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Abstract

Numerous fluid-structure interaction problems in biology have been investigated using the
immersed boundary method. The advantage of this method is that complex geometries, e.g.,
internal or external morphology, can easily be handled without the need to generate matching grids
for both the fluid and the structure. Consequently, the difficulty of modeling the structure lies
often in discretizing the boundary of the complex geometry (morphology). Both commercial and
open source mesh generators for finite element methods have long been established; however, the
traditional immersed boundary method is based on a finite difference discretization of the
structure. Here we present a software library for obtaining finite difference discretizations of
boundaries for direct use in the 2D immersed boundary method. This library provides tools for
extracting such boundaries as discrete mesh points from digital images. We give several examples of
how the method can be applied that include passing flow through the veins of insect wings, within
lymphatic capillaries, and around starfish using open-source immersed boundary software.

1. Introduction

The immersed boundary method (IBM) is a mathe-
matical formulation and numerical method for fully-
coupled fluid-structure interaction (FSI) problems
that dates back to Peskin in 1972 [1]. Since its cre-
ation, the IBM has been used to study a wide variety of
problems in biological fluid dynamics and fundamen-
tal fluid dynamics at low to intermediate Reynolds
numbers (Re < 10 000). Diverse examples include the
aerodynamics of insect flight [2—4], lamprey swim-
ming [5, 6], jellyfish swimming [7, 8], and fluid
flows through organs such as the heart and esopha-
gus [9—11]. The relative ease of implementation and
the availability of open source codes has made it par-
ticularly useful in research and education [12—14].
The original IBM formulation discretizes
immersed, elastic boundaries on a curvilinear
finite difference mesh. Many immersed boundary

(IB) studies are performed in 2D and use simple
geometries with easy mathematical descriptions such
as plates [2, 15], strings [16, 17], tubes [10, 18, 19],
ellipses [20, 21], hemiellipses [8, 22], and circles
[23-25], or in 3D with spheres [26] or cylinders [27].
In other cases, more complicated geometries are
manually constructed by the user via explicit math-
ematical functions or sets of functions that describe
the elastic boundary [9, 28, 29]; this endeavor is,
however, non-trivial. David Baraff, a Senior Research
Scientist at Pixar Animation Studios has publicly
said, ‘T hate meshes. I cannot believe how hard this is.
Geometry is hard’ [30].

This immediately highlights a challenge in per-
forming IB simulations for many biological applica-
tions that have complicated geometries. Most mesh-
ing tools are finite element based, such as MeshLab
[31], Gmsh [32], or TetGen [33], all of which are open
source. As far as we are aware, there is not an openly
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available and easy to use tool for generating curvi-
linear finite difference meshes. A few finite difference
meshing tools that are available constrain the mesh
to a Cartesian grid using cuboids, such as the open
source AEG Mesher [34], which was designed for elec-
tromagnetic simulations, and the propriety software
Argus ONE [35], which was designed to help incor-
porate geographic information system into numerical
models [36].

What’s more, many applications, especially those
in biology and medicine, usually have some imaging
data from which a mesh is estimated. For example,
imagine generating a numerical model of blood flow
through an arterial network. There are highly resolved
images that clearly illustrate arterial branching pat-
terns from which desirable geometric data, e.g., artery
diameters, lengths, branching locations, etc, can be
obtained. To perform numerical simulations that
reveal the spatial variations in the flow due to small
scale geometric effects, one must reconstruct this arte-
rial network in detail. Even for 2D simulations this
process is non-trivial, as one would first need to
recreate the structure using parametric functions and
then select particular parameter values that sample
the structure’s geometry to obtain a computational
mesh with equally-spaced points. While this labo-
rious approach may work for some simplified arte-
rial geometries, if the actual arterial network con-
tains walls that are not perfectly smooth or flat, sim-
ple tubular models may be insufficiently detailed and
hence give rise to non-realistic results. Our software
aims to fill this gap using edge detection on the orig-
inal image, thereby preserving the original pattern
and information from the images. Bézier curves are
then used to mathematically describe the images, after
which they are appropriately sampled to obtain a
curvilinear mesh.

The challenge here is two-fold: first a continuous,
parameterized description of the boundary of interest
must be found, potentially through image segmen-
tation, and then this boundary must be represented
as a finite difference mesh with sampling to give
the desired geometric spacing between adjacent geo-
metric nodes. Given the widespread use of the IBM
approach in both research and education [12-14, 37,
38], we found it useful to create the open source soft-
ware package MeshmerizeMe, a tool that both detects
boundaries in image data and creates finite differ-
ence meshes where the nodes are nearly uniformly
spaced. The output files are designed to be coupled
with IB2d [12, 13, 39], IBAMR [40], and other IB 2D
software.

We provide an overview of the software Meshmer-
izeMe in section 2. In particular, we detail Meshmer-
izeMe’s implementation, workflow (section 2.1), and
how the software computes a discretized mesh from
parametric curves (section 2.2). We then present a
variety of examples using the software in section 3;
including two internal flow examples and one
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external flow example. The examples include
hemolymph flow through dragonfly wing veins
(section 3.1), flow through a lymphatic capillary
(section 3.2), and oscillatory flow past a starfish
(section 3.3).

The most straightforward IB simulations using
this software would be developed to simulate the
flow past or through nearly rigid, complex, biolog-
ical boundaries, as demonstrated in these examples.
We do not currently have a method for using mul-
tiple images to simulate moving boundaries. There
are, however, a few ways that one can model mov-
ing and deformable boundaries. To begin, each of
the Lagrangian points can be translated or rotated
using a prescribed mathematical function rather than
moving the boundary based on image tracking. This
approach has been used for a variety of biologi-
cal applications, including flapping insect wings [2],
swimming jellyfish [8, 41], flapping swimmerets [42]
and heart pumping [19]. If, in addition to vertex
points, springs and beams are added to pairs or tri-
ads of vertex points, elastic deformations due to the
ESI can also be simulated. This type of approach has
been used for leaves in flow [43], flapping filaments
[16], the deformation of prey prior to puncture [44],
and the movement of red blood cells [45, 46].

