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Abstract

This paper is the continuation of the articles S. Amat, J. Ruiz, C.-W. Shu, On new strategies to
control the accuracy of WENO algorithms close to discontinuities, STAM J. Numer. Anal. 57 (3)
(2019) 1205 — 1237 and S. Amat, J. Ruiz, C.-W. Shu, On new strategies to control the accuracy
of WENO algorithm close to discontinuities II: Cell averages, (Submitted). It is devoted to the
construction and analysis of new non-linear optimal weights for WENO interpolation capable of
raising the order of accuracy close to shocks in the solution of conservation laws. In the references
mentioned before, we showed that using these new weights it is possible to attain optimal theoretical
accuracy when approximating piecewise smooth functions close to discontinuities. Our aim is to
present a new algorithm for the approximation of the solution of conservation laws based on these
weights.
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1. Introduction
This article concerns the solution of hyperbolic conservation laws of the form

w + V- f(u) =0,
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using a modification of the WENO (weighted essentially non oscillatory) algorithm, originally pro-
posed in [3] and lately modified in [4].

WENO schemes arouse as an improvement of ENO (essentially non oscillatory) schemes [5] for
data discretized in the cell averages. The core idea of ENO schemes is to use the smoothest stencil
among a group of possible stencils. The objective is to approximate the flux at the cell boundaries
with a high order of accuracy assuring, at the same time, that Gibbs oscillations do not appear close
to the discontinuities. Following these requirements, ENO schemes assure high order of accuracy
except at the cell that contains the shock. An incomplete list of references about ENO methods is
6, 5,7,8,9, 10, 11, 12, 13, 14, 15].

Liu, Osher and Chan introduced in [3] an improvement of ENO scheme and they called it WENO.
Instead of using only one stencil as ENO scheme does, WENO technique consists in approximating
the flux building a convex combination of all the possible stencils that ENO scheme uses. The
algorithm assigns a weight to every possible stencil, that depends on the smoothness of the data.
Thus, the stencils that belong to a smooth zone are assigned a weight whose value is very close to
some optimal weights that assure optimal accuracy. On the other hand, close to the discontinuities
the stencils that cross them are assigned weights whose values are very close to zero. In [4] Jiang
and Shu introduce new smoothness indicators that are more efficient than those proposed originally
in [3]. An incomplete list of references about WENO schemes is [16, 17, 18, 19, 20, 21]

With the original design of WENO schemes proposed in [3, 4], the restrictions imposed to the
weights are to obtain optimal accuracy at smooth zones while providing an essentially non oscillatory
result close to the discontinuities, but without demanding a strict control over the weights of the
convex combination. This means that the order of approximation is not controlled if there is more
than one smooth sub-stencil close to the discontinuities. In [1] we showed that this characteristic of
the WENO scheme can be improved if the optimal weights, that are constant in the initial design
proposed in [3, 4], are replaced by nonlinear optimal weights.

In this article we continue the path opened in [1, 2] and we propose a modification of the
non-linear optimal weights introduced in [3, 4] with the aim of rising the order of accuracy when
approximating the flux close to discontinuities in the solution of conservation laws. Our aim is to
design a strategy that allows to keep optimal accuracy everywhere, in the sense of maximizing the
presence of smooth data in the WENO convex combination. An important difference between the
techniques presented in [1, 2] and the one presented in this article is due to the fact that in the
approximation of conservation laws the polynomials used to approximate the flux are uncentered.
In the references mentioned previously, all the polynomials used are centered and they are built from
data in the point values [1] or the cell averages [2]. The reason for using uncentered polynomials is
that the flux is approximated at the cell interfaces that are shifted Ax/2 with respect to the center
of the stencil. This fact imposes a complete redesign of the algorithm that leads to interesting
consequences in the construction.

This paper is organized as follows: In Section 2 we introduce the discretization of the data.
Section 3 is dedicated to introduce the particular kind of hyperbolic partial differential equations
that we will be dealing with. Section 4 talks about the classical WENO method for the solution of
hyperbolic conservation laws. Section 5 introduces the new WENO algorithm for conservation laws.
Section 6 analyses theoretically the accuracy that the new WENO algorithm reaches at smooth
zones of the flux and close to shocks. Section 7 is dedicated to present some relevant numerical
experiments. Finally, Section 8 presents the conclusions.



2. Discretization of data in the cell-averages

The cell averages discretization appears in a natural form when numerically discretizing hyper-
bolic conservation laws. In this section we will give some basic notes about this discretization as it
will be the one used in the whole article. Let us consider piecewise smooth functions in the interval
[a,b] and the space of finite sequences V of length N = J 4+ 1. We will denote by X to a uniform
partition of the interval [a,b] in J subintervals,

X = {xi—l/Q}ijzm T_yp=a, hi=Ti10—Ti_1)0-

Now we consider the discretization, that is defined as,
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for the space of absolutely integrable functions in [a,b] L!([a, b]) and discretized sequences of length

N = J — 1. Now we can define the set of values {F}} as,

Tj+1/2

J
F(zji1) = S hfi = / f(y)dy, (2)
i=1 T-1/2
where F' can be considered the primitive of f, F(z) = f;o f(y)dy. With this assumption, the
sequence {F;} is a discretization in the point-values of F'(z). Using the previous definition, we can
denote by P(z) the unique polynomial of degree k that interpolates the values of the primitive.
Using the derivative P’(z) to approximate f(z) in (1), it is clear that we can relate the values of the
primitive with the cell values through the expression,
_ 1 /$z+1/2 1 /Iwrl/? P’ dx . P(SL‘,L'+1/2) — P(l‘i,l/g) _ F(I‘i+1/2) — F(.Ti,1/2)
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where the last equality holds because P(x) interpolates I'(x) at the grid points x4/ and x;_; 5.

