
Bioinspiration & Biomimetics

PAPER

A semi-automated finite difference mesh creation method for use with
immersed boundary software IB2d and IBAMR
To cite this article: D Michael Senter et al 2021 Bioinspir. Biomim. 16 016008

View the article online for updates and enhancements.

This content was downloaded from IP address 69.242.232.75 on 05/05/2021 at 03:16

https://doi.org/10.1088/1748-3190/ababb0
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssnfkMg1Ujv9GQS99lwPzT-mol6ZI07aBeNgQN-kat6HgAy_N5aMT_QYK2gNioxfiBSdAnq9wDqEH7Yxtl6_Oko7fgMrmk2RFKgOt4RCigMUYrJ-10XrHbLgSSw71F57vLEiCk3FxdZFcD4zllzv5aADJ67oEtcIEQ05gCdwWxz4JryUDj0R83NVp9i2KOPOQi5p6f39djuNY1t-ceiOFeR_0Wi6lBgNug7a63DwMg2iYywQBYO2YyWd2J9jsStDeMNmvVV7G0bwNOwWYA7rzj7&sig=Cg0ArKJSzBLWEYcM4Pbv&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books

Bioinspir. Biomim. 16 (2021) 016008 https://doi.org/10.1088/1748-3190/ababb0

RECEIVED

11 November 2019

REVISED

8 April 2020

ACCEPTED FOR PUBLICATION

3 August 2020

PUBLISHED

27 November 2020

PAPER

A semi-automated �nite difference mesh creation method for

use with immersed boundary software IB2d and IBAMR

D Michael Senter1,2,∗ , Dylan R Douglas1,3 , W Christopher Strickland1,4 , Steven G

Thomas1 , Anne M Talkington1,2 , Laura A Miller1,2,3 and Nicholas A Battista5

1 Dept. of Mathematics, CB 3250, University of North Carolina, Chapel Hill, NC, 27599, United States of America
2 Bioinformatics. and Comp. Biology, CB 7264, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of

America
3 Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave. P.O. Box 210089 Tucson, AZ 85721-0089, United States of

America
4 Dept. of Mathematics, 1403 Circle Drive, University of Tennessee at Knoxville, Knoxville, TN 37919, United States of America
5 Dept. of Mathematics and Statistics, The College of New Jersey, 2000 Pennington Rd., Ewing, NJ 08628, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: dmsenter@live.unc.edu, dylan_ray@med.unc.edu, cstric12@utk.edu, stevent3115@gmail.com,

annemt@email.unc.edu, lauram9@math.arizona.edu and battistn@tcnj.edu

Keywords: immersed boundary method, fluid-structure interaction, mathematical biology, biomechanics, biofluids

Abstract

Numerous fluid-structure interaction problems in biology have been investigated using the
immersed boundary method. The advantage of this method is that complex geometries, e.g.,
internal or external morphology, can easily be handled without the need to generate matching grids
for both the fluid and the structure. Consequently, the difficulty of modeling the structure lies
often in discretizing the boundary of the complex geometry (morphology). Both commercial and
open source mesh generators for finite element methods have long been established; however, the
traditional immersed boundary method is based on a finite difference discretization of the
structure. Here we present a software library for obtaining finite difference discretizations of
boundaries for direct use in the 2D immersed boundary method. This library provides tools for
extracting such boundaries as discrete mesh points from digital images. We give several examples of
how the method can be applied that include passing flow through the veins of insect wings, within
lymphatic capillaries, and around starfish using open-source immersed boundary software.

1. Introduction

The immersed boundary method (IBM) is a mathe-

matical formulation and numerical method for fully-

coupled fluid-structure interaction (FSI) problems

that dates back to Peskin in 1972 [1]. Since its cre-

ation, the IBM has been used to study a wide variety of

problems in biological fluid dynamics and fundamen-

tal fluid dynamics at low to intermediate Reynolds

numbers (Re < 10 000). Diverse examples include the

aerodynamics of insect flight [2–4], lamprey swim-

ming [5, 6], jellyfish swimming [7, 8], and fluid

flows through organs such as the heart and esopha-

gus [9–11]. The relative ease of implementation and

the availability of open source codes has made it par-

ticularly useful in research and education [12–14].

The original IBM formulation discretizes

immersed, elastic boundaries on a curvilinear

finite difference mesh. Many immersed boundary

(IB) studies are performed in 2D and use simple

geometries with easy mathematical descriptions such

as plates [2, 15], strings [16, 17], tubes [10, 18, 19],

ellipses [20, 21], hemiellipses [8, 22], and circles

[23–25], or in 3D with spheres [26] or cylinders [27].

In other cases, more complicated geometries are

manually constructed by the user via explicit math-

ematical functions or sets of functions that describe

the elastic boundary [9, 28, 29]; this endeavor is,

however, non-trivial. David Baraff, a Senior Research

Scientist at Pixar Animation Studios has publicly

said, ‘I hate meshes. I cannot believe how hard this is.

Geometry is hard’ [30].

This immediately highlights a challenge in per-

forming IB simulations for many biological applica-

tions that have complicated geometries. Most mesh-

ing tools are finite element based, such as MeshLab

[31], Gmsh [32], or TetGen [33], all of which are open

source. As far as we are aware, there is not an openly

© 2020 IOP Publishing Ltd

https://doi.org/10.1088/1748-3190/ababb0
https://orcid.org/0000-0002-2752-1688
https://orcid.org/0000-0002-5424-2086
https://orcid.org/0000-0003-4034-6711
https://orcid.org/0000-0002-6296-6754
https://orcid.org/0000-0003-3707-9798
https://orcid.org/0000-0003-2437-0383
mailto:dmsenter@live.unc.edu
mailto:dylan_ray@med.unc.edu
mailto:cstric12@utk.edu
mailto:stevent3115@gmail.com
mailto:annemt@email.unc.edu
mailto:lauram9@math.arizona.edu
mailto:battistn@tcnj.edu

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

available and easy to use tool for generating curvi-

linear finite difference meshes. A few finite difference

meshing tools that are available constrain the mesh

to a Cartesian grid using cuboids, such as the open

source AEG Mesher [34], which was designed for elec-

tromagnetic simulations, and the propriety software

Argus ONE [35], which was designed to help incor-

porate geographic information system into numerical

models [36].

What’s more, many applications, especially those

in biology and medicine, usually have some imaging

data from which a mesh is estimated. For example,

imagine generating a numerical model of blood flow

through an arterial network. There are highly resolved

images that clearly illustrate arterial branching pat-

terns from which desirable geometric data, e.g., artery

diameters, lengths, branching locations, etc, can be

obtained. To perform numerical simulations that

reveal the spatial variations in the flow due to small

scale geometric effects, one must reconstruct this arte-

rial network in detail. Even for 2D simulations this

process is non-trivial, as one would first need to

recreate the structure using parametric functions and

then select particular parameter values that sample

the structure’s geometry to obtain a computational

mesh with equally-spaced points. While this labo-

rious approach may work for some simplified arte-

rial geometries, if the actual arterial network con-

tains walls that are not perfectly smooth or flat, sim-

ple tubular models may be insufficiently detailed and

hence give rise to non-realistic results. Our software

aims to fill this gap using edge detection on the orig-

inal image, thereby preserving the original pattern

and information from the images. Bézier curves are

then used to mathematically describe the images, after

which they are appropriately sampled to obtain a

curvilinear mesh.

The challenge here is two-fold: first a continuous,

parameterized description of the boundary of interest

must be found, potentially through image segmen-

tation, and then this boundary must be represented

as a finite difference mesh with sampling to give

the desired geometric spacing between adjacent geo-

metric nodes. Given the widespread use of the IBM

approach in both research and education [12–14, 37,

38], we found it useful to create the open source soft-

ware package MeshmerizeMe, a tool that both detects

boundaries in image data and creates finite differ-

ence meshes where the nodes are nearly uniformly

spaced. The output files are designed to be coupled

with IB2d [12, 13, 39], IBAMR [40], and other IB 2D

software.

We provide an overview of the software Meshmer-

izeMe in section 2. In particular, we detail Meshmer-

izeMe’s implementation, workflow (section 2.1), and

how the software computes a discretized mesh from

parametric curves (section 2.2). We then present a

variety of examples using the software in section 3;

including two internal flow examples and one

external flow example. The examples include

hemolymph flow through dragonfly wing veins

(section 3.1), flow through a lymphatic capillary

(section 3.2), and oscillatory flow past a starfish

(section 3.3).

The most straightforward IB simulations using

this software would be developed to simulate the

flow past or through nearly rigid, complex, biolog-

ical boundaries, as demonstrated in these examples.

We do not currently have a method for using mul-

tiple images to simulate moving boundaries. There

are, however, a few ways that one can model mov-

ing and deformable boundaries. To begin, each of

the Lagrangian points can be translated or rotated

using a prescribed mathematical function rather than

moving the boundary based on image tracking. This

approach has been used for a variety of biologi-

cal applications, including flapping insect wings [2],

swimming jellyfish [8, 41], flapping swimmerets [42]

and heart pumping [19]. If, in addition to vertex

points, springs and beams are added to pairs or tri-

ads of vertex points, elastic deformations due to the

FSI can also be simulated. This type of approach has

been used for leaves in flow [43], flapping filaments

[16], the deformation of prey prior to puncture [44],

and the movement of red blood cells [45, 46].

2. MeshmerizeMe implementation

MeshmerizeMe is a software package for the creation

of 2D geometry files for use with open source IB

software such as IB2d and IBAMR. The software

comes with two main scripts: 1) ContourizeMe, which

reads in an image file and uses automatic edge detec-

tion to extract contours of interest into an ‘scalable

vector graphics’ (SVG) file, and 2) MeshmerizeMe,

which processes SVG files and IB2d- or IBAMR-style

input2d files to create ∗.vertex files describing the

geometry of the SVG file at the appropriate resolution.

Both SVG and vertex files are UTF encoded text files.

SVG is a widely supported vector graphics format,

while the vertex-format is used by IB2d and IBAMR to

describe Lagrangian mesh points in an IB simulation.

