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Abstract

Numerous fluid-structure interaction problems in biology have been investigated using the
immersed boundary method. The advantage of this method is that complex geometries, e.g.,
internal or external morphology, can easily be handled without the need to generate matching grids
for both the fluid and the structure. Consequently, the difficulty of modeling the structure lies
often in discretizing the boundary of the complex geometry (morphology). Both commercial and
open source mesh generators for finite element methods have long been established; however, the
traditional immersed boundary method is based on a finite difference discretization of the
structure. Here we present a software library for obtaining finite difference discretizations of
boundaries for direct use in the 2D immersed boundary method. This library provides tools for
extracting such boundaries as discrete mesh points from digital images. We give several examples of
how the method can be applied that include passing flow through the veins of insect wings, within
lymphatic capillaries, and around starfish using open-source immersed boundary software.

1. Introduction

The immersed boundary method (IBM) is a mathe-

matical formulation and numerical method for fully-

coupled fluid-structure interaction (FSI) problems

that dates back to Peskin in 1972 [1]. Since its cre-

ation, the IBM has been used to study a wide variety of

problems in biological fluid dynamics and fundamen-

tal fluid dynamics at low to intermediate Reynolds

numbers (Re < 10 000). Diverse examples include the

aerodynamics of insect flight [2–4], lamprey swim-

ming [5, 6], jellyfish swimming [7, 8], and fluid

flows through organs such as the heart and esopha-

gus [9–11]. The relative ease of implementation and

the availability of open source codes has made it par-

ticularly useful in research and education [12–14].

The original IBM formulation discretizes

immersed, elastic boundaries on a curvilinear

finite difference mesh. Many immersed boundary

(IB) studies are performed in 2D and use simple

geometries with easy mathematical descriptions such

as plates [2, 15], strings [16, 17], tubes [10, 18, 19],

ellipses [20, 21], hemiellipses [8, 22], and circles

[23–25], or in 3D with spheres [26] or cylinders [27].

In other cases, more complicated geometries are

manually constructed by the user via explicit math-

ematical functions or sets of functions that describe

the elastic boundary [9, 28, 29]; this endeavor is,

however, non-trivial. David Baraff, a Senior Research

Scientist at Pixar Animation Studios has publicly

said, ‘I hate meshes. I cannot believe how hard this is.

Geometry is hard’ [30].

This immediately highlights a challenge in per-

forming IB simulations for many biological applica-

tions that have complicated geometries. Most mesh-

ing tools are finite element based, such as MeshLab

[31], Gmsh [32], or TetGen [33], all of which are open

source. As far as we are aware, there is not an openly
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available and easy to use tool for generating curvi-

linear finite difference meshes. A few finite difference

meshing tools that are available constrain the mesh

to a Cartesian grid using cuboids, such as the open

source AEG Mesher [34], which was designed for elec-

tromagnetic simulations, and the propriety software

Argus ONE [35], which was designed to help incor-

porate geographic information system into numerical

models [36].

What’s more, many applications, especially those

in biology and medicine, usually have some imaging

data from which a mesh is estimated. For example,

imagine generating a numerical model of blood flow

through an arterial network. There are highly resolved

images that clearly illustrate arterial branching pat-

terns from which desirable geometric data, e.g., artery

diameters, lengths, branching locations, etc, can be

obtained. To perform numerical simulations that

reveal the spatial variations in the flow due to small

scale geometric effects, one must reconstruct this arte-

rial network in detail. Even for 2D simulations this

process is non-trivial, as one would first need to

recreate the structure using parametric functions and

then select particular parameter values that sample

the structure’s geometry to obtain a computational

mesh with equally-spaced points. While this labo-

rious approach may work for some simplified arte-

rial geometries, if the actual arterial network con-

tains walls that are not perfectly smooth or flat, sim-

ple tubular models may be insufficiently detailed and

hence give rise to non-realistic results. Our software

aims to fill this gap using edge detection on the orig-

inal image, thereby preserving the original pattern

and information from the images. Bézier curves are

then used to mathematically describe the images, after

which they are appropriately sampled to obtain a

curvilinear mesh.

The challenge here is two-fold: first a continuous,

parameterized description of the boundary of interest

must be found, potentially through image segmen-

tation, and then this boundary must be represented

as a finite difference mesh with sampling to give

the desired geometric spacing between adjacent geo-

metric nodes. Given the widespread use of the IBM

approach in both research and education [12–14, 37,

38], we found it useful to create the open source soft-

ware package MeshmerizeMe, a tool that both detects

boundaries in image data and creates finite differ-

ence meshes where the nodes are nearly uniformly

spaced. The output files are designed to be coupled

with IB2d [12, 13, 39], IBAMR [40], and other IB 2D

software.

We provide an overview of the software Meshmer-

izeMe in section 2. In particular, we detail Meshmer-

izeMe’s implementation, workflow (section 2.1), and

how the software computes a discretized mesh from

parametric curves (section 2.2). We then present a

variety of examples using the software in section 3;

including two internal flow examples and one

external flow example. The examples include

hemolymph flow through dragonfly wing veins

(section 3.1), flow through a lymphatic capillary

(section 3.2), and oscillatory flow past a starfish

(section 3.3).

The most straightforward IB simulations using

this software would be developed to simulate the

flow past or through nearly rigid, complex, biolog-

ical boundaries, as demonstrated in these examples.

We do not currently have a method for using mul-

tiple images to simulate moving boundaries. There

are, however, a few ways that one can model mov-

ing and deformable boundaries. To begin, each of

the Lagrangian points can be translated or rotated

using a prescribed mathematical function rather than

moving the boundary based on image tracking. This

approach has been used for a variety of biologi-

cal applications, including flapping insect wings [2],

swimming jellyfish [8, 41], flapping swimmerets [42]

and heart pumping [19]. If, in addition to vertex

points, springs and beams are added to pairs or tri-

ads of vertex points, elastic deformations due to the

FSI can also be simulated. This type of approach has

been used for leaves in flow [43], flapping filaments

[16], the deformation of prey prior to puncture [44],

and the movement of red blood cells [45, 46].

