estimates.

As an extension of the DG method, the LDG method can not only deal with nonlinear

multiplicative noise containing the unknown variable u itself, but also nicely handle the case

of its first order spatial derivative ux being involved in the stochastic diffusion term g, as long

as the stochastic parabolicity 2α ≥ C2
4 is satisfied. Though few studies are given on unique

solvability and regularity of strong solutions to degenerate nonlinear SPDEs, we can design

the LDG scheme for the degenerate case 2α = C2
4 and prove its stability, which is confirmed

by numerical tests for degenerate SPDEs in Section 7. These numerical experiments further

indicate that our scheme also has optimal order of accuracy even in the degenerate case.

Our high-order approximation scheme can be more efficient for high-accuracy compu-

tation of the smooth case, which is rather attractive in applications. However, for the

discontinuous case, our scheme loses the high order of accuracy and has spurious numerical

oscillations near discontinuous region. In practice, it is worth trying to use limiters to control

oscillations for the discontinuous problems, which remain to be investigated in the future.

Our numerical algorithm and stability analysis are restricted within the one-dimensional

spacial case, but they can be generalized to higher spacial dimensions in a straightforward

way. The optimal error estimate will however be more involved in the multi-dimensional

spacial case, especially on unstructured meshes, which remains to be studied in the future.

The paper is organized as follows. In Section 2, we introduce notations, definitions

and auxiliary results used in the paper. In Section 3, we present the LDG method for

nonlinear parabolic SPDEs (1.1), and study the existence and uniqueness of the solution

to the stochastic differential equations (SDEs) derived from the spatial discretization. In

Section 4, we investigate the L2-stability for the fully nonlinear stochastic equations. In

section 5, we obtain the L2-norm optimal error estimates (O(hk+1)) for semilinear stochastic

equations. In Section 6, we use a derivative-free order 1.5 scheme for matrix-valued SDEs

as time discretization, to collaborate with the semi-discrete LDG scheme. Finally the paper

ends with a series of numerical experiments on some model problems in Section 7, which

confirm the analytical results.

2 Notations, definitions and auxiliary results

In this section, we introduce notations, definitions, and some auxiliary results.

2.1 Notations

We denote the mesh by Ij =
[
xj− 1

2
, xj+ 1

2

]
, for j = 1, ..., N . The nodes are denoted by

{xj+ 1
2
, j = 0, 1, ..., N} with x 1

2
= 0 and xN+ 1

2
= 2π. The mesh size is denoted by hj =

xj+ 1
2
− xj− 1

2
, with h = max

1≤j≤N
hj being the maximum mesh size. We assume that the mesh is
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regular, namely the ratio between the maximum and the minimum mesh sizes stays bounded

during mesh refinements. We define the piecewise polynomial space Vh as the space of

polynomials of the degree up to k in each cell Ij, i.e.

Vh =
{
v
∣∣∣ v ∈ P k(Ij) for x ∈ Ij, j = 1, ..., N

}
.

Note that functions in Vh might have discontinuities on an element interface.

We consider the Sobolev space ‖ · ‖Hm,p with periodic boundary condition,

Hm,p :=

{
u : [0, 2π]→ R

∣∣∣∣∣ ‖u‖Hm,p =

[∫ 2π

0

(
|u(x)|p +

m∑
l=1

∣∣∣∣ dldxlu(x)

∣∣∣∣p
)
dx

] 1
p

<∞,

u(0) = u(2π),
dl

dxl
u(0) =

dl

dxl
u(2π), l = 1, ...,m− 1

}
.

For simplicity, we write ‖ · ‖Hm for ‖ · ‖Hm,2 , and ‖ · ‖ for the L2(0, 2π) norm. We denote by

S2(Ω× [0, T ];L2), the space of all adapted strongly continuous processes φ : Ω× [0, T ] −→
L2(0, 2π) such that

‖φ‖S2(Ω×[0,T ];L2) :=

(
E
[

sup
0≤t≤T

‖φ(t)‖2

]) 1
2

<∞.

An element of Rn×d is a n×d matrix, and its Euclidean norm is given by |y| :=
√
trace(yy∗)

for y ∈ Rn×d.

The solution of the numerical scheme is denoted by uh, and belongs to the finite element

space Vh. We denote by u+
j+ 1

2

and u−
j+ 1

2

the right and left limits of the function u at xj+ 1
2
,

respectively.

By C > 0, we denote a generic constant, which in particular does not depend on the

discretization width h and possibly changes from line to line. Since the Itô integral is not

defined in a pathwise sense, the argument ω of the integrand as a stochastic process will be

omitted in the rest of this paper if there is no danger of confusion.

2.2 Projection properties

We consider the standard L2-projection (denoted by P), and the local Gauss-Radau projec-

tions R and Q into space Vh. For each j, the projections satisfy that∫
Ij

[Pu(x)− u(x)] v(x) dx = 0, ∀v ∈ P k(Ij),∫
Ij

[Ru(x)− u(x)] v(x) dx = 0, ∀v ∈ P k−1(Ij), and Ru(x+
j− 1

2

) = u(xj− 1
2
), (2.1)

and ∫
Ij

[Qu(x)− u(x)] v(x) dx = 0, ∀v ∈ P k−1(Ij), and Qu(x−
j+ 1

2

) = u(xj+ 1
2
). (2.2)
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Furthermore, we have (c.f. [8])

‖Pu− u‖+ ‖Ru− u‖+ ‖Qu− u‖ ≤ C ‖u‖Hk+1 h
k+1, (2.3)

where the positive constant C is independent of u and h.

2.3 Properties of the Itô formula

For continuous semi-martingales X and Y , we have

XtYt = X0Y0 +

∫ t

0

Xs dYs +

∫ t

0

Ys dXs + 〈X, Y 〉t ,

where 〈X, Y 〉 is the quadratic covariation process of X and Y . Note that 〈X, Y 〉 = 〈Y,X〉.
For any locally bounded adapted process H, we have〈∫ ·

0

Hs dXs, Y

〉
t

=

∫ t

0

Hs d 〈X, Y 〉s . (2.4)

Moreover, if X is continuous and is of bounded total variation, we have

〈X, Y 〉 = 0. (2.5)

The following lemma is well-known in the martingale theory. See e.g. [23, Theorem 10.19,

page 273].

Lemma 2.1. If E
[(∫ T

0
H2
s ds

) 1
2

]
<∞, then

{∫ t
0
Hs dWs, 0 ≤ t ≤ T

}
is a martingale.

For more details on the Itô formula, the reader is referred to [23, 40].

3 The LDG method for nonlinear parabolic SPDEs

3.1 The semi-discrete LDG method

In this subsection, we formulate the LDG method for fully nonlinear parabolic SPDEs. As a

special class of the DG methods, the main technique of the method is to rewrite (1.1) into an

equivalent system containing only first-order spatial derivatives, which is further discretized

by the standard DG method with correct definition of numerical fluxes. To do this, firstly,

we rewrite the problem as a first-order system:
du =

[
wx + ψ(·, x, t, u, v)

]
dt+ g(·, x, t, u, v) dWt, (x, t) ∈ [0, 2π]× (0, T ]; (3.1a)

v = ux, in Ω× [0, 2π]× (0, T ]; (3.1b)

w = a(·, x, t, u, v)v, (x, t) ∈ [0, 2π]× (0, T ]; (3.1c)

u(x, 0) = u0(x), x ∈ [0, 2π]. (3.1d)
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The LDG method for (1.1) is now obtained by simply discretizing the above system with

the DG method. We seek an approximation (uh, vh, wh)
T to the exact solution (u, v, w)T

such that for any (ω, t) ∈ Ω× [0, T ], uh(ω, ·, t), vh(ω, ·, t) and wh(ω, ·, t) belong to the finite

dimensional space Vh. In order to determine the approximate solution (uh, vh, wh)
T, we first

note that by multiplying (3.1a), (3.1b), (3.1c), and (3.1d) with arbitrary smooth functions

r, z, p and q, respectively, and integrating over Ij with j = 1, 2, ..., N , we get, after a simple

formal integration by parts in (3.1a) and (3.1b),∫
Ij

r(x)du(ω, x, t) dx =

{
−
∫
Ij

w (ω, x, t) rx (x) dx

+w
(
ω, xj+ 1

2
, t
)
r
(
x−
j+ 1

2

)
− w

(
ω, xj− 1

2
, t
)
r
(
x+
j− 1

2

)
+

∫
Ij

ψ
(
ω, x, t, u(ω, x, t), v(ω, x, t)

)
r(x) dx

}
dt

+

∫
Ij

g
(
ω, x, t, u(ω, x, t), v(ω, x, t)

)
r(x) dx dWt,∫

Ij

v(ω, x, t)z(x) dx = −
∫
Ij

u (ω, x, t) zx (x) dx

+u
(
ω, xj+ 1

2
, t
)
z
(
x−
j+ 1

2

)
− u

(
ω, xj− 1

2
, t
)
z
(
x+
j− 1

2

)
,∫

Ij

w(ω, x, t) p(x) dx =

∫
Ij

a
(
ω, x, t, u (ω, x, t) , v (ω, x, t)

)
v (ω, x, t) p(x) dx,∫

Ij

u(ω, x, 0) q(x) dx =

∫
Ij

u0(x) q(x) dx.

Next, we replace the smooth functions r, z, p and q with test functions rh, zh, ph and

qh, respectively, in the finite element space Vh and the exact solution (u, v, w)T with the

approximation (uh, vh, wh)
T. Since the functions in Vh might have discontinuities on an

element interface, we must also replace the boundary terms

w
(
ω, xj+ 1

2
, t
)
, u

(
ω, xj+ 1

2
, t
)

with the numerical fluxes

ŵj+ 1
2

(ω, t) , ûj+ 1
2

(ω, t)

respectively, which will be suitably chosen later. Thus, the approximate solution given by

the LDG method is defined as the solution of the following weak formulation:∫
Ij

rh(x)duh(ω, x, t) dx =

{
−
∫
Ij

wh (ω, x, t) rhx (x) dx

+ŵj+ 1
2

(ω, t) rh

(
x−
j+ 1

2

)
− ŵj− 1

2
(ω, t) rh

(
x+
j− 1

2

)
+

∫
Ij

ψ
(
ω, x, t, uh(ω, x, t), vh(ω, x, t)

)
rh(x) dx

}
dt
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+

∫
Ij

g
(
ω, x, t, uh(ω, x, t), vh(ω, x, t)

)
rh(x) dx dWt, (3.2a)∫

Ij

vh(ω, x, t)zh(x) dx = −
∫
Ij

uh (ω, x, t) zhx (x) dx

+ûj+ 1
2

(ω, t) zh

(
x−
j+ 1

2

)
− ûj− 1

2
(ω, t) zh

(
x+
j− 1

2

)
, (3.2b)∫

Ij

wh(ω, x, t) ph(x) dx =

∫
Ij

[
a
(
·, uh, vh

)
vh
]

(ω, x, t) ph(x) dx, (3.2c)∫
Ij

uh(ω, x, 0) qh(x) dx =

∫
Ij

u0(x) qh(x) dx, (3.2d)

for any (rh, zh, ph, qh) ∈ (Vh)
4. It only remains to choose suitable numerical fluxes. For

j = 0, 1, ..., N , we choose

ŵj+ 1
2

(ω, t) := wh

(
ω, x+

j+ 1
2

, t
)
, ûj+ 1

2
(ω, t) := uh

(
ω, x−

j+ 1
2

, t
)
. (3.3)

Note that, by periodicity, we have

ŵN+ 1
2

= ŵ 1
2
, û 1

2
= ûN+ 1

2
.