3. Conservation laws

WENO reconstructions are not directly related to numerical schemes for approximating the
solution of any PDE, but they have been classically applied to the solution of hyperbolic conservation
laws. In what follows we will present the equations that we are interested in and how to discretize
them. We will consider systems of hyperbolic conservations laws in n space dimensions,

d
Uy +Zfz<u)wl Oa
=1

u(x,0) = up(x).

(4)

In the previous expressions, ug(x) is the initial condition. Suitable boundary conditions should also
be defined. Let us start by the simplest case and consider a numerical approximation of the weak
solution of the following scalar hyperbolic conservation law in one dimension,

{ Ut+f(u)w20a

u(z,0) = up(x). 5)



We can denote by u} = up(w;,t,) a numerical approximation of the exact solution u(z;,t,) of (5)
defined on a computational grid x; = jh with j € Z, h > 0. In this case we are clearly considering
that the data u} = up(z;,t,) is a discretization in the point values of the solution u(x;,t,) of (5).
Thus, our objective is to obtain a high order conservative approximation of the derivative of f(x)
from its point values. If we are capable of finding a function g(x) such that,

x+h/2
fa) =5 [ gy, (©

—h/2
then it is clear that
df(u(z)) _ glx+h/2) —g(x —h/2) )
dx h ’
that is precisely a conservative approximation of the derivative of f(x). All we need to do now is to
find an approximation of g with an order of accuracy k + 1,

I

to obtain an approximation of the derivative of the flux with an order of approximation k,

= g(zj41/2) + O(WFT),
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where the numerical flux fj 41 approximates g(z), that is implicitly defined by (6). The implicit
definition in (6) determines that the known function f(z) is just a cell average of the function
g(x), that is unknown. Thus, to recover an approximation of the function g(z), we can just use a
reconstruction via the primitive function. Obtaining the primitive of g(z) we get,

G = [ " o)y, (9)
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and as a consequence,
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This last expressions means that we know the primitive of g(z) at the cell interfaces x = ;41 /2.
With this information it is possible to build a polynomial approximation P(z) of G(z) in (9), and
then differentiate it and replace = 2; —h/2 and © = x;+h/2 as in (7), to obtain an approximation
of f(u(x;))s. Thus,
f@j—1y2) = P'(xj1/2). (10)
The next section is dedicated to briefly explain how to use the WENO algorithm to recover a
k-th order of accuracy approximation P(x) of the primitive G(x). This reconstruction will be built
using the known point values of the primitive G(z) at the cell interfaces in (9), and then P’'(z;,/2)
will be taken as the numerical flux f(xj+1/2) in (8).
As the points of interpolation of the fluxes at x;_; /5 and ;4 differ from those used in [2], we

proceed to adapt the new WENO algorithm, introduced in [1] and extended to cell averages in [2],
to the context of conservation laws.



4. The classical WENO algorithm for hyperbolic conservation laws

In [3] the authors introduced a first version of the WENO algorithm for conservation laws. In
[4] the authors presented new smoothness indicators that are more suitable than those presented in
[3]. In this section we will briefly introduce the classical WENO algorithm for conservation laws.

Let us represent by S;"(j) = {Lj—m+i, -+ , [j1i—1} the stencil of m cells with I; = [x;_1 /2,211 /2] =
[z;—h/2,z;+h/2]. Using this notatlon the WENO method uses the stencil S2"~ 1( ) ={Li—rg1, - Ljrr_1}
composed of 2r —1 cells. Following this notation, S;(j), k=1,---,r, is the Kith sub-stencil of length
r that contains the cell I; = [x;_1/2,%;41/2],

SI:(.].):{IJ'—T-F/W"' 7Ij+k—1}7 kzlv » Ty (11)

where we want to approximate the derivative of the flux using the numerical fluxes fj; 1 and fj 41
as shown in (8). As stated in Section 3, our objective is to obtain a conservative approximation of
the derivative of the flux f(u(x;)), using (8). With this configuration in mind, we can build the
following convex combination,

gj—r( Zw ()P) 7 (@), (12)

with wzfl(j) >0,k=1,---,rand ) ;_, wzfl(j) = 1. In (12), pg;lurk(x) is the interpolatory poly-
nomial of degree r — 1 written for the cell averages over the stencil S} (j). The prediction operator
p;:i 41 () that allows to obtain the numerical flux at the cell interfaces can be built using a polyno-
mial interpolation in the primitive. Then, using the relation in (24) between a reconstruction in the
primitive values and cell averages, we can recover the expression for the polynomial approximation
in the cell averages. The expressions for r = 3 of p?73+k (xj_1/9) for k=1,---,3 are,