2. MeshmerizeMe implementation

MeshmerizeMe is a software package for the creation

of 2D geometry files for use with open source IB

software such as IB2d and IBAMR. The software

comes with two main scripts: 1) ContourizeMe, which

reads in an image file and uses automatic edge detec-

tion to extract contours of interest into an ‘scalable

vector graphics’ (SVG) file, and 2) MeshmerizeMe,

which processes SVG files and IB2d- or IBAMR-style

input2d files to create ∗.vertex files describing the

geometry of the SVG file at the appropriate resolution.

Both SVG and vertex files are UTF encoded text files.

SVG is a widely supported vector graphics format,

while the vertex-format is used by IB2d and IBAMR to

describe Lagrangian mesh points in an IB simulation.

The MeshmerizeMe script also includes a tool that uses

Matplotlib to allow the user to plot the geometry cre-

ated by MeshmerizeMe for visual verification. These

scripts are written to run in Python 3.x, and upon

installation both scripts are added to the path on a

Linux and Mac environment. This dual-script setup

allows the end-user two distinct entry points into the

workflow; see figure 1 for an illustration.

To provide a concrete example of the workflow,

suppose an image is available either from the field

or an experiment. To detect the edges and gener-

ate an SVG file, the user would run the Contour-

izeMe script on the desired image file (e.g., by typing

ContourizeMe image.jpg in the commandline). This

opens a GUI with several features that may be used

to modify and enhance the image (see figure 2). Note

2
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Figure 1. Flow chart illustrating the MeshmerizeMe
workflow. Blue rounded boxes represent files, while square
orange boxes represent user actions. The flow chart
illustrates the two main entry points into the work flow
from the source image: automatic edge extraction using the
ContourizeMe script as well as manually creating the SVG
by drawing ‘over’ the image using software like Inkscape.

that common image formats such as jpg, png, and

tiff are supported. For best performance, the image

should provide a good contrast between the object

boundary and background, while also having little

noise. If this is not the case, ContourizeMe allows

the user to adjust the image contrast and saturation7

using simple sliders to better highlight the bound-

ary of interest. Using a slider for the pixel cutoff, the

smoothness of the matched curve can be adjusted to

account for noise. All of these sliders update in real

time. If this proves insufficient, unwanted edges that

were detected can easily be deleted at a later step.

Once the user is satisfied with the result, the curve is

exported to an SVG file to be used as input for the

MeshmerizeMe script.

In some cases, the original image quality may be

high enough to proceed directly to the discretization

phase. In most cases, however, the user will want to

make minor edits to the SVG file to remove any poten-

tial artifacts, such as curves corresponding to back-

ground noise in addition to the boundaries of inter-

est. These edits can be done using common vector

graphics software such as Inkscape (open-source) or

Adobe Illustrator (commercial). Note that this also

provides an alternate entry-step in the MeshmerizeMe

workflow: curves can be freely drawn using such soft-

ware if image data is either not available, the boundary

7 Those changes are temporary and do not affect the original image

data.

structure is purely hypothetical, or in cases when the

original image is too poor in quality for reliable edge

detection. In the latter case, image layers may be used

in software such as Inkscape that allows the user to

trace over the desired edges to create the SVG file with

the necessary boundaries. Once the SVG file has been

cleaned in this manner, it is advised to collapse under-

lying groups and simplify contiguous paths, which in

some vector graphics software can be done from the

‘save’ menu. In other cases, software to do this is freely

available online, such as SVGO and SVGOMG [48,

49].

With the desired geometry extracted into an SVG

image, the next step consists of making a folder in

which the SVG file itself can be found, as well as

an IB2d-style file called input2d. This latter file

includes information such as the spatial discretiza-

tion step size (more details on this can be found

below). Our script reads this file to calculate and sam-

ple the appropriate mesh. MeshmerizeMe is run by

pointing it to the appropriate SVG file (e.g., typing

MeshmerizeMe image.svg from the command line).

It will then create the .vertex file containing the

mesh. Note that the filename of the vertex file will be

taken straight from the input2d file, regardless of the

SVG filename. If multiple meshes are to be created,

MeshmerizeMe can be run in batch mode by provid-

ing it with a list of file names. We also support piping

from STDIN. This allows the user to easily pass a list of

file names, such as one created by the find command,

to MeshmerizeMe for batch processing.

The resulting .vertex file can then be used

as input for IB simulations using IB2d and IBAMR.

Note that the user will need to supply some addi-

tional information as to the relationship between the

boundary points, for example whether or not they are

connected with springs, beams, masses, and so forth.

Currently, files that store this information must be

manually created, although a few of these relations are

implemented as classes in the MeshmerizeMe library

to help with writing such scripts. Once this stage is

completed, the IB simulation is ready to run.

2.1. Overview of contour extraction

In this section, we provide an overview of how Con-

tourizeMe extracts contours from images. This is

motivated by the need to accurately estimate the

shapes of objects from planar images or within some

cross-section. Many techniques, ranging from edge-

finding using image gradients to image segmentation

accomplished through supervised training of deep

neural nets, have been proposed as generalized meth-

ods to extract such edges [50, 51]. The niche filled

by MeshmerizeMe is to easily obtain 2d meshes from

image data that can be directly used in IB2d and

IBAMR. In essence, it allows for the semi-automated

generation of meshes from image data using simple

contour estimation from hand chosen thresholds of

pixel values [52] as a first step in the IBM workflow.

3
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Figure 2. The ContourizeMe GUI in action on Manjaro Linux 18.0.4 with Gnome DE emulated in VirtualBox. The main window
to the left allows the user to select the desired type of parameterization of the source image. The user can chose grayscale, RGB, or
HSV. The sliders allow the user to set the desired threshholding in that parameterization. The detected edges are displayed in the
live image (upper right) in green. The user may optionally display the result of the paramterization and filtering (lower right).
Starfish image reproduced from [47].

This replaces the need to completely create the struc-

ture mesh manually by finding idealized functions

approximating the shape of interest. This method was

chosen for its simplicity and fast estimation in obtain-

ing user-verified 2d shapes of arbitrary smoothness

and precision.