2. MeshmerizeMe implementation

MeshmerizeMe is a software package for the creation
of 2D geometry files for use with open source IB
software such as IB2d and IBAMR. The software
comes with two main scripts: 1) ContourizeMe, which
reads in an image file and uses automatic edge detec-
tion to extract contours of interest into an ‘scalable
vector graphics’ (SVG) file, and 2) MeshmerizeMe,
which processes SVG files and IB2d- or IBAMR-style
input2d files to create *.vertex files describing the
geometry of the SVG file at the appropriate resolution.
Both SVG and vertex files are UTF encoded text files.
SVG is a widely supported vector graphics format,
while the vertex-format is used by IB2d and IBAMR to
describe Lagrangian mesh points in an IB simulation.
The MeshmerizeMe script also includes a tool that uses
Matplotlib to allow the user to plot the geometry cre-
ated by MeshmerizeMe for visual verification. These
scripts are written to run in Python 3.x, and upon
installation both scripts are added to the path on a
Linux and Mac environment. This dual-script setup
allows the end-user two distinct entry points into the
workflow; see figure 1 for an illustration.

To provide a concrete example of the workflow,
suppose an image is available either from the field
or an experiment. To detect the edges and gener-
ate an SVG file, the user would run the Contour-
izeMe script on the desired image file (e.g., by typing
ContourizeMe image.jpg in the commandline). This
opens a GUI with several features that may be used
to modify and enhance the image (see figure 2). Note
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Automatically
Extract Edges
with ContourizeMe

Manually
Draw Edges

———{ RAW SVG of Edges
using Inkscape

Clean SVG
with Inkscape

I

[ g ]_» Create Mesh with

MeshmerizeMe

Add target points and
other files as necessary

|

Run Simulation with
IB solver such as IB2d

VTK Files with Si-
multion Results

Figure 1. Flow chart illustrating the MeshmerizeMe
workflow. Blue rounded boxes represent files, while square
orange boxes represent user actions. The flow chart
illustrates the two main entry points into the work flow
from the source image: automatic edge extraction using the
ContourizeMe script as well as manually creating the SVG
by drawing ‘over’ the image using software like Inkscape.

that common image formats such as jpg, png, and
tiff are supported. For best performance, the image
should provide a good contrast between the object
boundary and background, while also having little
noise. If this is not the case, ContourizeMe allows
the user to adjust the image contrast and saturation’
using simple sliders to better highlight the bound-
ary of interest. Using a slider for the pixel cutoft, the
smoothness of the matched curve can be adjusted to
account for noise. All of these sliders update in real
time. If this proves insufficient, unwanted edges that
were detected can easily be deleted at a later step.
Once the user is satisfied with the result, the curve is
exported to an SVG file to be used as input for the
MeshmerizeMe script.

In some cases, the original image quality may be
high enough to proceed directly to the discretization
phase. In most cases, however, the user will want to
make minor edits to the SVG file to remove any poten-
tial artifacts, such as curves corresponding to back-
ground noise in addition to the boundaries of inter-
est. These edits can be done using common vector
graphics software such as Inkscape (open-source) or
Adobe Tllustrator (commercial). Note that this also
provides an alternate entry-step in the MeshmerizeMe
workflow: curves can be freely drawn using such soft-
ware if image data is either not available, the boundary

7 Those changes are temporary and do not affect the original image
data.
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structure is purely hypothetical, or in cases when the
original image is too poor in quality for reliable edge
detection. In the latter case, image layers may be used
in software such as Inkscape that allows the user to
trace over the desired edges to create the SVG file with
the necessary boundaries. Once the SVG file has been
cleaned in this manner, it is advised to collapse under-
lying groups and simplify contiguous paths, which in
some vector graphics software can be done from the
‘save’ menu. In other cases, software to do this is freely
available online, such as SVGO and SVGOMG [48,
49].

With the desired geometry extracted into an SVG
image, the next step consists of making a folder in
which the SVG file itself can be found, as well as
an IB2d-style file called input2d. This latter file
includes information such as the spatial discretiza-
tion step size (more details on this can be found
below). Our script reads this file to calculate and sam-
ple the appropriate mesh. MeshmerizeMe is run by
pointing it to the appropriate SVG file (e.g., typing
MeshmerizeMe image.svg from the command line).
It will then create the .vertex file containing the
mesh. Note that the filename of the vertex file will be
taken straight from the input2d file, regardless of the
SVG filename. If multiple meshes are to be created,
MeshmerizeMe can be run in batch mode by provid-
ing it with a list of file names. We also support piping
from STDIN. This allows the user to easily pass a list of
file names, such as one created by the find command,
to MeshmerizeMe for batch processing.

The resulting .vertex file can then be used
as input for IB simulations using IB2d and IBAMR.
Note that the user will need to supply some addi-
tional information as to the relationship between the
boundary points, for example whether or not they are
connected with springs, beams, masses, and so forth.
Currently, files that store this information must be
manually created, although a few of these relations are
implemented as classes in the MeshmerizeMe library
to help with writing such scripts. Once this stage is
completed, the IB simulation is ready to run.

2.1. Overview of contour extraction

In this section, we provide an overview of how Con-
tourizeMe extracts contours from images. This is
motivated by the need to accurately estimate the
shapes of objects from planar images or within some
cross-section. Many techniques, ranging from edge-
finding using image gradients to image segmentation
accomplished through supervised training of deep
neural nets, have been proposed as generalized meth-
ods to extract such edges [50, 51]. The niche filled
by MeshmerizeMe is to easily obtain 2d meshes from
image data that can be directly used in IB2d and
IBAMR. In essence, it allows for the semi-automated
generation of meshes from image data using simple
contour estimation from hand chosen thresholds of
pixel values [52] as a first step in the IBM workflow.
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Gray Bounds (U/L) (Inactive)
Number of contours to show: |1 I~ Show all contours.
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Parameterization: Grayscale —
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Starfish image reproduced from [47].