Remark 3.1. The choice of (ŵ, û) in (3.3) is referred to as the alternating flux, which is

essential for the proof of optimal error estimates. We can also define the numerical flux in

an alternating way as follows:

ŵj+ 1
2

(ω, t) := wh

(
ω, x−

j+ 1
2

, t
)
, ûj+ 1

2
(ω, t) := uh

(
ω, x+

j+ 1
2

, t
)
.

3.2 The stochastic ordinary differential equation derived from the

spatial discretization

The LDG method, as a spatial discretization, transfers the primal problem into a system

of ordinary stochastic differential equations, which will be specified in this subsection. For

x ∈ Ij, the numerical solution should have the form

uh(ω, x, t) =
k∑
l=0

ul,j(ω, t)ϕ
j
l (x), vh(ω, x, t) =

k∑
l=0

vl,j(ω, t)ϕ
j
l (x),

and

wh(ω, x, t) =
k∑
l=0

wl,j(ω, t)ϕ
j
l (x),

where {ϕjl , l = 0, 1, ..., k} is an arbitrary basis of P k(Ij).

By periodicity, we define the “ghost” coefficients as follows:

ul,0 = ul,N , vl,0 = vl,N , wl,0 = wl,N ,

ul,N+1 = ul,1, vl,N+1 = vl,1, wl,N+1 = wl,1.

Our aim is to solve (3.2) to get the coefficients u(ω, t) = [ul,j(ω, t)]l∈{0,...,k},j∈{0,...,N+1},

v(ω, t) = [vl,j(ω, t)]l∈{0,...,k},j∈{0,...,N+1} and w(ω, t) = [wl,j(ω, t)]l∈{0,...,k},j∈{0,...,N+1}.
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3.2.1 Representation for v(ω, t)

For j = 1, 2, ..., N , by taking zh := ϕjm for m = 0, 1, ..., k in equality (3.2b), we have

k∑
l=0

(∫
Ij

ϕjm(x)ϕjl (x) dx

)
vl,j(ω, t)

= −
∫
Ij

k∑
n=0

un,j(ω, t)ϕ
j
n(x)ϕjmx(x) dx

+
k∑

n=0

un,j(ω, t)ϕ
j
n(xj+ 1

2
)ϕjm(xj+ 1

2
)−

k∑
n=0

un,j−1(ω, t)ϕj−1
n (xj− 1

2
)ϕjm(xj− 1

2
).

The mass matrix Aj := [Ajml] with

Ajml :=

∫
Ij

ϕjm(x)ϕjl (x) dx

is invertible, and its inverse is denoted by Aj,−1.

It gives that

vl,j(ω, t) = Vl,j

(
u(ω, t)

)
, (3.4)

where

Vl,j(u) := −
∫
Ij

k∑
n=0

un,j ϕ
j
n(x)

k∑
m=0

Aj,−1
lm ϕjmx(x) dx

+
k∑

n=0

un,j ϕ
j
n(xj+ 1

2
)

k∑
m=0

Aj,−1
lm ϕjm(xj+ 1

2
)

−
k∑

n=0

un,j−1 ϕ
j−1
n (xj− 1

2
)

k∑
m=0

Aj,−1
lm ϕjm(xj− 1

2
).

By periodicity, we have

Vl,0 = Vl,N , Vl,N+1 = Vl,1.

3.2.2 Representation for w(ω, t)

For j = 1, 2, ..., N , by taking ph := ϕjm for m = 0, 1, ..., k in equality (3.2c), we have

k∑
l=0

(∫
Ij

ϕjm(x)ϕjl (x) dx

)
wl,j(ω, t)

=

∫
Ij

a

(
ω, x, t,

k∑
n=0

un,j(ω, t)ϕ
j
n(x),

k∑
n=0

vn,j(ω, t)ϕ
j
n(x)

)
k∑

n=0

vn,j(ω, t)ϕ
j
n(x) ϕjm(x) dx.

It turns out that

wl,j(ω, t) = Wl,j

(
ω, t,u(ω, t)

)
, (3.5)
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where

Wl,j(ω, t,u) :=

∫
Ij

[
a

(
ω, x, t,

k∑
n=0

un,jϕ
j
n(x),

k∑
n=0

Vn,j(u)ϕjn(x)

)

×
k∑

n=0

Vn,j(u)ϕjn(x)
k∑

m=0

Aj,−1
lm ϕjm(x)

]
dx.

By periodicity, we have

Wl,0 = Wl,N , Wl,N+1 = Wl,1.

3.2.3 Representation for u(ω, t)

For j = 1, 2, ..., N , by taking rh := ϕjm for m = 0, 1, ..., k in equality (3.2a), we have

k∑
l=0

(∫
Ij

ϕjm(x)ϕjl (x) dx

)
dul,j(ω, t)

= −
∫
Ij

k∑
n=0

wn,j(ω, t)ϕ
j
n(x)ϕjmx (x) dxdt

+
k∑

n=0

[
wn,j+1(ω, t)ϕj+1

n

(
xj+ 1

2

)
ϕjm

(
xj+ 1

2

)
−wn,j(ω, t)ϕ

j
n

(
xj− 1

2

)
ϕjm

(
xj− 1

2

)]
dt

+

∫
Ij

ψ

(
ω, x, t,

k∑
n=0

un,j(ω, t)ϕ
j
n(x),

k∑
n=0

vn,j(ω, t)ϕ
j
n(x)

)
ϕjm(x) dx dt

+

∫
Ij

g

(
ω, x, t,

k∑
n=0

un,j(ω, t)ϕ
j
n(x),

k∑
n=0

vn,j(ω, t)ϕ
j
n(x)

)
ϕjm(x) dx dWt.

Then we obtain the following SDE of u:

du(t) = F
(
·, t,u(t)

)
dt+G

(
·, t,u(t)

)
dWt, (3.6)

where for j = 1, 2, ..., N and l = 0, 1, ..., k,

Fl,j (ω, t,u) :=

∫
Ij

ψ

(
ω, x, t,

k∑
n=0

un,jϕ
j
n(x),

k∑
n=0

Vn,j (u)ϕjn(x)

)
k∑

m=0

Aj,−1
lm ϕjm(x) dx

−
∫
Ij

k∑
n=0

Wn,j(ω, t,u)ϕjn(x)
k∑

m=0

Aj,−1
lm ϕjmx (x) dx

+
k∑

n=0

Wn,j+1(ω, t,u)ϕj+1
n

(
xj+ 1

2

) k∑
m=0

Aj,−1
lm ϕjm

(
xj+ 1

2

)
−

k∑
n=0

Wn,j(ω, t,u)ϕjn

(
xj− 1

2

) k∑
m=0

Aj,−1
lm ϕjm

(
xj− 1

2

)
10



and

Gl,j (ω, t,u) :=

∫
Ij

g

(
ω, x, t,

k∑
n=0

un,jϕ
j
n(x),

k∑
n=0

Vn,j (u)ϕjn(x)

)
k∑

m=0

Aj,−1
lm ϕjm(x) dx,

with periodic settings Fl,0 = Fl,N , Fl,N+1 = Fl,1, Gl,0 = Gl,N , and Gl,N+1 = Gl,1.

Lemma 3.1. Let Assumptions (H2) - (H4) hold. Then for any N ∈ N+, the functions F

and G are locally Lipschitz continuous in the variable u, i.e., for any M ∈ N+, there is a

positive constant LN(M) such that

|F (ω, t,u)− F (ω, t,u′)|+ |G (ω, t,u)−G (ω, t,u′)| ≤ LN(M) |u− u′|

for all (ω, t) ∈ Ω× [0, T ] and all u,u′ ∈ R(k+1)×(N+2) with |u|+ |u′| ≤M .

Proof. We only show the local Lipschitz continuity of F for fixed N ∈ N, and that of G can

be proved in a similar way. The proof consists of the following three steps:

Step 1. We first show the uniform Lipschitz continuity of V for fixed N ∈ N. For any

u,u′ ∈ R(k+1)×(N+2), l = 0, 1, ..., k, and j = 1, 2, ..., N , we have

Vl,j(u)−Vl,j(u
′) = El,j

1 + El,j
2 + El,j

3 ,

where

El,j
1 := −

∫
Ij

k∑
n=0

(
un,j − u′n,j

)
ϕjn(x)

k∑
m=0

Aj,−1
lm ϕjmx(x) dx,

El,j
2 :=

k∑
n=0

(
un,j − u′n,j

)
ϕjn(xj+ 1

2
)

k∑
m=0

Aj,−1
lm ϕjm(xj+ 1

2
),

El,j
3 := −

k∑
n=0

(
un,j−1 − u′n,j−1

)
ϕj−1
n (xj− 1

2
)

k∑
m=0

Aj,−1
lm ϕjm(xj− 1

2
).

Then we have∣∣∣El,j
1

∣∣∣ ≤ k∑
n=0

∫
Ij

∣∣ϕjn(x)
∣∣ k∑
m=0

∣∣ϕjmx(x)
∣∣ dx ∥∥Aj,−1

∥∥
∞

∣∣un,j − u′n,j
∣∣

≤
k∑

n=0

CN
∣∣un,j − u′n,j

∣∣ ≤ CN

(
k∑

n=0

∣∣un,j − u′n,j
∣∣2) 1

2

,

where CN is a positive constant which depends on N . Next, we have

∣∣∣El,j
2

∣∣∣ ≤ k∑
n=0

∣∣∣ϕjn(xj+ 1
2
)
∣∣∣ ∥∥Aj,−1

∥∥
∞

k∑
m=0

∣∣∣ϕjm(xj+ 1
2
)
∣∣∣ ∣∣un,j − u′n,j

∣∣
11



≤
k∑

n=0

CN
∣∣un,j − u′n,j

∣∣ ≤ CN

(
k∑

n=0

∣∣un,j − u′n,j
∣∣2) 1

2

.

By similar calculation, we get that

∣∣∣El,j
3

∣∣∣ ≤ CN

(
k∑

n=0

∣∣un,j−1 − u′n,j−1

∣∣2) 1
2

.