The ContourizeMe GUI was developed with the

Python package Tkinter. Contour estimation from

image thresholding works by first applying noise

reduction to a given image if needed. The contour

is assumed to be represented in the image by a gra-

dient or steep change in the pixel values that sep-

arates the foreground, or object of interest (OOI),

from the background. For many images this means

the existence of one or three inequalities or pixel-

value bounds (3 for the case of RGB and HSV val-

ues) that quantify this separation. Image noise from

one or multiple sources can make these inequalities

ill-defined. Possible sources of image noise are numer-

ous and include sensor and electronic-circuit noise,

analog-to-digital conversion errors, and even statis-

tical quantum fluctuations [53, 54]. ContourizeMe

provides implementations of various common noise

reduction techniques that the user may choose from

depending on the source and strength of the noise

present in their own images.

In the next step after determining an appropriate

noise reduction technique, the user manually deter-

mines one or more pixel value bounds depending

on a given parameterization (RGB, grayscale, HSV,

etc) that forms the lowest-area hull that corresponds

to the OOI. This closed region is used to produce a

binary image with pixel values of 1 corresponding to

those contained in the provided region and 0 corre-

sponding to those not in this region. A topological

algorithm in OpenCV [52] is applied to this binary

image to give contours that fully describe ‘separate’

clusters of homogeneous pixels (in this case pixels

that all equal 1). This algorithm yields integer pixel

estimates of the boundaries, which are then refined

to sub-pixel estimates with user specified smooth-

ness via the Chan–Vese algorithm. More details are

provided in the following subsections.

These contours themselves are estimations of the

shapes of interest that are then used to yield pre-

cise descriptions of the shapes as a set of continu-

ous Bézier curves (see appendix B). Bézier curves are

constructed using evenly spaced points from the sub-

pixel boundary estimates and exported in the SVG

format.

2.1.1. Noise reduction

Filtering algorithms, the topological contour estima-

tion algorithm, and most of the image manipula-

tions (such as RGB to HSV conversion, thresholding,

etc) are accomplished in ContourizeMe via Python

bindings of the OpenCV package [52]. OpenCV is

a computer vision suite developed in C++ built to

tackle various problems including segmentation, 3D

reconstruction, edge-finding, and other related tasks.

ContourizeMe’s main GUI includes:

• An average filter which essentially is a type of

down sampling that assumes the true value of

any pixel can be estimated by the average pixel

value of a K by K window surrounding that

pixel. This is equivalent to convolving the image

with a low-pass filter kernel.

• A Gaussian filter which convolves the image

with a Gaussian kernel of a specified size

and standard deviation in both the x and y

4
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directions. This is similar to the average filter,

but pixels are weighted via the 2D Gaussian

function specified before they are averaged.

• A median filter which instead of the average

over a window, takes the median pixel value.

This kind of filter is typically used for ‘salt and

pepper’ type image noise, and has the advantage

of leaving only pixel values that would have been

observed in the original image.

• A bilateral filter which is the recommended

choice. The bilateral filter behaves similarly to

the Gaussian filter, but in addition to weight-

ing pixels by their spatial distance it also

weights them by their difference in intensity

in an attempt to preserve edges or gradient

information.

While the bilateral filter is recommended because

of its intended edge-preservation [55], one may want

to employ one of the other convolution filters as they

can smooth boundaries produced by the threshold-

ing and topological algorithms. We must also stress

that this selection is highly limited in scope and much

more sophisticated and robust techniques for the

denoising of images exist depending on the image

acquisition method and content. It may be that mak-

ing a model of the noise via a deep neural net such

as UNet [56], CAIR [57], Noise2Noise or Noise2Void

[58] may be required or produce better results. Any

method may of course be employed before using this

segmentation GUI.

2.1.2. Smoothing the results from OpenCV’s

algorithm

In order to give the user control over the smoothness

of the resulting curve they obtain, we use a Python

implementation of the Chan–Vese level set algorithm

[59]. This method of smoothing the curve ensures

that reductions in the curvature are chosen such that

they have minimal costs to accuracy and that the con-

tour remains true to the original image. We allow

users to specify both the error tolerance in pixels,

as estimated from each iteration of the Chan–Vese

algorithm, and the parameter α which controls the

contribution of the total curvature of the boundary

to the energy functional and thus the smoothness of

the obtained contour.

2.2. Going from curves to mesh

The second part of our software package consists of

a script that takes vector based graphics, specifically

the SVG standard, to obtain a discretized curvilin-

ear mesh that describes the boundary of the OOI.

The idea behind vector graphics is to represent shapes

in terms of control points of non-uniform rational

basis splines. Only control points of the parameter-

ized curves are stored while the standard defines the

basis polynomials themselves. The resulting curves

can be represented smoothly at any scaling or

resolution of interest and can easily be mapped to the

simulation space using an affine transformation.

A variety of vector graphics file formats are avail-

able, several of which are proprietary. We have chosen

to implement our software using the SVG standard

because it is a popular, open-source standard and for

its ease of use. SVG files are UTF encoded text files

following an XML schema, making them amenable

to XML parsing methods. A particular benefit of the

SVG standard is that it is widely supported; if edge

detection fails or gives insufficient resolution, mul-

tiple vector graphics programs such as Inkscape or

Adobe Illustrator may be used to clean up or directly

hand-draw the boundaries of interest from an image.

The standard has support both for Bézier curves as

well as geometric primitives (rectangles, triangles,

etc), and the current version of MeshmerizeMe utilizes

the free path element, which encodes curves as Bézier

curves.

To reduce the need for additional configuration

files, MeshmerizeMe has been built to utilize the

‘input2d’ file format that is utilized by IB2d and

IBAMR. This file is required, and the MeshmerizeMe

code expects the following variables to be defined in

the input2d file8:

• Lx,Ly: the length of the computational domain

in the x and y direction, respectively.

• Nx: number of points in the x direction.