Figure 2. The ContourizeMe GUI in action on Manjaro Linux 18.0.4 with Gnome DE emulated in VirtualBox. The main window
to the left allows the user to select the desired type of parameterization of the source image. The user can chose grayscale, RGB, or
HSV. The sliders allow the user to set the desired threshholding in that parameterization. The detected edges are displayed in the
live image (upper right) in green. The user may optionally display the result of the paramterization and filtering (lower right).

This replaces the need to completely create the struc-
ture mesh manually by finding idealized functions
approximating the shape of interest. This method was
chosen for its simplicity and fast estimation in obtain-
ing user-verified 2d shapes of arbitrary smoothness
and precision.

The ContourizeMe GUI was developed with the
Python package Tkinter. Contour estimation from
image thresholding works by first applying noise
reduction to a given image if needed. The contour
is assumed to be represented in the image by a gra-
dient or steep change in the pixel values that sep-
arates the foreground, or object of interest (OOI),
from the background. For many images this means
the existence of one or three inequalities or pixel-
value bounds (3 for the case of RGB and HSV val-
ues) that quantify this separation. Image noise from
one or multiple sources can make these inequalities
ill-defined. Possible sources of image noise are numer-
ous and include sensor and electronic-circuit noise,
analog-to-digital conversion errors, and even statis-
tical quantum fluctuations [53, 54]. ContourizeMe
provides implementations of various common noise
reduction techniques that the user may choose from
depending on the source and strength of the noise
present in their own images.

In the next step after determining an appropriate
noise reduction technique, the user manually deter-
mines one or more pixel value bounds depending
on a given parameterization (RGB, grayscale, HSV,
etc) that forms the lowest-area hull that corresponds
to the OOL This closed region is used to produce a
binary image with pixel values of 1 corresponding to
those contained in the provided region and 0 corre-
sponding to those not in this region. A topological

algorithm in OpenCV [52] is applied to this binary
image to give contours that fully describe ‘separate’
clusters of homogeneous pixels (in this case pixels
that all equal 1). This algorithm yields integer pixel
estimates of the boundaries, which are then refined
to sub-pixel estimates with user specified smooth-
ness via the Chan—Vese algorithm. More details are
provided in the following subsections.

These contours themselves are estimations of the
shapes of interest that are then used to yield pre-
cise descriptions of the shapes as a set of continu-
ous Bézier curves (see appendix B). Bézier curves are
constructed using evenly spaced points from the sub-
pixel boundary estimates and exported in the SVG
format.

2.1.1. Noise reduction

Filtering algorithms, the topological contour estima-
tion algorithm, and most of the image manipula-
tions (such as RGB to HSV conversion, thresholding,
etc) are accomplished in ContourizeMe via Python
bindings of the OpenCV package [52]. OpenCV is
a computer vision suite developed in C++ built to
tackle various problems including segmentation, 3D
reconstruction, edge-finding, and other related tasks.

ContourizeMe’s main GUI includes:

e An average filter which essentially is a type of
down sampling that assumes the true value of
any pixel can be estimated by the average pixel
value of a K by K window surrounding that
pixel. This is equivalent to convolving the image
with a low-pass filter kernel.

e A Gaussian filter which convolves the image
with a Gaussian kernel of a specified size
and standard deviation in both the x and y
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directions. This is similar to the average filter,
but pixels are weighted via the 2D Gaussian
function specified before they are averaged.

A median filter which instead of the average
over a window, takes the median pixel value.
This kind of filter is typically used for ‘salt and
pepper’ type image noise, and has the advantage
ofleaving only pixel values that would have been
observed in the original image.

e A bilateral filter which is the recommended
choice. The bilateral filter behaves similarly to
the Gaussian filter, but in addition to weight-
ing pixels by their spatial distance it also
weights them by their difference in intensity
in an attempt to preserve edges or gradient
information.

While the bilateral filter is recommended because
of its intended edge-preservation [55], one may want
to employ one of the other convolution filters as they
can smooth boundaries produced by the threshold-
ing and topological algorithms. We must also stress
that this selection is highly limited in scope and much
more sophisticated and robust techniques for the
denoising of images exist depending on the image
acquisition method and content. It may be that mak-
ing a model of the noise via a deep neural net such
as UNet [56], CAIR [57], Noise2Noise or Noise2Void
[58] may be required or produce better results. Any
method may of course be employed before using this
segmentation GUL

2.1.2. Smoothing the results from OpenCV’s

algorithm

In order to give the user control over the smoothness
of the resulting curve they obtain, we use a Python
implementation of the Chan—Vese level set algorithm
[59]. This method of smoothing the curve ensures
that reductions in the curvature are chosen such that
they have minimal costs to accuracy and that the con-
tour remains true to the original image. We allow
users to specify both the error tolerance in pixels,
as estimated from each iteration of the Chan—Vese
algorithm, and the parameter o which controls the
contribution of the total curvature of the boundary
to the energy functional and thus the smoothness of
the obtained contour.

2.2. Going from curves to mesh

The second part of our software package consists of
a script that takes vector based graphics, specifically
the SVG standard, to obtain a discretized curvilin-
ear mesh that describes the boundary of the OOL
The idea behind vector graphics is to represent shapes
in terms of control points of non-uniform rational
basis splines. Only control points of the parameter-
ized curves are stored while the standard defines the
basis polynomials themselves. The resulting curves
can be represented smoothly at any scaling or
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resolution of interest and can easily be mapped to the
simulation space using an affine transformation.

A variety of vector graphics file formats are avail-
able, several of which are proprietary. We have chosen
to implement our software using the SVG standard
because it is a popular, open-source standard and for
its ease of use. SVG files are UTF encoded text files
following an XML schema, making them amenable
to XML parsing methods. A particular benefit of the
SVG standard is that it is widely supported; if edge
detection fails or gives insufficient resolution, mul-
tiple vector graphics programs such as Inkscape or
Adobe Illustrator may be used to clean up or directly
hand-draw the boundaries of interest from an image.
The standard has support both for Bézier curves as
well as geometric primitives (rectangles, triangles,
etc), and the current version of MeshmerizeMe utilizes
the free path element, which encodes curves as Bézier
curves.