The MeshmerizeMe script also includes a tool that uses

Matplotlib to allow the user to plot the geometry cre-

ated by MeshmerizeMe for visual verification. These

scripts are written to run in Python 3.x, and upon

installation both scripts are added to the path on a

Linux and Mac environment. This dual-script setup

allows the end-user two distinct entry points into the

workflow; see figure 1 for an illustration.

To provide a concrete example of the workflow,

suppose an image is available either from the field

or an experiment. To detect the edges and gener-

ate an SVG file, the user would run the Contour-

izeMe script on the desired image file (e.g., by typing

ContourizeMe image.jpg in the commandline). This

opens a GUI with several features that may be used

to modify and enhance the image (see figure 2). Note

2

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

Figure 1. Flow chart illustrating the MeshmerizeMe
workflow. Blue rounded boxes represent files, while square
orange boxes represent user actions. The flow chart
illustrates the two main entry points into the work flow
from the source image: automatic edge extraction using the
ContourizeMe script as well as manually creating the SVG
by drawing ‘over’ the image using software like Inkscape.

that common image formats such as jpg, png, and

tiff are supported. For best performance, the image

should provide a good contrast between the object

boundary and background, while also having little

noise. If this is not the case, ContourizeMe allows

the user to adjust the image contrast and saturation7

using simple sliders to better highlight the bound-

ary of interest. Using a slider for the pixel cutoff, the

smoothness of the matched curve can be adjusted to

account for noise. All of these sliders update in real

time. If this proves insufficient, unwanted edges that

were detected can easily be deleted at a later step.

Once the user is satisfied with the result, the curve is

exported to an SVG file to be used as input for the

MeshmerizeMe script.

In some cases, the original image quality may be

high enough to proceed directly to the discretization

phase. In most cases, however, the user will want to

make minor edits to the SVG file to remove any poten-

tial artifacts, such as curves corresponding to back-

ground noise in addition to the boundaries of inter-

est. These edits can be done using common vector

graphics software such as Inkscape (open-source) or

Adobe Illustrator (commercial). Note that this also

provides an alternate entry-step in the MeshmerizeMe

workflow: curves can be freely drawn using such soft-

ware if image data is either not available, the boundary

7 Those changes are temporary and do not affect the original image

data.

structure is purely hypothetical, or in cases when the

original image is too poor in quality for reliable edge

detection. In the latter case, image layers may be used

in software such as Inkscape that allows the user to

trace over the desired edges to create the SVG file with

the necessary boundaries. Once the SVG file has been

cleaned in this manner, it is advised to collapse under-

lying groups and simplify contiguous paths, which in

some vector graphics software can be done from the

‘save’ menu. In other cases, software to do this is freely

available online, such as SVGO and SVGOMG [48,

49].

With the desired geometry extracted into an SVG

image, the next step consists of making a folder in

which the SVG file itself can be found, as well as

an IB2d-style file called input2d. This latter file

includes information such as the spatial discretiza-

tion step size (more details on this can be found

below). Our script reads this file to calculate and sam-

ple the appropriate mesh. MeshmerizeMe is run by

pointing it to the appropriate SVG file (e.g., typing

MeshmerizeMe image.svg from the command line).

It will then create the .vertex file containing the

mesh. Note that the filename of the vertex file will be

taken straight from the input2d file, regardless of the

SVG filename. If multiple meshes are to be created,

MeshmerizeMe can be run in batch mode by provid-

ing it with a list of file names. We also support piping

from STDIN. This allows the user to easily pass a list of

file names, such as one created by the find command,

to MeshmerizeMe for batch processing.

The resulting .vertex file can then be used

as input for IB simulations using IB2d and IBAMR.

Note that the user will need to supply some addi-

tional information as to the relationship between the

boundary points, for example whether or not they are

connected with springs, beams, masses, and so forth.

Currently, files that store this information must be

manually created, although a few of these relations are

implemented as classes in the MeshmerizeMe library

to help with writing such scripts. Once this stage is

completed, the IB simulation is ready to run.

2.1. Overview of contour extraction

In this section, we provide an overview of how Con-

tourizeMe extracts contours from images. This is

motivated by the need to accurately estimate the

shapes of objects from planar images or within some

cross-section. Many techniques, ranging from edge-

finding using image gradients to image segmentation

accomplished through supervised training of deep

neural nets, have been proposed as generalized meth-

ods to extract such edges [50, 51]. The niche filled

by MeshmerizeMe is to easily obtain 2d meshes from

image data that can be directly used in IB2d and

IBAMR. In essence, it allows for the semi-automated

generation of meshes from image data using simple

contour estimation from hand chosen thresholds of

pixel values [52] as a first step in the IBM workflow.

3

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

Figure 2. The ContourizeMe GUI in action on Manjaro Linux 18.0.4 with Gnome DE emulated in VirtualBox. The main window
to the left allows the user to select the desired type of parameterization of the source image. The user can chose grayscale, RGB, or
HSV. The sliders allow the user to set the desired threshholding in that parameterization. The detected edges are displayed in the
live image (upper right) in green. The user may optionally display the result of the paramterization and filtering (lower right).
Starfish image reproduced from [47].

This replaces the need to completely create the struc-

ture mesh manually by finding idealized functions

approximating the shape of interest. This method was

chosen for its simplicity and fast estimation in obtain-

ing user-verified 2d shapes of arbitrary smoothness

and precision.

The ContourizeMe GUI was developed with the

Python package Tkinter. Contour estimation from

image thresholding works by first applying noise

reduction to a given image if needed. The contour

is assumed to be represented in the image by a gra-

dient or steep change in the pixel values that sep-

arates the foreground, or object of interest (OOI),

from the background. For many images this means

the existence of one or three inequalities or pixel-

value bounds (3 for the case of RGB and HSV val-

ues) that quantify this separation. Image noise from

one or multiple sources can make these inequalities

ill-defined. Possible sources of image noise are numer-

ous and include sensor and electronic-circuit noise,

analog-to-digital conversion errors, and even statis-

tical quantum fluctuations [53, 54]. ContourizeMe

provides implementations of various common noise

reduction techniques that the user may choose from

depending on the source and strength of the noise

present in their own images.

In the next step after determining an appropriate

noise reduction technique, the user manually deter-

mines one or more pixel value bounds depending

on a given parameterization (RGB, grayscale, HSV,

etc) that forms the lowest-area hull that corresponds

to the OOI. This closed region is used to produce a

binary image with pixel values of 1 corresponding to

those contained in the provided region and 0 corre-

sponding to those not in this region. A topological

algorithm in OpenCV [52] is applied to this binary

image to give contours that fully describe ‘separate’

clusters of homogeneous pixels (in this case pixels

that all equal 1). This algorithm yields integer pixel

estimates of the boundaries, which are then refined

to sub-pixel estimates with user specified smooth-

ness via the Chan–Vese algorithm. More details are

provided in the following subsections.

These contours themselves are estimations of the

shapes of interest that are then used to yield pre-

cise descriptions of the shapes as a set of continu-

ous Bézier curves (see appendix B). Bézier curves are

constructed using evenly spaced points from the sub-

pixel boundary estimates and exported in the SVG

format.

2.1.1. Noise reduction

Filtering algorithms, the topological contour estima-

tion algorithm, and most of the image manipula-

tions (such as RGB to HSV conversion, thresholding,

etc) are accomplished in ContourizeMe via Python

bindings of the OpenCV package [52]. OpenCV is

a computer vision suite developed in C++ built to

tackle various problems including segmentation, 3D

reconstruction, edge-finding, and other related tasks.

ContourizeMe’s main GUI includes:

• An average filter which essentially is a type of

down sampling that assumes the true value of

any pixel can be estimated by the average pixel

value of a K by K window surrounding that

pixel. This is equivalent to convolving the image

with a low-pass filter kernel.

• A Gaussian filter which convolves the image

with a Gaussian kernel of a specified size

and standard deviation in both the x and y

4

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

directions. This is similar to the average filter,

but pixels are weighted via the 2D Gaussian

function specified before they are averaged.

• A median filter which instead of the average

over a window, takes the median pixel value.

This kind of filter is typically used for ‘salt and

pepper’ type image noise, and has the advantage

of leaving only pixel values that would have been

observed in the original image.

• A bilateral filter which is the recommended

choice. The bilateral filter behaves similarly to

the Gaussian filter, but in addition to weight-

ing pixels by their spatial distance it also

weights them by their difference in intensity

in an attempt to preserve edges or gradient

information.

While the bilateral filter is recommended because

of its intended edge-preservation [55], one may want

to employ one of the other convolution filters as they

can smooth boundaries produced by the threshold-

ing and topological algorithms. We must also stress

that this selection is highly limited in scope and much

more sophisticated and robust techniques for the

denoising of images exist depending on the image

acquisition method and content. It may be that mak-

ing a model of the noise via a deep neural net such

as UNet [56], CAIR [57], Noise2Noise or Noise2Void

[58] may be required or produce better results. Any

method may of course be employed before using this

segmentation GUI.

2.1.2. Smoothing the results from OpenCV’s

algorithm

In order to give the user control over the smoothness

of the resulting curve they obtain, we use a Python

implementation of the Chan–Vese level set algorithm

[59]. This method of smoothing the curve ensures

that reductions in the curvature are chosen such that

they have minimal costs to accuracy and that the con-

tour remains true to the original image. We allow

users to specify both the error tolerance in pixels,

as estimated from each iteration of the Chan–Vese

algorithm, and the parameter α which controls the

contribution of the total curvature of the boundary

to the energy functional and thus the smoothness of

the obtained contour.

2.2. Going from curves to mesh

The second part of our software package consists of

a script that takes vector based graphics, specifically

the SVG standard, to obtain a discretized curvilin-

ear mesh that describes the boundary of the OOI.

The idea behind vector graphics is to represent shapes

in terms of control points of non-uniform rational

basis splines. Only control points of the parameter-

ized curves are stored while the standard defines the

basis polynomials themselves. The resulting curves

can be represented smoothly at any scaling or

resolution of interest and can easily be mapped to the

simulation space using an affine transformation.