Even if the user chooses to use a different CFD

software for the simulation, MeshmerizeMe can still

be used to create the requisite mesh points. Strict

adherence to the IB2d format is not required. A min-

imal working example of the input2d file required for

MeshmerizeMe requires only four lines. The example

below will create a mesh appropriate for a [0, 0.5] ×

[0, 0.5] domain with a 64 × 64 mesh.

Please note that this minimal example is only

sufficient for MeshmerizeMe. A simulation for IB2d

or IBAMR will require additional settings in the

input2d file, such as the fluid parameters mu and

rho and temporal information such as the desired

time step dt and time the simulation is to run.

Any such additional settings may be present in the

input2d file, but will be ignored by MeshmerizeMe.

MeshmerizeMe will automatically compute the

appropriate boundary point spacing of ∆s = 1
2
∆x,

where ∆x = Lx
Nx

. We note that it is standard in the

IB literature to set the spacing between the IB points

to half that of the spatial step for the Navier–Stokes

solver, ∆s = 1
2
∆x [14]. This choice of spacing allows

8 MeshmerizeMe expects a square discretization, that is ∆x = ∆y,

but does not require a square computational domain.

5
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the boundary points to move independently while

also restricting most of the flow between the points.

Using these parameters, the software will parse the

supplied SVG file itself and extract the path objects,

splitting them up into individual Bézier curve objects.

The control points are then converted to the experi-

mental coordinate system defined by Lx and Ly.

Let γ(t) ∈ R
2 represent a particular Bézier curve.

To create the mesh, we seek n parameters {ti} with

0 6 t1 < t2 < · · · < tn 6 1 such that the distance

between points on the curve with these parameters is

fixed:

d(ti) = ‖γ(ti+1) − γ(ti)‖ = ∆s, i = 1, . . . , n − 1.
(1)

We utilize a gradient descent method to find these

parameters. Specifically, we define our cost function

J(t) using the mean squared relative error of all d(ti)

values (scaled by 1
2

to cancel the power of 2 coming

from the partial derivatives in (4))

J(t) =
1

2(n − 1)

n−1
∑

i=1

(

d(ti) −∆s

∆s

)2

, t =
[

t1 · · · tn

]

(2)

and minimize J(t) by iteratively updating t with a

variable learning rate α:

tnew = told − α∇J(t), (3)

where

∂J

∂tj

=



























































−1

(n − 1)(∆s)2

[

1

d(tj)

(

d(tj) −∆s
)

〈γ(tj+1) − γ(tj),∇γ(tj)〉

]

, if j = 1

1

(n − 1)(∆s)2

[

1

d(tj−1)

(

d(tj−1) −∆s
)

〈γ(tj) − γ(tj−1),∇γ(tj)〉

]

, if j = n − 1

1

(n − 1)(∆s)2









1

d(tj−1)

(

d(tj−1) −∆s
)

〈γ(tj) − γ(tj−1),∇γ(tj)〉

−
1

d(tj)

(

d(tj) −∆s
)

〈γ(tj+1) − γ(tj),∇γ(tj)〉









, otherwise.

(4)

Here, we use the notation 〈a, b〉 to denote the

inner product between a and b.

The number of points n to be found per path are

estimated by dividing the arc-length by the desired

length ∆s. This may result in more dense than opti-

mal spacing of points, but in practice achieves suffi-

cient accuracy. The error will depend on the curvature

of γ.

We then evaluate our curve at the points

ti obtained from this technique to determine

the discretized boundaries of interest. The pro-

duced Lagrangian mesh is output to a file called

fname.vertex where ‘fname’ is based on the

value of string_name taken from the ‘input2d’

file. The vertex file itself is a simple text file. The first

line consists of an integer giving the total number

of mesh points and the following lines contain one

mesh point each, given as a space delimited pair of

floats representing the x and y direction coordinates.

2.2.1. Distribution of errors in approximation

To test the relative accuracy of our script, we cre-

ated 5000 SVG files each containing a randomly gen-

erated cubic Bézier curve. For purposes of unifor-

mity during testing, each curve was generated on a

1000 × 1000 pixel domain to be mapped onto a 1 × 1

mesh domain using a 256 × 256 grid. All parameters

were set to default values. A script was then run to cal-

culate the minimum, maximum, mean, and median

relative errors for each curve. The mean of the median

relative error of curves in the script is 3.2%. The mid-

dle 50% of median relative errors is in the 2.6–3.5%

range. See figure 3 for the distribution of the median

relative errors.

Note that if a higher degree of accuracy is desired,

the user is able to experiment with different param-

eters that can influence the average error. Meshmer-

izeMe allows the user to set both the learning rate as

well as the convergence threshold of the mean squared

error as command-line options when creating the

mesh.

One potential limitation on the error is the

method we have chosen to seed the curves. Specifi-

cally, after reading the SVG our script merges all indi-

vidual SVG path objects into a single path object.

This path object is then split into several sub-paths of

equal arc-length. Each of these sub-paths are seeded

with n = Lsp/∆s points, where Lsp is the length of

the sub-path and ∆s is the desired Euclidean distance

between mesh-points. For sub-paths with very large

curvature, this seeding method may overestimate the

number of points necessary for ideal discretization. In

such cases, the user may re-run the MeshmerizeMe

script with thenum-pointsflag to manually specify

a lower number of points per sub-path. In our expe-

rience, this is an unusual occurrence that can usually

6
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Figure 3. A distribution plot of median errors calculated from the meshes created for the error experiments in section 2.2.1.

be solved by experimenting with the num-points
flag.

It should also be noted that our current algorithm

assumes the OOI is a contiguous path, that is we

assume the object can be represented by a single poly-

Bézier curve with at least geometric continuity. In the

SVG file, this representation is not limited to repre-

sentation by a single path element. When the SVG

file is parsed, all path elements are merged into a

single poly-Bézier path object. This object is then

divided into several sub-paths of approximately equal

length which are then processed in parallel. If the

OOI consists of two non-contiguous paths or mul-

tiple objects are represented in the source SVG, the

MeshmerizeMe script will report a large error result-

ing from the distance between two sequential points

on non-contiguous paths. In the presence of several

non-contiguous paths, the minimization algorithm

will lead to a slight skewing of points toward path

boundaries.