To reduce the need for additional configuration
files, MeshmerizeMe has been built to utilize the
‘input2d’ file format that is utilized by IB2d and
IBAMR. This file is required, and the MeshmerizeMe
code expects the following variables to be defined in
the input2d file®:

e Lx, Liy: the length of the computational domain

in the x and y direction, respectively.

e Nx: number of points in the x direction.

Even if the user chooses to use a different CFD
software for the simulation, MeshmerizeMe can still
be used to create the requisite mesh points. Strict
adherence to the IB2d format is not required. A min-
imal working example of the input2d file required for
MeshmerizeMe requires only four lines. The example
below will create a mesh appropriate for a [0,0.5] x
[0,0.5] domain with a 64 x 64 mesh.

Nx = 64
Lx = 0.5
Ly = 0.5

string_name = test

Please note that this minimal example is only
sufficient for MeshmerizeMe. A simulation for 1B2d
or IBAMR will require additional settings in the
input2d file, such as the fluid parameters mu and
rho and temporal information such as the desired
time step dt and time the simulation is to run.
Any such additional settings may be present in the
input2d file, but will be ignored by MeshmerizeMe.

MeshmerizeMe will automatically compute the
appropriate boundary point spacing of As = %Ax,
where Ax = ]LT’; We note that it is standard in the
IB literature to set the spacing between the IB points
to half that of the spatial step for the Navier—Stokes
solver, As = 1 Ax [14]. This choice of spacing allows

8 MeshmerizeMe expects a square discretization, that is Ax = Ay,
but does not require a square computational domain.
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the boundary points to move independently while
also restricting most of the flow between the points.
Using these parameters, the software will parse the
supplied SVG file itself and extract the path objects,
splitting them up into individual Bézier curve objects.
The control points are then converted to the experi-
mental coordinate system defined by Lx and Ly.

Let v(t) € R? represent a particular Bézier curve.
To create the mesh, we seek n parameters {#;} with
0<t1<fh <---<t, <1 such that the distance
between points on the curve with these parameters is
fixed:

dit) = |v(ti) —vY@®H)|| =As, i=1,...,n—1.
(1)

m d(y)
o _ (ﬂfll)(As)Z _d<tjl) (d(t;1) —
: 1 —d(t]l 1) (d(t1) —
e I d( ) (d(5) —

Here, we use the notation (a,b) to denote the
inner product between a and b.

The number of points n to be found per path are
estimated by dividing the arc-length by the desired
length As. This may result in more dense than opti-
mal spacing of points, but in practice achieves suffi-
cient accuracy. The error will depend on the curvature
of .

We then evaluate our curve at the points
t; obtained from this technique to determine
the discretized boundaries of interest. The pro-
duced Lagrangian mesh is output to a file called
fname.vertex where ‘fname’ is based on the
value of string name taken from the ‘input2d’
file. The vertex file itself is a simple text file. The first
line consists of an integer giving the total number
of mesh points and the following lines contain one
mesh point each, given as a space delimited pair of
floats representing the x and y direction coordinates.

2.2.1. Distribution of errors in approximation

To test the relative accuracy of our script, we cre-
ated 5000 SVG files each containing a randomly gen-
erated cubic Bézier curve. For purposes of unifor-
mity during testing, each curve was generated on a
1000 x 1000 pixel domain to be mapped ontoa 1 x 1
mesh domain using a 256 x 256 grid. All parameters
were set to default values. A script was then run to cal-
culate the minimum, maximum, mean, and median

(d(t) = As) (v (ti1) — v(tj),vﬁy(tj»} ,
A$<vw)—vwlxv7@»y ifj=n—1

As) (v(t)
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We utilize a gradient descent method to find these
parameters. Specifically, we define our cost function
J(t) using the mean squared relative error of all d(#;)
values (scaled by % to cancel the power of 2 coming
from the partial derivatives in (4))

d(t,)—A
0 () e

(2)
and minimize J(¢) by iteratively updating ¢ with a
variable learning rate «:

thew = told — av](t)) (3)

where

ifj=1

(4)
= (1), V(1)

, otherwise.
As) (Y(t41) — v(5), V()

relative errors for each curve. The mean of the median
relative error of curves in the script is 3.2%. The mid-
dle 50% of median relative errors is in the 2.6—3.5%
range. See figure 3 for the distribution of the median
relative errors.

Note that if a higher degree of accuracy is desired,
the user is able to experiment with different param-
eters that can influence the average error. Meshmer-
izeMe allows the user to set both the learning rate as
well as the convergence threshold of the mean squared
error as command-line options when creating the
mesh.

One potential limitation on the error is the
method we have chosen to seed the curves. Specifi-
cally, after reading the SVG our script merges all indi-
vidual SVG path objects into a single path object.
This path object is then split into several sub-paths of
equal arc-length. Each of these sub-paths are seeded
with n = Ly, /As points, where Ly, is the length of
the sub-path and As is the desired Euclidean distance
between mesh-points. For sub-paths with very large
curvature, this seeding method may overestimate the
number of points necessary for ideal discretization. In
such cases, the user may re-run the MeshmerizeMe
script with thenum-points flag to manually specify
a lower number of points per sub-path. In our expe-
rience, this is an unusual occurrence that can usually




I0P Publishing

Bioinspir. Biomim. 16 (2021) 016008

D M Senter et al

0.7 4

0.6

0.5 4

Density

0.3

0.2 4

0.1

0.0 T T T
0 2 4

Median Relative Error (%)

Figure 3. A distribution plot of median errors calculated from the meshes created for the error experiments in section 2.2.1.
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be solved by experimenting with the num-points
flag.

It should also be noted that our current algorithm
assumes the OOI is a contiguous path, that is we
assume the object can be represented by a single poly-
Bézier curve with at least geometric continuity. In the
SVG file, this representation is not limited to repre-
sentation by a single path element. When the SVG
file is parsed, all path elements are merged into a
single poly-Bézier path object. This object is then
divided into several sub-paths of approximately equal
length which are then processed in parallel. If the
OOI consists of two non-contiguous paths or mul-
tiple objects are represented in the source SVG, the
MeshmerizeMe script will report a large error result-
ing from the distance between two sequential points
on non-contiguous paths. In the presence of several
non-contiguous paths, the minimization algorithm
will lead to a slight skewing of points toward path
boundaries.