A variety of vector graphics file formats are avail-

able, several of which are proprietary. We have chosen

to implement our software using the SVG standard

because it is a popular, open-source standard and for

its ease of use. SVG files are UTF encoded text files

following an XML schema, making them amenable

to XML parsing methods. A particular benefit of the

SVG standard is that it is widely supported; if edge

detection fails or gives insufficient resolution, mul-

tiple vector graphics programs such as Inkscape or

Adobe Illustrator may be used to clean up or directly

hand-draw the boundaries of interest from an image.

The standard has support both for Bézier curves as

well as geometric primitives (rectangles, triangles,

etc), and the current version of MeshmerizeMe utilizes

the free path element, which encodes curves as Bézier

curves.

To reduce the need for additional configuration

files, MeshmerizeMe has been built to utilize the

‘input2d’ file format that is utilized by IB2d and

IBAMR. This file is required, and the MeshmerizeMe

code expects the following variables to be defined in

the input2d file8:

• Lx,Ly: the length of the computational domain

in the x and y direction, respectively.

• Nx: number of points in the x direction.

Even if the user chooses to use a different CFD

software for the simulation, MeshmerizeMe can still

be used to create the requisite mesh points. Strict

adherence to the IB2d format is not required. A min-

imal working example of the input2d file required for

MeshmerizeMe requires only four lines. The example

below will create a mesh appropriate for a [0, 0.5] ×

[0, 0.5] domain with a 64 × 64 mesh.

Please note that this minimal example is only

sufficient for MeshmerizeMe. A simulation for IB2d

or IBAMR will require additional settings in the

input2d file, such as the fluid parameters mu and

rho and temporal information such as the desired

time step dt and time the simulation is to run.

Any such additional settings may be present in the

input2d file, but will be ignored by MeshmerizeMe.

MeshmerizeMe will automatically compute the

appropriate boundary point spacing of ∆s = 1
2
∆x,

where ∆x = Lx
Nx

. We note that it is standard in the

IB literature to set the spacing between the IB points

to half that of the spatial step for the Navier–Stokes

solver, ∆s = 1
2
∆x [14]. This choice of spacing allows

8 MeshmerizeMe expects a square discretization, that is ∆x = ∆y,

but does not require a square computational domain.

5

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

the boundary points to move independently while

also restricting most of the flow between the points.

Using these parameters, the software will parse the

supplied SVG file itself and extract the path objects,

splitting them up into individual Bézier curve objects.

The control points are then converted to the experi-

mental coordinate system defined by Lx and Ly.

Let γ(t) ∈ R
2 represent a particular Bézier curve.

To create the mesh, we seek n parameters {ti} with

0 6 t1 < t2 < · · · < tn 6 1 such that the distance

between points on the curve with these parameters is

fixed:

d(ti) = ‖γ(ti+1) − γ(ti)‖ = ∆s, i = 1, . . . , n − 1.
(1)

We utilize a gradient descent method to find these

parameters. Specifically, we define our cost function

J(t) using the mean squared relative error of all d(ti)

values (scaled by 1
2

to cancel the power of 2 coming

from the partial derivatives in (4))

J(t) =
1

2(n − 1)

n−1
∑

i=1

(

d(ti) −∆s

∆s

)2

, t =
[

t1 · · · tn

]

(2)

and minimize J(t) by iteratively updating t with a

variable learning rate α:

tnew = told − α∇J(t), (3)

where

∂J

∂tj

=



























































−1

(n − 1)(∆s)2

[

1

d(tj)

(

d(tj) −∆s
)

〈γ(tj+1) − γ(tj),∇γ(tj)〉

]

, if j = 1

1

(n − 1)(∆s)2

[

1

d(tj−1)

(

d(tj−1) −∆s
)

〈γ(tj) − γ(tj−1),∇γ(tj)〉

]

, if j = n − 1

1

(n − 1)(∆s)2









1

d(tj−1)

(

d(tj−1) −∆s
)

〈γ(tj) − γ(tj−1),∇γ(tj)〉

−
1

d(tj)

(

d(tj) −∆s
)

〈γ(tj+1) − γ(tj),∇γ(tj)〉









, otherwise.

(4)

Here, we use the notation 〈a, b〉 to denote the

inner product between a and b.

The number of points n to be found per path are

estimated by dividing the arc-length by the desired

length ∆s. This may result in more dense than opti-

mal spacing of points, but in practice achieves suffi-

cient accuracy. The error will depend on the curvature

of γ.

We then evaluate our curve at the points

ti obtained from this technique to determine

the discretized boundaries of interest. The pro-

duced Lagrangian mesh is output to a file called

fname.vertex where ‘fname’ is based on the

value of string_name taken from the ‘input2d’

file. The vertex file itself is a simple text file. The first

line consists of an integer giving the total number

of mesh points and the following lines contain one

mesh point each, given as a space delimited pair of

floats representing the x and y direction coordinates.

2.2.1. Distribution of errors in approximation

To test the relative accuracy of our script, we cre-

ated 5000 SVG files each containing a randomly gen-

erated cubic Bézier curve. For purposes of unifor-

mity during testing, each curve was generated on a

1000 × 1000 pixel domain to be mapped onto a 1 × 1

mesh domain using a 256 × 256 grid. All parameters

were set to default values. A script was then run to cal-

culate the minimum, maximum, mean, and median

relative errors for each curve. The mean of the median

relative error of curves in the script is 3.2%. The mid-

dle 50% of median relative errors is in the 2.6–3.5%

range. See figure 3 for the distribution of the median

relative errors.

Note that if a higher degree of accuracy is desired,

the user is able to experiment with different param-

eters that can influence the average error. Meshmer-

izeMe allows the user to set both the learning rate as

well as the convergence threshold of the mean squared

error as command-line options when creating the

mesh.

One potential limitation on the error is the

method we have chosen to seed the curves. Specifi-

cally, after reading the SVG our script merges all indi-

vidual SVG path objects into a single path object.

This path object is then split into several sub-paths of

equal arc-length. Each of these sub-paths are seeded

with n = Lsp/∆s points, where Lsp is the length of

the sub-path and ∆s is the desired Euclidean distance

between mesh-points. For sub-paths with very large

curvature, this seeding method may overestimate the

number of points necessary for ideal discretization. In

such cases, the user may re-run the MeshmerizeMe

script with thenum-pointsflag to manually specify

a lower number of points per sub-path. In our expe-

rience, this is an unusual occurrence that can usually

6

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

Figure 3. A distribution plot of median errors calculated from the meshes created for the error experiments in section 2.2.1.

be solved by experimenting with the num-points
flag.

It should also be noted that our current algorithm

assumes the OOI is a contiguous path, that is we

assume the object can be represented by a single poly-

Bézier curve with at least geometric continuity. In the

SVG file, this representation is not limited to repre-

sentation by a single path element. When the SVG

file is parsed, all path elements are merged into a

single poly-Bézier path object. This object is then

divided into several sub-paths of approximately equal

length which are then processed in parallel. If the

OOI consists of two non-contiguous paths or mul-

tiple objects are represented in the source SVG, the

MeshmerizeMe script will report a large error result-

ing from the distance between two sequential points

on non-contiguous paths. In the presence of several

non-contiguous paths, the minimization algorithm

will lead to a slight skewing of points toward path

boundaries.

3. Examples: bringing everything
together

We present several examples that illustrate the

software’s ability to recreate complex geometries. In

each example, ContourizeMe is used to extract con-

tours from images, MeshermizeMe is then used to

compute the model’s discretized geometry. The flow

within or around the geometries is solved using an

open-source implementation of IBM, either IB2d or

IBAMR. The following examples are illustrated:

(a) Hemolymph flow through dragonfly wing veins

(section 3.1)

(b) Lymph flow through a branching lymphatic cap-

illary (section 3.2)

(c) Oscillatory flow past a starfish or array of starfish

(section 3.3)

In every example, we present the original image

on which the computational geometry is based, fol-

lowed by images that illustrate how MeshmerizeMe

computed its associated discretized mesh. Finally,

we present computational results to illustrate suc-

cessful integration of the geometry into the IBM

software.

3.1. IB2d: dragonfly wing veins example

For our first example, we chose a public domain

image of a dragonfly wing shot with a Canon EOS

5D Mark with a 100 mm lens [60]. For the purpose

of running a tractable FSI simulation, we cropped

this image to a section of the wing and manu-

ally occluded parts of the veins using the open

source image manipulation software GIMP [61].

Figure 4 shows the original image of the dragonfly

wing and the region that was chosen for numerical

simulation.

As shown in figure 2, we used the ContourizeMe

GUI to create boundaries describing the subsection of

the wing vasculature. Briefly, the image was cropped

so that only a couple dozen vessel segments would be

considered. The image was then loaded into the Con-

tourizeMe GUI. Noise reduction was then applied to

the image, and a pixel bound was selected such that

the lowest-area hull sufficiently matches the edge of

the vessel network. The edges were then smoothed

using the Chan–Vese algorithm, and the result was

exported to SVG.

The MeshmerizeMe script was then used to obtain

a curvilinear mesh from the SVG file. The x, y coordi-

nates of this mesh were written to the .vertex file.

The file contained the coordinates for approximately

equally-spaced Lagrangian points that were then used

as an input into IB2d. For the purpose of run-

ning an IB2d simulation where the complex geome-

try remains relatively fixed while the fluid is driven

through it, we only require the vertex point of each

Lagrangian Point, i.e. the (x, y) values of each point

7

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

Figure 4. (a) The original public domain image of a dragonfly wing [60]. (b) The partial region of the dragonfly wing that was
chosen for numerical simulation in IB2d. Some vessels were opened so that flow would have obvious entry and exit paths.

Figure 5. Snapshots comparing the magnitude of velocity for different Re, Re = 0.6, 6, 60.

along the insect wing. Since the wing veins should be

relatively rigid and not move, each Lagrangian ver-

tex point was tethered to a target point (see A.1). This

has the effect of applying a force proportional to the

distance between the location of the actual boundary

and the desired position. In other words, the bound-

ary is pushed back into place as fluid moves through

the network. The necessary input information for

IB2d is written in the wing_veins.vertex and

wing_veins.target files.