3. Examples: bringing everything
together

We present several examples that illustrate the

software’s ability to recreate complex geometries. In

each example, ContourizeMe is used to extract con-

tours from images, MeshermizeMe is then used to

compute the model’s discretized geometry. The flow

within or around the geometries is solved using an

open-source implementation of IBM, either IB2d or

IBAMR. The following examples are illustrated:

(a) Hemolymph flow through dragonfly wing veins

(section 3.1)

(b) Lymph flow through a branching lymphatic cap-

illary (section 3.2)

(c) Oscillatory flow past a starfish or array of starfish

(section 3.3)

In every example, we present the original image

on which the computational geometry is based, fol-

lowed by images that illustrate how MeshmerizeMe

computed its associated discretized mesh. Finally,

we present computational results to illustrate suc-

cessful integration of the geometry into the IBM

software.

3.1. IB2d: dragonfly wing veins example

For our first example, we chose a public domain

image of a dragonfly wing shot with a Canon EOS

5D Mark with a 100 mm lens [60]. For the purpose

of running a tractable FSI simulation, we cropped

this image to a section of the wing and manu-

ally occluded parts of the veins using the open

source image manipulation software GIMP [61].

Figure 4 shows the original image of the dragonfly

wing and the region that was chosen for numerical

simulation.

As shown in figure 2, we used the ContourizeMe

GUI to create boundaries describing the subsection of

the wing vasculature. Briefly, the image was cropped

so that only a couple dozen vessel segments would be

considered. The image was then loaded into the Con-

tourizeMe GUI. Noise reduction was then applied to

the image, and a pixel bound was selected such that

the lowest-area hull sufficiently matches the edge of

the vessel network. The edges were then smoothed

using the Chan–Vese algorithm, and the result was

exported to SVG.

The MeshmerizeMe script was then used to obtain

a curvilinear mesh from the SVG file. The x, y coordi-

nates of this mesh were written to the .vertex file.

The file contained the coordinates for approximately

equally-spaced Lagrangian points that were then used

as an input into IB2d. For the purpose of run-

ning an IB2d simulation where the complex geome-

try remains relatively fixed while the fluid is driven

through it, we only require the vertex point of each

Lagrangian Point, i.e. the (x, y) values of each point

7
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Figure 4. (a) The original public domain image of a dragonfly wing [60]. (b) The partial region of the dragonfly wing that was
chosen for numerical simulation in IB2d. Some vessels were opened so that flow would have obvious entry and exit paths.

Figure 5. Snapshots comparing the magnitude of velocity for different Re, Re = 0.6, 6, 60.

along the insect wing. Since the wing veins should be

relatively rigid and not move, each Lagrangian ver-

tex point was tethered to a target point (see A.1). This

has the effect of applying a force proportional to the

distance between the location of the actual boundary

and the desired position. In other words, the bound-

ary is pushed back into place as fluid moves through

the network. The necessary input information for

IB2d is written in the wing_veins.vertex and

wing_veins.target files.

This example can be found in the open source

IB2d software available at github.com/nickabattista

/IB2d and this example can be found in the follow-

ing subdirectory, IB2d/matIB2d/Examples/
Example_MeshmerizeMe/Dragonfly_Wing/.

More details on IB2d and the IBM in general can be

found in appendix A.

To drive flow through the wing, a penalty force

is applied to the fluid that is proportional to the

difference between the local fluid speed and the

local target velocity (see A.1). For our example, a

parabolic flow profile is enforced at the inlet of the

insect wing, and all subsequent flows through the

veins result from that inflow and are not them-

selves prescribed (see figure A.11). The full imple-

mentation of this simulation can be found in

the please_Compute_External_Forcing.m
script.

To illustrate flow through the wing vein geometry,

we ran multiple simulations corresponding to various

8
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Figure 6. Snapshots comparing the pressure for different Re, Re = 0.6, 6, 60.

Reynolds numbers (Re), given by

Re =
ρLU

µ
, (5)

where ρ is the density of the fluid (kg m−2), µ is the

dynamic viscosity (N s m−1), and L and U are char-

acteristic length and velocity scales respectively. We

note that in these simulations, we variedµwhile hold-

ing ρ = 1000 kg m−2, L = w (width of the vein where

the inflow is produced), and U = 5 m s−1 (the maxi-

mum speed of the parabolic inflow). Simulations were

run over a couple orders of magnitude of Re ranging

through Re ∈ [0.1, 100] on a [0, 0.5] × [0, 0.25] grid

with resolution of dx = 0.5/1024 = 0.25/512 = dy.

The result illustrates the flow through the complex

geometry as shown in figures 5 and 6. We note that

the example of flow through a subset of the veins in a

dragonfly wing was chosen to showcase the function-

ality of the software to capture and digitize intricate

complex structures.

Figures 5 and 6 compare the flow profiles and

pressures generated for three simulations when inflow

reaches its steady state through the dragonfly’s com-

plex wing vein geometry at Re = 0.6, 6, 60. It is clear

there is more flow through the complex morphol-

ogy with higher pressures for higher Re. Note that

when using the IBM, the entire structure is fully

immersed within a fluid, so there is fluid in the region

enclosed between veins. Hence the pressure fields in

such regions are not physical but instead are artifacts

of these regions being within a fluid environment and

being enclosed.

3.2. IBAMR: lymphatic capillary example

As another example of how our software can be used,

we present a case in which the vessel walls of a junc-

tion from a dermal lymphatic capillary are recon-

structed from an image. This image is courtesy of

Dr Wenjing Xu from the Kathleen Caron lab (UNC-

CH) and was taken from the back region of a wild

type mouse embryo. The image was generated with

fluorescence microscopy to highlight the lymphatic

vessel boundaries as shown in figure 7(a). The sim-

ulations described below were performed using the

IBM with adaptive mesh refinement (IBAMR) (see

appendix A).