It turns out that for any l = 0, 1, ..., k, j = 1, 2, ..., N

|Vl,j(u)−Vl,j(u
′)|2 ≤ 3

(∣∣∣El,j
1

∣∣∣2 +
∣∣∣El,j

2

∣∣∣2 +
∣∣∣El,j

3

∣∣∣2)
≤ CN

k∑
n=0

(∣∣un,j − u′n,j
∣∣2 +

∣∣un,j−1 − u′n,j−1

∣∣2) . (3.7)

Then by the periodicity, it holds that

|V(u)−V(u′)|2 =
k∑
l=0

N+1∑
j=0

|Vl,j(u)−Vl,j(u
′)|2

≤
k∑
l=0

N+1∑
j=0

C2
N

k∑
n=0

(∣∣un,j − u′n,j
∣∣2 +

∣∣un,j−1 − u′n,j−1

∣∣2)
= 2(k + 1)C2

N |u− u′|2 . (3.8)

Step 2. Next we consider the local Lipschitz continuity of W with respect to the variable

u for fixed N ∈ N. Note that for any l = 0, 1, ..., k, j = 1, 2, ..., N , u,u′ ∈ R(k+1)×(N+2) with

|u| ∨ |u′| ≤M ,

Wl,j(ω, t,u)−Wl,j(ω, t,u
′) = El,j

4 + El,j
5 ,

where

El,j
4 :=

∫
Ij

a

(
ω, x, t,

k∑
n=0

un,jϕ
j
n(x),

k∑
n=0

Vn,j(u)ϕjn(x)

)

×
k∑

n=0

(Vn,j(u)−Vn,j(u
′))ϕjn(x)

k∑
m=0

Aj,−1
lm ϕjm(x) dx,

El,j
5 :=

∫
Ij

[
a

(
ω, x, t,

k∑
n=0

un,jϕ
j
n(x),

k∑
n=0

Vn,j(u)ϕjn(x)

)

−a

(
ω, x, t,

k∑
n=0

u′n,jϕ
j
n(x),

k∑
n=0

Vn,j(u
′)ϕjn(x)

)]

×
k∑

n=0

Vn,j(u
′)ϕjn(x)

k∑
m=0

Aj,−1
lm ϕjm(x) dx. (3.9)

12



From (H2) and (3.7), we have∣∣∣El,j
4

∣∣∣ ≤ Λ
k∑

n=0

∫
Ij

∣∣ϕjn(x)
∣∣ k∑
m=0

∣∣ϕjm(x)
∣∣ dx ∥∥Aj,−1

∥∥
∞ |Vn,j(u)−Vn,j(u

′)|

≤
k∑

n=0

CN |Vn,j(u)−Vn,j(u
′)| ≤ CN

(
k∑

n=0

|Vn,j(u)−Vn,j(u
′)|2
) 1

2

≤ CN

[
k∑

n=0

(∣∣un,j − u′n,j
∣∣2 +

∣∣un,j−1 − u′n,j−1

∣∣2)] 1
2

. (3.10)

Using Cauchy-Schwartz inequality, we have∣∣∣El,j
5

∣∣∣2 ≤ ∫
Ij

∣∣∣∣a
(
ω, x, t,

k∑
n=0

un,jϕ
j
n(x),

k∑
n=0

Vn,j(u)ϕjn(x)

)

−a

(
ω, x, t,

k∑
n=0

u′n,jϕ
j
n(x),

k∑
n=0

Vn,j(u
′)ϕjn(x)

)∣∣∣∣2 dx
×
∫
Ij

∣∣∣∣∣
k∑

n=0

Vn,j(u
′)ϕjn(x)

k∑
m=0

Aj,−1
lm ϕjm(x)

∣∣∣∣∣
2

dx

≤CN |V(u′)|2
∫
Ij

La(M)2

(∣∣∣∣∣
k∑

n=0

(
un,j − u′n,j

)
ϕjn(x)

∣∣∣∣∣+
∣∣∣∣∣
k∑

n=0

(Vn,j(u)−Vn,j(u
′))ϕjn(x)

∣∣∣∣∣
)2

dx

≤CN(M)
k∑

n=0

(∣∣un,j − u′n,j
∣∣2 + |Vn,j(u)−Vn,j(u

′)|2
)

≤CN(M)
k∑

n=0

(∣∣un,j − u′n,j
∣∣2 +

∣∣un,j−1 − u′n,j−1

∣∣2) ,
where La(M) is the local Lipschitz constant of the function a.

For any l = 0, 1, ..., k with j = 1, 2, ..., N , we have

|Wl,j(ω, t,u)−Wl,j(ω, t,u
′)|2 ≤ 2

(∣∣∣El,j
4

∣∣∣2 +
∣∣∣El,j

5

∣∣∣2)
≤ CN(M)

k∑
n=0

(∣∣un,j − u′n,j
∣∣2 +

∣∣un,j−1 − u′n,j−1

∣∣2) . (3.11)

Thus

|W(ω, t,u)−W(ω, t,u′)|2 ≤ CN(M) |u− u′|2 .

Step 3. We are now ready to prove the local Lipschitz continuity of the function F for fixed

N ∈ N. Note that for any l = 0, 1, ..., k and j = 1, 2, ..., N ,

Fl,j(ω, t,u)− Fl,j(ω, t,u′) = El,j
6 + El,j

7 + El,j
8 + El,j

9 ,
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where

El,j
6 := −

∫
Ij

k∑
n=0

(
Wn,j(ω, t,u)−Wn,j(ω, t,u

′)
)
ϕjn(x)

k∑
m=0

Aj,−1
lm ϕjmx (x) dx,

El,j
7 :=

k∑
n=0

(
Wn,j+1(ω, t,u)−Wn,j+1(ω, t,u′)

)
ϕj+1
n

(
xj+ 1

2

) k∑
m=0

Aj,−1
lm ϕjm

(
xj+ 1

2

)
,

El,j
8 := −

k∑
n=0

(
Wn,j(ω, t,u)−Wn,j(ω, t,u

′)
)
ϕjn

(
xj− 1

2

) k∑
m=0

Aj,−1
lm ϕjm

(
xj− 1

2

)
,

El,j
9 :=

∫
Ij

[
ψ

(
ω, x, t,

k∑
n=0

un,jϕ
j
n(x),

k∑
n=0

Vn,j (u)ϕjn(x)

)

−ψ

(
ω, x, t,

k∑
n=0

u′n,jϕ
j
n(x),

k∑
n=0

Vn,j (u′)ϕjn(x)

)] k∑
m=0

Aj,−1
lm ϕjm(x) dx.

Similar to (3.7), we have∣∣∣El,j
6

∣∣∣2 +
∣∣∣El,j

7

∣∣∣2 +
∣∣∣El,j

8

∣∣∣2
≤ CN(M)

k∑
n=0

(
|Wn,j(ω, t,u)−Wn,j(ω, t,u

′)|2 + |Wn,j+1(ω, t,u)−Wn,j+1(ω, t,u′)|2
)
.

In view of the Lipschitz continuity of W (see (3.11)), we have∣∣∣El,j
6

∣∣∣2 +
∣∣∣El,j

7

∣∣∣2 +
∣∣∣El,j

8

∣∣∣2
≤ CN(M)

k∑
n=0

(∣∣un,j−1 − u′n,j−1

∣∣2 +
∣∣un,j − u′n,j

∣∣2 +
∣∣un,j+1 − u′n,j+1

∣∣2) .
Similar to Step 2, using the Lipschitz continuity of ψ and V, we have∣∣∣El,j

9

∣∣∣2 ≤ CN

k∑
n=0

(∣∣un,j − u′n,j
∣∣2 + |Vn,j(u)−Vn,j(u

′)|2
)

≤ CN

k∑
n=0

(∣∣un,j − u′n,j
∣∣2 +

∣∣un,j−1 − u′n,j−1

∣∣2) .
At last, by the periodicity of the numerical solution uh, we see that for any N,M ∈ N+,

there exists a constant LN(M) such that, for all (ω, t) ∈ Ω×[0, T ] and all u,u′ ∈ R(k+1)×(N+2)

with |u| ∨ |u′| ≤M ,

|F (ω, t,u)− F (ω, t,u′)| ≤ LN(M) |u− u′| .

The proof is complete.

Similar to the proof of Lemma 3.1, we obtain that the coefficients of SDE (3.6) satisfy

the linearly growing condition.
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Lemma 3.2. Let Assumptions (H2) - (H4) hold. Then for any N ∈ N+, F and G are

linearly growing in the variable u, i.e., there exists a positive constant CN such that, for all

(ω, t) ∈ Ω× [0, T ] and all u ∈ R(k+1)×(N+2),

|F (ω, t,u)| ∨ |G (ω, t,u)| ≤ CN (1 + |u|) ,

where the constant CN may depend on N .

Proof. We only show the linear growth of F for fixed N ∈ N, and that of G can be proved

in a similar way.

Note that V(0) = 0. Then by (3.8), we know that there exists a constant CN such that

for any u ∈ R(k+1)×(N+2),

|V(u)| ≤ CN |u| . (3.12)

By the fact W(ω, t,0) = 0, taking u′ = 0 in (3.9) and (3.10), we have for any l =

0, 1, ..., k, j = 1, 2, ..., N

|Wl,j(ω, t,u)|2 ≤ CN

k∑
n=0

(
|un,j|2 + |un,j−1|2

)
.

Thus

|W(ω, t,u)|2 =
k∑
l=0

N+1∑
j=0

|Wl,j(ω, t,u)|2 ≤ CN |u|2 . (3.13)

Similar to the calculation in Step 3 of the proof of Lemma 3.1, by the linear growth of

ψ, we have

|Fl,j(ω, t,u)|2 ≤ CN

k∑
n=0

(
1 + |un,j|2 + |Vn,j(u)|2 + |Wn,j(ω, t,u)|2 + |Wn,j+1(ω, t,u)|2

)
≤ CN

k∑
n=0

(
1 + |un,j−1|2 + |un,j|2 + |un,j+1|2

)
for any l = 0, 1, ..., k and j = 1, 2, ..., N . Therefore,

|F (ω, t,u)| ≤ CN (1 + |u|) .

By (3.2d), the initial condition of the SDE (3.6) is determined by u0 as follows:

ul,j(ω, 0) :=
k∑

m=0

Aj,−1
lm

∫
Ij

u0(x)ϕjm(x) dx. (3.14)

Since u0 is deterministic, we know that u(·, 0) is a deterministic matrix. Thus for any p ≥ 1,

we have

E [|u(·, 0)|p] <∞. (3.15)

The following lemma is a classical result of stochastic differential equations. See e.g. [32,

Chapter 3].
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Lemma 3.3. If the initial value u(·, 0) is Lp(Ω)-integrable, and the coefficients F,G are

locally Lipschitz continuous and linearly growing, then the underlying SDE admits a unique

solution {u(t)}0≤t≤T such that for any p ≥ 1,

E
[

sup
0≤t≤T

|u(t)|p
]
<∞. (3.16)

Thus, by virtue of (3.15), Lemma 3.1 and Lemma 3.2, we know that for any fixed N ∈ N+,

SDE (3.6) has a unique solution {u(t)}0≤t≤T such that (3.16) holds. By the linear growth of

the functions V and W (see (3.12) and (3.13)), we get that for any p ≥ 1,

E
[

sup
0≤t≤T

|v(t)|p
]
<∞, E

[
sup

0≤t≤T
|w(t)|p

]
<∞. (3.17)

4 Stability analysis for the fully nonlinear equations

We have known that the approximating equation (3.2) has a unique solution (uh, vh, wh) for

any fixed N ∈ N+, where (uh, vh, wh)
T(ω, ·, t) ∈ (Vh)

3 for each (ω, t) ∈ Ω × [0, T ]. Next we

show the stability result for the numerical solutions. We first consider the nondegenerate

case that 2α > C2
4 .

Theorem 4.1. Suppose that the assumptions (H1)-(H4) are satisfied. Moreover, we assume

that 2α > C2
4 . Then there exists a constant C > 0 such that

sup
0≤t≤T

E
[
‖uh(·, t)‖2]+ E

[∫ T

0

‖vh(·, s)‖2 ds

]
≤ C

(
1 + ‖uh(·, 0)‖2) ,

where the constant C is independent of h, and depends on the terminal time T .

Proof. For any N ∈ N+ and (ω, t) ∈ Ω × [0, T ], by setting rh = uh(ω, ·, t) in (3.2a),

zh = wh(ω, ·, t) in (3.2b), and multiplying (3.2b) with dt, adding the resulting equations, we

have ∫
Ij

uh(x, t)duh(x, t) dx+

∫
Ij

vh(x, t)wh(x, t) dxdt

=

{∫
Ij

ψ
(
x, t, uh(x, t), vh(x, t)

)
uh(x, t) dx

−
∫
Ij

wh (x, t) uhx(x, t) dx+ w+
h,j+ 1

2

u−
h,j+ 1

2

− w+
h,j− 1

2

u+
h,j− 1

2

−
∫
Ij

uh (x, t) whx(x, t) dx+ u−
h,j+ 1

2

w−
h,j+ 1

2

− u−
h,j− 1

2

w+
h,j− 1

2

}
dt

+

∫
Ij

g
(
x, t, uh(x, t), vh(x, t)

)
uh(x, t) dx dWt,
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where

u±
h,j+ 1

2

= uh

(
ω, x±

j+ 1
2

, t
)
, w±

h,j+ 1
2

= wh

(
ω, x±

j+ 1
2

, t
)
.