3. Examples: bringing everything
together

We present several examples that illustrate the
software’s ability to recreate complex geometries. In
each example, ContourizeMe is used to extract con-
tours from images, MeshermizeMe is then used to
compute the model’s discretized geometry. The flow
within or around the geometries is solved using an
open-source implementation of IBM, either IB2d or
IBAMR. The following examples are illustrated:

(a) Hemolymph flow through dragonfly wing veins
(section 3.1)

(b) Lymph flow through a branching lymphatic cap-
illary (section 3.2)

(c) Oscillatory flow past a starfish or array of starfish
(section 3.3)

In every example, we present the original image
on which the computational geometry is based, fol-
lowed by images that illustrate how MeshmerizeMe
computed its associated discretized mesh. Finally,
we present computational results to illustrate suc-
cessful integration of the geometry into the IBM
software.

3.1. IB2d: dragonfly wing veins example

For our first example, we chose a public domain
image of a dragonfly wing shot with a Canon EOS
5D Mark with a 100 mm lens [60]. For the purpose
of running a tractable FSI simulation, we cropped
this image to a section of the wing and manu-
ally occluded parts of the veins using the open
source image manipulation software GIMP [61].
Figure 4 shows the original image of the dragonfly
wing and the region that was chosen for numerical
simulation.

As shown in figure 2, we used the ContourizeMe
GUI to create boundaries describing the subsection of
the wing vasculature. Briefly, the image was cropped
so that only a couple dozen vessel segments would be
considered. The image was then loaded into the Con-
tourizeMe GUI. Noise reduction was then applied to
the image, and a pixel bound was selected such that
the lowest-area hull sufficiently matches the edge of
the vessel network. The edges were then smoothed
using the Chan—Vese algorithm, and the result was
exported to SVG.

The MeshmerizeMe script was then used to obtain
a curvilinear mesh from the SVG file. The x, y coordi-
nates of this mesh were written to the . vertex file.
The file contained the coordinates for approximately
equally-spaced Lagrangian points that were then used
as an input into IB2d. For the purpose of run-
ning an IB2d simulation where the complex geome-
try remains relatively fixed while the fluid is driven
through it, we only require the vertex point of each
Lagrangian Point, i.e. the (x,y) values of each point
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(a)

Figure 4. (a) The original public domain image of a dragonfly wing [60]. (b) The partial region of the dragonfly wing that was
chosen for numerical simulation in IB2d. Some vessels were opened so that flow would have obvious entry and exit paths.
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Figure 5. Snapshots comparing the magnitude of velocity for different Re, Re = 0.6, 6, 60.
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along the insect wing. Since the wing veins should be
relatively rigid and not move, each Lagrangian ver-
tex point was tethered to a target point (see A.1). This
has the effect of applying a force proportional to the
distance between the location of the actual boundary
and the desired position. In other words, the bound-
ary is pushed back into place as fluid moves through
the network. The necessary input information for
IB2d is written in the wing veins.vertex and
wing veins.target files.

This example can be found in the open source
IB2d software available at github.com/nickabattista
/IB2d and this example can be found in the follow-
ing subdirectory, IB2d/matIB2d/Examples/

Example_MeshmerizeMe/Dragonfly Wing/.

More details on IB2d and the IBM in general can be
found in appendix A.

To drive flow through the wing, a penalty force
is applied to the fluid that is proportional to the
difference between the local fluid speed and the
local target velocity (see A.1). For our example, a
parabolic flow profile is enforced at the inlet of the
insect wing, and all subsequent flows through the
veins result from that inflow and are not them-
selves prescribed (see figure A.11). The full imple-
mentation of this simulation can be found in
the please_Compute_External_Forcing.m
script.

To illustrate flow through the wing vein geometry,
we ran multiple simulations corresponding to various
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Figure 6. Snapshots comparing the pressure for different Re, Re = 0.6, 6, 60.

Reynolds numbers (Re), given by

LU
Re = 2=, (5)
1

where p is the density of the fluid (kgm™2), p is the
dynamic viscosity (Nsm™!), and L and U are char-
acteristic length and velocity scales respectively. We
note that in these simulations, we varied p while hold-
ing p = 1000 kgm 2, L = w (width of the vein where
the inflow is produced), and U = 5ms™! (the maxi-
mum speed of the parabolic inflow). Simulations were
run over a couple orders of magnitude of Re ranging
through Re € [0.1,100] on a [0,0.5] x [0, 0.25] grid
with resolution of dx = 0.5/1024 = 0.25/512 = dy.

The result illustrates the flow through the complex
geometry as shown in figures 5 and 6. We note that
the example of flow through a subset of the veins in a
dragonfly wing was chosen to showcase the function-
ality of the software to capture and digitize intricate
complex structures.

Figures 5 and 6 compare the flow profiles and
pressures generated for three simulations when inflow
reaches its steady state through the dragonfly’s com-
plex wing vein geometry at Re = 0.6, 6, 60. It is clear

there is more flow through the complex morphol-
ogy with higher pressures for higher Re. Note that
when using the IBM, the entire structure is fully
immersed within a fluid, so there is fluid in the region
enclosed between veins. Hence the pressure fields in
such regions are not physical but instead are artifacts
of these regions being within a fluid environment and
being enclosed.

3.2. IBAMR: lymphatic capillary example
As another example of how our software can be used,
we present a case in which the vessel walls of a junc-
tion from a dermal lymphatic capillary are recon-
structed from an image. This image is courtesy of
Dr Wenjing Xu from the Kathleen Caron lab (UNC-
CH) and was taken from the back region of a wild
type mouse embryo. The image was generated with
fluorescence microscopy to highlight the lymphatic
vessel boundaries as shown in figure 7(a). The sim-
ulations described below were performed using the
IBM with adaptive mesh refinement (IBAMR) (see
appendix A).