This example can be found in the open source

IB2d software available at github.com/nickabattista

/IB2d and this example can be found in the follow-

ing subdirectory, IB2d/matIB2d/Examples/
Example_MeshmerizeMe/Dragonfly_Wing/.

More details on IB2d and the IBM in general can be

found in appendix A.

To drive flow through the wing, a penalty force

is applied to the fluid that is proportional to the

difference between the local fluid speed and the

local target velocity (see A.1). For our example, a

parabolic flow profile is enforced at the inlet of the

insect wing, and all subsequent flows through the

veins result from that inflow and are not them-

selves prescribed (see figure A.11). The full imple-

mentation of this simulation can be found in

the please_Compute_External_Forcing.m
script.

To illustrate flow through the wing vein geometry,

we ran multiple simulations corresponding to various

8

http://github.com/nickabattista/IB2d
http://github.com/nickabattista/IB2d

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

Figure 6. Snapshots comparing the pressure for different Re, Re = 0.6, 6, 60.

Reynolds numbers (Re), given by

Re =
ρLU

µ
, (5)

where ρ is the density of the fluid (kg m−2), µ is the

dynamic viscosity (N s m−1), and L and U are char-

acteristic length and velocity scales respectively. We

note that in these simulations, we variedµwhile hold-

ing ρ = 1000 kg m−2, L = w (width of the vein where

the inflow is produced), and U = 5 m s−1 (the maxi-

mum speed of the parabolic inflow). Simulations were

run over a couple orders of magnitude of Re ranging

through Re ∈ [0.1, 100] on a [0, 0.5] × [0, 0.25] grid

with resolution of dx = 0.5/1024 = 0.25/512 = dy.

The result illustrates the flow through the complex

geometry as shown in figures 5 and 6. We note that

the example of flow through a subset of the veins in a

dragonfly wing was chosen to showcase the function-

ality of the software to capture and digitize intricate

complex structures.

Figures 5 and 6 compare the flow profiles and

pressures generated for three simulations when inflow

reaches its steady state through the dragonfly’s com-

plex wing vein geometry at Re = 0.6, 6, 60. It is clear

there is more flow through the complex morphol-

ogy with higher pressures for higher Re. Note that

when using the IBM, the entire structure is fully

immersed within a fluid, so there is fluid in the region

enclosed between veins. Hence the pressure fields in

such regions are not physical but instead are artifacts

of these regions being within a fluid environment and

being enclosed.

3.2. IBAMR: lymphatic capillary example

As another example of how our software can be used,

we present a case in which the vessel walls of a junc-

tion from a dermal lymphatic capillary are recon-

structed from an image. This image is courtesy of

Dr Wenjing Xu from the Kathleen Caron lab (UNC-

CH) and was taken from the back region of a wild

type mouse embryo. The image was generated with

fluorescence microscopy to highlight the lymphatic

vessel boundaries as shown in figure 7(a). The sim-

ulations described below were performed using the

IBM with adaptive mesh refinement (IBAMR) (see

appendix A).

After the contours were extracted using Contour-

izeMe, the ends of the vessels were extended using

9

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

Figure 7. (a) Source image for modeling flow through a junction in a lymphatic capillary, courtesy of Dr Wenjing Xu from the
Kathleen Caron lab. (b) SVG rendering of bifurcating vascular structure. (c) Vertex points discretized from SVG file. (d)
Colormap of the magnitude of velocity of flow through a bifurcating dermal lymphatic capillary. Note that the vessel ends were
artificially extended to allow for fully developed flow within the vessels.

Figure 8. (a) Original starfish image courtesy of NOAA Sea Grant Program [47] (b) SVG image of the starfish generated by
ContourizeMe script (c), (d), (f). The discretized geometry at grid resolutions of 128 × 128, 256 × 256, and 1024 × 1024
respectively. (e) Computational geometry containing a starfish in a channel with prescribed oscillatory parabolic inflow (see A.1).

image software to allow the flow within the vessels

to fully develop before reaching the actual ves-

sel geometry. Parabolic outflow was prescribed as

a boundary condition to effectively ‘pull’ the fluid

into the vessel ends with a maximum velocity of

10−5 m s−1. This velocity is consistent with the

reported range of observed lymphatic flow veloci-

ties, which are as low as 10−7 and as high as 10−3 m

s−1 [62, 63]. Note that the vessel ends were placed

at the left domain edge for this purpose. Neumann

boundary conditions were used at the right edge of the

domain to allow volume conservation (fluid escapes

on this side), and periodic boundary conditions were

used at the top and bottom of the domain. The ves-

sel was assumed to be nearly rigid over the time

scale of a simulation. The Navier–Stokes equations

were discretized on a 512 × 512 grid with 3 lev-

els of mesh refinement and a refinement ratio of 4.

The fluid domain size was set to L = 1.2 × 10−3 m,

where the spatial step size was set to ∆x = L/512.

The vessel walls were described using a curvilinear

mesh where the distance between IB points was set

to ∆s = ∆x/2. The time step size was taken as dt =

5.0 × 10−6 s. The lymph was parameterized with mass

density ρ = 1000 kg m−3 and dynamic viscosity µ =

10−3N s m−2.

10

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

Figure 9. Snapshots showing oscillatory flow past a rigid starfish at Re = 800 during the first 6 pulsation periods. The
background colormap illustrates vorticity.

3.3. IB2d: starfish example

The last example we present is that of flow around

a starfish using IB2d. The original JPG image of

the starfish was taken from WikiMedia Commons,

courtesy of NOAA Sea Grant Program in the Coral

Kingdom Collection [47]. The SVG file was pro-

duced by ContourizeMe, and the boundaries were dis-

cretized using MeshmerizeMe as shown in figure 8.

Figures 8(c), (d) and (f) give the discretized geome-

tries for the starfish at resolutions appropriate for an

IB simulation in a square fluid domain with Lx =

Ly = 1 where the spatial step size within such domain

was set to ∆x = Lx/128 (128 × 1238) and ∆x =

Lx/256 (256 × 256), and ∆x = Lx/1024 (1024 ×

1024) respectively. Note that in figure 8(f) that the

starfish’s outline is still composed of discretized

points. Recall that the average spacing between

boundary points is set to one half of the spatial step

size, e.g.,∆s = 0.5∆x. Once the boundary describing

the starfish is discretized at the desired resolution, it is

placed inside of a rigid channel, where oscillatory flow

will be prescribed to rush past the starfish as shown in

figure 8(e).

We acknowledge that the starfish geometry is

rather complex, and our simulation is relatively

coarse. As such, we are likely not resolving the details

of the flow very close to the starfish body. We would

like to point out, however, that the purpose of this

example is to further illustrate MeshmerizeMe’s abil-

ity to resolve and capture the fine structure detail of

an SVG image. Thus, our goal in this example is not

necessarily to resolve these fine scale flow structures.

This example also highlights that once the geome-

try has been created for a single starfish, it can be

easily altered. For example, this geometry can be

copied, translated to different regions of the domain,

or rotated since the software provides a parameterized

set of points.

We ran a single starfish simulation at Re = 800

(see equation (5)), where L = 0.08 m, the height of

the starfish, V = 1.0 m s−1, half the maximum oscil-

latory inflow speed, and ρ and µ are 1000 kg m−2 and

0.1 N s m−1, respectively. An oscillatory flow condi-

tion was used to produce flow past the starfish with

frequency of f = 2 Hz, see A.1. The numerical simu-

lation was performed for a fluid domain with lengths

[0, 1] × [0, 0.25] and a consistent spatial step size

in each direction, e.g., dx = 1.0/1024 = 0.25/256 =

dy. Snapshots from the numerical simulation that

illustrate a colormap of vorticity are found in

figure 9.

Previously, one of the main difficulties in per-

forming this IB simulation would be the finite

difference discretization of the starfish. Meshmer-

izeMe provides a convenient way to do this, without

having to manually piece together the geometry

either by point-by-point construction or combining

user-defined piecewise functions or splines. To

demonstrate the versatility of this method, we insert

multiple starfish into the channel. Figure 10 provides

snapshots showing the vorticity during the first

pulsation period of oscillatory flow around one,

three, or five starfish within a channel. The example

for flow around a single starfish can be found in

11

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

Figure 10. Snapshots showing oscillatory flow past 1, 3, or 5 rigid starfish at Re = 800 during the first pulsation period. The
background colormap illustrates vorticity.

the open source IB2d software’s sub-directory,

IB2d/matIB2d/Examples/Example_Meshm
erizeMe/Starfish/.

4. Discussion

In this paper, we introduce a software library that will

extract edges from images, fit these images with Bézier

curves, and discretize the curves into a curvilinear

finite difference mesh with nearly constant spacing

between points. Such meshes are useful in a variety

of mathematical applications, including 2D numer-

ical simulations of FSI problems using the IBM.

We present three such applications of the tool used

in conjunction with the IBM including 1) flow of

hemolymph in the veins of an insect wing (internal

flow), 2) flow of lymph in a mouse lymphatic cap-

illary (internal flow), and 3) flow of water around

starfish (external flow). These images were taken with

either high resolution digital cameras or fluorescence

microscopy. Prior to this software release paper, the

software was successfully applied in another inter-

nal flow application of blood flows over the tra-

beculae in zebrafish embryonic hearts [64]. Here

the meshes were created from images taken from

an inverted (light) microscope [65]. This illustrates

the software’s robustness in its ability to construct

discretized meshes from various imaging methods.

Note that all of the above examples were performed

using open-source implementations of the IBM,

either IB2d [12, 13] or IBAMR [66].

While MeshmerizeMe merely provides 2D geome-

tries, its output format can serve as a starting point

in the development of 3D models. Commercial CAD

software such as Fusion360 allow the import of SVG

images, such as those produced by the ContourizeMe

script, as sketches. Fusion360’s built-in scripts allow

the import of a CSV file describing a spline using XYZ

coordinates. The latter is easily produced via com-

mandline tools like tail and sed from the vertex

files produced by the MeshmerizeMe script. This like-

wise imports the curves as a sketch. These imported

sketches can then be turned into 3D objects using

extrude and rotate commands. From here on, exist-

ing 3D meshing tools may be used to produce a mesh

suitable for a 3D simulation.