For simplicity of notation, for j = 1, 2, ..., N and piece-wisely smooth functions u and v, we

define

H±j (u, v) := −
∫
Ij

u (x) vx(x) dx+ u
(
x±
j+ 1

2

)
v
(
x−
j+ 1

2

)
− u

(
x±
j− 1

2

)
v
(
x+
j− 1

2

)
. (4.1)

Thus we have ∫
Ij

uh(x, t)duh(x, t) dx+

∫
Ij

vh(x, t)wh(x, t) dxdt

=

{∫
Ij

ψ
(
x, t, uh(x, t), vh(x, t)

)
uh(x, t) dx

+H+
j

(
wh (ω, ·, t) , uh (ω, ·, t)

)
+H−j

(
uh (ω, ·, t) , wh (ω, ·, t)

)}
dt

+

∫
Ij

g
(
x, t, uh(x, t), vh(x, t)

)
uh(x, t) dx dWt. (4.2)

By taking ph = vh(ω, ·, t) in (3.2c), it holds that

E
[∫ t

0

∫ 2π

0

vh(x, s)wh(x, s) dxds

]
= E

[∫ t

0

∫ 2π

0

a
(
x, s, uh (x, s) , vh (x, s)

)
|vh (x, s)|2 dxds

]
.

Using Itô’s formula, we have

|uh(x, t)|2 = |uh(x, 0)|2 + 2

∫ t

0

uh(x, s) duh(x, s) + 〈uh(x, ·), uh(x, ·)〉t .

Thus, after summing over j from 1 to N in (4.2), integrating in time from 0 to t and

taking expectation, we have

E
[
‖uh(·, t)‖2]+ 2E

[∫ t

0

∫ 2π

0

a
(
x, s, uh (x, s) , vh (x, s)

)
|vh (x, s)|2 dxds

]
= ‖uh(·, 0)‖2 + T1(t) + T2(t) + T3(t) + T4(t),

where

T1(t) = E
[∫ 2π

0

〈uh(x, ·), uh(x, ·)〉t dx
]
,

T2(t) = 2E
[∫ t

0

∫ 2π

0

g
(
x, s, uh(x, s), vh(x, s)

)
uh(x, s) dx dWs

]
,

T3(t) = 2E
[∫ t

0

∫ 2π

0

ψ
(
x, s, uh(x, s), vh(x, s)

)
uh(x, s) dxds

]
,
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and

T4(t) = 2E

[∫ t

0

N∑
j=1

{
H+
j

(
wh (ω, ·, s) , uh (ω, ·, s)

)
+H−j

(
uh (ω, ·, s) , wh (ω, ·, s)

)}
ds

]
.

The terms Ti(t) for i = 1, . . . , 4 are estimated as follows.

• The estimate of T1(t).

In view of (3.2a) and (3.2d), we have for any rh ∈ Vh,∫
Ij

rh(x)uh(x, t) dx = Ξ(ω, t) +

∫ t

0

∫
Ij

g
(
x, s, uh(x, s), vh(x, s)

)
rh(x) dx dWs.

where

Ξ(ω, t) :=

∫ t

0

{
−
∫
Ij

wh (ω, x, s) rhx (x) dx+ ŵj+ 1
2

(ω, s) rh

(
x−
j+ 1

2

)
− ŵj− 1

2
(ω, s) rh

(
x+
j− 1

2

)
+

∫
Ij

ψ
(
ω, x, s, uh(ω, x, s), vh(ω, x, s)

)
rh(x)dx

}
ds+

∫
Ij

rh(x)u0(x)dx.

Note that Ξ is a continuous stochastic process with bounded total variation. By (2.5), for

any continuous semimartingale Y , we have

〈Ξ, Y 〉t ≡ 0,

which leads to for any rh ∈ Vh,∫
Ij

rh(x) 〈uh(x, ·), Y 〉t dx =

〈∫
Ij

rh(x)uh(x, ·) dx, Y

〉
t

=

〈∫ ·
0

∫
Ij

g
(
x, s, uh(x, s), vh(x, s)

)
rh(x) dx dWs, Y

〉
t

. (4.3)

It turns out that∫
Ij

〈uh(x, ·), uh(x, ·)〉t dx =

∫
Ij

〈
uh(x, ·),

k∑
l=0

ul,j(·)ϕjl (x)

〉
t

dx

=
k∑
l=0

∫
Ij

ϕjl (x) 〈uh(x, ·),ul,j(·)〉t dx

=
k∑
l=0

〈∫ ·
0

∫
Ij

g
(
x, s, uh(x, s), vh(x, s)

)
ϕjl (x) dx dWs,ul,j(·)

〉
t

,

where {ϕjl , l = 0, 1, ..., k} is a basis of P k(Ij).
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According to (2.4) and the properties of the L2 projection, we have∫
Ij

〈uh(x, ·), uh(x, ·)〉t dx

=
k∑
l=0

∫ t

0

∫
Ij

g
(
x, s, uh(x, s), vh(x, s)

)
ϕjl (x) dx d 〈W,ul,j(·)〉s

=
k∑
l=0

∫ t

0

∫
Ij

P
[
g
(
·, s, uh(·, s), vh(·, s)

)]
(x)ϕjl (x) dx d 〈W,ul,j(·)〉s

=

∫
Ij

∫ t

0

k∑
l=0

P
[
g
(
·, s, uh(·, s), vh(·, s)

)]
(x)ϕjl (x) d 〈W,ul,j(·)〉s dx

=

∫
Ij

∫ t

0

P
[
g
(
·, s, uh(·, s), vh(·, s)

)]
(x) d

〈
W,

k∑
l=0

ul,j(·)ϕjl (x)

〉
s

dx

=

∫
Ij

〈∫ ·
0

P
[
g
(
·, s, uh(·, s), vh(·, s)

)]
(x) dWs, uh(x, ·)

〉
t

dx.

Since P
[
g
(
·, s, uh(·, s), vh(·, s)

)]
∈ Vh for any (ω, s) ∈ Ω× [0, T ], we have

P
[
g
(
ω, ·, s, uh(ω, ·, s), vh(ω, ·, s)

)]
(x) =

k∑
l=0

gl,j(ω, s)ϕ
j
l (x), x ∈ Ij.

By (4.3), we get∫
Ij

〈uh(x, ·), uh(x, ·)〉t dx =

∫
Ij

〈∫ ·
0

k∑
l=0

gl,j(s)ϕ
j
l (x) dWs, uh(x, ·)

〉
t

dx

=
k∑
l=0

∫
Ij

ϕjl (x)

〈
uh(x, ·),

∫ ·
0

gl,j(s) dWs

〉
t

dx

=
k∑
l=0

〈∫ ·
0

∫
Ij

g
(
x, s, uh(x, s), vh(x, s)

)
ϕjl (x) dx dWs,

∫ ·
0

gl,j(s) dWs

〉
t

=
k∑
l=0

∫ t

0

∫
Ij

g
(
x, s, uh(x, s), vh(x, s)

)
ϕjl (x) dxgl,j(s) d 〈W,W 〉s

=

∫ t

0

∫
Ij

g
(
x, s, uh(x, s), vh(x, s)

) k∑
l=0

gl,j(s)ϕ
j
l (x) dx ds

=

∫ t

0

∫
Ij

g
(
x, s, uh(x, s), vh(x, s)

)
P
[
g
(
·, s, uh(·, s), vh(·, s)

)]
(x) dx ds. (4.4)

After summing over j from 1 to N , by the Cauchy-Schwartz inequality we have∫ 2π

0

〈uh(x, ·), uh(x, ·)〉t dx ≤
∫ t

0

∫ 2π

0

∣∣g(x, s, uh(x, s), vh(x, s))∣∣2 dx ds.
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According to (H4), after taking expectation, we have

T1(t) = E
[∫ 2π

0

〈uh(x, ·), uh(x, ·)〉t dx
]

≤ E
[∫ t

0

∫ 2π

0

∣∣g(x, s, uh(x, s), vh(x, s))∣∣2 dx ds]
≤ C2

3E
[∫ t

0

∫ 2π

0

(
1 + |uh(x, s)|2

)
dx ds

]
+ C2

4E
[∫ t

0

∫ 2π

0

|vh(x, s)|2 dx ds
]

= 2πTC2
3 + C2

3

∫ t

0

E
[
‖uh(·, s)‖2] ds+ C2

4

∫ t

0

E
[
‖vh(·, s)‖2] ds.

• The estimate of T2(t).

From (3.16) and (3.17), we have for any fixed N ∈ N+,

E
[

sup
0≤s≤T

{
‖uh(·, s)‖2 + ‖vh(·, s)‖2

}]
<∞.

Thus by (H4) and the Cauchy-Schwartz inequality we know that

E

(∫ T

0

∣∣∣∣∫ 2π

0

g
(
x, s, uh(x, s), vh(x, s)

)
uh(x, s) dx

∣∣∣∣2 ds
) 1

2


≤ E

[(∫ T

0

‖uh(·, s)‖2

∫ 2π

0

∣∣g(x, s, uh(x, s), vh(x, s))∣∣2 dxds) 1
2

]

≤ CE

[
sup

0≤s≤T
‖uh(·, s)‖

(∫ T

0

∫ 2π

0

(
1 + |uh(x, s)|2 + |vh(x, s)|2

)
dxds

) 1
2

]

≤ C

(
E
[

sup
0≤s≤T

‖uh(·, s)‖2

]) 1
2
(
E
[∫ T

0

(
1 + ‖uh(·, s)‖2 + ‖vh(·, s)‖2

)
ds

]) 1
2

<∞.

According to Lemma 2.1, the process{∫ t

0

∫ 2π

0

g
(
x, s, uh(x, s), vh(x, s)

)
uh(x, s) dx dWs, 0 ≤ t ≤ T

}
is a martingale. It turns out that

T2(t) = 2E
[∫ t

0

∫ 2π

0

g
(
x, s, uh(x, s), vh(x, s)

)
uh(x, s) dx dWs

]
= 0.

• The estimate of T3(t).

Note that according to (H3), for any ε > 0, it holds that∫ 2π

0

ψ
(
x, t, uh(x, t), vh(x, t)

)
uh(x, t) dx
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≤ ε

2

∫ 2π

0

∣∣ψ(x, t, uh(x, t), vh(x, t))∣∣2 dx+
1

2ε

∫ 2π

0

|uh(x, t)|2 dx

≤ ε

2

∫ 2π

0

[
B2

2 +B2
2 |uh(x, t)|2 +B2

3 |vh(x, t)|2
]
dx+

1

2ε
‖uh(·, t)‖2

=
εB2

3

2
‖vh(·, t)‖2 + επB2

2 +

(
εB2

2

2
+

1

2ε

)
‖uh(·, t)‖2 .

Then

T3(t) = 2E
[∫ t

0

∫ 2π

0

ψ
(
x, s, uh(x, s), vh(x, s)

)
uh(x, s) dxds

]
≤ εB2

3 E
[∫ t

0

‖vh(·, s)‖2 ds

]
+ 2επB2

2T +

(
εB2

2 +
1

ε

)∫ t

0

E
[
‖uh(·, s)‖2] ds.