1 5 - 1-
P _o(@j1y2) = *éfj—2 + gfj—l + gfja
1 5~ 1
Pii(@jo1y2) = it *fj - *fj+1, (13)
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The expressions for p?_3 41(Tj41/2) are symmetrical,
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The numerical flux fjH /2 is then given by,

f]+1/2 = Zw Pj r+k ( %) +O(R*h). (15)



Thus, the objective of WENO algorithm is to find weights w,zfl(j) that allow to obtain order of

accuracy 2r — 1 when approximating the numerical flux f; /o at smooth regions of the function f.
Assuming that the flux is smooth on the big stencil S2"~! = {I;_,41, -+, Ij+r—1} our objective is
to find a polynomial interpolant that verifies,

" (Ij—é) = i +O(R71). (16)
There also exist 7 interpolants of order O(h"~!) constructed using the small stencils S%(j),
- (%—%) = fjsp +O (). (17)

At smooth zones WENO algorithm should assure that wlZ*l in (15) are very close to the values
Cr1(j) > 0,Vk such that 37 _¢ Cr71(j) = 1, and

r—1

P (rims) = 2 O G (i) (18)
k=0
As shown in [4], for » = 3 the optimal weights for fj_l /2 (for fj+1 /2 are symmetrical) are,
3 6 1
20y _ 2 20y 9 205 — 1
GG =15 GBU)=15 GU)=15 (19)

In [3], the authors propose the following expression for the weights,

Oérfl CT71
wzfl - ﬁ’ k=0,---,r —1 where azfl = fift
Zk:oak (6+1k<]a f))
This expression for the weights satisfies that >, w?(j) = 1. In (20) I} (j, f) represents a smoothness
indicator for f(x) on the stencil S7,(j). t is an integer that has the purpose of assuring the maximum
order of accuracy close to the discontinuities.

We will use the smoothness indicators proposed in [4], that can be calculated through the formula,

r—1 2

. _ Tivl [ d! _

1.5, f) :Zh” 1/ (ij}“%(x)) dz, (21)
=1 Ty

i—

(20)
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In the classical WENO algorithm these smoothness indicators take the expression,

I} = (e = 251 + 5 + 4 (e — 45+ 35

B = =20+ JaP + (o = i) 22)
1 = 33U = 21 + Fyua) + {65 — 4y + Frsa )

In [1] we mentioned that the value of the WENO weights (20) gives preference to the essentially
non-oscillatory property over the accuracy close to the discontinuities. The consequence is an appro-
ximation which order of accuracy is not optimized if there is more than one sub-stencil free of



discontinuities. This is due to the fact that WENO algorithm uses fixed optimal-weights in (20)
when constructing (15). The interested reader can find in Tables 1 and 3 or in Figure 5 of [22] some
experiments that validate the previous statement. In [1] we introduced a nonlinear redesign of the
WENO optimal weights that constitutes a possible solution for this problem in the point values.
Due to the fact that the points where we want to obtain the numerical fluxes fj+1/2 or fj_l/g are
not centered, the expressions for the polynomials and the nonlinear weights are not the same as
those presented in [2]. For completeness, we explain how to obtain the nonlinear optimal weights in
the next section.

5. The new WENO algorithm for hyperbolic conservation laws

In [1], we explain a possible solution of the problems that WENO algorithm presents when
interpolating data in the point values close to discontinuities. In particular, we propose a nonlinear
modification of the optimal weights obtained through (15). In [2] we extend the new algorithm to
data discretized in the cell averages. In this section we explain how to adapt the previous technique
to the approximation of fluxes using finite differences. As in [1, 2], we study the particular case r = 3
that in this case corresponds to n = 2r—1 = 5 cells (27 point values of the primitive). The three sub-
stencils of three cells used are S§ = {I;_2,1;_1,1;}, S5 = {I;_1,1;,I;41} and S5 = {I;, I 11, Ij12}.
The big stencil is composed of the cells S5 = {I;_2,1;-1,1j,Ij11,1;+2}. Having in mind the previous
stencils, let’s try to build a polynomial approximation for the numerical flux in (10) in the cell
averages using the primitive function. The interpolating polynomial of degree n in the Newton form
for the primitive function in (2), has the expression,

Fjvik — Fjrir—1

qﬁmkq(ﬁf) =Fj_rpp—1+ (x — j—rgr-1)

h
Fo w1 —2F i+ Fi_, ik
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(23)
being 67, divided differences of order n and h a uniform grid spacing. The reconstruction p
using the cell-averages can be written as the derivative of the interpolator ¢ for the primitive values,

d
= . 24
p(e) = a(a) (29
Applying (24) to (23), we obtain the expression for the polynomial of degree n—1 in the cell averages,
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For r = 3, we can denote the polynomials in the cell averages by p;:i+k(x) = p?—3+k(x)7 such
that = — 1 = 2 denotes the degree of the polynomial and I;_s3,4 the cell where the substencil
starts, for k = 1,---,3. Even so, in what follows we will ease the notation and drop the de-
pendence with j and simply write pz_l(x), as we will be constantly referring to the big stencil
S3 ={Ij—2,1;-1,1;,I;11,1;42}. All the polynomials in the primitive are evaluated at the point of
interpolation x;_, /9 = x; — h/2 or Tjy1/2 = xj + h/2, as shown in Figures 1 and 2, in order to con-
struct the conservative expression of the flux derivative in (8). In order to obtain the new nonlinear
optimal weights, for r = 3 we will be dealing with the polynomials in the cell averages p?(z), p3(z)
and p3(x) for the convex combination in (18) plus p3(z), p3(x), pf(x) for calculating the nonlinear
optimal weights. All the previous polynomials will also be used to obtain smoothness indicators.
The optimal weights for the classical WENO algorithm in the case r = 3 are those presented in (19)
and can be easily obtained through (18). We can see that in this case the weights do not present
symmetry, as it occurred in [1, 2]. As mentioned before, this is due to the fact that, in order to
estimate fj_H/Q or fj_1/27 the interpolation point is not at the middle of the stencil, but shifted h/2.
All the following considerations are given to obtain an approximation of fj,l /2 For fjﬂ /2 all the
process is just symmetric. Following what was done to obtain the WENO constant optimal weights
in (20), it is straightforward to prove that,