To create simple 3D geometries, the 2D mesh

could be extruded manually by adding a third coor-

dinate, and this coordinate could be varied by ∆s

to obtain a finite difference mesh that describes

an outer wall. Similarly, the 2D mesh could be

rotated about a central axis to obtain another sim-

ple 3D geometry. Sample applications of these sim-

ple geometries could include wings or fins with

12

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

constant cross sections and axisymmetric structures

such as tubular hearts, jellyfish, and some worms.

The meshes could also be used in other finite dif-

ference approaches to FSI problems, including the

method of regularized Stokeslets [67], the immersed

interface method [68], sharp interface methods

[69, 70], or the blob projection method [71]. The

software library could also be applied in the numer-

ical simulation of other physics problems, includ-

ing the uptake of particles [72] and electrodiffusion

[73]. In future releases of the software library, we

plan to add additional functionality that includes the

automation for material property model input files,

e.g., springs, beams, etc, for the geometry’s discretized

points.

In addition to use in research, this library may

serve as a powerful tool for student research and edu-

cation, particularly in mathematical modeling at the

undergraduate and graduate levels. MeshmerizeMe

provides students with open source tools that can

easily be used to build relatively complicated 2D

meshes from images. These boundary meshes are eas-

ily imported and used in IB2d and IBAMR, both of

which are also open source libraries. One of the coau-

thors has developed a series of online videos to make

the use of this software even easier for students [74].

Both IB2d and MeshmerizeMe have been used in the

authors’ undergraduate and graduate courses, includ-

ing mathematical modeling, mathematical biology,

numerical analysis, and a first year seminar on biolog-

ical fluid dynamics. Furthermore, the libraries have

been successfully used in numerous undergraduate

research projects [75, 76] and contemporary locomo-

tion research endeavors [77].

Acknowledgments

The authors would like to thank Charles Peskin for

the development of immersed boundary method and

Boyce Griffith for IBAMR, to which many of the

input files structures of IB2d are based. We would

also like to thank Christina Battista, Robert Booth,

Christina Hamlet, Alexander Hoover, Shannon Jones,

Julia Samson, Arvind Santhanakrishnan, and Lind-

say Waldrop for comments on the design of the

software and suggestions for examples. This project

was funded by NSF DMS CAREER #1151478, NSF

CBET #1511427, NSF DMS #1151478, NSF POLS

#1505061 awarded to LAM and NSF IOS #1558052

awarded to Jake Socha. Computational resources for

NAB were provided by the NSF OAC #1826915

and the NSF OAC #1828163. Funding for NAB was

provided by the TCNJ Support of Scholarly Activ-

ity (SOSA) Grant, the TCNJ Department of Math-

ematics and Statistics, and the TCNJ School of

Science.

WCS gratefully acknowledges the support of

Simons Foundation Grant # 585322, which helped to

fund travel during this project. Certain images in this

publication have been obtained by the author(s) from

the Wikipedia/Wikimedia website, where they were

made available under a Creative Commons licence or

stated to be in the public domain. Please see individ-

ual figure captions in this publication for details. To

the extent that the law allows, IOP Publishing disclaim

any liability that any person may suffer as a result

of accessing, using or forwarding the image(s). Any

reuse rights should be checked and permission should

be sought if necessary from Wikipedia/Wikimedia

and/or the copyright owner (as appropriate) before

using or forwarding the image(s).

Appendix A. Details on the immersed
boundary method

The two-dimensional formulation of the IB method

used in this paper to study flow through dragonfly

wing veins, lymphatic capillaries, and around starfish

is provided below. IB2d [12, 13, 39] and IBAMR [40]

are the two open source implementations that were

used for these studies. For a full review of the IBM,

please see Peskin [14].

A.1. Governing equations of IB

The conservation of momentum equations that gov-

ern an incompressible and viscous fluid are listed

below:

ρ

[

∂u

∂t
(x, t) + (u(x, t) · ∇)u(x, t)

]

= −∇p(x, t) + µ∆u(x, t) + f(x, t) (A.1)

∇ · u(x, t) = 0 (A.2)

where u(x, t) is the fluid velocity, p(x, t) is the pres-

sure, f(x, t) is the force per unit area applied to the

fluid by the IB, ρ and µ are the fluid’s density and

dynamic viscosity, respectively. The independent vari-

ables are the time t and the position x. The variables

u, p, and f are all written in an Eulerian frame on the

fixed Cartesian mesh, x.

The interaction equations, which handle all com-

munication between the fluid (Eulerian) grid and

curvilinear mesh describing the IB (Lagrangian grid)

are given by the following two integral equations:

f(x, t) =

∫

F(s, t)δ (x − X(s, t)) ds (A.3)

U(s, t) =

∫

u(x, t)δ (x − X(s, t)) dx (A.4)

where F(s, t) is the force per unit length applied by

the boundary to the fluid as a function of Lagrangian

position, s, and time, t, δ(x) is a three-dimensional

delta function, and X(s, t) gives the Cartesian coor-

dinates at time t of the material point labeled

by the Lagrangian parameter, s. The Lagrangian

forcing term, F(s, t), gives the deformation forces

along the boundary at the Lagrangian parameter,

13

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

Figure A.11. Illustrating the subset of the insect vein geometry where the prescribed inflow condition is enforced.

s. Equation (A.3) applies this force from the IB

to the fluid through the external forcing term in

equation (A.1). Equation (A.4) moves the boundary

at the local fluid velocity. This enforces the no-slip

condition. Each integral transformation uses a two-

dimensional Dirac delta function kernel, δ, to convert

Lagrangian variables to Eulerian variables and vice

versa.

The way deformation forces are computed,

e.g., the forcing term, F(s, t), in the integrand of

equation (A.3), is specific to the application. To hold

the geometry nearly rigid, all of the Lagrangian points

along the IB were tethered to target points. This has

the effect of holding the boundary in place through

a penalty forcing term where the force applied to

the fluid is proportional to the difference between

the actual location of the boundary and the desired

location. In this model, the target force penalty term

took the following form,

F(s, t) = ktarg (Y(s, t) − X(s, t)) , (A.5)

where ktarg is a stiffness coefficient and Y(s, t) is the

prescribed position of the target boundary. Note that

Y(s, t) is a function of both the Lagrangian param-

eter, s, and time, t; however, in this model ktarg was

chosen to be very large to minimize movement of the

boundary.

For the case of the dragonfly wings, another

penalty forcing term was used to prescribe the inflow

conditions into the wing veins. This penalty force

was applied directly onto the Eulerian (fluid) grid.

The penalty force was proportional to the difference

between the local fluid velocity and the desired fluid

velocity and is given as

finflow = kflow (u(x, t) − uflow(x, t)) , (A.6)

where kflow is the penalty-strength coefficient, and

uflow(x, t) is the desired background flow profile as

in [78]. For the simulations involving hemolymph

flow through wing veins, we enforce the following

parabolic inflow into the wing vein along the x-

direction,

uflow(x, t) =











−Umax tanh(2t)

(

(MP + w/2 − y)(MP − w/2 − y)

w2/4

)

if inside prescribed region

0 elsewhere

,

(A.7)

where Umax is the desired max peak velocity in the

parabolic inflow, MP is the midpoint of the vein and

w is the width of the vein. Note that a hyperbolic tan-

gent is used to ramp up the inflow during the course

of the simulation.

Similarly, for the simulations of oscil-

latory flow past one or more starfish, we

enforce the following oscillatory parabolic

inflow into the starfish channel in the

x-direction,

uflow(x, t) =











−Umax sin(2πft)

(

(MP + w/2 − y)(MP − w/2 − y)

w2/4

)

if inside prescribed region

0 elsewhere

,

(A.8)

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

where f is the frequency of pulsation (set to 2 Hz) and

the other parameters are analogous to before except

with w and MP being the width and midpoint of the

channel, respectively.

Using a regularized delta function as the kernel

in the interaction equations given by equations (A.3)

and (A.4) makes the IBM relatively easy to implement

and flexible. To approximate these integrals, a dis-

cretized (and regularized) delta function was used. In

this paper, we use one described in [14], e.g., δh(x),

δh(x) =
1

h3
φ
(x

h

)

φ
(y

h

)

φ
(z

h

)

, (A.9)

where φ(r) is defined as

φ(r) =























1

8
(3 − 2|r|+

√

1 + 4|r| − 4r2), 0 6 |r| < 1

1

8
(5 − 2|r|+

√

−7 + 12|r| − 4r2), 1 6 |r| < 2

0 2 6 |r|.

(A.10)

A.2. Numerical algorithm

For the wing vein and starfish examples that use

IB2d, we impose periodic and no slip bound-

ary conditions on a rectangular domain. To solve

equations (A.1)–(A.4) we need to update the velocity,

pressure, position of the boundary, and force acting

on the boundary at time n + 1 using data from time

n. The IB does this in the following steps [14], with an

additional step (4b) for IBAMR [40, 79]:

Step 1: find the force density, Fn on the IB, from

the current boundary configuration, Xn.

Step 2: use equation (A.3) to spread this bound-

ary force from the Lagrangian boundary mesh to the

Eulerian fluid lattice points.

Step 3: solve the Navier–Stokes equations,

equations (A.1) and (A.2), on the Eulerian grid.

Upon doing so, we are updating un+1 and pn+1 from

un, pn, and fn. Note that a staggered grid projection

scheme is used to perform this update.

Step 4: 4a. Update the material positions, Xn+1,

using the local fluid velocities, Un+1, using un+1 and

equation (A.4).

4b. (IBAMR only) refine Eulerian grid in areas of

the domain that contain an immersed structure or

where the vorticity exceeds a predetermined thresh-

old, if on a selected time-step for adaptive mesh

refinement.

Appendix B. Background on Bézier
curves

Bézier curves are a type of interpolating polyno-

mial known as a spline. An nth degree Bézier poly-

nomial may conveniently be written as a sum of

n + 1 weighted control points Pi. The weights are

known as Bernstein basis polynomials and take the

form

bi,n(t) =
(n

i

)

(1 − t)n−iti.

A curve γ(t) may then be written as

γ(t) =

n
∑

i=0

Pi bi,n(t).

