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Abstract When solving CFD problems, the solver, or
the numerical code, plays an important role. Depend-

ing on the phenomena and problem domain, designing
such numerical codes can be hard work. One strategy
is to start with simple problems and construct the code

as building blocks. The purpose of this work is to pro-
vide a detailed review of the theory to compute ana-
lytical and exact solutions, and recent numerical meth-
ods to construct a code to solve compressible and invis-

cid fluid flows with high-resolution, arbitrary domains,
non-linear phenomena, and on rectangular meshes. We
also propose a modification to the inverse Lax-Wendroff

procedure solid wall treatment and two-dimensional WENO-
type extrapolation stencil selection and weights to han-
dle more generic situations. To test our modifications,

we use the finite difference method, Lax–Friedrichs split-
ting, WENO-Z+ scheme, and third-order strong sta-
bility preserving Runge-Kutta time discretization. Our
first problem is a simple one-dimensional transient prob-
lem with periodic boundary conditions, which is use-
ful for constructing the core solver. Then, we move to
the one-dimensional Rayleigh flow, which can handle
flows with heat exchange and requires more detailed
boundary treatment. The next problem is the quasi-
one-dimensional nozzle flow with and without shock,
where the boundary treatment needs a few adjustments.
The first two-dimensional problem is the Ringleb flow,
and despite being smooth, it has a curved wall as the
left boundary. Finally, the last problem is a two-dimensional

conical flow, which presents an oblique shock and an
inclined straight line wall being the cone surface. We
show that the designed accuracy is being reached for
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smooth problems, that high-resolution is being attained
for non-smooth problems, and that our modifications

produce similar results while providing a more generic
way to tread solid walls.

Keywords High-resolution · High-order · Rectangular
meshes · Compressible · Inviscid · Boundary treatment

1 Introduction

High-resolution and high-order numerical schemes are

the most recent and popular methods for solving flows
containing discontinuities and other non-linear phenom-
ena [1–7]. However, detailed review for particular cases

is not easily found. Those methods were initially de-
veloped for hyperbolic conservation laws, in which the
Euler equations are an example and can model flows

through nozzles and around bodies [8,9,4].
The weighted essentially non-oscillatory (WENO)

scheme is an example of high-order and high-resolution
schemes used to approximate spatial derivatives based

on smoothness indicators and substencils. When the
stencil, or substencil, contains a discontinuity, oscilla-
tions arise in the approximation. The WENO idea is
to avoid substencils containing discontinuities through
previously established weights [10,2]. Since its first ver-
sion, the WENO resolution and order were improved
in several works [10–12,6]. Still, as other higher-order
methods, the WENO suffers from accuracy degenera-
tion near discontinuities [13,14]. The WENO scheme
accuracy is also subject to proper boundary condition
treatment, usually achieved with ghost points.

Boundary conditions can be applied in different ways
depending on the problem and its domain. For example,

problems with periodic solutions, such as sine function,
can be computed with periodic boundary conditions.
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Another example is related to heat transfer problems,
where Dirichlet, Neumann, and Robin boundary con-
ditions can be used [15,16]. Unstructured meshes add
more flexibility to treat arbitrary domains. However,
the finite difference method demands simpler meshes
[2], which can cause difficulties when solving problems
with arbitrary domains and specific boundary condition
treatments. Different analysis and strategies were devel-
oped regarding arbitrary domains and finite difference,
such as grid overlapping and embedded methods [17–
20]. In particular, the inverse Lax-Wendroff (ILW) pro-
cedure uses the given boundary condition and the par-
tial differential equations to apply the boundary condi-
tions in rectangular grids without requiring the physical
boundary to be aligned with the meshes [5,21].

The original ILW procedure for solid walls requires a
2D WENO-type extrapolation and a Taylor expansion
in the normal direction, from the boundary point, a1,
a2, or a3, to each ghost point, g1, g2, or g3, see Fig. 1.
Depending on the contour, the boundary point can lay
outside the domain. This situation can happen when

the ghost point is close to the boundary ends, as shown
in Fig. 1 for a2 and a3, where the solid curve is the
boundary and xl and xr are the boundary ends. This

can be avoided by choosing another point, b, and ex-
panding in the y-direction, for instance. Furthermore,
this requires only two 2D WENO-type extrapolation

and one Taylor expansion for the three ghost points g1,
g2, and g3.

xl

xr

y

x

a1
a2
a3

g1

g2

g3

b

Fig. 1: Example of boundary points out of the domain

Usually, discontinuities, non-linear phenomena, and
arbitrary domains are encountered in compressible fluid
flows [22–24]. For simpler one-dimensional (1D) prob-
lems, such as the flow with heat addition (Rayleigh
flow), the domain is straightforward and shocks can be

avoided. However, for quasi-one-dimensional (Q1D) and
two-dimensional (2D) flows around bodies, the domains
are arbitrary and shocks are more frequent. That is, the
numerical method needs to be robust and accounts for
geometry variations.

We aim to present a detailed review of the theory
to compute analytical and exact solutions, and to ob-
tain a numerical code to solve compressible and inviscid
fluid flows with high-resolution, arbitrary domains, and
shocks while proposing modifications to the numerical
methods. Starting with the numerical code to build the
core solver, the review will be presented as we move
from one problem to another. The first problem is a
simple periodic problem, followed by 1D Rayleigh flow,
Q1D nozzle flows with and without shock, 2D Ringleb
flow, and 2D conical flow. To do that, we use the fi-
nite difference method with Lax–Friedrichs splitting [2],
WENO-Z+ scheme [6], third-order strong stability pre-
serving (SSP) Runge-Kutta [2], and ILW [21].

2 Mathematical models and numerical methods

In this work, the problems will be modeled by the Euler
equations [25]

U t + F (U)ξ + G(U)η = S(U), (1)

where U is the conservative variables vector, F and
G are the physical flux vectors in ξ and η direction,
and S is the source term vector, which depends on the

problem. Depending on the coordinate system, ξ can be
the x- or z-direction, and η can be the y- or r-direction.
For 1D and Q1D problems, G(U)η = 0.

For the finite difference method, (1) is approximated
as [2]

d

dt
U i,j =− 1

∆ξ
(F̂ i+1/2,j − F̂ i−1/2,j)

− 1

∆η
(Ĝi,j+1/2 − Ĝi,j−1/2) + S(U i,j),

(2)

where F̂ and Ĝ are the numerical fluxes, and ∆ξ and
∆η the mesh sizes in each direction.