• The estimate of T4(t).

According to the periodicity, we have for any u, v ∈ Vh,

N∑
j=1

[
H+
j (u, v) +H−j (v, u)

]

=
N∑
j=1

(
− u−

j+ 1
2

v−
j+ 1

2

+ u+
j− 1

2

v+
j− 1

2

+ u+
j+ 1

2

v−
j+ 1

2

− u+
j− 1

2

v+
j− 1

2

+ v−
j+ 1

2

u−
j+ 1

2

− v−
j− 1

2

u+
j− 1

2

)

=
N∑
j=1

(
− u−v− + u+v+ + u+v− − u+v+ + v−u− − v−u+

)
j+ 1

2

= 0. (4.5)

Thus

T4(t) = 2E

[∫ t

0

N∑
j=1

{
H+
j

(
wh (ω, ·, s) , uh (ω, ·, s)

)
+H−j

(
uh (ω, ·, s) , wh (ω, ·, s)

)}
ds

]
= 0.

Concluding the above, we get that for any ε > 0,

E
[
‖uh(·, t)‖2]+ 2E

[∫ t

0

∫ 2π

0

a
(
x, s, uh (x, s) , vh (x, s)

)
|vh (x, s)|2 dxds

]
≤ E

[
‖uh(·, 0)‖2]+ 2πTC2

3 + 2επB2
2T +

(
C2

3 + εB2
2 +

1

ε

)∫ t

0

E
[
‖uh(·, s)‖2] ds

+
(
C2

4 + εB2
3

)
E
[∫ t

0

‖vh(·, s)‖2 ds

]
. (4.6)

By (H2) we know that a(ω, x, s, u, v) ≥ α. Since 2α > C2
4 , we take

ε :=
1

B2
3

(
α− 1

2
C2

4

)
> 0.
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Then there exists a positive constant C which is independent of h, such that for any

t ∈ [0, T ],

E
[
‖uh(·, t)‖2]+

(
α− 1

2
C2

4

)
E
[∫ t

0

‖vh(·, s)‖2 ds

]
≤ ‖uh(·, 0)‖2 +C+C

∫ t

0

E
[
‖uh(·, s)‖2] ds.

Using Gronwall’s inequality, we have for any t ∈ [0, T ],

E
[
‖uh(·, t)‖2]+ E

[∫ t

0

‖vh(·, s)‖2 ds

]
≤ C

(
1 + ‖uh(·, 0)‖2) eCt.

This completes the proof.

Our above stability result does not involve the regularity of the solution of the original

SPDEs, and applies to the degenerate case of 2α = C2
4 . In particular, it applies to the

special case of α = 0, as long as the constants C4 and B3 vanish. When the function ψ is

uniformly bounded with respect to the last argument, as an immediate consequence of (4.6)

with ε = 1, we have the following stability result for the degenerate case.

Theorem 4.2. If the assumptions (H1)-(H4) hold with 2α = C2
4 and B3 = 0, then there

exists a constant C > 0 such that

sup
0≤t≤T

E
[
‖uh(·, t)‖2] ≤ C

(
1 + ‖uh(·, 0)‖2) ,

where the constant C is independent of h and depends on the terminal time T .

Remark 4.1. The inequality 2α ≥ C2
4 , used to derive our stability of the numerical schemes,

is the so-called stochastic parabolicity, which is crucial in the theory of parabolic SPDEs (see

e.g. [37, 39]). The numerical experiments in Section 7 also illustrate its necessity.

Remark 4.2. Following the ideas in [26] and [30], we can extend our method to the more

general SPDEs with a nonlinear convection term f(·):
du =

{[
a(·, x, t, u, ux)ux

]
x
− f(u)x + ψ(·, x, t, u, ux)

}
dt+ g(·, x, t, u, ux) dWt,

(x, t) ∈ [0, 2π]× (0, T ];

u(x, 0) = u0(x), x ∈ [0, 2π],

where f(·) is locally Lipschitz continuous and can be super-linearly growing, such as f(u) = u2

2

considered in section 7.3. Using the monotone numerical flux for the nonlinear convection

term f(·), we can also get similar stability results even for the degenerate case. A numerical

test is reported for the stochastic viscous Burgers equation in Section 7.3.

5 Optimal error estimates for semilinear equations

In this section, we consider the convergence of numerical methods for strong solutions with

enough smoothness and integrability. We prove the optimal error estimates (O(hk+1)) for
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the following semi-linear SPDE : du =
[
a uxx + ψ(·, x, t, u, ux)

]
dt+ g(·, x, t, u, ux) dWt, (x, t) ∈ [0, 2π]× (0, T ];

u(x, 0) = u0(x), x ∈ [0, 2π]
(5.1)

when the leading coefficient a is a positive constant. We rewrite (5.1) as follows:
du =

[
a vx + ψ(·, x, t, u, v)

]
dt+ g(·, x, t, u, v) dWt, (x, t) ∈ [0, 2π]× (0, T ];

v(x, t) = ux(x, t), (x, t) ∈ [0, 2π]× (0, T ];

u(x, 0) = u0(x), x ∈ [0, 2π].

(5.2)

From (3.2c), we have that wh = a vh. Then the LDG method (3.2) is written as follows.

For any (ω, t) ∈ Ω× [0, T ], find uh(ω, ·, t), vh(ω, ·, t) ∈ Vh such that for any rh, zh ∈ Vh,∫
Ij

rh(x)duh(ω, x, t) dx

=

[
aH+

j (vh(ω, ·, t), rh) +

∫
Ij

ψ
(
ω, x, t, uh(ω, x, t), vh(ω, x, t)

)
rh(x) dx

]
dt

+

∫
Ij

g
(
ω, x, t, uh(ω, x, t), vh(ω, x, t)

)
rh(x) dx dWt, (5.3a)∫

Ij

vh(ω, x, t)zh(x) dx = H−j (uh(ω, ·, t), zh), (5.3b)

where the bilinear functionals H±j are defined by (4.1). Then, we state the error estimates

of the semi-discrete LDG scheme (5.3).

Theorem 5.1. Suppose that u0 ∈ Hk+1, assumptions (H3) and (H4) hold with 2a > C2
2 ,

and equation (5.1) has a unique strong solution u such that

(H5) u ∈ L2
(
Ω× [0, T ];Hk+3

)⋂
S2 (Ω× [0, T ];L2)

⋂
L∞

(
0, T ;L2(Ω;Hk+1)

)
;

(H6) ψ (·, u(·), ux(·)) , g (·, u(·), ux(·)) ∈ L2
(
Ω× [0, T ];Hk+1

)
.

Then, there is a positive constant C such that

sup
t∈[0,T ]

(
E
[
‖u(·, t)− uh(·, t)‖2]) 1

2 +

(
E
[∫ T

0

‖ux(·, s)− vh(·, s)‖2 ds

]) 1
2

≤ Chk+1,

where the constant C is independent of h and depends on the terminal time T and the exact

solution u.

Proof. Note that the scheme (5.3) is also satisfied when the numerical solution (uh(·), vh(·))
is replaced with the exact solution (u(·), v(·)): for any (ω, t) ∈ Ω× [0, T ] and rh, zh ∈ Vh, we

have∫
Ij

rh(x)du(·, x, t)dx = aH+
j (v(·, ·, t), rh) dt+

∫
Ij

ψ
(
·, x, t, u(·, x, t), v(·, x, t)

)
rh(x)dx dt
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+

∫
Ij

g
(
·, x, t, u(·, x, t), v(·, x, t)

)
rh(x) dx dWt,∫

Ij

v(ω, x, t)zh(x) dx = H−j (u(ω, ·, t), zh).

Define

eu(ω, x, t) := (u− uh)(ω, x, t) = (ξu − ηu)(ω, x, t),

and

ev(ω, x, t) := (v − vh)(ω, x, t) = (ξv − ηv)(ω, x, t)

with

ξu(ω, x, t) := (Qu− uh)(ω, x, t), ηu(ω, x, t) := (Qu− u)(ω, x, t)

and

ξv(ω, x, t) := (Rv − vh)(ω, x, t), ηv(ω, x, t) := (Rv − v)(ω, x, t),

where R and Q are the projections from Hk+1 onto Vh defined in Section 2.

Then the error equation is∫
Ij

rh(x)deu(x, t) dx

=

{
aH+

j (ev(·, t), rh) +

∫
Ij

[
ψ
(
·, u, v

)
− ψ

(
·, uh, vh

)]
(x, t) rh(x) dx

}
dt

+

∫
Ij

[
g
(
x, t, u(x, t), v(x, t)

)
− g
(
x, t, uh(x, t), vh(x, t)

)]
rh(x) dx dWt, (5.4a)∫

Ij

ev(x, t)zh(x) dx = H−j (eu(·, t), zh). (5.4b)

Taking rh = ξu(ω, ·, t) in (5.4a) and zh = a ξv(ω, ·, t) in (5.4b), we have∫
Ij

ξu(x, t)dξu(x, t) dx+ a

∫
Ij

|ξv(x, t)|2 dxdt

=

∫
Ij

ξu(x, t)dηu(x, t) dx+ a

∫
Ij

ηv(x, t)ξv(x, t) dxdt

+a

[
H+
j

(
ξv(·, t), ξu(·, t)

)
−H+

j

(
ηv(·, t), ξu(·, t)

)]
dt

+

∫
Ij

[
ψ
(
x, t, u(x, t), v(x, t)

)
− ψ

(
x, t, uh(x, t), vh(x, t)

)]
ξu(x, t)dxdt

+a

[
H−j
(
ξu(·, t), ξv(·, t)

)
−H−j

(
ηu(·, t), ξv(·, t)

)]
dt

+

∫
Ij

[
g
(
x, t, u(x, t), v(x, t)

)
− g
(
x, t, uh(x, t), vh(x, t)

)]
ξu(x, t) dx dWt.

24



Using the Itô’s formula, we have

d |ξu(x, t)|2 = 2ξu(x, t) dξu(x, t) + d 〈ξu(x, ·), ξu(x, ·)〉t .

Then, we have

E
[
‖ξu(·, t)‖2]+ 2aE

[∫ t

0

∫ 2π

0

|ξv(x, s)|2 dxds
]

= ‖ξu(·, 0)‖2 + T1(t) + T2(t) + T3(t) + T4(t) + T5(t) + T6(t) + T7(t)

where

T1(t) := 2E
[∫ 2π

0

∫ t

0

ξu(x, s)dηu(x, s) dx

]
,

T2(t) := E
[∫ 2π

0

〈ξu(x, ·), ξu(x, ·)〉t dx
]
,

T3(t) := 2aE
[∫ t

0

∫ 2π

0

ηv(x, s)ξv(x, s) dxds

]
,

T4(t) := 2aE

[∫ t

0

N∑
j=1

[
H+
j

(
ξv(·, s), ξu(·, s)

)
+H−j

(
ξu(·, s), ξv(·, s)

)]
ds

]
,

T5(t) := −2aE

[∫ t

0

N∑
j=1

[
H+
j

(
ηv(·, s), ξu(·, s)

)
+H−j

(
ηu(·, s), ξv(·, s)

)]
ds

]
,

T6(t) := 2E
[∫ t

0

∫ 2π

0

[
ψ (x, s, u(x, s), v(x, s))− ψ (x, s, uh(x, s), vh(x, s))

]
ξu(x, s) dx ds

]
,

and

T7(t) := 2E
[∫ t

0

∫ 2π

0

[
g (x, s, u(x, s), v(x, s))− g (x, s, uh(x, s), vh(x, s))

]
ξu(x, s) dx dWs

]
.