) 5
Pi(e) = SC3i() + 2CEm(a)

5 5 (26)
pa() = 1 203 (w) + 56221)%(1”),
with CZ,C%, and C% the optimal weights for r = 3 presented in (19). From (26), now it is straight-
forward to give the expression for the vectors of optimal weights C3, C3, each of which is suitable
for a particular position of the discontinuity,
5 5
C3=(-0%,-C30),
376
s s (27)
ci = (o,4c§,20§>.

Now, following the procedure explained in [1], we use smoothness indicators for the polynomials of
3,4 and 5 cells that arise from the big stencil, that is composed of 5 cells. We denote by @} the
quotients,

~3
Mm@ +rad 2T E+a (28)
with,
5 c3 5 c3
o) = — o) = — 29
R T N T =

The constant weights C3, C3 arise from the fact that the addition of vectors of weights (27) is not a
multiple of (CZ,C3,C3), that is the vector of weights that we want to obtain at smooth zones. This
fact will impose the use of the new constant optimal weights C™ in (29) with the value,

C3=3/5, C3=2/5. (30)



Now, it is clear that - B
CICi +C3C3 = C1 = (CF,C3,C3),
and if we establish that the nonlinear optimal weights take the expression,

(C?.C3.C5) = &iC +@3C3, (31)
it is easy to check that at smooth zones we obtain that (C?,C2,C3) ~ (C?,C3,C32) = C%, that are
the original constant optimal weights of WENO algorithm presented in (19). The nonlinear optimal
weights C} are used in place of the optimal weights C7 in the expression of the WENO weights
given in (20). The smoothness indicators that appear in (20) are those presented in (22) and use
three cells. This part of the WENO algorithm remains untouched and we only modify the optimal

weights, that now are nonlinear. In what follows we introduce a generalization of the algorithm and
analyze the smoothness indicators that appear in (29).

5.1. Generalization to a higher order

The previous algorithm can also be interpreted as a WENO algorithm applied in several scales
each time to two substencils. For example, the procedure to obtain the WENO algorithm presented
in previous sections can also be interpreted as follows:

1. From (27) we can see that the vector of weights C3 is just the application of WENO to the
first two stencils of three cells S and S5 with weights 2C7 and 2C?. It is also clear that C3 is
the application of WENO to the stencils S3 and S3 with Welghts ZC’Q and 3C3. If the stencil
is smooth, the result will be the two polynomials of 4 cells presented in (26)

2. With the resulting polynomials in (26), we can just apply WENO again, but this time with
the weights C§ and Cj in (30) to obtain the final result.

3. The process described here for polynomials of 5 cells can be extended very easily to construct
WENO algorithms of 2r — 1 cells, as the process would be iterative.

5.2. Smoothness indicators

An immediate option for I, I3 in the expressions in (29), that are smoothness indicators of 4
cells and I{ is a smoothness indicator of 5 cells, is to obtain them through (21). They have the
expression,

1261

267 .
I} =— 120 ——fifi + 120f;+1f] 1= 120fg+1f; 2 — 120 fyf; 1+ ijfj—z 120fg 1fj—2
547 o 3443 2 2843 89 -
+aq0fin t a0 5 T Sag fi1 t gg i
89 - 2843 3443 - 547 - 267 - —
3 _ 2 2
IQ—% j+2+% j+1+%f‘+% j—1 120f]+2fj+1+ 40 fj+2fj 120f]+2fj 1
2983 1261
- 120 fj+1fj 120 f]+1 fg 1= 120 fj fj 1
(32)

In [1] we mentioned that the computational cost of the previous option is high. It can be reduced if
we use as smoothness indicators of high order a function of those presented in (22). A good option,
that provides the same accuracy results, could be for example,

=17 - I3,

) 33
-1 1 (33)



The reason is that at smooth zones, it is easy to see that a Taylor expansion around z; of (22) [4]
(and also (32)) gives ,

Ir = (hfj’.)?.(1+0(h2)), n=23. (34)
In the cases that f/(j) = 0, then,

I = g (hQﬂ')2~(1+0(h2)), n=23. (35)

And for the indices in (33),

Iy = ((hfg’-)2 1+ O(hQ)))2 = (W) (1+0(h2), n=23. (36)

In the cases that f’(j) = 0, then,

2 2
13 = 13 _
I = (12 (7)) (1 0<h2>>) B (u) (1270w, n=23  (37)

These results will be useful in the next section in order to prove the accuracy of the algorithm.
As the constants that go with (1 + O(h?)) are the same for each kind of smoothness indicator, the
proofs will be exactly the same.