To approximate F̂ i+1/2,j , the first step is the change
from the conservative to the local characteristic vari-
ables [2]

V = L(U i+1/2,j)U , (3)

H = L(U i+1/2,j)F , (4)

where V and H are the characteristic variable vectors
and their relative flux vectors, L is the left eigenvector
and U i+1/2,j ≈ (U i,j + U i+1,j)/2 [2].

The next step is the flux splitting, one of the most
simple but most dissipative is the Lax–Friedrichs split-
ting. Still, higher-order approximations such as WENO

compensate this dissipation [2]. Applied to the charac-
teristic variables and their fluxes, the splitting yields

H±(V ) =
1

2
(H(V )± αV ), (5)
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where α = max
U

max
1≤j≤m

|λj(U)| is computed over the rel-

evant range of U [2], which in this work is the whole do-

main. The WENO-Z+ is used to approximate Ĥ
±
i+1/2,j

through [6]

(Ĥm)+i+1/2,j = ω0f0 + ω1f1 + ω2f2, (6)

where m is the vector component quantity which de-
pends on the problem, ω are the non-linear weights and

f are polynomial approximations to Ĥ
+

i+1/2,j . The non-
linear weights can be computed as [10,6]

ωk =
αk∑2
j=0 αj

, k = 0, . . . , 2, (7)

and αk are the WENO-Z+ weights [6],

αk = dk

[
1 +

(
τ + ε

βk + ε

)p
+ λ

(
βk + ε

τ + ε

)]
, k = 0, . . . , 2,

(8)

where dk are the ideal weights, τ is the global smooth-
ness indicator, βk are the local smoothness indicators,

ε is the sensitivity parameter, p is the power parame-
ter and λ is a parameter for fine-tuning the size of the
increment of the weight of less smooth stencils [6]. In

this work, p = 2, ε = 1E − 40, and λ = ∆
2/3
ξ . dk, βk,

and fk can be computed as follows [6]:

d0 =
1

10
, d1 =

6

10
, d2 =

3

10
, (9)

β0 =
1

4

[
(Hm)+i−2,j − 4(Hm)+i−1,j + 3(Hm)+i,j

]2
+

13

12

[
(Hm)+i−2,j − 2(Hm)+i−1,j + (Hm)+i,j

]2
,

β1 =
1

4

[
−(Hm)+i−1,j + (Hm)+i+1,j

]2
+

13

12

[
(Hm)+i−1,j − 2(Hm)+i,j + (Hm)+i+1,j

]2
,

β2 =
1

4

[
−3(Hm)+i,j + 4(Hm)+i+1,j − (Hm)+i+2,j

]2
+

13

12

[
(Hm)+i,j − 2(Hm)+i+1,j + (Hm)+i+2,j

]2
,

(10)

f0 =
1

6

[
2(Hm)+i−2,j − 7(Hm)+i−1,j + 11(Hm)+i,j

]
,

f1 =
1

6

[
−(Hm)+i−1,j + 5(Hm)+i,j + 2(Hm)+i+1,j

]
,

f2 =
1

6

[
2(Hm)+i,j + 5(Hm)+i+1,j − (Hm)+i+2,j

]
.

(11)

Notice that (Ĥm)+i+1/2,j is approximated by the sten-

cil [12,6]

S = {Hm)+i−2,j ,(Hm)+i−1,j , (Hm)+i,j ,

(Hm)+i+1,j , (Hm)+i+2,j}.
(12)

Similarly, (Ĥm)−i+1/2,j can be approximated with [12,6]

S = {(Hm)−i+3,j , (Hm)−i+2,j ,(Hm)−i+1,j ,

(Hm)−i,j , (Hm)−i−1,j}.
(13)

Then, [2]

(Ĥm)i+1/2,j = (Ĥm)+i+1/2,j + (Ĥm)−i+1/2,j , (14)

and the conservative variables numerical flux is [2]

F̂ i+1/2,j = Ĥi+1/2,jR(U i+1/2,), (15)

where R is the right eigenvector.
If necessary, the same procedure can be used for the

η direction. The time integration can be done with the
third-order SSP Runge-Kutta [2]

Um
(1) = Um

n +∆tL(Um
n),

Um
(2) =

3

4
Um

n +
1

4
Um

(1) +
1

4
∆tL(Um

(1)),

Um
n+1 =

1

3
Um

n +
2

3
Um

(2) +
2

3
∆tL(Um

(2)),

(16)

where ∆t is the time step, n and n + 1 represent the
actual and the next time step, and L(·) is the spatial

approximation. ∆t can be computed as

∆t = min [min (∆ξ,∆η)CFL/α,min (∆ξ,∆η)
5/3

], (17)

where CFL = 0.5 and α is computed in the whole U
range.

Although most of the problems in this work are

steady, the time integration is still needed to the time
marching technique. To compute (1), we still need to
compute the boundary conditions, which will be pre-

sented in the next sections for each problem.

2.1 Simple periodic problem

For the simple periodic problem ξ = x, G(U)η = 0,
S(U) = 0, [25]

U =

 ρρu
E

 , F (U)x =

 ρu
ρu2 + p
u(E + p)

 , (18)

where ρ, u, E, and p are the density, velocity in x-
direction, total energy, and pressure. Those properties
are related through the equation of state, which can be

used to write [25]

E =
p

γ − 1
+
ρu2

2
, (19)

where γ = 1.4 is the specific heat ratio for the air as an
ideal gas.
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The domain is discretized as follows

xi = xl +∆x(i− 1/2), 1 ≤ i ≤ Nx,
∆x = (xr − xl)/Nx,

(20)

where xl = 0 m and xr = 1 m are the left and right
boundary positions, and Nx is the point quantity in the
x-direction.

The initial conditions for this problem are

ρ(x, 0) = 1 + sin (2πx)/5, u(x, 0) = 1,

p(x, 0) = 1.
(21)

It can be easily shown that (1), for this initial con-
dition, is similar to

ρt + ρx = 0, (22)

and that the analytical solution is [3]

ρ̃(x, t) = 1 + sin [(x− t)2π]/5, (23)

with t = 1 as the final time.

Since the solution is periodic, the periodic boundary

conditions can be applied together with ghost points

U−2 = UNx−2, U−1 = UNx−1, U0 = UNx ,

UNx+1 = U1, UNx+2 = U2, UNx+3 = U3.
(24)

Although simple, this problem is a good starting
point to build compressible and inviscid fluid flow codes,

since all numerical tools presented before are used. Once
the code and solution were verified, one can move to the
next problem.