The terms Ti(t) for i = 1, . . . , 7 are estimated as follows.

• The estimate of T1(t).

In view of (5.1), we have

dt(Qu)(·, t) = Q(dtu)(·, t)
= Q [a uxx(·, t)] dt+Q [ψ(·, t, u(·, t), ux(·, t))] dt+Q [g(·, t, u(·, t), ux(·, t))] dWt.

(5.5)

Therefore,

dηu(·, t) = a(Quxx − uxx)(·, t) dt+ (Q− I)ψ(·, t, u(·, t), ux(·, t)) dt
+(Q− I)g(·, t, u(·, t), ux(·, t)) dWt
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with I being the identity operator.

It turns out that∫ 2π

0

ξu(x, t) dηu(x, t) dx

=

∫ 2π

0

ξu(x, t)
{
a
[
Quxx − uxx

]
(x, t) + (Q− I)

[
ψ(·, t, u(·, t), ux(·, t))

]
(x)
}
dxdt

+

∫ 2π

0

ξu(x, t) (Q− I)
[
g(·, t, u(·, t), ux(·, t))

]
(x) dx dWt.

According to Lemma 2.1, by virtue of (3.16), g (·, u(·), ux(·)) ∈ L2 (Ω× [0, T ];L2) and

u(·) ∈ S2 (Ω× [0, T ];L2), we get that the process∫ t

0

∫ 2π

0

ξu(x, s) (Q− I)
[
g(·, s, u(·, s), ux(·, s))

]
(x) dx dWs, 0 ≤ t ≤ T

is a martingale. Thus according to the property of the projection (2.3), we have

T1(t) = 2aE
[ ∫ t

0

∫ 2π

0

ξu(x, s)
[
Quxx − uxx

]
(x, s)dxds

]
+2E

[ ∫ t

0

∫ 2π

0

ξu(x, s) (Q− I)
[
ψ(·, s, u(·, s), ux(·, s))

]
(x)dxds

]
≤ aE

[∫ t

0

(
‖ξu (·, s)‖2 + ‖(Quxx − uxx) (·, s)‖2

)
ds

]
+E

[∫ t

0

(
‖ξu (·, s)‖2 +

∥∥∥ (Q− I)ψ(·, s, u(·, s), ux(·, s))
∥∥∥2)

ds

]
≤ C

∫ t

0

E ‖ξu (·, s)‖2 ds+ Ch2k+2E
[∫ t

0

‖uxx (·, s)‖2
Hk+1 ds

]
+Ch2k+2E

[∫ t

0

‖ψ(·, s, u(·, s), ux(·, s))‖2
Hk+1 ds

]
.

Since

u ∈ L2
(
Ω× [0, T ];Hk+3

)
, ψ (·, u(·), ux(·)) ∈ L2

(
Ω× [0, T ];Hk+1

)
,

we have

T1(t) ≤ C

∫ t

0

E ‖ξu (·, s)‖2 ds+ Ch2k+2E
[∫ t

0

‖u (·, s)‖2
Hk+3 ds

]
+Ch2k+2E

[∫ t

0

‖ψ(·, s, u(·, s), ux(·, s))‖2
Hk+1 ds

]
≤ C

∫ t

0

E ‖ξu (·, s)‖2 ds+ C h2k+2.

• The estimate of T2(t).
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In view of (5.5), we have that for any rh ∈ Vh,∫
Ij

rh(x)dQu(x, t) dx

=

∫
Ij

rh(x)
{
Q
[
a uxx(·, t)

]
(x) +Q

[
ψ(·, t, u(·, t), v(·, t))

]
(x)
}
dxdt

+

∫
Ij

rh(x)Q
[
g(·, t, u(·, t), v(·, t))

]
(x) dx dWt. (5.6)

From (5.3a) and (5.6), we obtain that for any rh ∈ Vh,∫
Ij

rh(x)dξu(x, t) dx

=

{
a

∫
Ij

rh(x)Q
[
uxx(·, t)

]
(x) dx− aH+

j (vh(·, t), rh)

+

∫
Ij

rh(x)
{
Q
[
ψ(·, t, u(·, t), v(·, t))

]
− ψ

(
·, t, uh(·, t), vh(·, t)

)}
(x) dx

}
dt

+

∫
Ij

rh(x)
{
Q
[
g(·, t, u(·, t), v(·, t))

]
− g
(
·, t, uh(·, t), vh(·, t)

)}
(x) dx dWt. (5.7)

Since ξu(ω, ·, t) ∈ Vh for any (ω, t) ∈ Ω× [0, T ], ξu should have the form

ξu(ω, x, t) =
k∑
l=0

ξul,j(ω, t)ϕ
j
l (x), x ∈ Ij.

Similar to (4.4), we have from (5.7) that∫
Ij

〈ξu(x, ·), ξu(x, ·)〉t dx

=

∫ t

0

∫
Ij

(
P
{
Q
[
g(·, s, u(·, s), v(·, s))

]
− g
(
·, s, uh(·, s), vh(·, s)

)}
(x)

×
{
Q
[
g(·, s, u(·, s), v(·, s))

]
− g
(
·, s, uh(·, s), vh(·, s)

)}
(x)

)
dx ds

≤
∫ t

0

∫
Ij

∣∣Q[g(·, s, u(·, s), v(·, s))
]
− g
(
·, s, uh(·, s), vh(·, s)

)∣∣2(x) dx ds.

Then, we have for any ε > 0,

T2(t) = E
[∫ 2π

0

〈ξu(x, ·), ξu(x, ·)〉t dx
]

≤ E
[∫ t

0

∫ 2π

0

∣∣Q[g(·, s, u(·, s), v(·, s))
]
− g
(
·, s, uh(·, s), vh(·, s)

)∣∣2(x) dx ds

]
≤

(
1 +

1

ε

)
E
[∫ t

0

∫ 2π

0

∣∣ (Q− I) g(·, s, u(·, s), v(·, s))
∣∣2(x) dx ds

]
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+ (1 + ε)E
[∫ t

0

∫ 2π

0

∣∣g(x, s, u(x, s), v(x, s)
)
− g
(
x, s, uh(x, s), vh(x, s)

)∣∣2 dx ds] .
According to (H4) and the property of the projection, we have

T2(t) ≤
(

1 +
1

ε

)
h2k+2E

[∫ t

0

‖g(·, s, u(·, s), v(·, s))‖2
Hk+1 ds

]
+ (1 + ε)E

∫ t

0

∫ 2π

0

[
C2

1

(
1 +

1

ε

)
|eu(x, s)|2 + C2

2 (1 + ε) |ev(x, s)|2
]
dx ds

≤
(

1 +
1

ε

)
h2k+2E

[∫ t

0

‖g(·, s, u(·, s), v(·, s))‖2
Hk+1 ds

]
+2 (1 + ε)

(
1 +

1

ε

)
C2

1E
∫ t

0

[
Ch2k+2 ‖u(·, s)‖2

Hk+1 + ‖ξu(·, s)‖2] ds
+ (1 + ε)2

(
1 +

1

ε

)
C2

2E
[∫ t

0

Ch2k+2 ‖v(·, s)‖2
Hk+1 ds

]
+ (1 + ε)3 C2

2E
[∫ t

0

‖ξv(·, s)‖2 ds

]
.

Since u ∈ L2
(
Ω× [0, T ];Hk+3

)
, we have

v = ux ∈ L2
(
Ω× [0, T ];Hk+2

)
⊆ L2

(
Ω× [0, T ];Hk+1

)
,

which yields that

T2(t) ≤ C

(
1 +

1

ε

)[
1 + (1 + ε) + (1 + ε)2

]
h2k+2

+C (1 + ε)

(
1 +

1

ε

)∫ t

0

E
[
‖ξu(·, s)‖2] ds+ (1 + ε)3 C2

2E
[∫ t

0

‖ξv(·, s)‖2 ds

]
.

Since 2a > C2
2 , taking

ε :=

(
2a+ C2

2

2C2
2

) 1
3

− 1 > 0,

we have

T2(t) ≤ Ch2k+2 + C

∫ t

0

E
[
‖ξu(·, s)‖2] ds+

(
a+

1

2
C2

2

)
E
[∫ t

0

‖ξv(·, s)‖2 ds

]
.

• The estimate of T3(t).

Since v ∈ L2
(
Ω× [0, T ];Hk+1

)
, we have

T3(t) = 2aE
[∫ t

0

∫ 2π

0

ηv(x, s)ξv(x, s) dxds

]

≤ 4a2

2a− C2
2

E
[∫ t

0

‖ηv(·, s)‖2 ds

]
+

2a− C2
2

4
E
[∫ t

0

‖ξv(·, s)‖2 ds

]
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≤ 4a2

2a− C2
2

Ch2k+2E
[∫ t

0

‖v(·, s)‖2
Hk+1 ds

]
+

2a− C2
2

4
E
[∫ t

0

‖ξv(·, s)‖2 ds

]

≤ Ch2k+2 +
2a− C2

2

4
E
[∫ t

0

‖ξv(·, s)‖2 ds

]
.

• The estimate of T4(t).

In view of (4.5), we see that for any u, v ∈ Vh,

N∑
j=1

[
H+
j (u, v) +H−j (v, u)

]
= 0.

Therefore,

T4(t) = 2aE

[∫ t

0

N∑
j=1

[
H+
j

(
ξv(·, s), ξu(·, s)

)
+H−j

(
ξu(·, s), ξv(·, s)

)]
ds

]
= 0.

• The estimate of T5(t).

By the definition of the projections Q and R (see (2.1) and (2.2)), we see that for any

(ω, s) ∈ Ω× [0, T ], j = 1, 2, ..., N , and rh, zh ∈ Vh,

H−j
(
ηu(·, s), rh

)
= 0, H+

j

(
ηv(·, s), zh

)
= 0.

Since ξu(ω, ·, s), ξv(ω, ·, s) ∈ Vh, we have

T5(t) = −2aE

[∫ t

0

N∑
j=1

[
H+
j

(
ηv(·, s), ξu(·, s)

)
+H−j

(
ηu(·, s), ξv(·, s)

)]
ds

]
= 0.

• The estimate of T6(t).

We have from (H3) and Young’s inequality that

T6(t) = 2E
[∫ t

0

∫ 2π

0

[
ψ (x, s, u(x, s), v(x, s))− ψ (x, s, uh(x, s), vh(x, s))

]
ξu(x, s) dx ds

]
≤ 2B1E

[∫ t

0

∫ 2π

0

(
|ξu(x, s)|+ |ηu(x, s)|+ |ξv(x, s)|+ |ηv(x, s)|

)
|ξu(x, s)| dx ds

]
≤ B1E

[∫ t

0

∫ 2π

0

[
|ηu(x, s)|2 + |ηv(x, s)|2

]
dx ds

]
+B1E

[∫ t

0

∫ 2π

0

[(
4 +

8B1

2a− C2
2

)
|ξu(x, s)|2 +

2a− C2
2

8B1

|ξv(x, s)|2
]
dx ds

]
≤ CE

∫ t

0

[
‖ηu(·, s)‖2 + ‖ηv(·, s)‖2 + ‖ξu(·, s)‖2] ds+

2a− C2
2

8
E
[∫ t

0

‖ξv(·, s)‖2 ds

]
.
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Using the property of projection (2.3), we have

T6(t) ≤ Ch2k+2E
[∫ t

0

‖u(·, s)‖2
Hk+1 ds

]
+ Ch2k+2E

[∫ t

0

‖v(·, s)‖2
Hk+1 ds

]

+CE
[∫ t

0

‖ξu(·, s)‖2 ds

]
+

2a− C2
2

8
E
[∫ t

0

‖ξv(·, s)‖2 ds

]
.