After the contours were extracted using Contour-
izeMe, the ends of the vessels were extended using
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(©

Figure 7. (a) Source image for modeling flow through a junction in a lymphatic capillary, courtesy of Dr Wenjing Xu from the
Kathleen Caron lab. (b) SVG rendering of bifurcating vascular structure. (c) Vertex points discretized from SVG file. (d)
Colormap of the magnitude of velocity of flow through a bifurcating dermal lymphatic capillary. Note that the vessel ends were
artificially extended to allow for fully developed flow within the vessels.

[U] (m/s)

1.5160-008
7.5810-008

3.7910-008

4272001

Distance (m) (x10/-6)

100 200 300 400 500 600

Distance (m) (x10/-6)

—~
(=N
=

Original Starfish Image
(Creative Commons)

ContourizeMe produced
SVG image

@ ®)

MeshmerizeMe produced geometry

St

MeshmerizeMe produced geometry
(256x256 resolution)

© @

(128x128 resolution)

N

Oscillatory (Sinusoidal)
Parabolic Inflow

@©

Figure 8. (a) Original starfish image courtesy of NOAA Sea Grant Program [47] (b) SVG image of the starfish generated by
ContourizeMe script (c), (d), (f). The discretized geometry at grid resolutions of 128 x 128,256 x 256, and 1024 x 1024
respectively. (e) Computational geometry containing a starfish in a channel with prescribed oscillatory parabolic inflow (see A.1).

MeshmerizeMe produced geometry
(1024x1024 resolution)

®

image software to allow the flow within the vessels
to fully develop before reaching the actual ves-
sel geometry. Parabolic outflow was prescribed as
a boundary condition to effectively ‘pull’ the fluid
into the vessel ends with a maximum velocity of
107> m s !. This velocity is consistent with the
reported range of observed lymphatic flow veloci-
ties, which are as low as 1077 and as high as 1073 m
s~ [62, 63]. Note that the vessel ends were placed
at the left domain edge for this purpose. Neumann
boundary conditions were used at the right edge of the
domain to allow volume conservation (fluid escapes
on this side), and periodic boundary conditions were

used at the top and bottom of the domain. The ves-
sel was assumed to be nearly rigid over the time
scale of a simulation. The Navier—Stokes equations
were discretized on a 512 x 512 grid with 3 lev-
els of mesh refinement and a refinement ratio of 4.
The fluid domain size was set to L = 1.2 x 107> m,
where the spatial step size was set to Ax = L/512.
The vessel walls were described using a curvilinear
mesh where the distance between IB points was set
to As = Ax/2. The time step size was taken as dt =
5.0 x 107%s. The lymph was parameterized with mass
density p = 1000 kg m~ and dynamic viscosity ;1 =
10°Nsm™2.
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Figure 9. Snapshots showing oscillatory flow past a rigid starfish at Re = 800 during the first 6 pulsation periods. The

3.3. IB2d: starfish example

The last example we present is that of flow around
a starfish using IB2d. The original JPG image of
the starfish was taken from WikiMedia Commons,
courtesy of NOAA Sea Grant Program in the Coral
Kingdom Collection [47]. The SVG file was pro-
duced by ContourizeMe, and the boundaries were dis-
cretized using MeshmerizeMe as shown in figure 8.
Figures 8(c), (d) and (f) give the discretized geome-
tries for the starfish at resolutions appropriate for an
IB simulation in a square fluid domain with L, =
L, = 1 where the spatial step size within such domain
was set to Ax =L,/128 (128 x 1238) and Ax =
L,/256 (256 x 256), and Ax = L,/1024 (1024 x
1024) respectively. Note that in figure 8(f) that the
starfish’s outline is still composed of discretized
points. Recall that the average spacing between
boundary points is set to one half of the spatial step
size, e.g., As = 0.5Ax. Once the boundary describing
the starfish is discretized at the desired resolution, it is
placed inside of a rigid channel, where oscillatory flow
will be prescribed to rush past the starfish as shown in
figure 8(e).

We acknowledge that the starfish geometry is
rather complex, and our simulation is relatively
coarse. As such, we are likely not resolving the details
of the flow very close to the starfish body. We would
like to point out, however, that the purpose of this
example is to further illustrate MeshmerizeMe’s abil-
ity to resolve and capture the fine structure detail of
an SVG image. Thus, our goal in this example is not
necessarily to resolve these fine scale flow structures.

This example also highlights that once the geome-
try has been created for a single starfish, it can be
easily altered. For example, this geometry can be
copied, translated to different regions of the domain,
or rotated since the software provides a parameterized
set of points.

We ran a single starfish simulation at Re = 800
(see equation (5)), where L = 0.08 m, the height of
the starfish, V.= 1.0 ms™!, half the maximum oscil-
latory inflow speed, and p and p are 1000 kgm~2 and
0.1 Nsm™!, respectively. An oscillatory flow condi-
tion was used to produce flow past the starfish with
frequency of f = 2 Hz, see A.1. The numerical simu-
lation was performed for a fluid domain with lengths
[0,1] x [0,0.25] and a consistent spatial step size
in each direction, e.g., dx = 1.0/1024 = 0.25/256 =
dy. Snapshots from the numerical simulation that
illustrate a colormap of vorticity are found in
figure 9.

Previously, one of the main difficulties in per-
forming this IB simulation would be the finite
difference discretization of the starfish. Meshmer-
izeMe provides a convenient way to do this, without
having to manually piece together the geometry
either by point-by-point construction or combining
user-defined piecewise functions or splines. To
demonstrate the versatility of this method, we insert
multiple starfish into the channel. Figure 10 provides
snapshots showing the vorticity during the first
pulsation period of oscillatory flow around one,
three, or five starfish within a channel. The example
for flow around a single starfish can be found in
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Figure 10. Snapshots showing oscillatory flow past 1, 3, or 5 rigid starfish at Re = 800 during the first pulsation period. The

the open source IB2d software’s sub-directory,
IB2d/matIB2d/Examples/Example_Meshm
erizeMe/Starfish/.