2.2 One-dimensional Rayleigh flow

For the 1D Rayleigh flow, ξ = x, U , F (U)x, and G(U)η
are the same as for the simple periodic problem, and [8]

S(U) =

 0

0
∆qρu
∆x

 , (25)

where ∆q ≡ q/Nx is the heat added in each point and
q is the total heat per unit mass added to the flow.

The domain is discretized with (20) and the flow
parameters are presented in Tab. 1, where M is the
Mach number and T is the temperature.

Table 1: 1D Rayleigh flow parameters

xl (m) 0 Tl (K) 400
xr (m) 0.2 pl (Pa) 2E + 5
Ml 1.3 q (J/kg) −5E + 4

The Mach number can be computed as [8,9]

M =
|V |
a

=

√
u2 + v2

a
, (26)

where V is the velocity vector, v is the η-direction veloc-
ity component (v = 0 for 1D problems), and a =

√
γp/ρ

is the speed of sound.

Pressure, density and temperature are related through
the following equivalent form of the equation of state
[8]

p = ρRT, (27)

where R = 286.9 J/(kgK) is the gas constant for the
air as an ideal gas.

Since this is a steady problem, the initial condition
is an initial estimate. We use a more general initial es-
timate in the first few meshes to check the convergence,
then we switch to the analytical or exact solution. In
this problem, the initial estimate is

ρi = ρl, ui = ul, pi = pl, 1 ≤ i ≤ Nx. (28)

For the 1D Rayleigh flow, the heat added will change
the total temperature of the flow [8]

q = cp(T02 − T01), (29)

where the subscript 0 means total (or stagnation) prop-
erty, subscripts 2 and 1 two arbitrary points in the flow,
and cp = γR/(γ − 1) is the specific heat at constant
pressure. The total temperature can be obtained with

[8]

T0
T

= 1 +
γ − 1

2
M2. (30)

The Mach number at any point can be computed
through [8]

T02
T01

=

(
1 + γM2

1

1 + γM2
2

)2(
M2

M1

)2
(

1 + γ−1
2 M2

2

1 + γ−1
2 M2

1

)
, (31)

which can be solved by an algebraic software, e.g., Max-
ima, or by a method for finding roots.

Now, the velocity can be computed with (26), and
density and pressure with [8]

ρ2
ρ1

=

(
1 + γM2

2

1 + γM2
1

)(
M1

M2

)2

, (32)

p2
p1

=
1 + γM2

1

1 + γM2
2

. (33)

For the boundary conditions, the eigenvalues should
be checked first [25]

λ1 = u− a, λ2 = u, λ3 = u+ a. (34)
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Since the flow is supersonic everywhere, at the in-
flow all boundary conditions shall be imposed and none
at the outflow. The ILW procedure uses a Taylor expan-
sion around the boundary to compute the properties at
the ghost points [21]

(Um)i =
4∑
k=0

(xi − xb)k
k!

U∗(k)m , (35)

where xb is the boundary position and U
∗(k)
m is a (5 −

k)th order approximation of the spatial derivatives of
Um at the boundary.

For the left boundary, U
∗(0)
m is computed with [21]

U∗(0) = U l. (36)

For U
∗(1)
m , we use the Euler equations for steady

flow, [21]

(U2)x = S1(U∗(0)),[
U2
2

U1
+ (γ − 1)

(
U3 −

U2
2

2U1

)]
x

= S2(U∗(0)),{
U2

U1

[
U3 + (γ − 1)

(
U3 −

U2
2

2U1

)]}
x

= S3(U∗(0)).

(37)

Notice that the derivatives of (37) need to be ex-
panded to form a system with three equations and three
unknowns, U∗(1).

As suggested in [21], the other U
∗(k)
m are computed

with

L(U l)U
∗(k) = V ∗(k), k = 2, . . . , 4, (38)

where V ∗(k) are (5− k)th order approximations of the
spatial derivatives of V at the boundary.

To obtain V ∗(k), the following 1D WENO-type ex-
trapolation is used [21]

V ∗(k)m =
4∑
r=0

ωr
dkpr(x)

dkx

∣∣∣∣
xb

, (39)

where pr(x) is a polynomial approximation on different
substencils and ωr are the non-linear weights [21],

ωr =
αr∑4
s=0 αs

, (40)

with

αr =
dr

(1E − 6 + βr)3
, (41)

where d0 = ∆x4, d1 = ∆x3, d2 = ∆x2, d3 = ∆x,
d4 = 1−∑3

r=0 dr, and βr are the smoothness indicators
[21]. As in [26], we use

β0 = ∆x2,

βr =
1∑r

k=0 f
2
k

r∑
l=1

∫ xb+∆x/2

xb−∆x/2

(
dl

dxl
pr(x)

)2

dx,
(42)

where r = 1, . . . , 4 and fk are the values used to build
the polynomial pr. We use βr = 0 if

∑r
k=0 f

2
k = 0 [26].

For the right boundary, all components shall be ex-
trapolated

L(UNx)U∗(k) = V ∗(k), k = 0, . . . , 4. (43)

2.3 Quasi-one-dimensional nozzle flows

For the Q1D nozzle flows, ξ = x, U , F (U)x, and G(U)η
are the same as for the simple periodic problem, and
[10,25]

S(U) = −Ax
A

 ρu

ρu2

u(E + p)

 , (44)

where A = A(x) is the nozzle area and Ax its derivative.

Designing nozzle profiles is a challenging step of noz-

zle simulation. Care must be taken to avoid the ap-
pearance of shocks and oscillations. In 2D problems, a
proper way of designing a nozzle is through the char-

acteristic method, as discussed in [8]. However, this is
a discrete method and can present inconsistency if not
used with finite difference calculations in the throat re-

gion [8]. Other possibility is to use experimental nozzle
profiles, such as the classical 45◦−15◦ nozzle of [27,28].
We remark that the functions and its derivatives, which
describe the nozzle contour, shall be smooth regarding
the numerical scheme accuracy order. Otherwise, oscil-
lations and other instabilities can arise.