After the contours were extracted using Contour-

izeMe, the ends of the vessels were extended using

9
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Figure 7. (a) Source image for modeling flow through a junction in a lymphatic capillary, courtesy of Dr Wenjing Xu from the
Kathleen Caron lab. (b) SVG rendering of bifurcating vascular structure. (c) Vertex points discretized from SVG file. (d)
Colormap of the magnitude of velocity of flow through a bifurcating dermal lymphatic capillary. Note that the vessel ends were
artificially extended to allow for fully developed flow within the vessels.

Figure 8. (a) Original starfish image courtesy of NOAA Sea Grant Program [47] (b) SVG image of the starfish generated by
ContourizeMe script (c), (d), (f). The discretized geometry at grid resolutions of 128 × 128, 256 × 256, and 1024 × 1024
respectively. (e) Computational geometry containing a starfish in a channel with prescribed oscillatory parabolic inflow (see A.1).

image software to allow the flow within the vessels

to fully develop before reaching the actual ves-

sel geometry. Parabolic outflow was prescribed as

a boundary condition to effectively ‘pull’ the fluid

into the vessel ends with a maximum velocity of

10−5 m s−1. This velocity is consistent with the

reported range of observed lymphatic flow veloci-

ties, which are as low as 10−7 and as high as 10−3 m

s−1 [62, 63]. Note that the vessel ends were placed

at the left domain edge for this purpose. Neumann

boundary conditions were used at the right edge of the

domain to allow volume conservation (fluid escapes

on this side), and periodic boundary conditions were

used at the top and bottom of the domain. The ves-

sel was assumed to be nearly rigid over the time

scale of a simulation. The Navier–Stokes equations

were discretized on a 512 × 512 grid with 3 lev-

els of mesh refinement and a refinement ratio of 4.

The fluid domain size was set to L = 1.2 × 10−3 m,

where the spatial step size was set to ∆x = L/512.

The vessel walls were described using a curvilinear

mesh where the distance between IB points was set

to ∆s = ∆x/2. The time step size was taken as dt =

5.0 × 10−6 s. The lymph was parameterized with mass

density ρ = 1000 kg m−3 and dynamic viscosity µ =

10−3N s m−2.

10
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Figure 9. Snapshots showing oscillatory flow past a rigid starfish at Re = 800 during the first 6 pulsation periods. The
background colormap illustrates vorticity.

3.3. IB2d: starfish example

The last example we present is that of flow around

a starfish using IB2d. The original JPG image of

the starfish was taken from WikiMedia Commons,

courtesy of NOAA Sea Grant Program in the Coral

Kingdom Collection [47]. The SVG file was pro-

duced by ContourizeMe, and the boundaries were dis-

cretized using MeshmerizeMe as shown in figure 8.

Figures 8(c), (d) and (f) give the discretized geome-

tries for the starfish at resolutions appropriate for an

IB simulation in a square fluid domain with Lx =

Ly = 1 where the spatial step size within such domain

was set to ∆x = Lx/128 (128 × 1238) and ∆x =

Lx/256 (256 × 256), and ∆x = Lx/1024 (1024 ×

1024) respectively. Note that in figure 8(f) that the

starfish’s outline is still composed of discretized

points. Recall that the average spacing between

boundary points is set to one half of the spatial step

size, e.g.,∆s = 0.5∆x. Once the boundary describing

the starfish is discretized at the desired resolution, it is

placed inside of a rigid channel, where oscillatory flow

will be prescribed to rush past the starfish as shown in

figure 8(e).

We acknowledge that the starfish geometry is

rather complex, and our simulation is relatively

coarse. As such, we are likely not resolving the details

of the flow very close to the starfish body. We would

like to point out, however, that the purpose of this

example is to further illustrate MeshmerizeMe’s abil-

ity to resolve and capture the fine structure detail of

an SVG image. Thus, our goal in this example is not

necessarily to resolve these fine scale flow structures.

This example also highlights that once the geome-

try has been created for a single starfish, it can be

easily altered. For example, this geometry can be

copied, translated to different regions of the domain,

or rotated since the software provides a parameterized

set of points.

We ran a single starfish simulation at Re = 800

(see equation (5)), where L = 0.08 m, the height of

the starfish, V = 1.0 m s−1, half the maximum oscil-

latory inflow speed, and ρ and µ are 1000 kg m−2 and

0.1 N s m−1, respectively. An oscillatory flow condi-

tion was used to produce flow past the starfish with

frequency of f = 2 Hz, see A.1. The numerical simu-

lation was performed for a fluid domain with lengths

[0, 1] × [0, 0.25] and a consistent spatial step size

in each direction, e.g., dx = 1.0/1024 = 0.25/256 =

dy. Snapshots from the numerical simulation that

illustrate a colormap of vorticity are found in

figure 9.

Previously, one of the main difficulties in per-

forming this IB simulation would be the finite

difference discretization of the starfish. Meshmer-

izeMe provides a convenient way to do this, without

having to manually piece together the geometry

either by point-by-point construction or combining

user-defined piecewise functions or splines. To

demonstrate the versatility of this method, we insert

multiple starfish into the channel. Figure 10 provides

snapshots showing the vorticity during the first

pulsation period of oscillatory flow around one,

three, or five starfish within a channel. The example

for flow around a single starfish can be found in

11
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Figure 10. Snapshots showing oscillatory flow past 1, 3, or 5 rigid starfish at Re = 800 during the first pulsation period. The
background colormap illustrates vorticity.

the open source IB2d software’s sub-directory,

IB2d/matIB2d/Examples/Example_Meshm
erizeMe/Starfish/.

4. Discussion

In this paper, we introduce a software library that will

extract edges from images, fit these images with Bézier

curves, and discretize the curves into a curvilinear

finite difference mesh with nearly constant spacing

between points. Such meshes are useful in a variety

of mathematical applications, including 2D numer-

ical simulations of FSI problems using the IBM.