6. Accuracy of the new algorithm

In what follows we will analyze the accuracy of the new algorithm in all the possible cases that
we can find when the stencil crosses a discontinuity when r = 3 and the big stencil is composed of
2r — 1 cells:

e The first case that we will consider is when none of the sub-stencils Sp, n = 2,3, (three of
three cells and two of four cells) crosses a discontinuity and fj' # 0 in (36). In this case all of
the smoothness indicators are I} = (hf})?-(1+O(h?)), n = 2,3 (as shown in (36)). Replacing
(29) in (28), the nonlinear weights in (28) can be written as,

N 1
L I B N 7 LN B B (38)

(e+IP)t T (e+I3)!

At zones that present enough regularity, replacing I3 by (36) in (38) and supposing that e is
small enough,
~n (1+0(R?))"

P+ o)

In order to simplify the previous expression, we know that (1 + O(h?))! = 1 + O(h?) and
oy = L+ 0(h?), so,

wp =

o (L4 O(h))"

o = Ol + oy = CRL+00).

10



Now, using the values of the C?* in (30), (31) can be written as,

(C2,C3,C35) = (1+0(h?)) (C3C3 + C5C3)

3 2(. 5 55
= <3012, 603,0) += <o, 1022’ 203)) (14 0(h?))

(39)

= (C127 022’ Cg) + O(h2)7

that are the original optimal weights C7(j) in (18) and proposed in [4] plus an O(h?) pertur-
bation. Let us check now the value of the WENO weights in (20), using as optimal weights

the ones obtained in (39),

9% _CiA O(h?) 1
k™ r—1 . - (€_|_IT r—lC +Oh2)
% Z 6—1—]7"
1=0 1=0

Replacing IT by (36) in the previous expression and choosing a small enough €, we obtain that

the WENO weights for this case are,

Cr +0(h?) (1+O0(h?))t

r r 2
w; = =C, +0(h%). 40
T 1+ 0(h2)t 14 0(h?) i+ 007 (40)
fj*Q f/*l f/ f.7'+1 fj+2
ijs/z ‘ ijs/z ‘ Gj—l/? Gj+1/2 ‘ Gj+3/2 - Gj+5/2
L L L L L L L
Tj—5/2 Tj-3/2 Tj—-1/2 Tj+1/2 Tj+3/2 Tj+5/2

Figure 1: Representation of a discontinuity in the flux placed at z* in the interval (xj+3/2, a;j+5/2), that affects the
cell average value fj+2. We have also represented the primitive values G;_,, /2. We can observe that in this particular

case there are two smooth stencils of three cells.

e Figures 1 and 2 present two cases that are symmetric.

Thus, we will only analyze the one

in Figure 1. A discontinuity in the flux contained in the interval (x;13/2,%;45/2) affects the

smoothness indicator I3 in (32) resulting in a value O(1).

I} = O(h?) in (32), as it is not

affected by the discontinuity. Thus, the weights in (29) take the expression

Replacing these expressions in (38)

3 1
T e o)
3 1
T v o)t

and assuming again that e takes a value that is small

11



enough, we obtain that the weights are,

@ O 1 G 1 _ 1
1= I3)t c3 c3 - I3)t c3 - 1 2t
(6+ l) W‘i‘ﬁ (€+ 1) (€+I?)t (1+O(h2t)) +O(h )
=1+ 0(h™),
. 1 Cc3 1
~3 2 2t
Wy = &3 3 = 3) 3 = O(h' )
e Ty T i (1 o)

In this case, the adapted optimal weights take the form,
~o 2o A 5 5
(€1.63.C0) = C + 01 = (52, 5C0) + 00, (a1)

If the discontinuity is placed in the interval (z;_s,z;_2), the conclusions would be exactly the
same but

(G2.62,02) = G + O(h?) = (o, Sez gc%:) Lo, (42)

Now, we can analyze the result of the WENO algorithm with the adapted optimal weights
that we have obtained instead of the original optimal weights that appear in (20). A jump
in the interval (z;41,x;4+2) produces that I = O(h?), I3 = O(h?) and I3 = O(1). Assuming
again that e is small enough, using the nonlinear optimal weights presented in (41) that are
(C?,C3,C3) = (2C%,5C3,0) + O(h?") and having into account (19) then, C?+C2+C2 =

gcf + %C;? +O0(h*) =14 O(h?"), and,

C? 1 7 1
W= - L —
(e+17) 2 @2 (€+17)" a3 (CF + C3(1 + O(h?)) + O(h?"))
(et 1)t (43)
_ C~’12 2 2
= 17007 =C}+O(h?),
) C3 1 C3 1
Wy = Nt 1 ~ = 2\t 1 ~2 2 A2 2
(e+13) o (€+I5)" (e (CR(1 + O(h?)) + CF + O(h?))
—(e+ 1)
622 ~2 2
— — h
Tro@e) ~ 2T,
P e 1
e+ e (€4 13)" e (CF + C3(1 + O(h%)) + O(h*))
= e+ I12)
C2 1

= G0y ooy = O

12



f372 fj—l fg fTJJrl -f]+2
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| |

Git1)2 ‘ Gits)2
! !