The parameter t is defined to be on the closed interval

[0, 1]. The derivative of a Bézier curve is itself a Bézier

curve. Specifically, the first derivative is given by

γ
′(t) = n

n−1
∑

i=0

(Pi+1 − Pi) bi,n−1(t).

Paths are modeled as a curve Γ(s) that is at least

a C0 sequence of curves, where s = [0, 1] is a param-

eter used to map to the individual Bézier curves that

make up the path. If P
j
i is the ith control point of the

jth curve in Γ, then C0 continuity translates into the

requirement that

Pj
n = P

j+1
0 .

To achieve C1 continuity, we additionally require

that

Pj
n − P

j
n−1 = P

j+1
1 − P

j+1
0 .

Perhaps the most common Bézier curve in appli-

cations is the cubic Bézier which takes the explicit

form

γ(t) = (1 − t)3P0 + 3(1 − t)2tP1

+ 3(1 − t)t2P2 + t3P3.

The explicit derivative of the cubic Bézier is given by

γ
′(t) = 3(1 − t)2(P1 − P0)

+ 6(1 − t)t(P2 − 1) + 3t2(P3 − P2).

To rescale a curve from one domain V to another

domain U, an affine transform of the control points

is sufficient. In the particular case U , V ⊂ R
2 this

transform may be represented as a simple matrix

operator A : R3 → R
3 by representing a point ~p ∈

U , ~q ∈ V in the form (x, y, 1)T. Scaling and translat-

ing of control points may be achieved by the function

15

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

~q = A~p =





sx 0 tx

0 sy ty

0 0 1



~p. (B.1)

For our particular use case we want to map a point

Pi from the SVG coordinate system [xmin, xmax] ×
[ymin, ymax] to the coordinate system [0, Lx] × [0, Ly]

used in the simulations. Note that the origin of the

SVG coordinates is in the upper left-hand corner of

the image, while the coordinate system used in IB2d

and IBAMR has its origin in the lower left hand cor-

ner. Accounting for this and letting w = xmax − xmin

and h = ymax − ymin our operator will be defined as









Lx

w
0 −

Lx

w
xmin

0 −
Ly

h
Ly

0 0 1









(B.2)

ORCID iDs

D Michael Senter https://orcid.org/0000-0002-

2752-1688

W Christopher Strickland https://orcid.org/0000-

0002-5424-2086

Steven G Thomas https://orcid.org/0000-0003-

4034-6711

Anne M Talkington https://orcid.org/0000-0002-

6296-6754

Laura A Miller https://orcid.org/0000-0003-3707-

9798

Nicholas A Battista https://orcid.org/0000-0003-

2437-0383

References

[1] Peskin C S 1972 Flow patterns around heart valves: a

numerical method J. Comput. Phys. 10 252–71

[2] Miller L A and Peskin C S 2004 When vortices stick: an

aerodynamic transition in tiny insect flight J. Exp. Biol. 207

3073–88

[3] Miller L A and Peskin C S 2009 Flexible clap and fling in

tiny insect flight J. Exp. Biol. 212 3076–90

[4] Jones S K, Laurenza R, Hedrick T L, Griffith B E and Miller

L A 2015 Lift vs drag based mechanisms for vertical force

production in the smallest flying insects J. Theor. Biol. 384

105–20

[5] Tytell E D, Hsu C-Y, Williams T L, Cohen A H and Fauci L J

2010 Interactions between internal forces, body stiffness,

and fluid environment in a neuromechanical model of

lamprey swimming Proc. Natl Acad. Sci. 107 19832–7

[6] Tytell E D, Hsu C-Y and Fauci L J 2014 The role of

mechanical resonance in the neural control of swimming in

fishes Zoology 117 48–56

[7] Hoover A and Miller L 2015 A numerical study of the

benefits of driving jellyfish bells at their natural frequency J.

Theor. Biol. 374 13–25

[8] Hershlag G and Miller L A 2011 Reynolds number limits for

jet propulsion: a numerical study of simplified jellyfish J.

Theor. Biol. 285 84–95

[9] Griffith B E, Luo X, McQueen D M and Peskin C S 2009

Simulating the fluid dynamics of natural and prosthetic

heart valves using the immersed boundary method Int. J.

Appl. Mech. 01 137–77

[10] Jung E and Peskin C S 2001 Two-dimensional simulations of

valveless pumping using the immersed boundary method

SIAM J. Sci. Comput. 23 19–45

[11] McQueen D and Peskin C 1997 Shared-memory parallel

vector implementation of the immersed boundary method

for the computation of blood flow in the beating

mammalian heart J. Supercomput. 11 213–36

[12] Battista N A, Strickland W C and Miller L A 2017 IB2d: a

Python and MATLAB implementation of the immersed

boundary method Bioinspiration Biomimetics 12 036003

[13] Battista N A, Strickland W C, Barrett A and Miller L A 2018

IB2dReloaded: a more powerful Python and MATLAB

implementation of the immersed boundary method Math.

Methods Appl. Sci. 41 8455–80

[14] Peskin C S 2002 The immersed boundary method Acta

Numer. 11 479–517

[15] Zhu L, He G, Wang S, Miller L, Zhang X, You Q and Fang S

2011 An immersed boundary method based on the lattice

Boltzmann approach in three dimensions, with application

Comput. Math. Appl. 61 3506–18

[16] Zhu L and Peskin C S 2002 Simulation of a flapping flexible

filament in a flowing soap film by the immersed boundary

method J. Comput. Phys. 179 452–68

[17] Ryu J, Park S G, Kim B and Sung H J 2015 Flapping

dynamics of an inverted flag in a uniform flow J. Fluid

Struct. 57 159–69

[18] Baird A, King T and Miller L 2014 Numerical study of

scaling effects in peristalsis and dynamic suction pumping

Biol. Fluid Dyn. Modeling, Comput. Appl. 628 129–48

[19] Waldrop L D and Miller L A 2015 Large-amplitude,

short-wave peristalsis and its implications for transport

Biomech. Model. Mechanobiol. 15 629–42

[20] Kim Y and Peskin C S 2007 Penalty immersed boundary

method for an elastic boundary with mass Phys. Fluids 19

053103

[21] Stockie J M 2009 Modelling and simulation of porous

immersed boundaries Comput. Struct. 87 701–9

[22] Kim Y and Peskin C S 2006 2D parachute simulation by the

immersed boundary method SIAM J. Sci. Comput. 28

2294–312

[23] Lee D S, Ha M Y, Kim S J and Yoon H S 2006 Application of

immersed boundary method for flow over stationary and

oscillating cylinders J. Mech. Sci. Technol. 20 849–63

[24] Pinelli A, Naqavi I Z, Piomelli U and Favier J 2010

Immersed-boundary methods for general finite-difference

and finite-volume Navier–Stokes solvers J. Comput. Phys.

229 9073–91

[25] Lo D C, Lee C-P and Lin I-F 2018 An efficient immersed

boundary method for fluid flow simulations with moving

boundaries Appl. Math. Comput. 328 312–37

[26] Campregher R, Militzer J, Mansur S S, Silveira N and da

Silveira Neto A 2009 Computations of the flow past a still

sphere at moderate Reynolds numbers using an immersed

boundary method J. Braz. Soc. Mech. Sci. Eng. 31 333–52

[27] Strickland C, Miller L, Santhanakrishnan A, Hamlet C,

Battista N and Pasour V 2017 Three-dimensional low

Reynolds number flows near biological filtering and

protective layers Fluids 2 62

[28] Peskin C S and McQueen D M 1996 Fluid dynamics of the

heart and its valves Case Studies in Mathematical Modeling:

Ecology, Physiology, and Cell Biology ed F R Adler, M A Lewis

and J C Dalton (Englewood Cliffs, NJ: Prentice-Hall) ch 14

pp 309–38

[29] Battista N A, Lane A N, Liu J and Miller L A 2018 Fluid

dynamics in heart development: effects of hematocrit and

trabeculation Math. Med. Biol. 35 493–516

[30] Wilson T J Simultaneous untangling and smoothing of

hexahedral meshes Masters Thesis Universitat Politec̀nica de

Catalunya

[31] Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F

and Ranzuglia G 2008 MeshLab: an open-source mesh

processing tool Eurographics Italian Chapter Conf. ed

V Scarano, R D Chiara and U Erra (The Eurographics

16

https://orcid.org/0000-0002-2752-1688
https://orcid.org/0000-0002-2752-1688
https://orcid.org/0000-0002-2752-1688
https://orcid.org/0000-0002-5424-2086
https://orcid.org/0000-0002-5424-2086
https://orcid.org/0000-0002-5424-2086
https://orcid.org/0000-0003-4034-6711
https://orcid.org/0000-0003-4034-6711
https://orcid.org/0000-0003-4034-6711
https://orcid.org/0000-0002-6296-6754
https://orcid.org/0000-0002-6296-6754
https://orcid.org/0000-0002-6296-6754
https://orcid.org/0000-0003-3707-9798
https://orcid.org/0000-0003-3707-9798
https://orcid.org/0000-0003-3707-9798
https://orcid.org/0000-0003-2437-0383
https://orcid.org/0000-0003-2437-0383
https://orcid.org/0000-0003-2437-0383
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1016/0021-9991(72)90065-4
https://doi.org/10.1242/jeb.01138
https://doi.org/10.1242/jeb.01138
https://doi.org/10.1242/jeb.01138
https://doi.org/10.1242/jeb.01138
https://doi.org/10.1242/jeb.028662
https://doi.org/10.1242/jeb.028662
https://doi.org/10.1242/jeb.028662
https://doi.org/10.1242/jeb.028662
https://doi.org/10.1016/j.jtbi.2015.07.035
https://doi.org/10.1016/j.jtbi.2015.07.035
https://doi.org/10.1016/j.jtbi.2015.07.035
https://doi.org/10.1016/j.jtbi.2015.07.035
https://doi.org/10.1073/pnas.1011564107
https://doi.org/10.1073/pnas.1011564107
https://doi.org/10.1073/pnas.1011564107
https://doi.org/10.1073/pnas.1011564107
https://doi.org/10.1016/j.zool.2013.10.011
https://doi.org/10.1016/j.zool.2013.10.011
https://doi.org/10.1016/j.zool.2013.10.011
https://doi.org/10.1016/j.zool.2013.10.011
https://doi.org/10.1016/j.jtbi.2015.03.016
https://doi.org/10.1016/j.jtbi.2015.03.016
https://doi.org/10.1016/j.jtbi.2015.03.016
https://doi.org/10.1016/j.jtbi.2015.03.016
https://doi.org/10.1016/j.jtbi.2011.05.035
https://doi.org/10.1016/j.jtbi.2011.05.035
https://doi.org/10.1016/j.jtbi.2011.05.035
https://doi.org/10.1016/j.jtbi.2011.05.035
https://doi.org/10.1142/s1758825109000113
https://doi.org/10.1142/s1758825109000113
https://doi.org/10.1142/s1758825109000113
https://doi.org/10.1142/s1758825109000113
https://doi.org/10.1137/s1064827500366094
https://doi.org/10.1137/s1064827500366094
https://doi.org/10.1137/s1064827500366094
https://doi.org/10.1137/s1064827500366094
https://doi.org/10.1023/a:1007951707260
https://doi.org/10.1023/a:1007951707260
https://doi.org/10.1023/a:1007951707260
https://doi.org/10.1023/a:1007951707260
https://doi.org/10.1088/1748-3190/aa5e08
https://doi.org/10.1088/1748-3190/aa5e08
https://doi.org/10.1002/mma.4708
https://doi.org/10.1002/mma.4708
https://doi.org/10.1002/mma.4708
https://doi.org/10.1002/mma.4708
https://doi.org/10.1017/s0962492902000077
https://doi.org/10.1017/s0962492902000077
https://doi.org/10.1017/s0962492902000077
https://doi.org/10.1017/s0962492902000077
https://doi.org/10.1016/j.camwa.2010.03.022
https://doi.org/10.1016/j.camwa.2010.03.022
https://doi.org/10.1016/j.camwa.2010.03.022
https://doi.org/10.1016/j.camwa.2010.03.022
https://doi.org/10.1006/jcph.2002.7066
https://doi.org/10.1006/jcph.2002.7066
https://doi.org/10.1006/jcph.2002.7066
https://doi.org/10.1006/jcph.2002.7066
https://doi.org/10.1016/j.jfluidstructs.2015.06.006
https://doi.org/10.1016/j.jfluidstructs.2015.06.006
https://doi.org/10.1016/j.jfluidstructs.2015.06.006
https://doi.org/10.1016/j.jfluidstructs.2015.06.006
https://doi.org/10.1090/conm/628/12543
https://doi.org/10.1090/conm/628/12543
https://doi.org/10.1090/conm/628/12543
https://doi.org/10.1090/conm/628/12543
https://doi.org/10.1007/s10237-015-0713-x
https://doi.org/10.1007/s10237-015-0713-x
https://doi.org/10.1007/s10237-015-0713-x
https://doi.org/10.1007/s10237-015-0713-x
https://doi.org/10.1063/1.2734674
https://doi.org/10.1063/1.2734674
https://doi.org/10.1016/j.compstruc.2008.11.001
https://doi.org/10.1016/j.compstruc.2008.11.001
https://doi.org/10.1016/j.compstruc.2008.11.001
https://doi.org/10.1016/j.compstruc.2008.11.001
https://doi.org/10.1137/s1064827501389060
https://doi.org/10.1137/s1064827501389060
https://doi.org/10.1137/s1064827501389060
https://doi.org/10.1137/s1064827501389060
https://doi.org/10.1007/bf02915948
https://doi.org/10.1007/bf02915948
https://doi.org/10.1007/bf02915948
https://doi.org/10.1007/bf02915948
https://doi.org/10.1016/j.jcp.2010.08.021
https://doi.org/10.1016/j.jcp.2010.08.021
https://doi.org/10.1016/j.jcp.2010.08.021
https://doi.org/10.1016/j.jcp.2010.08.021
https://doi.org/10.1016/j.amc.2018.01.022
https://doi.org/10.1016/j.amc.2018.01.022
https://doi.org/10.1016/j.amc.2018.01.022
https://doi.org/10.1016/j.amc.2018.01.022
https://doi.org/10.1590/s1678-58782009000400009
https://doi.org/10.1590/s1678-58782009000400009
https://doi.org/10.1590/s1678-58782009000400009
https://doi.org/10.1590/s1678-58782009000400009
https://doi.org/10.3390/fluids2040062
https://doi.org/10.3390/fluids2040062
https://doi.org/10.1093/imammb/dqx018
https://doi.org/10.1093/imammb/dqx018
https://doi.org/10.1093/imammb/dqx018
https://doi.org/10.1093/imammb/dqx018

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

Association) pp 129–136 doi:10.2312/LocalChapterEvents/

ItalChap/ItalianChapConf2008/129-136

[32] Geuzaine C and Remacle J-F 2009 Gmsh: a 3D finite

element mesh generator with built-in pre- and

post-processing facilities Int. J. Numer. Methods Eng. 79

1309–31

[33] Hang S 2015 Tetgen, a delaunay-based quality tetrahedral

mesh generator ACM Trans. Math. Softw. 41 1–36

[34] Berens M K, Flintoft I D and Dawson J F 2016 Structured

mesh generation: open-source automatic nonuniform mesh

generation for fdtd simulation IEEE Antennas Propag. Mag.

58 45–55

[35] Argus Holdings, LTD 2015 Argus one: open numerical

environments URL: http://www.argusone.com/index.html

[36] Voss C I, Boldt D and Shapiro A M 1997 A graphical-user

interface for the US geological survey’s sutra code using

argus one (for simulation of variable-density

saturated-unsaturated ground-water flow with solute or

energy transport) US Geological Survey Open-File Report 1

97–421

[37] Battista N A 2020 Fluid-structure interaction for the

classroom: interpolation, hearts, and swimming!

(arXiv:1808.08122)

[38] Battista N A and Mizuhara M S 2019 Fluid-structure

interaction for the classroom: speed, accuracy, convergence,

and jellyfish! (arXiv:1902.07615)

[39] Battista N A, Baird A J and Miller L A 2015 A mathematical

model and matlab code for muscle-fluid-structure

simulations Integr. Comp. Biol. 55 901–11

[40] Griffith B E 2014 An adaptive and distributed-memory

parallel implementation of the immersed boundary (ib)

method URL: https://github.com/IBAMR/IBAMR (accessed

21 October 2014)

[41] Hamlet C and Miller L A 2012 Feeding currents of the

upside-down jellyfish in the presence of background flow

Bull. Math. Biol. 74 2547–69

[42] Zhang C, Guy R D, Mulloney B, Zhang Q and Lewis T J

2014 Neural mechanism of optimal limb coordination in

crustacean swimming Proc. Natl Acad. Sci. 111 13840–5

[43] Miller L A, Santhanakrishnan A, Jones S, Hamlet C,

Mertens K and Zhu L 2012 Reconfiguration and the

reduction of vortex-induced vibrations in broad leaves J.

Exp. Biol. 215 2716–27

[44] Hamlet C, Strychalski W and Miller L 2020 Dynamics of

ballistic strategies in nematocyst firing Fluids 5 20

[45] Crowl L M and Fogelson A L 2009 Computational model of

whole blood exhibiting lateral platelet motion induced by red

blood cells Int. J. Numer. Methods Biomed. Eng. 26 471–87

[46] Crowl L and Fogelson A L 2011 Analysis of mechanisms for

platelet near-wall excess under arterial blood flow

conditions J. Fluid Mech. 676 348–75

[47] McVey J P 2007 Reef0297.jpg https://commons.wikimedia

.org/wiki/File:Reef0297.jpg, NOAA Sea Grant Program: The

Coral Kingdom Collection (accessed 25 June 2019)

[48] Archibald J 2019 Svg optimizer is a nodejs-based tool for

optimizing svg vector graphics files https://github.com/svg/

svgo (accessed 25 June 2019)

[49] Archibald J 2019 Svgomg is svgo’s missing gui, aiming to

expose the majority, if not all the configuration options of

svgo https://jakearchibald.github.io/svgomg/ (accessed 25

June 2019)

[50] Long J, Shelhamer E and Darrell T 2015 Fully convolutional

networks for semantic segmentation IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR) pp

3431–40

[51] Garcia-Garcia A, Orts-Escolano S, Oprea S,

Villena-Martinez V, Martinez-Gonzalez P and

Garcia-Rodriguez J 2018 A survey on deep learning

techniques for image and video semantic segmentation

Appl. Soft Comput. 70 41–65

[52] Bradski G The OpenCV Library Dr. Dobb’s J. Softw. Tools

[53] Gonzalez R C and Woods R E 2002 Digital Image Processing

2nd edn (Englewood Cliffs, NJ: Prentice-Hall) pp 122–25

[54] Bovil K 2005 Handbook of Image and Video Processing 2nd

edn (New York: Academic)

[55] Tomasi C and Manduchi R 1998 Bilateral filtering for gray

and color images Proc. of the 6th Int. Conf. on Computer

Vision, ICCV ’98 (Washington, DC, USA: IEEE Computer

Society) p 839 URL: http://dl.acm.org/citation.cfm?id&

tnqx3d;938978.939190

[56] Ronneberger O, Fischer P and Brox T 2015 U-net:

convolutional networks for biomedical image segmentation

(arXiv:1505.04597)

[57] Berge G T, Granmo O, Tveit T O, Goodwin M, Jiao L and

Matheussen B V 2018 Using the tsetlin machine to learn

human-interpretable rules for high-accuracy text

categorization with medical applications

(arXiv:1809.04547)

[58] Lehtinen J, Munkberg J, Hasselgren J, Laine S, Karras T,

Aittala M and Aila T 2018 Noise2noise: learning image

restoration without clean data (arXiv:1803.04189)

[59] Wang X-F, Huang D-S and Xu H 2010 An efficient local

Chan–Vese model for image segmentation Pattern Recognit.