Therefore,

T6(t) ≤ C h2k+2 + C

∫ t

0

E
[
‖ξu(·, s)‖2] ds+

2a− C2
2

8
E
[∫ t

0

‖ξv(·, s)‖2 ds

]
.

• The estimate of T7(t).

According to Lemma 2.1, by virtue of (3.16), (3.17), g (·, u(·), ux(·)) ∈ L2 (Ω× [0, T ];L2)

and u(·) ∈ S2 (Ω× [0, T ];L2), we see that the process∫ t

0

∫ 2π

0

[g (x, s, u(x, s), v(x, s)))− g (x, s, uh(x, s), vh(x, s))] ξu(x, s) dxdWs, 0 ≤ t ≤ T

is a martingale. Thus,

T7(t) = 2E
[∫ t

0

∫ 2π

0

[
g (x, s, u(x, s), v(x, s))− g (x, s, uh(x, s), vh(x, s))

]
ξu(x, s) dx dWs

]
= 0.

Concluding the above, we have

E
[
‖ξu(·, t)‖2]+

2a− C2
2

8
E
[∫ t

0

∫ 2π

0

|ξv(x, s)|2 dxds
]

≤ ‖ξu(·, 0)‖2 + Ch2k+2 + C

∫ t

0

E
[
‖ξu(·, s)‖2] ds.

Since ‖ξu(·, 0)‖ = ‖Qu0 − Pu0‖ ≤ Chk+1 ‖u0‖Hk+1 , we have from Gronwall’s inequality

that (
E
[
‖ξu(·, t)‖2

]) 1
2 ≤ Chk+1eCt,

which yields (
E
[∫ t

0

∫ 2π

0

|ξv(x, s)|2 dxds
]) 1

2

≤ Chk+1eCt.

Since u ∈ L∞
(
0, T ;L2(Ω;Hk+1)

)
, we have(

E
[
‖ηu(·, t)‖2

]) 1
2 ≤ C

(
E
[
‖u(·, t)‖2

Hk+1

]) 1
2 hk+1 ≤ Chk+1.

It turns out that(
E
[
‖u(·, t)− uh(·, t)‖2]) 1

2 ≤
(
E
[
‖ξu(·, t)‖2

]) 1
2 +

(
E
[
‖ηu(·, t)‖2

]) 1
2 ≤ CeCthk+1.
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Since v ∈ L2
(
Ω× [0, T ];Hk+1

)
, we have(

E
[∫ t

0

∫ 2π

0

|ηv(x, s)|2 dxds
]) 1

2

≤ C

(
E
[∫ t

0

‖v(·, s)‖2
Hk+1 ds

]) 1
2

hk+1 ≤ Chk+1.

Thus, we have(
E
[∫ t

0

‖ux(·, s)− vh(·, s)‖2 ds

]) 1
2

≤
(
E
[∫ t

0

∫ 2π

0

|ηv(x, s)|2 dxds
]) 1

2

+

(
E
[∫ t

0

∫ 2π

0

|ξv(x, s)|2 dxds
]) 1

2

≤ Chk+1eCt.

Remark 5.1. The error estimate is optimal regarding the polynomial degree k but may be

not optimal regarding the required high-regularity of the exact solution u in Assumption (H5),

whose integrability and differentiability are used to derive our error estimate. Note that the

high regularities required in (H5) can be found in [18, 24] for some special SPDEs (1.1), like

the linear SPDEs (1.1) in [18] and the semilinear SPDEs (1.1) in [24] where a(·) does not

depend on (u, ux) and g(·) does not depend on ux.

6 Time discretization

The LDG method incorporates the spatial discretization and reduces the primal SPDE into

a system of SDEs, which needs to be coupled with a high-order time discretization. We

will propose a numerical scheme which avoids the usage of derivatives in much the same

way that Runge-Kutta schemes do in the deterministic setting. For notational simplicity,

we shall mainly state the schemes for the autonomous case. Consider the following matrix-

valued SDE:  dX i,j
t = ai,j(Xt) dt+ bi,j(Xt) dWt, t > 0;

X i,j
0 = xi,j0 ,

where i = 0, 1, ..., k and j = 0, 1, ..., N + 1. We aim to use Y i,j
n to approximate X i,j

tn . Define

Y i,j
0 := xi,j0 . Suppose we already have {Y i,j

n : i = 0, 1, ..., k and j = 0, 1, ..., N + 1}.
We use an explicit derivative-free strong scheme of order 1.5 from Kloeden and Platen [27].

For convenience of the reader, we give a detailed description here.

Define

∆n := tn+1 − tn, ∆Wn := Wtn+1 −Wtn , ∆Zn :=

∫ tn+1

tn

(Ws −Wtn) ds.

We set

γm,l± := Y m,l
n + am,l(Yn)∆n ± bm,l(Yn)

√
∆n ,
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and

φm,l± := γm,l+ ± bm,l(γ+)
√

∆n.

Then, an explicit order 1.5 strong scheme has the form

Y i,j
n+1 = Y i,j

n + ai,j(Yn)∆n + bi,j(Yn)∆Wn

(order 0.5)

+
1

4
√

∆n

{
bi,j(γ+)− bi,j(γ−)

}{
(∆Wn)2 −∆n

}
(order 1.0)

+
1

4

{
ai,j(γ+)− 2ai,j(Yn) + ai,j(γ−)

}
∆n

+
1

2
√

∆n

{
ai,j(γ+)− ai,j(γ−)

}
∆Zn

+
1

2∆n

{
bi,j(γ+)− 2bi,j(Yn) + bi,j(γ−)

}
{∆Wn∆n −∆Zn}

+
1

4∆n

{
bi,j(φ+)− bi,j(φ−)− bi,j(γ+) + bi,j(γ−)

}{1

3
(∆Wn)2 −∆n

}
∆Wn.

(order 1.5) (6.1)

Here, the additional random variable ∆Zn is normally distributed with the following mean,

variance and correlation:

E [∆Zn] = 0, E
[
(∆Zn)2] =

1

3
∆3
n, E [∆Wn∆Zn] =

1

2
∆2
n,

respectively. We note that there is no difficulty in generating the pair of correlated normally

distributed random variables ∆Wn and ∆Zn using the transformation

∆Wn = ζn,1∆
1
2
n , ∆Zn =

1

2

(
ζn,1 +

1√
3
ζn,2

)
∆

3
2
n ,

where ζn,1 and ζn,2 are independent and N(0; 1) distributed random variables.

7 Numerical experiments

In this section we consider the application of the numerical method, which we have defined in

section 3, on some model problems. Here, M is the number of realizations of the stochastic

approximate solutions. We use the average of M realizations to approximate the mathemat-

ical expectation. The degree of the piecewise polynomial space Vh is k. The positive real

number T is the terminal time. Since the considered problems are second order SPDEs, in

all experiments, we need to adjust the time step to ∆t ∼ (∆x)2 to guarantee the stability

for the explicit time discretization. Moreover, by setting ∆t ∼ (∆x)2, the scheme in time is

effectively third-order.
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7.1 Nondegenerate linear SPDEs

We consider the following linear equation du = uxx dt+ bu dWt in Ω× [0, 2π]× (0, T ];

u(x, 0) = sin(x), x ∈ [0, 2π].
(7.1)

The exact solution of (7.1) is

u(ω, x, t) = sin(x)ebWt(ω)− 1
2
b2t−t.

In both Tables 1 and 2, we show the L2-errors for the linear equation (7.1) with M = 1000

realizations. We see that the scheme has (k+1)-th order of accuracy. The L2-error increases

as the stochastic coefficient b increases. All the numerical results coincide with the conclusion

of Theorem 5.1.

Table 1: Verification of optimal convergence for nondegenerate linear SPDEs (7.1) with

multiplicative noise: k = 1, M = 1000.

b = 0.1 b = 0.5 b = 1.0

N L2 Error order L2 Error order L2 Error order

T = 0.1

10 3.87E-02 - 3.91E-02 - 4.06E-02 -

20 9.65E-03 2.01 9.76E-03 2.00 1.01E-02 2.01

40 2.41E-03 2.00 2.44E-03 2.00 2.53E-03 2.00

80 6.03E-04 2.00 6.10E-04 2.00 6.35E-04 2.00

160 1.51E-04 2.00 1.53E-04 1.99 1.60E-04 1.99

T = 0.5

10 2.60E-02 - 2.76E-02 - 3.36E-02 -

20 6.48E-03 2.00 6.86E-03 2.01 8.17E-03 2.04

40 1.62E-03 2.00 1.72E-03 2.00 2.01E-03 2.02

80 4.05E-04 2.00 4.31E-04 2.00 5.22E-04 1.95

160 1.01E-04 2.00 1.09E-04 1.99 1.30E-04 2.01

T = 1.0

10 1.58E-02 - 1.79E-02 - 2.67E-02 -

20 3.94E-03 2.00 4.41E-03 2.02 6.17E-03 2.11

40 9.85E-04 2.00 1.10E-03 2.00 1.46E-03 2.08

80 2.46E-04 2.00 2.79E-04 1.98 4.04E-04 1.85

160 6.18E-05 1.99 7.02E-05 1.99 9.71E-05 2.06

7.2 Linear SPDEs with derivative in the diffusion term

In the following we test the accuracy of the LDG method on the linear equation with first

order spatial derivative involved in the diffusion term as follows, du =
1

2
uxx dt+ b ux dWt, in Ω× [0, 2π]× (0, T ];

u(x, 0) = u0(x), x ∈ [0, 2π].
(7.2)
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Table 2: Verification of optimal convergence for nondegenerate linear SPDEs (7.1) with

multiplicative noise: k = 2, M = 1000.

b = 0.1 b = 0.5 b = 1.0

N L2 Error order L2 Error order L2 Error order

T = 0.1

10 1.94E-03 - 1.96E-03 - 2.03E-03 -

20 2.43E-04 3.00 2.47E-04 2.98 2.58E-04 2.97

40 3.03E-05 3.00 3.07E-05 3.01 3.20E-05 3.01

80 3.80E-06 3.00 3.85E-06 3.00 4.02E-06 2.99

160 4.75E-07 3.00 4.83E-07 2.99 5.05E-07 2.99

T = 0.5

10 1.30E-03 - 1.38E-03 - 1.67E-03 -

20 1.64E-04 2.99 1.75E-04 2.97 2.12E-04 2.97

40 2.04E-05 3.01 2.17E-05 3.01 2.64E-05 3.01

80 2.55E-06 3.00 2.73E-06 2.99 3.41E-06 2.95

160 3.19E-07 3.00 3.43E-07 2.99 4.18E-07 3.03

T = 1.0

10 7.91E-04 - 8.90E-04 - 1.32E-03 -

20 9.96E-05 2.99 1.14E-04 2.97 1.71E-04 2.95

40 1.24E-05 3.01 1.41E-05 3.01 2.09E-05 3.03

80 1.55E-06 3.00 1.79E-06 2.98 2.83E-06 2.88

160 1.94E-07 3.00 2.23E-07 3.00 3.26E-07 3.12

If b = 1, then (7.2) is a degenerate linear SPDE satisfying 2α = C2
4 . The exact solution

is

u(ω, x, t) = u0

(
x+Wt(ω)

)
.

In Table 3, we show the L2-errors for the linear equation (7.2) with b = 1, M = 100

realizations and smooth initial condition u0(x) = sin(x). For different terminal time T , the

scheme has the expected (k + 1)-th order of accuracy.