We present three such applications of the tool used

in conjunction with the IBM including 1) flow of

hemolymph in the veins of an insect wing (internal

flow), 2) flow of lymph in a mouse lymphatic cap-

illary (internal flow), and 3) flow of water around

starfish (external flow). These images were taken with

either high resolution digital cameras or fluorescence

microscopy. Prior to this software release paper, the

software was successfully applied in another inter-

nal flow application of blood flows over the tra-

beculae in zebrafish embryonic hearts [64]. Here

the meshes were created from images taken from

an inverted (light) microscope [65]. This illustrates

the software’s robustness in its ability to construct

discretized meshes from various imaging methods.

Note that all of the above examples were performed

using open-source implementations of the IBM,

either IB2d [12, 13] or IBAMR [66].

While MeshmerizeMe merely provides 2D geome-

tries, its output format can serve as a starting point

in the development of 3D models. Commercial CAD

software such as Fusion360 allow the import of SVG

images, such as those produced by the ContourizeMe

script, as sketches. Fusion360’s built-in scripts allow

the import of a CSV file describing a spline using XYZ

coordinates. The latter is easily produced via com-

mandline tools like tail and sed from the vertex

files produced by the MeshmerizeMe script. This like-

wise imports the curves as a sketch. These imported

sketches can then be turned into 3D objects using

extrude and rotate commands. From here on, exist-

ing 3D meshing tools may be used to produce a mesh

suitable for a 3D simulation.

To create simple 3D geometries, the 2D mesh

could be extruded manually by adding a third coor-

dinate, and this coordinate could be varied by ∆s

to obtain a finite difference mesh that describes

an outer wall. Similarly, the 2D mesh could be

rotated about a central axis to obtain another sim-

ple 3D geometry. Sample applications of these sim-

ple geometries could include wings or fins with

12
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constant cross sections and axisymmetric structures

such as tubular hearts, jellyfish, and some worms.

The meshes could also be used in other finite dif-

ference approaches to FSI problems, including the

method of regularized Stokeslets [67], the immersed

interface method [68], sharp interface methods

[69, 70], or the blob projection method [71]. The

software library could also be applied in the numer-

ical simulation of other physics problems, includ-

ing the uptake of particles [72] and electrodiffusion

[73]. In future releases of the software library, we

plan to add additional functionality that includes the

automation for material property model input files,

e.g., springs, beams, etc, for the geometry’s discretized

points.

In addition to use in research, this library may

serve as a powerful tool for student research and edu-

cation, particularly in mathematical modeling at the

undergraduate and graduate levels. MeshmerizeMe

provides students with open source tools that can

easily be used to build relatively complicated 2D

meshes from images. These boundary meshes are eas-

ily imported and used in IB2d and IBAMR, both of

which are also open source libraries. One of the coau-

thors has developed a series of online videos to make

the use of this software even easier for students [74].

Both IB2d and MeshmerizeMe have been used in the

authors’ undergraduate and graduate courses, includ-

ing mathematical modeling, mathematical biology,

numerical analysis, and a first year seminar on biolog-

ical fluid dynamics. Furthermore, the libraries have

been successfully used in numerous undergraduate

research projects [75, 76] and contemporary locomo-

tion research endeavors [77].
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Appendix A. Details on the immersed
boundary method

The two-dimensional formulation of the IB method

used in this paper to study flow through dragonfly

wing veins, lymphatic capillaries, and around starfish

is provided below. IB2d [12, 13, 39] and IBAMR [40]

are the two open source implementations that were

used for these studies. For a full review of the IBM,

please see Peskin [14].

A.1. Governing equations of IB

The conservation of momentum equations that gov-

ern an incompressible and viscous fluid are listed

below:

ρ

[

∂u

∂t
(x, t) + (u(x, t) · ∇)u(x, t)

]

= −∇p(x, t) + µ∆u(x, t) + f(x, t) (A.1)

∇ · u(x, t) = 0 (A.2)

where u(x, t) is the fluid velocity, p(x, t) is the pres-

sure, f(x, t) is the force per unit area applied to the

fluid by the IB, ρ and µ are the fluid’s density and

dynamic viscosity, respectively. The independent vari-

ables are the time t and the position x. The variables

u, p, and f are all written in an Eulerian frame on the

fixed Cartesian mesh, x.

The interaction equations, which handle all com-

munication between the fluid (Eulerian) grid and

curvilinear mesh describing the IB (Lagrangian grid)

are given by the following two integral equations:

f(x, t) =

∫

F(s, t)δ (x − X(s, t)) ds (A.3)

U(s, t) =

∫

u(x, t)δ (x − X(s, t)) dx (A.4)

where F(s, t) is the force per unit length applied by

the boundary to the fluid as a function of Lagrangian

position, s, and time, t, δ(x) is a three-dimensional

delta function, and X(s, t) gives the Cartesian coor-

dinates at time t of the material point labeled

by the Lagrangian parameter, s. The Lagrangian

forcing term, F(s, t), gives the deformation forces

along the boundary at the Lagrangian parameter,
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Figure A.11. Illustrating the subset of the insect vein geometry where the prescribed inflow condition is enforced.

s. Equation (A.3) applies this force from the IB

to the fluid through the external forcing term in

equation (A.1). Equation (A.4) moves the boundary

at the local fluid velocity. This enforces the no-slip

condition. Each integral transformation uses a two-

dimensional Dirac delta function kernel, δ, to convert

Lagrangian variables to Eulerian variables and vice

versa.

The way deformation forces are computed,

e.g., the forcing term, F(s, t), in the integrand of

equation (A.3), is specific to the application. To hold

the geometry nearly rigid, all of the Lagrangian points

along the IB were tethered to target points. This has

the effect of holding the boundary in place through

a penalty forcing term where the force applied to

the fluid is proportional to the difference between

the actual location of the boundary and the desired

location. In this model, the target force penalty term

took the following form,

F(s, t) = ktarg (Y(s, t) − X(s, t)) , (A.5)

where ktarg is a stiffness coefficient and Y(s, t) is the

prescribed position of the target boundary. Note that

Y(s, t) is a function of both the Lagrangian param-

eter, s, and time, t; however, in this model ktarg was

chosen to be very large to minimize movement of the

boundary.