43 603–18

[60] Kratochvil P 2013 Insect wing structure: macro photo of a

dragonfly wing structure [Camera: Canon EOS 5D Mark II

1/160 s, f 16.0, ISO 100, 100 mm; uploaded September 26,

2013] URL: http://www.publicdomainpictures.net/view-

image.php?image=25113&large=1&picture=insect-wing-

structure (accessed 22 February 2018)

[61] Kimball S, Mattis P and GIMP Development Team 2019

Gnu image manipulation program https://www.gimp

.org/ (accessed 21 August 2019)

[62] Bertram C D, Macaskill C, Davis M J and Moore J E Jr.

2014 Development of a model of a multi-lymphangion

lymphatic vessel incorporating realistic and measured

parameter values Biomech Model Mechanobiol 13

401–16

[63] Dixon J B, Greiner S T, Gashev A A, Cote G L, Moore J E Jr

and Zawieja D C 2006 Lymph flow, shear stress, and

lymphocyte velocity in rat mesenteric prenodal lymphatics

Microcirculation 13 597–610

[64] Battista N, Douglas D, Lane A, Samsa L, Liu J and Miller L

2019 Vortex dynamics in trabeculated embryonic ventricles

Jcdd 6 6

[65] Liu J, Bressan M, Hassel D, Huisken J, Staudt D, Kikuchi K,

Poss K D, Mikawa T and Stainier D Y R 2010 A dual role for

erbb2 signaling in cardiac trabeculation Development 137

3867–75

[66] Griffith B 2019 An adaptive and distributed-memory

parallel implementation of the immersed boundary (ib)

method https://github.com/IBAMR/IBAMR (accessed 18

June 2019)

[67] Cortez R 2001 The method of regularized Stokeslets SIAM J.

Sci. Comput. 23 1204–25

[68] Li Z 2003 An overview of the immersed interface method

and its applications Taiwanese J. Math. 7 1–49

[69] Ubbink O and Issa R I 1999 A method for capturing sharp

fluid interfaces on arbitrary meshes J. Comput. Phys. 153

26–50

[70] Udaykumar H S, Mittal R, Rampunggoon P and Khanna A

2001 A sharp interface Cartesian grid method for simulating

flows with complex moving boundaries J. Comput. Phys.

174 345–80

[71] Cortez R and Minion M 2000 The blob projection method

for immersed boundary problems J. Comput. Phys. 161

428–53

[72] Waldrop L D, Miller L A and Khatri S 2016 A tale of two

antennules: the performance of crab odour-capture organs

in air and water J. R. Soc. Interface 13 20160615

[73] Lee P, Griffith B E and Peskin C S 2010 The immersed

boundary method for advection-electrodiffusion with

implicit timestepping and local mesh refinement J. Comput.

Phys. 229 52085227

[74] Battista N A 2019 Ib2d video tutorials! https://github.com/

nickabattista/IB2d/ (accessed 18 June 2019)

17

http://10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
http://10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1145/2629697
https://doi.org/10.1109/map.2016.2541606
https://doi.org/10.1109/map.2016.2541606
https://doi.org/10.1109/map.2016.2541606
https://doi.org/10.1109/map.2016.2541606
http://www.argusone.com/index.html
https://doi.org/10.3133/ofr97421
https://doi.org/10.3133/ofr97421
https://doi.org/10.3133/ofr97421
https://doi.org/10.3133/ofr97421
https://arxiv.org/abs/1808.08122
https://arxiv.org/abs/1902.07615
https://doi.org/10.1093/icb/icv102
https://doi.org/10.1093/icb/icv102
https://doi.org/10.1093/icb/icv102
https://doi.org/10.1093/icb/icv102
https://github.com/IBAMR/IBAMR
https://doi.org/10.1007/s11538-012-9765-6
https://doi.org/10.1007/s11538-012-9765-6
https://doi.org/10.1007/s11538-012-9765-6
https://doi.org/10.1007/s11538-012-9765-6
https://doi.org/10.1073/pnas.1323208111
https://doi.org/10.1073/pnas.1323208111
https://doi.org/10.1073/pnas.1323208111
https://doi.org/10.1073/pnas.1323208111
https://doi.org/10.1242/jeb.064501
https://doi.org/10.1242/jeb.064501
https://doi.org/10.1242/jeb.064501
https://doi.org/10.1242/jeb.064501
https://doi.org/10.3390/fluids5010020
https://doi.org/10.3390/fluids5010020
https://doi.org/10.1002/cnm.1274
https://doi.org/10.1002/cnm.1274
https://doi.org/10.1002/cnm.1274
https://doi.org/10.1002/cnm.1274
https://doi.org/10.1017/jfm.2011.54
https://doi.org/10.1017/jfm.2011.54
https://doi.org/10.1017/jfm.2011.54
https://doi.org/10.1017/jfm.2011.54
https://commons.wikimedia.org/wiki/File:Reef0297.jpg
https://commons.wikimedia.org/wiki/File:Reef0297.jpg
https://github.com/svg/svgo
https://github.com/svg/svgo
https://jakearchibald.github.io/svgomg/
https://doi.org/10.1016/j.asoc.2018.05.018
https://doi.org/10.1016/j.asoc.2018.05.018
https://doi.org/10.1016/j.asoc.2018.05.018
https://doi.org/10.1016/j.asoc.2018.05.018
http://dl.acm.org/citation.cfm?id=938978.939190
http://dl.acm.org/citation.cfm?id=938978.939190
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1809.04547
https://arxiv.org/abs/1803.04189
https://doi.org/10.1016/j.patcog.2009.08.002
https://doi.org/10.1016/j.patcog.2009.08.002
https://doi.org/10.1016/j.patcog.2009.08.002
https://doi.org/10.1016/j.patcog.2009.08.002
http://www.publicdomainpictures.net/view-image.php?image=25113&large=1&picture=insect-wing-structure
http://www.publicdomainpictures.net/view-image.php?image=25113&large=1&picture=insect-wing-structure
http://www.publicdomainpictures.net/view-image.php?image=25113&large=1&picture=insect-wing-structure
https://www.gimp.org/
https://www.gimp.org/
https://doi.org/10.1007/s10237-013-0505-0
https://doi.org/10.1007/s10237-013-0505-0
https://doi.org/10.1007/s10237-013-0505-0
https://doi.org/10.1007/s10237-013-0505-0
https://doi.org/10.1080/10739680600893909
https://doi.org/10.1080/10739680600893909
https://doi.org/10.1080/10739680600893909
https://doi.org/10.1080/10739680600893909
https://doi.org/10.3390/jcdd6010006
https://doi.org/10.3390/jcdd6010006
https://doi.org/10.1242/dev.053736
https://doi.org/10.1242/dev.053736
https://doi.org/10.1242/dev.053736
https://doi.org/10.1242/dev.053736
https://github.com/IBAMR/IBAMR
https://doi.org/10.1137/s106482750038146x
https://doi.org/10.1137/s106482750038146x
https://doi.org/10.1137/s106482750038146x
https://doi.org/10.1137/s106482750038146x
https://doi.org/10.11650/twjm/1500407515
https://doi.org/10.11650/twjm/1500407515
https://doi.org/10.11650/twjm/1500407515
https://doi.org/10.11650/twjm/1500407515
https://doi.org/10.1006/jcph.1999.6276
https://doi.org/10.1006/jcph.1999.6276
https://doi.org/10.1006/jcph.1999.6276
https://doi.org/10.1006/jcph.1999.6276
https://doi.org/10.1006/jcph.2001.6916
https://doi.org/10.1006/jcph.2001.6916
https://doi.org/10.1006/jcph.2001.6916
https://doi.org/10.1006/jcph.2001.6916
https://doi.org/10.1006/jcph.2000.6502
https://doi.org/10.1006/jcph.2000.6502
https://doi.org/10.1006/jcph.2000.6502
https://doi.org/10.1006/jcph.2000.6502
https://doi.org/10.1098/rsif.2016.0615
https://doi.org/10.1098/rsif.2016.0615
https://doi.org/10.1016/j.jcp.2010.03.036
https://doi.org/10.1016/j.jcp.2010.03.036
https://github.com/nickabattista/IB2d/
https://github.com/nickabattista/IB2d/

Bioinspir. Biomim. 16 (2021) 016008 D M Senter et al

[75] Miles J G and Battista N A 2019 Don’t be jelly: exploring

effective jellyfish locomotion (arXiv:1904.09340)

[76] Miles J G and Battista N A 2019 Naut your everyday jellyfish

model: exploring how tentacles and oral arms impact

locomotion Fluids 4 169

[77] Pallasdies F, Goedeke S, Braun W and Memmesheimer R

2019 From single neurons to behavior in the jellyfish

Aurelia aurita (biorxiv10.1101/698548v1)

[78] Santhanakrishnan A, Nguyen N, Cox J G and Miller L A

2009 Flow within models of the vertebrate embryonic heart

J. Theor. Biol. 259 449–61

[79] Griffith B E 2005 Simulating the blood-muscle-vale

mechanics of the heart by an adaptive and parallel

version of the immsersed boundary method PhD

Thesis Courant Institute of Mathematics, New York

University

18

https://arxiv.org/abs/1904.09340
https://doi.org/10.3390/fluids4030169
https://doi.org/10.3390/fluids4030169
https://www.biorxiv.org/content/10.1101/698548v1
https://doi.org/10.1016/j.jtbi.2009.04.020
https://doi.org/10.1016/j.jtbi.2009.04.020
https://doi.org/10.1016/j.jtbi.2009.04.020
https://doi.org/10.1016/j.jtbi.2009.04.020

	A semi-automated finite difference mesh creation method for use with immersed boundary software IB2d and IBAMR
	1. Introduction
	2. MeshmerizeMe implementation
	2.1. Overview of contour extraction
	2.1.1. Noise reduction
	2.1.2. Smoothing the results from OpenCV's algorithm

	2.2. Going from curves to mesh
	2.2.1. Distribution of errors in approximation

	3. Examples: bringing everything together
	3.1. IB2d: dragonfly wing veins example
	3.2. IBAMR: lymphatic capillary example
	3.3. IB2d: starfish example

	4. Discussion
	Acknowledgments
	Appendix A. Details on the immersed boundary method
	A.1. Governing equations of IB
	A.2. Numerical algorithm

	Appendix B. Background on Bézier curves
	ORCID iDs
	References