We also consider the case that the initial condition is discontinuous

u0(x) =

 1, if π
2
≤ x ≤ 3π

2
;

0, if 0 ≤ x < π
2

or 3π
2
< x ≤ 2π.

(7.3)

For this discontinuous case, we compute the solution up to T = 1.0 with only one

realization M = 1. The results are shown in figure 1. We observe that the scheme converges

to the true solution when N increases. There are oscillations arising near the discontinuities

of the solution.

Remark 7.1. If we set b > 1 in our codes, i.e., the condition 2α − C2
4 ≥ 0 in Theorem 4.1

and Theorem 4.2 is not satisfied, then we find that the L2-norm of the numerical solutions

would explode, which confirms the necessity of the stochastic parabolicity condition.

Remark 7.2. The L2-stability is very helpful in this discontinuous case, but is not enough

to control the spurious numerical oscillations near the discontinuous region. In practice,

34



Table 3: Verification of optimal convergence for degenerate linear SPDEs (7.2) with smooth

initial value: b = 1, M = 100, u0(x) = sin(x).

k = 1 k = 2

N L2 Error order L2 Error order

T = 0.1

10 4.27E-02 - 2.29E-03 -

20 1.07E-02 2.00 2.73E-04 3.07

40 2.66E-03 2.00 3.36E-05 3.02

80 6.65E-04 2.00 4.20E-06 3.00

160 1.66E-04 2.00 5.24E-07 3.00

T = 0.5

10 4.32E-02 - 2.27E-03 -

20 1.07E-02 2.02 2.74E-04 3.05

40 2.67E-03 2.00 3.39E-05 3.01

80 6.66E-04 2.00 4.19E-06 3.02

160 1.66E-04 2.00 5.24E-07 3.00

T = 1.0

10 4.43E-02 - 2.23E-03 -

20 1.07E-02 2.05 2.75E-04 3.02

40 2.67E-03 2.01 3.43E-05 3.00

80 6.66E-04 2.00 4.20E-06 3.03

160 1.66E-04 2.00 5.24E-07 3.00

it is worth trying to use limiters to control oscillations for the problems containing strong

discontinuities, which will be investigated in the future.

7.3 Stochastic viscous Burgers equation

Although we cannot give error estimates for fully nonlinear equations, it is worth trying

to apply the LDG method to solve some nonlinear equations. The next example is the

stochastic viscous Burgers equation, du =

[
σ2

2
uxx −

1

2

(
u2
)
x

]
dt+ (σux + b) dWt, in Ω× [0, 2π]× (0, T ];

u(x, 0) = sin(x), x ∈ [0, 2π].

(7.4)

The exact solution of (7.4) is

u(ω, x, t) = v

(
x− b

∫ t

0

Ws ds+ σWt, t

)
+ bWt,

where v is the solution of the following deterministic inviscid Burgers equation dv + 1
2

(v2)x dt = 0 in [0, 2π]× (0, T ),

v(x, 0) = sin(x), x ∈ [0, 2π].
(7.5)
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Figure 1: Performance of LDG scheme for degenerate linear SPDEs (7.2) with discontinuous

initial value (7.3) and one fixed path: b = 1, M = 1, T = 1.

Note that the solution of (7.5) has an infinite slope - the wave “breaks” and a shock

forms at

Tb =
−1

min v′0(x)
= 1.

See [29]. So the exact solution of the stochastic viscous Burgers equation (7.4) also has a

shock at Tb = 1.

We use the simple Lax-Friedrichs flux for the nonlinear convection term f(u) = u2

2
,

f̂
(
u−, u+

)
=

1

4

{(
u−
)2

+
(
u+
)2
}
− 1

2
α
(
u+ − u−

)
,

where

α = max
j

{∣∣∣u−
j+ 1

2

∣∣∣ , ∣∣∣u+
j+ 1

2

∣∣∣} .
In Table 4, we show the L2-errors for equation (7.4) with b = σ = 1 and M = 100
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realizations. We see that the order of accuracy converges to k+ 1 when T < Tb. The scheme

loses the order of accuracy as T = 1.2 since the problem involves a shock when T > Tb.

Table 4: Verification of optimal convergence for stochastic viscous Burgers equation (7.4)

with linear multiplicative noise: b = σ = 1, M = 100.

k = 1 k = 2

N L2 Error order L2 Error order

T = 0.1

10 4.21E-02 - 2.40E-03 -

20 1.07E-02 1.97 2.90E-04 3.05

40 2.65E-03 2.02 3.62E-05 3.00

80 6.69E-04 1.99 4.54E-06 3.00

160 1.69E-04 1.99 5.65E-07 3.01

T = 0.4

10 5.87E-02 - 5.83E-03 -

20 1.46E-02 2.01 8.48E-04 2.78

40 3.64E-03 2.00 1.01E-04 3.07

80 9.10E-04 2.00 1.22E-05 3.06

160 2.29E-04 1.99 1.51E-06 3.02

T = 0.8

10 2.21E-01 - 7.98E-02 -

20 9.94E-02 1.15 2.57E-02 1.63

40 3.74E-02 1.41 5.97E-03 2.11

80 1.14E-02 1.71 1.05E-03 2.50

160 2.83E-03 2.01 9.00E-05 3.55

T = 1.2

10 5.58E-01 - 4.02E-01 -

20 4.31E-01 0.37 3.16E-01 0.35

40 3.37E-01 0.36 2.38E-01 0.41

80 2.62E-01 0.36 1.91E-01 0.32

160 2.20E-01 0.25 1.56E-01 0.29

To see the behavior of numerical solution with T > Tb, we plot the approximate solution

and the true solution at T = 1.2 with b = σ = 1 and only one realization M = 1 to get

figure 2. We observe that the LDG scheme converges nicely to the exact solution for fixed

stochastic path ω. Again, some oscillations appear near the discontinuous region.

7.4 Numerical test for studying the necessity of the stochastic

parabolicity condition 2α ≥ C2
4 for the LDG scheme

Next we examine our numerical scheme on the following nonlinear SPDE to investigate the

necessity of the stochastic parabolicity conditiondu =

[(
u2ux

)
x
− ux + 3u3 −

(
2 +

b2

2

)
u

]
dt+ buxdWt, in Ω× [0, 2π]× (0, T ];

u(x, 0) = sin(x), x ∈ [0, 2π].

(7.6)
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Figure 2: Performance of LDG scheme for stochastic viscous Burgers equation (7.4) with

linear multiplicative noise and one fixed path: b = 1, σ = 1, M = 1, T = 1.2.

One of the exact solutions of (7.6) is

u(ω, x, t) = sin (x+ bWt − t) . (7.7)

Notice that in this case α is equal to 0 and |b| is greater than 0, so the stochastic parabolic

condition 2α ≥ C2
4 in Theorem 4.1 and Theorem 4.2 is not satisfied, and instability appears

for our scheme in this numerical test. Table 5 and Table 6 display the L2-errors for the

nonlinear equation (7.6) with M = 100 realizations. We see that the LDG scheme works

well when the terminal time T and the stochastic coefficient b are small, in which the order

of accuracy is k + 1. When T and b are large enough, similar to the situation we described

in Remark 7.1, we lose the order of accuracy and the scheme seems unstable, which again

suggests the necessity of the stochastic parabolicity condition 2α ≥ C2
4 .
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Table 5: Verification of stability and convergence for nonlinear SPDEs (7.6) with multiplica-

tive noise: k = 1, M = 100.

b = 0.05 b = 0.1 b = 0.5

N L2 Error order L2 Error order L2 Error order

T = 0.01

10 3.17E-02 - 3.17E-02 - 3.25E-02 -

20 1.04E-02 1.61 1.04E-02 1.61 1.06E-02 1.62

40 2.73E-03 1.92 2.74E-03 1.92 3.95E-03 1.42

80 7.02E-04 1.96 7.11E-04 1.94 1.43E-03 1.47

160 1.77E-04 1.99 1.78E-04 2.00 1.69E-04 3.08

T = 0.1

10 4.83E-02 - 4.83E-02 - 4.94E-02 -

20 1.21E-02 2.00 1.22E-02 1.99 1.41E-02 1.81

40 3.03E-03 2.00 3.11E-03 1.97 1.03E-02 0.45

80 7.54E-04 2.01 8.01E-04 1.96 1.01E-02 0.03

160 1.82E-04 2.05 1.84E-04 2.12 1.79E-01 -4.15

T = 0.5

10 5.52E-02 - 5.57E-02 - 6.44E-02 -

20 1.27E-02 2.11 1.29E-02 2.11 1.79E-02 1.85

40 3.15E-03 2.02 3.22E-03 2.00 1.62E-02 0.15

80 7.84E-04 2.00 8.33E-04 1.95 2.36E-01 -3.87

160 1.94E-04 2.01 2.51E-04 1.73 5.92E-01 -1.33

7.5 Nondegenerate nonlinear SPDEs

Note that (7.7) is also the exact solution of the following nondegenerate nonlinear equation,du =

[(
u2ux

)
x

+

(
2 +

b2

2

)
uxx − ux + 3u3

]
dt+ buxdWt in Ω× [0, 2π]× (0, T ];

u(x, 0) = sin(x), x ∈ [0, 2π].

(7.8)

We see that in this case the constant α equals to 2 + b2

2
, which implies that the condition

α− b2

2
= 2 > 0 is satisfied.

In Table 7, we show the L2-errors for the equation (7.8) with b = 1 and M = 100

realizations, which indicates that the LDG method gives the expected (k + 1)-th order of

accuracy for the nondegenerate nonlinear problems.

8 Concluding remarks

In this article, we present a semi-discrete LDG scheme for fully nonlinear parabolic SPDEs.

The L2-stability results of the scheme are obtained, and the optimal error estimates of order

O(hk+1) for semilinear stochastic equations are proved. We combine an explicit derivative-

free order 1.5 time discretization scheme to perform several numerical experiments on some

model problems to confirm the analytical results.
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Table 6: Verification of stability and convergence for nonlinear SPDEs (7.6) with multiplica-

tive noise: k = 2, M = 100.

b = 0.05 b = 0.1 b = 0.5

N L2 Error order L2 Error order L2 Error order

T = 0.01

10 1.78E-03 - 1.78E-03 - 1.88E-03 -

20 2.67E-04 2.74 2.68E-04 2.74 3.08E-04 2.61

40 3.65E-05 2.87 3.67E-05 2.87 1.02E-04 1.60

80 4.57E-06 3.00 4.67E-06 2.97 2.71E-03 -4.73

160 5.57E-07 3.04 5.91E-07 2.98 2.51E-01 -6.53

T = 0.1

10 4.70E-03 - 4.71E-03 - 5.33E-03 -

20 4.46E-04 3.39 4.52E-04 3.38 1.13E-03 2.23

40 4.44E-05 3.33 4.50E-05 3.33 2.38E-02 -4.39

80 4.84E-06 3.20 5.03E-06 3.16 4.62E-01 -4.28

160 5.61E-07 3.11 2.48E-06 1.02 6.09E-01 -0.40

T = 0.5

10 4.18E-03 - 4.30E-03 - 8.15E-03 -

20 4.35E-04 3.26 4.60E-04 3.23 2.15E-02 -1.40

40 4.62E-05 3.24 4.73E-05 3.28 5.43E-01 -4.66

80 4.89E-06 3.24 5.70E-06 3.05 NaN NaN

160 5.72E-07 3.10 3.53E-03 -9.27 6.97E-01 NaN
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