For the case of the dragonfly wings, another

penalty forcing term was used to prescribe the inflow

conditions into the wing veins. This penalty force

was applied directly onto the Eulerian (fluid) grid.

The penalty force was proportional to the difference

between the local fluid velocity and the desired fluid

velocity and is given as

finflow = kflow (u(x, t) − uflow(x, t)) , (A.6)

where kflow is the penalty-strength coefficient, and

uflow(x, t) is the desired background flow profile as

in [78]. For the simulations involving hemolymph

flow through wing veins, we enforce the following

parabolic inflow into the wing vein along the x-

direction,

uflow(x, t) =











−Umax tanh(2t)

(

(MP + w/2 − y)(MP − w/2 − y)

w2/4

)

if inside prescribed region

0 elsewhere

,

(A.7)

where Umax is the desired max peak velocity in the

parabolic inflow, MP is the midpoint of the vein and

w is the width of the vein. Note that a hyperbolic tan-

gent is used to ramp up the inflow during the course

of the simulation.

Similarly, for the simulations of oscil-

latory flow past one or more starfish, we

enforce the following oscillatory parabolic

inflow into the starfish channel in the

x-direction,

uflow(x, t) =











−Umax sin(2πft)

(

(MP + w/2 − y)(MP − w/2 − y)

w2/4

)

if inside prescribed region

0 elsewhere

,

(A.8)
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where f is the frequency of pulsation (set to 2 Hz) and

the other parameters are analogous to before except

with w and MP being the width and midpoint of the

channel, respectively.

Using a regularized delta function as the kernel

in the interaction equations given by equations (A.3)

and (A.4) makes the IBM relatively easy to implement

and flexible. To approximate these integrals, a dis-

cretized (and regularized) delta function was used. In

this paper, we use one described in [14], e.g., δh(x),

δh(x) =
1

h3
φ
( x

h

)

φ
( y

h

)

φ
( z

h

)

, (A.9)

where φ(r) is defined as

φ(r) =























1

8
(3 − 2|r|+

√

1 + 4|r| − 4r2), 0 6 |r| < 1

1

8
(5 − 2|r|+

√

−7 + 12|r| − 4r2), 1 6 |r| < 2

0 2 6 |r|.

(A.10)

A.2. Numerical algorithm

For the wing vein and starfish examples that use

IB2d, we impose periodic and no slip bound-

ary conditions on a rectangular domain. To solve

equations (A.1)–(A.4) we need to update the velocity,

pressure, position of the boundary, and force acting

on the boundary at time n + 1 using data from time

n. The IB does this in the following steps [14], with an

additional step (4b) for IBAMR [40, 79]:

Step 1: find the force density, Fn on the IB, from

the current boundary configuration, Xn.

Step 2: use equation (A.3) to spread this bound-

ary force from the Lagrangian boundary mesh to the

Eulerian fluid lattice points.

Step 3: solve the Navier–Stokes equations,

equations (A.1) and (A.2), on the Eulerian grid.

Upon doing so, we are updating un+1 and pn+1 from

un, pn, and fn. Note that a staggered grid projection

scheme is used to perform this update.

Step 4: 4a. Update the material positions, Xn+1,

using the local fluid velocities, Un+1, using un+1 and

equation (A.4).

4b. (IBAMR only) refine Eulerian grid in areas of

the domain that contain an immersed structure or

where the vorticity exceeds a predetermined thresh-

old, if on a selected time-step for adaptive mesh

refinement.

Appendix B. Background on Bézier
curves

Bézier curves are a type of interpolating polyno-

mial known as a spline. An nth degree Bézier poly-

nomial may conveniently be written as a sum of

n + 1 weighted control points Pi. The weights are

known as Bernstein basis polynomials and take the

form

bi,n(t) =
(n

i

)

(1 − t)n−iti.

A curve γ(t) may then be written as

γ(t) =

n
∑

i=0

Pi bi,n(t).

The parameter t is defined to be on the closed interval

[0, 1]. The derivative of a Bézier curve is itself a Bézier

curve. Specifically, the first derivative is given by

γ
′(t) = n

n−1
∑

i=0

(Pi+1 − Pi) bi,n−1(t).

Paths are modeled as a curve Γ(s) that is at least

a C0 sequence of curves, where s = [0, 1] is a param-

eter used to map to the individual Bézier curves that

make up the path. If P
j
i is the ith control point of the

jth curve in Γ, then C0 continuity translates into the

requirement that

Pj
n = P

j+1
0 .

To achieve C1 continuity, we additionally require

that

Pj
n − P

j
n−1 = P

j+1
1 − P

j+1
0 .

Perhaps the most common Bézier curve in appli-

cations is the cubic Bézier which takes the explicit

form

γ(t) = (1 − t)3P0 + 3(1 − t)2tP1

+ 3(1 − t)t2P2 + t3P3.

The explicit derivative of the cubic Bézier is given by

γ
′(t) = 3(1 − t)2(P1 − P0)

+ 6(1 − t)t(P2 − 1) + 3t2(P3 − P2).

To rescale a curve from one domain V to another

domain U, an affine transform of the control points

is sufficient. In the particular case U , V ⊂ R
2 this

transform may be represented as a simple matrix

operator A : R3 → R
3 by representing a point ~p ∈

U , ~q ∈ V in the form (x, y, 1)T. Scaling and translat-

ing of control points may be achieved by the function
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~q = A~p =





sx 0 tx

0 sy ty

0 0 1



~p. (B.1)

For our particular use case we want to map a point

Pi from the SVG coordinate system [xmin, xmax] ×
[ymin, ymax] to the coordinate system [0, Lx] × [0, Ly]

used in the simulations. Note that the origin of the

SVG coordinates is in the upper left-hand corner of

the image, while the coordinate system used in IB2d

and IBAMR has its origin in the lower left hand cor-

ner. Accounting for this and letting w = xmax − xmin

and h = ymax − ymin our operator will be defined as









Lx

w
0 −

Lx

w
xmin

0 −
Ly

h
Ly

0 0 1









(B.2)
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