Tj—5/2 Tj-3/2 Tj—-1/2 Tjt1/2 Tj+3/2 Tj+5/2

Figure 2: Representation of a discontinuity in the flux placed at «* in the interval (acj_5/2, xj_3/2), that affects the

cell average value fj,g. We have also represented the primitive values G;_,, /2. We can observe that in this particular
case there are two smooth stencils of three cells.

e If there is a jump in the function affecting the flux in the intervals (211 /2, 2;13/2) or (7;_3/2,7;-1/2),
the best order of accuracy that can be obtained is O(h?) as there is only one smooth sten-
cil. This is precisely the order that the classical WENO algorithm reaches in this case. The
adapted optimal weights (28) for this case are,

P =0(1), ©¥=0Q). (44)

In what follows we analyze the case when the discontinuity is placed in the interval (x;41/2,%;43/2)-
When the discontinuity falls in the interval (z;_3/2,2;_1/2) we have the symmetric case. Re-
placing (44) in (31) we obtain that (C?,C3,C3) = (O(1),0(1),0(1)). Now, if € is small
enough, the WENO weights in (20) are,

C? 1 C? 1
wi = - = L - =1+ O(h*),
b (et 1) i C? (e+ 10" (14 0(h2)) "
(e + I2)t !
i=0 g
2o 8 1 (3 1
R SN SR Rl
e (e+ IP)! 1
_ G 1 — O(h?) (45)
é )
o(1) o (1+0(h2))
C3 1 C? 1
w2 = 3 _ 3 _
B I e e e Rl
; (e + I2)! 1
~2
1
=% = O(n*").

O 5% (1 +0(h2))

This result means that the two last substencils of the WENO algorithm receive a weight that
is close to zero while the first one receives a weight that is very close to 1.

e Finally, the case depicted in Figure 3 results in a loss of accuracy due to the fact that the
discontinuity is placed at the central interval of the stencil and can not be avoided unless a
subcell-resolution like strategy is used.

13



f372 fj—l fg f]+1 -f]+2

Gits)2
|

-

G s5/2 ‘ Gj_3/2 ‘ G172
L

Git1)2 ‘ Gits)2
! !

Tj—5/2 Tj-3/2 Tj—-1/2 Tjt1/2 Tj+3/2 Tj+5/2

Figure 3: Representation of a discontinuity in the flux placed at =* in the interval (mj_l/Q, m]-+1/2), that affects the

cell average value fj We have also represented the primitive values Gj_,, /2. In this case we can observe that all the
stencils of three, four and five cells are affected by the discontinuity.

Let us consider the stencil S?" = {z;_ 5/25 Tj—3/2 Tj—1/2, Tj+1/2, Tj+3/2, Tj45/2) and the cell
average values {fj_o, fj— 1,fj,fj+1,f]+2} Now, we can prove the following theorem about the
weights, that will also provide us information about the value of ¢t and how small € must be.

Theorem 1. Let us assume that r = 3, t > 1, e < h? and that the grid spacing h is small enough
such that there is only one discontinuity in the considered big stencil. The following cases must be
taken into account regarding the accuracy of the new algorithm when approximating the derivative

of the fluz:
o [f the nonlinear optimal weights satisfy the following relation at smooth zones where,
(012’6227632) C1+wgcg _C +O(h2)7
wit{L Ci = (Cf7 C3,C3), then > wipp(xj_1/2) = f(xj_l/g) + O(h®) and f(u(z)), =
%(f(ijrl/Q) — f(zj-1/2)) + O(n*).

o [f there is a discontinuity in the interval (xj_5/2,2;_3/2) and the nonlinear optimal weights
satisfy the following relation,

(C1,03,C3) = i Cy + ©3C3 = CF + O(h?),
with C3 = (0,203,5C3), then Y h_ wipi(zj_1/2) = f(xj_1/2) + O(h*) and f(u(x)), =
F(f(@j1/2) = f@jor2) + OR3).

e If there is a discontinuity in the interval (xj43/2,%j15/2) and the nonlinear optimal weights
satisfy the following relation,

(C},C3,C3) = @iCY + @5 C3 = CF + O(h?),
witl} C3 = ( Cl,GC 0), then Y j_  wiph(zj_1/2) = f(ll?j_l/g) + O(h*) and f(u(x)), =
%(f(xj+1/2) f(ffj—l/z))+0(h3)~

e If there is a discontinuity in the intervals (x;_g/2,2j_1/2) 0T (Tj11/2,Tj43/2), then the non-
linear optimal weights satisfy the following relation,

)
-

), O(1)),

and 2221 WZPZ(’IJ‘A/Q) = f($j71/2)+0(h3) and f(u(x)), = %(f($j+1/2)_f(xj71/2))+0(h2)-

14



Thus, the new WENO algorithm is at least as good as classical WENQO algorithm close to disconti-
nuities.

Proof.

e We can start proving the first statement of the theorem. In (27) we can see that the vector
C1 has as coordinates the Cy(j) in (19). The error of the interpolation in (12) at x;_1 /o is,

> wiph(@i1y2) = fim12 =Y wiph(@i—1j2) = fi—i2 + D Chph(i—1)2)
k=1 k=1

k=1

- ZCJZPZ(%ﬂ/z),

k=1

with C], being the WENO optimal weights in (19). After simple algebraic manipulations of
the previous expression we obtain,

ZWIZP}Q(%—UQ) - fj—1/2 = ZWEPZ(%‘—UQ - ZC;PZ(%—Uz)
k=1 k=1 k=1

+ Z Cepi(Tj—1/2) — fj—1/2

k=1

fZ — OD)ph(xj_1/2) + O(K ).