For verification purpose, we use the idealized smooth
nozzle profile of (45). The domain is discretized with
(20) and the flow parameters are presented in Tab. 2.

r(x) = 0.01 cos

(
3πx

2xr

)
− 0.01 (45)

Table 2: Q1D nozzle flows parameters

xl (m) 0 T0 (K) 800
xr (m) 0.25 p0 (Pa) 1E + 6
pr (Pa) 8E + 5
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For the isentropic flow (smooth), the initial estimate
for ρ, u, and p are computed with a linear distribution
for M . From xl to xr, M vary linearly from 0 to 2. Once
Mi for i = 1, . . . , Nx are obtained, u can be computed
with (26), and ρ and p with isentropic relations [8]

ρ0
ρ

=

(
1 +

γ − 1

2
M2

)1/(γ−1)

, (46)

p0
p

=

(
1 +

γ − 1

2
M2

)γ/(γ−1)
. (47)

For the adiabatic flow (with shock), the initial con-
ditions for ρ, u, and p are also computed with a linear
distribution for M . From xl to xth M vary linearly from
0 to 1, and from xth to xr M vary linearly from 1 to 0.
xth is the the throat position, that is the lowest value of
r(x) position in [xl, xr]. Once Mi for i = 1, . . . , Nx are
obtained, u can be computed with (26), and ρ and p
with (46) and (47). We remark that total pressure and

density changes through the shock as explained next.

For the Q1D nozzle flows, M can be computed ex-
actly through [8](
A

A∗

)2

=
1

M2

[
2

γ + 1

(
1 +

γ − 1

2
M2

)] γ+1
γ−1

, (48)

where A∗ is the critical area. Notice that this equation
can be solved by root finding methods. Furthermore,

the standard Newton-Raphson and bisection methods
present precision loss as A → A∗. This can be avoided
by using higher-precision computations, e.g., quadruple
precision when the numerical solution is computed with

double-precision.

For the isentropic flow, A∗ = Ath is the throat area
for the entire flow. However, A∗ changes through the
shock because of its non-isentropic nature [8]. In the

shock case, the Mach number at right boundary is [8]

M2
r =− 1

γ − 1
+

[
1

(γ − 1)2

+

(
2

γ − 1

)(
2

γ + 1

) γ+1
γ−1

(
p0Ath
prAr

)2
]1/2

.

(49)

With Mr, the total pressure downstream the shock

can be obtained with (47) [8]. Through (47) and nor-
mal shock relations, the M immediately upstream and
downstream the shock can be computed [8]

p2
p1

= 1 +
2γ

γ + 1
(M2

1 − 1), (50)

M2
2 =

1 + [(γ − 1)/2]M2
1

γM2
1 − (γ − 1)/2

, (51)

where 1 and 2 means immediately upstream and down-
stream the shock.

The critical area downstream the shock is computed
with M2 in (48). In summary, M is computed through
(48) with Ath for the isentropic flow and with Ath up-
stream and A∗ downstream the shock for the adiabatic
flow. Again, u is computed with (26), and ρ and p with
(46) and (47). U l and U r are computed with flow pa-
rameters and exact solution.

Since both inflow are subsonic and regarding (34),
two boundary conditions shall be imposed. We use the
exact solution, U∗(0) = U l, to compute

(Vm)∗(0) = lm(U l)U
∗(0), m = 2, 3. (52)

Then we update U∗(0) with

U∗(0) = V ∗(0)R(U l). (53)

To obtain U∗(1), the first two equations of (37) are
needed and the third is replaced with

l1,1(U l)U
(1)
1 + l1,2(U l)U

(1)
2 + l1,3(U l)U

(1)
3 = V

∗(1)
1 , (54)

and the other U∗(k) are obtained with (38).

The isentropic outflow is supersonic and (43) can be
used. The normal shock wave causes a non-isentropic
velocity decrease, in a such way that the flow becomes
subsonic downstream the shock. Hence, for the adia-

batic flow right boundary we use the exact solution,
U∗(0) = U r, to compute

(V1)∗(0) = l1(U r)U
∗(0). (55)

Then we update U∗(0) with

U∗(0) = V ∗(0)R(U r). (56)

U∗(1) are obtained through

U
∗(1)
2 = S1(U∗(0)),

l2,1(U r)U
∗(1)
1 + l2,2(U r)U

∗(1)
2 + l2,3(U r)U

∗(1)
3 = V

∗(1)
2 ,

l3,1(U r)U
∗(1)
1 + l3,2(U r)U

∗(1)
2 + l3,3(U r)U

∗(1)
3 = V

∗(1)
3 ,

(57)

and the other U∗(k) are obtained through

L(U r)U
∗(k) = V ∗(k), k = 2, . . . , 4. (58)

Notice that V ∗(k) are obtained with 1D WENO-
type extrapolation.
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2.4 Two-dimensional Ringleb flow

For the 2D Ringleb flow, ξ = x, η = y, S(U) = 0, [25]

U =


ρ
ρu
ρv
E

 , F (U)x =


ρu

ρu2 + p
ρuv

u(E + p)

 ,

G(U)y =


ρv
ρuv

ρv2 + p
v(E + p)

 ,
(59)

and the total energy is rewritten as [25]

E =
p

γ − 1
+
ρ(u2 + v2)

2
. (60)

The Ringleb flow is subsonic-supersonic and has ex-
act solution by the hodograph method [29,30]. It is
common in unstructured mesh verification and usually

its domain is set between two streamlines, which are
treated as solid walls [31,32]. Here, for simplicity and
to test our modifications, we will define a simpler do-

main composed by three straight lines and one stream-
line at the left boundary, as shown in Fig. 2. The flow
parameters are presented in Tab. 3, where l is a charac-

teristic length, V is the absolute velocity, ψ represents
the streamlines, and a0 is the speed of sound computed
with the total properties.
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0.4

0.5
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y
(m

)

x (m)

Points
Corners
(x0, y0)

Ghosts
Upper
Lower

Left
Right

Fig. 2: Domain and mesh with 87 points for the 2D
Ringleb flow

Table 3: 2D Ringleb flow parameters

l (m) 1 T0 (K) 800
ψmin a0l p0 (Pa) 1E + 6
ψmax 1.3a0l ρ0 (kg/m3) p0/(RT0)

Vmin (m/s) 0.7a0

The Ringleb flow solution is a particular case in
which [30]

ψ =
a20l

V
sin (θ), (61)

where θ is the velocity angle.
The flow properties and the coordinates (x and y)

are obtained through (61) and the hodograph method,
which can be summarized as [29–31]

x

l
=

1

2

ρ0
ρ

(
a20
V 2
− 2

ψ2

l2a20

)
+
L

2
, (62)

y

l
= ±ρ0

ρ

a0
V

ψ

a0l

√
1− V 2

a20

(
ψ

a0l

)2

, (63)

L =
1

Γ
+

1

3Γ 3
+

1

5Γ 5
− 1

2
ln

(
1 + Γ

1− Γ

)
, (64)