4. Discussion

In this paper, we introduce a software library that will
extract edges from images, fit these images with Bézier
curves, and discretize the curves into a curvilinear
finite difference mesh with nearly constant spacing
between points. Such meshes are useful in a variety
of mathematical applications, including 2D numer-
ical simulations of FSI problems using the IBM.
We present three such applications of the tool used
in conjunction with the IBM including 1) flow of
hemolymph in the veins of an insect wing (internal
flow), 2) flow of lymph in a mouse lymphatic cap-
illary (internal flow), and 3) flow of water around
starfish (external flow). These images were taken with
either high resolution digital cameras or fluorescence
microscopy. Prior to this software release paper, the
software was successfully applied in another inter-
nal flow application of blood flows over the tra-
beculae in zebrafish embryonic hearts [64]. Here
the meshes were created from images taken from
an inverted (light) microscope [65]. This illustrates
the software’s robustness in its ability to construct

discretized meshes from various imaging methods.
Note that all of the above examples were performed
using open-source implementations of the IBM,
either IB2d [12, 13] or IBAMR [66].

While MeshmerizeMe merely provides 2D geome-
tries, its output format can serve as a starting point
in the development of 3D models. Commercial CAD
software such as Fusion360 allow the import of SVG
images, such as those produced by the ContourizeMe
script, as sketches. Fusion360’s built-in scripts allow
the import of a CSV file describing a spline using XYZ
coordinates. The latter is easily produced via com-
mandline tools like tail and sed from the vertex
files produced by the MeshmerizeMe script. This like-
wise imports the curves as a sketch. These imported
sketches can then be turned into 3D objects using
extrude and rotate commands. From here on, exist-
ing 3D meshing tools may be used to produce a mesh
suitable for a 3D simulation.

To create simple 3D geometries, the 2D mesh
could be extruded manually by adding a third coor-
dinate, and this coordinate could be varied by As
to obtain a finite difference mesh that describes
an outer wall. Similarly, the 2D mesh could be
rotated about a central axis to obtain another sim-
ple 3D geometry. Sample applications of these sim-
ple geometries could include wings or fins with
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constant cross sections and axisymmetric structures
such as tubular hearts, jellyfish, and some worms.
The meshes could also be used in other finite dif-
ference approaches to FSI problems, including the
method of regularized Stokeslets [67], the immersed
interface method [68], sharp interface methods
[69, 70], or the blob projection method [71]. The
software library could also be applied in the numer-
ical simulation of other physics problems, includ-
ing the uptake of particles [72] and electrodiffusion
[73]. In future releases of the software library, we
plan to add additional functionality that includes the
automation for material property model input files,
e.g., springs, beams, etc, for the geometry’s discretized
points.

In addition to use in research, this library may
serve as a powerful tool for student research and edu-
cation, particularly in mathematical modeling at the
undergraduate and graduate levels. MeshmerizeMe
provides students with open source tools that can
easily be used to build relatively complicated 2D
meshes from images. These boundary meshes are eas-
ily imported and used in IB2d and IBAMR, both of
which are also open source libraries. One of the coau-
thors has developed a series of online videos to make
the use of this software even easier for students [74].
Both IB2d and MeshmerizeMe have been used in the
authors’ undergraduate and graduate courses, includ-
ing mathematical modeling, mathematical biology,
numerical analysis, and a first year seminar on biolog-
ical fluid dynamics. Furthermore, the libraries have
been successfully used in numerous undergraduate
research projects [75, 76] and contemporary locomo-
tion research endeavors [77].
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Appendix A. Details on the immersed
boundary method

The two-dimensional formulation of the IB method
used in this paper to study flow through dragonfly
wing veins, lymphatic capillaries, and around starfish
is provided below. IB2d [12, 13, 39] and IBAMR [40]
are the two open source implementations that were
used for these studies. For a full review of the IBM,
please see Peskin [14].

A.1. Governing equations of IB

The conservation of momentum equations that gov-
ern an incompressible and viscous fluid are listed
below:

ou
P E(X’ t) + (u(x, £) - V)u(x, t)

= —Vp(x,t) + pAu(x, t) + f(x, ) (A.1)

V- uxt)=0 (A.2)

where u(x, ) is the fluid velocity, p(x, t) is the pres-
sure, f(x, ) is the force per unit area applied to the
fluid by the IB, p and p are the fluid’s density and
dynamic viscosity, respectively. The independent vari-
ables are the time ¢ and the position x. The variables
u, p, and f are all written in an Eulerian frame on the
fixed Cartesian mesh, x.

The interaction equations, which handle all com-
munication between the fluid (Eulerian) grid and
curvilinear mesh describing the IB (Lagrangian grid)
are given by the following two integral equations:

f(x, 1) = /F(s, )0 (x — X(s, 1)) ds (A.3)

U(s, 1) = /u(x, )6 (x — X(s, 1)) dx (A4)

where F(s, t) is the force per unit length applied by
the boundary to the fluid as a function of Lagrangian
position, s, and time, t, §(x) is a three-dimensional
delta function, and X(s, ) gives the Cartesian coor-
dinates at time t of the material point labeled
by the Lagrangian parameter, s. The Lagrangian
forcing term, F(s,t), gives the deformation forces
along the boundary at the Lagrangian parameter,
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Parabolic Inflow

Figure A.11. Illustrating the subset of the insect vein geometry where the prescribed inflow condition is enforced.

s. Equation (A.3) applies this force from the IB
to the fluid through the external forcing term in
equation (A.1). Equation (A.4) moves the boundary
at the local fluid velocity. This enforces the no-slip
condition. Each integral transformation uses a two-
dimensional Dirac delta function kernel, ¢, to convert
Lagrangian variables to Eulerian variables and vice
versa.