The fact that >, _, wy = > ;_; C; = 1, allows us to write,

T

ngpi(%—l/?) - fj—1/2 = Z(W}; = O (wj-1/2) + o)

k=1

+ Z —Ci)fi-1y2
= Z — O (DR (@j—1/2) = fij—1/2) + O(W*" 1)
The expression in (40) assures that (w}, — C}) = O(h™) with m = 2, so
iwﬁpi(%a/z) — fj172 = O(R™)O(R") + O(A* 1) = O(h™in(mtr2r=D)), (46)

Then, it is clear that for r = 3, we obtain accuracy O(h®) at smooth zones when approximating
fj,l /2, that is optimal as we are using five cells. When applying the expression in (8) we
typically obtain O(h*) accuracy for the approximation of the derivative of the flux f(u(x))s,
the same as classical WENO algorithm.
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Let us continue with the second statement. The expression in (27) determines the value of
the vector of weights in this case, C3 = (0,2C%,2C3) = (0,3, %). The proof for the order
accuracy of the approximation at fj_l /2 is similar to the one exposed in the previous point,

ZWZPZ(fjfl/z) - fj71/2 = ZWZPZ(%‘AM) - fj71/2 + Z Cg(k)p};(ﬂﬁjﬂ/z)
k=1 k=1 k=1

T
— > C3(k)pi(wj1/2)-
k=1
After some algebraic manipulations we obtain,

T

ZWZPZ(%‘—UQ) - fj—1/2 = ZWZPZ(%—NQ) - Z Cg(k)P};(ﬂ?]’—uﬁ
k=1 k=1

= k=1

+Y C3(kIpi(wi-1/2) = fi1y
k=1

= Z(WIZ — C3(k)pi(xj-1/2) + O(h*?).
k=1

Now, as > ,_, wh = >_r_; C3(k) = 1 we obtain,

> wiph(wio1j2) = fimije = Y (wh — CY(R) (Wi (xj-1/2) — fi—1/2) + O(h*"?)
pa =1 (47)

— O(hm)o(hr) + O(h2r—2) _ O(hmin(m+r,2r—2)).

From the expressions in (42) and (43), we reach the conclusion that with ¢ > 1 we obtain that
(wy — C3(k)) = O(h™) with m = 2. For r = 3, the precision of the approximation of fj_l/g is
O(h*) that is optimal when the stencil presents four smooth cells. If we apply the expression
in (8) we typically obtain O(h?®) accuracy for the approximation of the derivative of the flux
f(u(x)),, while classical WENO algorithm typically obtains O(h?) order of accuracy.

The second and third statements of the theorem are symmetric, so following the previous point
it is straightforward to obtain the proof of the third statement.

The fourth statement of the theorem considers a discontinuity in the interval (x;_s/2,2;_1/2)
or (x;41/2,2j4+3/2). Both cases are symmetric. As only one substencil of three cells is smooth,
the classical WENO algorithm obtains optimal accuracy. In what follows, we consider a
discontinuity in the interval (x;, z;41). The expression in (45) leads us to the vector of weights
C = (1,0,0). Reproducing the steps followed in the previous points,

S wiph(@iog2) = fimie = Y wiph(@j_1j2) = fi—ip + Y ClR)Dh(Ti-1/2)
=1 k=1 k=1

- Zc(k)PZ(%‘—l/z)~
k=1
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After some algebraic manipulations we arrive to,
T

> wpi(@iaje) = fime = Y wipk(@i—12) = Y C(k)pi(x-1/2)
k=1

k=1 k=1

+ Z C(k)pp(zj-1/2) — fj—1/2
k=1

= " (wf — C(R))ph(x;-172) + O(R").
k=1

As > _ywh => -, C(k) =1, we can write,
T T

> wiph(@io12) = fioa2 = Y (wh = CR) (i (2j-1/2) — fi—1/2) + O(R") 8

= O(h™)O(h"™*") + O(h") = O(h™m{mtrr)),

The expression in (45) assures that m = 2t and for r = 3, with ¢ > 1 we obtain accuracy O(h3)
for the approximation of fj_l/z if we find a discontinuity in the intervals (z;_3/2,2;_1/2) or
(Tj41/2,Tj43/2). Of course, applying (8) we obtain O(h?) accuracy for the approximation of
the derivative of the flux f(u(x))s, the same as classical WENO algorithm.

O

Remark 1. As mentioned in [8], in practice, in the prediction of the flux at the cell interfaces
obtained through Y, wipp(zj_1/2) = f(xj_l/g) + O(h*) the term O(h*) is usually smooth, so
the difference of the conservative derivative of the flux in (8) gives an extra h, so the one in the
denominator of (8) would cancel out. This means that the prediction of the flux at the cell interfaces
is in practice O(h¥), the same as the derivative of the flux at the middle of the cells. Thus, in
practice, we would obtain one extra order of accuracy in all the statements of Theorem 1 for the
derivative of the flux f(u(x))y.
Remark 2. A small enough value of € in (20) and in (29) is a value of order O(h?), as this is the
minimum value of the smoothness indicators (22), (32), that is reached at smooth zones, as can be
seen from (36).