Γ =

√
1− 0.2

V 2

a20
=

(
ρ

ρ0

)1/5

, (65)

y2

l2
+

(
x

l
− L

2

)2

=
( a0

2V 2Γ 5

)2
(66)

p = p0Γ
7, (67)

(u, v) = −V (cos (θ), sin (θ)). (68)

The left lower domain corner is obtained with ψ =
ψmax and yll = 0, the right lower with ψ = ψmin and
yrl = 0, the right upper is set as (xru, yru) = (xrl, yrl +

xrl−xll) , and the left upper is obtained with ψ = ψmax

and ylu = yru. The domain is discretized as follows

xi = xll +∆x(i− 1/2), yj = yll +∆y(j − 1/2),

∆y = ∆x =
xrl − xll
Nx

,
(69)

with 1 ≤ i ≤ Nx and 1 ≤ j ≤ Nyi. We remark that the
point quantity in the y-direction changes with respect
to x-coordinate.

As initial estimate, we use

(U1)i,j = ρ0, (U2)i,j = 0,

(U3)i,j = 0, (U4)i,j =
p0

γ − 1
.

(70)

For simplicity, we use the exact solution at all bound-
aries except at the left where we use the sequel of ILW
high order wall boundary treatment. To compute the
ghost points with higher order, we need derivatives of

the flow properties, in which we take implicit deriva-
tives from (61) to (63) and (66).

For the upper boundary, we need to impose three
conditions. With the exact solution and its first deriva-
tive, we compute U∗(0) and U∗(1). Then, for m = 1, 2, 3
and k = 0, 1

(Vm)∗(k) = lm(Uu)U∗(k), (71)
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where the subscript u means at the upper boundary.
With a 1D WENO-type extrapolation on the y-

direction, we compute the other V ∗(k) and then

U∗(k) = V ∗(k)R(Uu) k = 0, . . . , 4. (72)

That is, we update U∗(0) and U∗(1) and compute the
the other derivatives to insure proper boundary appli-
cation. The values at the ghost points are computed
with the Taylor expansion (35) in the y-direction.

The right boundary is similar to the upper and the
lower is an outflow, one can use exact solution or simply

U i,−2 = U i,3, U i,−1 = U i,2, U i,0 = U i,1,

(U2)i,−2 = −(U2)i,−2, (U2)i,−1 = −(U2)i,−1,

(U2)i,0 = −(U2)i,0.

(73)

The left boundary is a streamline and can be treated
as a solid wall. The original ILW procedure uses a Tay-
lor expansion in the normal direction around the point
(x0, y0) [5]. However, this can demand points outside
the domain, as depicted in Fig. 1. To avoid that, we
propose to choose (x0, y0) in a way that the x- or y-

coordinate remains fixed. For instance, (x0, y0) in Fig.
2 was chosen in a way that the y-coordinate is the same
for the three left boundary ghost points. This new form

of choosing (x0, y0) requires slight modifications to the
original algorithm, as showed next.

With the exception of problems with analytical or
exact solution, at a solid wall there is a lack of infor-

mation to impose boundary conditions. To compute an
extrapolation in x-direction, one shall assess the eigen-
values to determine how many conditions shall be im-

posed. For this case, [25]

λ1 = u− a, λ2 = u, λ3 = u, λ4 = u+ a. (74)

If one has a > u > 0, three boundary conditions
shall be imposed, and at the solid wall one only has the
normal velocity, which is zero. Other situations may
require different boundary condition quantity, i.e., for
u > a > 0 none boundary condition shall be imposed,
and a Taylor expansion in the x-direction together with
an extrapolation would be enough. Here, we present a

more general procedure that covers the lack of informa-
tion in a solid wall.

Our goal is to choose (x0, y0) to perform a Taylor
expansion in the x- or y-direction. At the 2D Ringleg
flow left boundary, we need to prescribe one boundary
condition (u < 0 and |u| < a) and to perform a Tay-
lor expansion in the x-direction. We start the discus-
sion with the first derivative for the primitive variables,
W = (ρ, u, v, p)T ,

W
∗(0)
2 W

∗(1)
1 +W

∗(0)
3 ρy +W

∗(0)
1 (W

∗(1)
2 + vy) = 0,

(Vm)∗(1) = lm(W n)W ∗(1), m = 1, 2, 3,
(75)

which yields a linear system with four equations and
six unknowns (W ∗(1) plus ρy and vy) and n means the
nearest point to (x0, y0).

Even in the case were only one boundary condition
should be imposed, we need additional information for
y-direction derivatives. For a solid wall, we have infor-
mation in the normal direction, x̂, and we can use direc-
tional derivatives to provide the additional information

W y =
W x̂ − cos (θ)W x

sin (θ)
. (76)

As in [21], we also use rotation but we only compute
the rotated values and its first derivatives. Then, we
rotate back and use the result to compute the Taylor
expansion in the x-direction.

After (x0, y0) is chosen, we compute the angle, θ,
between the normal pointing outwards the boundary
and the x-direction, and form a local coordinate system
[21](
x̂
ŷ

)
=

(
cos (θ) sin (θ)
− sin (θ) cos (θ)

)(
x
y

)
= T

(
x
y

)
, (77)

The Euler equations are rewritten as [21]

Û t + F (Û)x̂ + G(Û)ŷ = 0, (78)

Û =


ρ
ρû
ρv̂

E

 , [
û
v̂

]
= T

[
u
v

]
. (79)

We use primitive variables because it gives simpler
equations and we have the velocity and pressure first

derivative in the normal direction. The conservative
variables could also be used as commented in [5,21].
The primitive variables rotated vector is Ŵ = (ρ, û, v̂, p)T .

In the normal direction the velocity is zero, û = 0.
That is, one boundary condition shall be imposed [21]

Ŵ
∗(0)
2 = 0,

(V̂m)∗(0) = lm(Ŵ n)Ŵ
∗(0)

, m = 2, 3, 4,
(80)

which yields a linear system with four equations and
four unknowns.