The way deformation forces are computed,
e.g., the forcing term, F(s,#), in the integrand of
equation (A.3), is specific to the application. To hold
the geometry nearly rigid, all of the Lagrangian points
along the IB were tethered to target points. This has
the effect of holding the boundary in place through
a penalty forcing term where the force applied to
the fluid is proportional to the difference between
the actual location of the boundary and the desired
location. In this model, the target force penalty term
took the following form,

F(s, 1) = karg (Y(s, 1) — X(5, 1)), (A.5)

(MP +w/2 — y)(MP — w/2 — y)

where ki is a stiffness coefficient and Y(s, t) is the
prescribed position of the target boundary. Note that
Y(s,t) is a function of both the Lagrangian param-
eter, s, and time, #; however, in this model ki, was
chosen to be very large to minimize movement of the
boundary.

For the case of the dragonfly wings, another
penalty forcing term was used to prescribe the inflow
conditions into the wing veins. This penalty force
was applied directly onto the Eulerian (fluid) grid.
The penalty force was proportional to the difference
between the local fluid velocity and the desired fluid
velocity and is given as

finﬂow = kﬂow (U(X, t) - uﬂow(x) t)) > (A6)

where kqow is the penalty-strength coefficient, and
Ufow (X, 1) is the desired background flow profile as
n [78]. For the simulations involving hemolymph
flow through wing veins, we enforce the following
parabolic inflow into the wing vein along the x-
direction,

—Unpax tanh(2t) (
uﬂow(xr t) =

where Upay is the desired max peak velocity in the
parabolic inflow, MP is the midpoint of the vein and
w is the width of the vein. Note that a hyperbolic tan-
gent is used to ramp up the inflow during the course
of the simulation.

w?/4

(MP +w/2 — y)(MP —w/2 —y)

) if inside prescribed region

elsewhere
(A.7)

Similarly, for the simulations of oscil-
latory flow past one or more starfish, we
enforce the following oscillatory  parabolic
inflow into the starfish channel in the

x-direction,

—Umax sin(27ft) <

uﬂow(x> t) =

w? /4

) if inside prescribed region

elsewhere
(A.8)
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where fis the frequency of pulsation (set to 2 Hz) and
the other parameters are analogous to before except
with w and MP being the width and midpoint of the
channel, respectively.

Using a regularized delta function as the kernel

in the interaction equations given by equations (A.3)
and (A.4) makes the IBM relatively easy to implement

1

§(3 = 2|r| + /1 4 4|r| — 4r?),
1

g2+ V=7 + 12l —4r), 1<) <2

o(r) =

0

A.2. Numerical algorithm

For the wing vein and starfish examples that use
IB2d, we impose periodic and no slip bound-
ary conditions on a rectangular domain. To solve
equations (A.1)—(A.4) we need to update the velocity,
pressure, position of the boundary, and force acting
on the boundary at time # 4 1 using data from time
n. The IB does this in the following steps [14], with an
additional step (4b) for IBAMR [40, 79]:

Step 1: find the force density, F” on the IB, from
the current boundary configuration, X".

Step 2: use equation (A.3) to spread this bound-
ary force from the Lagrangian boundary mesh to the
Eulerian fluid lattice points.

Step 3: solve the Navier—Stokes equations,
equations (A.1) and (A.2), on the Eulerian grid.
Upon doing so, we are updating u”t! and p"*! from
u", p", and f". Note that a staggered grid projection
scheme is used to perform this update.

Step 4: 4a. Update the material positions, ). Gann
using the local fluid velocities, U"*, using u"*! and
equation (A.4).

4b. (IBAMR only) refine Eulerian grid in areas of
the domain that contain an immersed structure or
where the vorticity exceeds a predetermined thresh-
old, if on a selected time-step for adaptive mesh
refinement.

Appendix B. Background on Bézier
curves

Bézier curves are a type of interpolating polyno-
mial known as a spline. An nth degree Bézier poly-
nomial may conveniently be written as a sum of
n+ 1 weighted control points P;. The weights are
known as Bernstein basis polynomials and take the
form

bty = () =0,

A curve ~(t) may then be written as

D M Senter et al

and flexible. To approximate these integrals, a dis-
cretized (and regularized) delta function was used. In
this paper, we use one described in [14], e.g., I (x),

= mo (o (2)e(E). o

where ¢(r) is defined as

o<l <1
(A.10)

2. < rl.

Y(t) = Pibiu(t).

i=0

The parameter ¢ is defined to be on the closed interval
[0, 1]. The derivative of a Bézier curve is itself a Bézier
curve. Specifically, the first derivative is given by

n—1
V() =1y (Piyy — Pi) by ().
i=0

Paths are modeled as a curve I'(s) that is at least
aC® sequence of curves, where s = [0, 1] is a param-
eter used to map to the individual Bézier curves that
make up the path. If P! is the ith control point of the
jth curve in T', then C° continuity translates into the
requirement that

P =Pt

To achieve C' continuity, we additionally require
that
; j i+1 41
P, —P, =P —P; .

Perhaps the most common Bézier curve in appli-
cations is the cubic Bézier which takes the explicit
form

~(t) = (1 — t)°Py + 3(1 — t)*tP,
+3(1 — )*P, + £°P5.

The explicit derivative of the cubic Bézier is given by

v (t) = 3(1 — 1)*(P; — Py)
+6(1 —1)t(P, — 1) 4 3t2(P; — Py).

To rescale a curve from one domain V to another
domain U, an affine transform of the control points
is sufficient. In the particular case U,V C R? this
transform may be represented as a simple matrix
operator A: R’ — R® by representing a point p €
U, 4 € V in the form (x, y, DT Scaling and translat-
ing of control points may be achieved by the function
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se 0t
Gg=Ap=1{0 s, t|p. (B.1)
0 0 1

For our particular use case we want to map a point
P; from the SVG coordinate system [Xmin>Xmax] X
[Wimin> Ymax) to the coordinate system [0, L] x [0, L]
used in the simulations. Note that the origin of the
SVG coordinates is in the upper left-hand corner of
the image, while the coordinate system used in IB2d
and IBAMR has its origin in the lower left hand cor-
ner. Accounting for this and letting w = Xmax — Xmin
and h = y,_.. — ¥,y Our operator will be defined as

Ly Ly

— — —Xmin

w w

o b (B.2)
h Y

0 0 1
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