For the first derivative, Ŵ
∗(1)
4 = px̂ = ρv̂2κ, with κ

being the curvature, as stated in [21]. However, x and

y for the 2D Ringleb flow are given by (62) and (63).
For simplicity, in this case we compute the pressure
derivative in the normal direction through the exact
solution and directional derivative

Ŵ
∗(1)
4 = px cos (θ) + py sin (θ) = px̂,

(V̂m)∗(1) = lm(Ŵ n)Ŵ
∗(1)

, m = 2, . . . , 4.
(81)



A sequel of the inverse Lax–Wendroff high order wall boundary treatment for conservation laws 9

With Ŵ
∗(0)

and Ŵ
∗(1)

, we rotate back to obtain
W ∗(0) and its derivative in the normal direction. Re-
placing (76) in (75), yields[
W
∗(0)
2 − W

∗(0)
3 cos (θ)

sin (θ)

]
W
∗(1)
1 +W

∗(0)
1 W

∗(1)
2

−W ∗(0)1

cos (θ)

sin (θ)
W
∗(1)
3 = −W

∗(0)
3 ρx̂ +W

∗(0)
1 vx̂

sin (θ)
,

(Vm)∗(1) = lm(W n)W ∗(1), m = 2, . . . , 4.

(82)

For the other derivatives,

W ∗(k) = R(W n)V ∗(k), k = 2, . . . , 4. (83)

Now, W ∗(k) are available at the boundary and we
use a Taylor expansion in the x-direction to compute
the primitive variables vectors at the three ghost points
of Fig. 2. Then, we transform those vectors from prim-
itive to conservative.

We remark that in the original ILW procedure one
needs to find three distinct (x0, y0) points for the three
ghost points of Fig. 2, and this would require three

2D WENO-type interpolations (see also Fig. 1). In our
modification, only two 2D WENO-type are needed.

The V ∗(k) and V̂
∗(k)

needed for the left boundary

systems of equations are obtained through 2D WENO-
type interpolation, in which we construct least squares
polynomials approximations as in [21],

pr(x, y) =
∑

0≤m+l≤r

almz
lrm, (84)

satisfying pr(xi,j , yi,j) ≈ (Vm)i,j with i, j meaning the
stencil points.

In the original 2D WENO-type extrapolation, the
stencil points are chosen from 1D substencils near (x0, y0)
[5], which may require complicated algorithms depend-
ing on the boundaries and the availability of interior
points. Here, we start constructing the stencils with the
nearest (r+ 1)2 points. Then, we approximate the rank
of the linear system matrix. If the rank is deficient,
we add the next nearest point to (x0, y0) in the stencil
and repeat the approximation. When the matrix be-
comes full rank, we stop adding points to the stencil.
One should note that for fixed boundaries, the stencils
for each (x0, y0) can be computed with the mesh gen-
eration and will remains fixed until the simulation is

over.
With the stencils, we compute [5,21]

(Vm)∗(k) =
4∑
r=0

ωr
∂k

∂x̂k
pr(x, y)

∣∣∣∣
x0,y0

, (85)

ωr =
αr∑4
s=0 αs

, (86)

αr =
dr

(1E − 6 + βr)3
, (87)

where d0 = 2∆x4, d1 = 2∆x3, d2 = 2∆x2, d3 = 2∆x,
and d4 = 1−∑3

r=0 dr [21]. The smoothness indicators
are obtained with [21,26]

β0 = 2∆x2,

βr =
1∑r

k=0 p
2
k

∑
1≤|α|≤r

∫
K

|K||α|−1 [Dαpr(x, y)]
2
dxdy,

(88)

where r = 1, . . . , 4, α is a multi-index and K = [x0 −
∆x/2, x0 +∆x/2]× [y0−∆x/2, y0 +∆x/2] as shown in
[21]. As an example, for r = 1, α = (0, 1) and α = (1, 0).

The original 2D WENO-type extrapolation weights
were improved in [26] for qr interpolation. Here, we
changed the factor before the integral in (88) to handle
least squares and we take βr = 0 if

∑r
k=0 p

2
k = 0.

2.5 Two-dimensional conical flow

For the 2D conical flow, ξ = z, η = r, U is the same
as for the 2D Ringleb flow, F (U)z = F (U)x, G(U)r =

G(U)y, and [25]

S(U) =


−ρv/r
−ρuv/r
−ρv2/r

−v(E + p)/r

 . (89)

We set∆r = ∆z and discretize the domain with (20)
in both directions, which results the mesh presented in
Fig. 3.
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Fig. 3: Domain and mesh for the 2D conical flow

The flow parameters are presented in Tab. 4, where
∞means free-stream properties and θs the oblique shock
inclination.
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Table 4: 2D conical flow parameters

zl (m) 0 T∞ (K) 800
zr (m) 0.3 p∞ (Pa) 5E + 5
ru (m) 0.3 M∞ 2
θs (◦) 37

The lower boundary is the cone surface and has an
inclination of θc, which causes the mesh point quantity
to change. The initial conditions are the free-stream
properties repeated in each mesh point.

The conical flow has a 1D exact solution in spheri-
cal coordinates. We will follow the inverse approach as
presented in [8]. That is, for a given free-stream Mach
number and a shock inclination, we will find a corre-
spondent cone surface inclination. With oblique shock
relations [8],

Mn1 = M1 sin (φs), (90)

M2
n2 =

M2
n1 + [2/(γ − 1)]

[2γ/(γ − 1)]M2
n1 − 1

, (91)

tan (δ) = 2 cot (φs)

[
M2

1 sin2 (φs)− 1

M2
1 [γ + cos (2φs)] + 2

]
, (92)

M2 =
Mn2

sin (φs − δ)
(93)

ρ2
ρ1

=
(γ + 1)M2

n1

(γ − 1)M2
n1 + 2

, (94)

p2
p1

= 1 +
2γ

γ + 1
(M2

n1 − 1), (95)

we compute the Mach number immediately behind the
shock, M2, and the flow deflection angle, δ.

From M2, we compute the dimensionless velocity as
[8]

V ′ =
V

Vmax
=

[
2

(γ − 1)M2
+ 1

]−1/2
, (96)

and the dimensionless velocities in r- and θ-directions

with [8]

v′r = V ′ cos (φs − δ), (97)

v′θ = −V ′ sin (φs − δ). (98)

Using v′r as a boundary value, we solve [8]

γ − 1

2

[
1− v′2r −

(
dv′r
dφ

)2
] [

2v′r +
dv′r
dφ

cot (φ) +
d2v′r
dφ2

]
− dv′r
dφ

[
v′r
dv′r
dφ

+
dv′r
dφ

d2v′r
dφ2

]
= 0.

(99)

When v′θ ≈ 0, the respective θ will represent θc and
the computation reached its surface.

Once θc is reached, we compute the flow properties
with (46), (47), and [8]

V 2
max

2
=

a2

γ − 1
+
V 2

2
=

γp

ρ(γ − 1)
+
V 2

2
. (100)

Since Vmax is a constant for the flow [8], it can be deter-
mined with free-stream properties and used to compute
V behind the shock.

Notice that (99) need to be modified before solving
with standard Runge-Kutta methods. Writing (99) as
a system of equations [33]

y =

[
y1
y2

]
=

 vr
dv′r
dθ

 , (101)

a standard Runge-Kutta method can be used to solve
for [33]

y′ = f(θ, y) =

 dv
′
r

dθ
d2v′r
dθ2

 ,
y′ =

 y2
y22y1 − γ−1

2 (1− y21 − y22)[2y1 + y2 cot (θ)]
γ−1
2 (1− y21 − y22)− y22

 .
(102)

For this problem, the lower boundary is a solid wall

that requires (z0, r0) outside the domain with the orig-
inal ILW procedure. Therefore, we can use the same
procedure as for the 2D Ringleb flow. At this bound-
ary we need to prescribe three boundary conditions

(a > v > 0) and to perform a Taylor expansion in
the y-direction. For the first derivative, we have

W
∗(0)
2 ρx +W

∗(0)
3 W

∗(1)
1 +

W
∗(0)
1 (ux +W

∗(1)
3 ) = −W

∗(0)
1 W

∗(0)
3

r0
,

W
∗(0)
2 ux +W

∗(0)
3 W

∗(1)
2 +

1

W
∗(0)
1

px = 0,

W
∗(0)
2 vx +W

∗(0)
3 W

∗(1)
3 +

1

W
∗(0)
1

W
∗(1)
4 = 0,

(V4)∗(1) = l4(W n)W ∗(1).

(103)

We need more information for the boundary values
and its first derivatives, and we again provide the ad-
ditional information based on the normal direction and
directional derivative

W x =
W x̂ − sin (θ)W y

cos (θ)
. (104)
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To compute the rotated values at the boundary we
use (80). For the rotated first derivatives, we replace

the first equation of (81) with Ŵ
∗(1)
4 = p̂x = ρv̂2κ = 0

because κ = 0 for straight lines.

With Ŵ
∗(0)

and Ŵ
∗(1)

, we rotate back to obtain
W ∗(0) and its derivative in the normal direction. Re-
placing (104) in (103), yields[
W
∗(0)
3 −W ∗(0)2 tan (θ)

]
W
∗(1)
1 −W ∗(0)1 tan (θ)W

∗(1)
2 +

W
∗(0)
1 W

∗(1)
3 = −W

∗(0)
2 ρx̂ +W

∗(0)
1 ux̂

cos (θ)
− W

∗(0)
1 W

∗(0)
3

r0
,[

W
∗(0)
3 −W ∗(0)2 tan (θ)

]
W
∗(1)
2

− tan (θ)

W
∗(0)
1

W
∗(1)
4 = −

W
∗(0)
2 ux̂ + px̂

W
∗(0)
1

cos (θ)
,[

W
∗(0)
3 −W ∗(0)2 tan (θ)

]
W
∗(1)
3

+
1

W
∗(0)
1

W
∗(1)
4 = −W

∗(0)
2 vx̂

cos (θ)
,

(V4)∗(1) = l4(W n)W ∗(1).

(105)

The other W ∗(k) derivatives are computed with (83).

Because of the domain, there is no flow across the
upper boundary and we can simply use

UNr+1,i = U∞, UNr+2,i = U∞, UNr+3,i = U∞.

(106)

For the left boundary, all boundary conditions shall
be imposed because the flow is supersonic (u > a > 0),

U∗(0) = U∞. (107)

For U∗(1) we use the following system of equations

U
∗(1)
2 = 0,[
U2
2

U1
+ (γ − 1)

(
U4 −

U2
2 + U2

3

2U1

)]
x

= 0,(
U2U3

U1

)
x

= 0,{
U2

U1

[
U4 + (γ − 1)

(
U4 −

U2
2 + U2

3

2U1

)]}
z

= 0.

(108)

For the other derivatives,

L(U∞)U∗(k) = V ∗(k), k = 2, . . . , 4, (109)

where V ∗(k) are obtained with the 2D WENO-type ex-
trapolation.

Finally, at the right boundary the flow is supersonic
(u > a > 0) and we perform a 1D WENO-type extrap-
olation to compute V ∗(k), and

U∗(k) = R(UNz,j)V
∗(k), k = 0, . . . , 4. (110)

3 Results

3.1 Simple periodic problem

The simple periodic problem is useful for verifying the
core solver accuracy. The boundary treatment is straight-
forward, which ease code debugging. We are mainly in-
terested in the accuracy results shown in Tab. 5, where
we can see that the designed accuracy is reached. Note
that we focus on the density because the other conser-
vative variables behaves in a similar manner.

3.2 One-dimensional Rayleigh flow

In the 1D Rayleigh flow we added a more robust way
to treat boundary conditions while the interior scheme
remained the same, with the exception of the source
term. This allow us to concentrate on the boundary

treatment. Notice that this problem is steady and there
are many ways of setting the initial conditions. We use
the left boundary values as initial estimate, which are

more generic than the analytical solution, in the first
few meshes. The latter is used in the remaining meshes
because it gives faster results. We remark that one still

needs the numerical procedure, since the analytical so-
lution is not a solution for the numerical scheme.

The accuracy analysis is shown in Tab. 6 for the
Mach number since it involves all the conservative vari-

ables, where we can see that the designed accuracy is
being reached.

3.3 Quasi-one-dimensional nozzle flow

The Q1D flows are subsonic-supersonic flows in an ide-
alized convergent-divergent nozzle. The subsonic inflow
is isentropically compressed in the convergent region of
the nozzle. At the throat, the flow becomes sonic and

it is isentropically expanded downstream until the noz-
zle exit (isentropic flow) or until the shock (adiabatic
flow). Downstream the shock, the flow becomes sub-
sonic. Since we already verified most of the boundary
treatment, it is easy now to compute the Q1D flows.

The accuracy analysis is shown in Tab. 7 for the
Mach number, where we can see that the designed ac-
curacy is being reached for the isentropic flow. The ac-
curacy behavior for the adiabatic flow is due to the
shock and it is the expected behavior in flows with dis-
continuities [13,14].

The Mach number profiles for isentropic and adia-
batic flow are shown in Figs. 4 and 5, where we can see
good agreement between the numerical and exact so-
lutions and that the high-resolution is being attained,
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Table 5: L1 and L∞ norms and its orders for density and simple periodic problem

Points ∆x L1 Order L∞ Order
20 5.00E-02 2.08E-04 - 3.75E-04 -
40 2.50E-02 6.37E-06 5.03 1.14E-05 5.04
80 1.25E-02 1.88E-07 5.08 3.81E-07 4.91
160 6.25E-03 5.72E-09 5.04 1.20E-08 4.99
320 3.13E-03 1.78E-10 5.00 3.68E-10 5.03

Table 6: L1 and L∞ norms and its orders for Mach number and 1D Rayleigh flow

Points ∆x L1 Order L∞ Order
20 1.00E-02 5.88E-07 - 2.05E-06 -
40 5.00E-03 2.94E-08 4.32 9.95E-08 4.36
80 2.50E-03 1.24E-09 4.57 3.98E-09 4.64
160 1.25E-03 4.55E-11 4.77 1.42E-10 4.81
320 6.25E-04 1.53E-12 4.89 4.73E-12 4.90

Table 7: L1 and L∞ norms and its orders for Mach number and Q1D nozzle flow

Isentropic flow Adiabatic flow
Points ∆x L1 Order L∞ Order L1 Order L∞ Order

20 1.25E-02 2.70E-04 - 8.00E-04 - 4.36E-02 - 1.75E-01 -
40 6.25E-03 1.20E-05 4.49 1.76E-05 5.51 2.72E-02 0.68 2.58E-01 -0.57
80 3.13E-03 3.66E-07 5.03 3.50E-07 5.65 1.57E-02 0.79 3.44E-01 -0.41
160 1.56E-03 1.04E-08 5.13 8.08E-09 5.44 6.62E-03 1.24 1.88E-01 0.87
320 7.81E-04 4.30E-10 4.83 2.55E-10 5.05 3.33E-03 0.99 2.15E-01 -0.19

even with the shock near the boundary in the 20 points
mesh.
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Fig. 4: Mach number profile for Q1D isentropic nozzle
flow

3.4 Two-dimensional Ringleb flow

The 2D Ringleb flow is a subsonic-supersonic flow that
depends on streamlines. In this particular case, our
left boundary is a streamline, which was modeled by a
curved wall. We presented the procedure to solve flows

with arbitrary domains that are not aligned with the
mesh points. The 1D x-direction space discretization is
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x (m)
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320 points mesh

Exact

Fig. 5: Mach number profile for Q1D adiabatic nozzle
flow

also carried in the y-direction with a few adjustments to

the whole solver, which saves time and effort. Also, the
general idea of 1D ILW is extended to 2D along with
the modified solid wall treatment and 2D WENO-type
extrapolation.

The accuracy analysis is shown in Tab. 8 for the
Mach number, where we can see that the designed ac-
curacy is being reached.

The Mach number color map is presented in Fig.
6, where we see that the supersonic region is located at
the right most region of the flow. By changing ψmax and
ψmin, one can change the region size as needed. For the
mixed subsonic-supersonic lower boundary presented
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Table 8: L1 and L∞ norms and its orders for Mach number and 2D Ringleb flow

Nx Points ∆x = ∆y L1 Order L∞ Order
10 97 5.23E-02 1.32E-06 - 4.25E-06 -
20 385 2.61E-02 5.76E-08 4.52 3.00E-07 3.83
40 1541 1.31E-02 1.66E-09 5.12 2.45E-08 3.61
80 6160 6.54E-03 5.35E-11 4.95 1.09E-09 4.49
160 24635 3.27E-03 1.27E-12 5.40 2.49E-11 5.45

here, it is easier to apply the boundary conditions re-
garding (73). However, since other flow problems could
present mixed subsonic-supersonic boundaries this is a
good case to test the procedure.
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Fig. 6: Mach number color map for the 2D Ringleb flow
and 24635 points mesh

3.5 Two-dimensional conical flow

In the 2D conical flow we did not add any additional
procedure to handle the oblique shock wave since the
WENO-Z+ and WENO-type extrapolation are robust
and designed for that. The shock is attached to the tip
of the cone with an inclination of 37 ◦ and, differently
from the Q1D case, the flow downstream the shock is
supersonic. Still, there is a non-isentropic velocity de-
crease through the shock.

The accuracy analysis is shown in Tab. 9 for the
Mach number, where we can see that the designed ac-
curacy is not being reached, which is the same situation
as in the Q1D adiabatic flow. However, high-resolution
is still attained.

The Mach number color map is presented in Fig.
7, where we see the oblique shock, which is less severe

when compared to the normal shock and the flow is
supersonic everywhere.
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Fig. 7: Mach number color map for the 2D conical flow
and 21016 points mesh

4 Concluding remarks

Because of non-linear phenomena, compressible fluid

flows requires robust solvers, and CFD problems usu-
ally have arbitrary domains. In contrast to unstructured
mesh solvers, the ILW allows the mesh to be structured
and simple, which does not require modifications on the

numerical schemes. In this work, we reviewed the most
recent and popular methods for solving compressible
fluid flows with arbitrary domains, presented detailed

information regarding the numerical code construction
and verification, and proposed modifications in the ILW
solid wall treatment and 2D WENO-type stencil selec-

tion and weights.

In all smooth problems, we showed that designed
accuracy was reached. In problems with shocks, the de-
signed order is not being reached for the whole domain,
which is the expected behavior of high-order numerical
schemes such as WENO. However, high-resolution was
still attained. When compared to smooth problems, no
modifications were needed to handle the shock wave.
The ILW and WENO performance are good even with
dissipative numerical splitting and shocks, as one can
notice from coarse mesh in the Q1D adiabatic flow. Our
modifications showed similar behavior to the original
ILW procedure while providing a more generic bound-
ary treatment. With the methods, procedures, and the

detailed information presented here, one can build nu-
merical codes to solve compressible and inviscid fluid
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Table 9: L1 and L∞ norms and its orders for Mach number and 2D conical flow

Nz Points ∆z = ∆r L1 Order L∞ Order
10 72 3.00E-02 7.52E-02 - 4.33E-01 -
20 310 1.50E-02 4.05E-02 8.91E-01 5.33E-01 -3.02E-01
40 1282 7.50E-03 2.21E-02 8.73E-01 5.23E-01 2.84E-02
80 5214 3.75E-03 1.02E-02 1.11E+00 5.34E-01 -3.09E-02
160 21016 1.87E-03 5.06E-03 1.02E+00 5.41E-01 -1.84E-02

flows with high-resolution, arbitrary domains, and with
further adjustments, viscous flows can also be com-
puted.
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