In the case of the smoothness indicators in (33), following the same process but using these oder
indices, the same result is obviously attained. In this case € should be the minimum value obtained
by the smoothness indicator, that is e = O(h*) in this case.

Theorem 2. The new algorithm satisfies the ENO property for t > 2, satisfying at the same time
Theorem 1.

Proof. For t > 1 Theorem 1 is satisfied, so for ¢t > 2 it is also satisfied. From (40), (43) and (45) we
can see that for ¢t > 2:

o If the function f is smooth at the stencil Si, then the weight related to this stencil will verify

wy, = O(1).
o If the function f has a singularity at the stencil S, then the corresponding wj, will verify
wi, <O (h).
That is the ENO property. O
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7. Numerical experiments

7.1. Advection equation
In what follows, we present some results for the advection equation. We try to solve the linear
equation,
ug + ug, =0, T << Ty,
u(x,0) = up(x).
We compare the results of the classical WENO algorithm with the results obtained by the WENO

algorithm plus the new weights. In Table 1 we show the errors for the periodic initial condition
ug(z) = sin(mz). Table 2 presents the results for the the periodic initial condition ug(z) = sin(7z).

(49)

Method N Lo, error | L., order L4 error L1 order
10 | 0.0022472 - 0.0012545 -
20 | 6.2591e-05 5.1660 2.9669e-05 | 5.4020
New WENO | 40 | 1.6583e-06 5.2382 8.1232e-07 | 5.1908
80 | 4.8948e-08 5.0823 2.3915e-08 | 5.0861
160 | 1.4283e-09 5.0989 7.2596e-10 | 5.0419
320 | 4.311e-11 5.0501 2.2365e-11 | 5.0206
10 | 0.0022978 - 0.001283 -
20 | 6.3346e-05 5.1809 2.9852e-05 | 5.4255
WENO 40 | 1.6717e-06 5.2439 8.1232e-07 | 5.1996
80 | 4.9305e-08 5.0834 2.3915e-08 | 5.0861
160 | 1.4373e-09 5.1003 7.2596e-10 | 5.0419
320 | 4.3355e-11 5.0510 2.2365e-11 | 5.0206

Table 1: Grid refinement analysis for the unidimensional advection equation with the periodical initial condition
ug(z) = sin(wz).

The results obtained in Tables 1 and 2 show that at smooth zones the new algorithm behaves
essentially the same as WENO: the errors are very similar and both attain optimal accuracy. Now we
can try to check what happens when the initial condition presents singularities. An initial analysis
of the behavior that we can expect can be done now. Given a set of discrete data, the new algorithm
is designed to deal with sharp discontinuities with the aim of reaching the maximum theoretical
accuracy. If the data is highly polluted due to the diffusion introduced by the time solver, then we
can not expect to obtain much better results than WENO: the results should be similar for both
algorithms. As mentioned before, the diffusion is introduced by the time solver so less time steps
should imply less diffusion. Thus we can expect to obtain better results with the new algorithm when
the CFL number is close to instability. In fact, the best results that we obtain are for CFL = 0.9.
For smaller CFL numbers the results for both algorithms are similar and we do not obtain a real
advantage using the new algorithm. Having these considerations in mind, when the initial condition
presents discontinuities, we can expect to obtain better results at the beginning of the simulation
and then lose the inherent advantage of the new algorithm as the diffusion pollutes the data. As
a consequence, rising the spatial resolution fixing the CFL condition will produce that the region
of improvement will compress close to the beginning of the simulation, as there is one time instant
when the diffusion is so high that it is not possible to obtain any order improvement close to the
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Method N Lo, error | L, order L4 error L, order
10 0.17667 - 0.073823 -
20 0.011121 3.9897 0.0044103 4.0651
New WENO | 40 0.0020331 2.4515 0.00057164 | 2.9477
80 | 0.00012639 4.0077 2.2848e-05 4.6450
160 | 4.2155e-06 4.9060 6.1679e-07 5.2111
320 | 9.1772e-08 5.5215 1.5433e-08 5.3207
10 0.17129 - 0.069965 -

20 0.010733 3.9963 0.0043483 4.0081
WENO 40 0.0019159 2.4860 0.00055172 2.9784
80 0.0001244 3.9450 2.257e-05 4.6115
160 | 4.2135e-06 4.8838 6.1659e-07 5.1940
320 | 9.177e-08 5.5209 1.5433e-08 5.3202

Table 2: Grid refinement analysis for the unidimensional advection equation with the periodical initial condition
uo(x) = sin?(mz).

discontinuities. If the initial condition presents a discontinuity, the infinity norm of the error is
dominated by the errors at the discontinuity, so we will not find any improvement in this norm. The
main improvement can be observed in the L1 norm.

In all the experiments that we present in this section, we will use a total time of simulation equal
to ty = 14 seconds. We have set € = 10~¢ for both algorithms in order to obtain the weights (20),
but € = 1078 in (29) for the new WENO algorithm in order to obtain the nonlinear optimal weights.
Even though, the results do not present much variation if we set all the epsilons to 10~6. We obtain
worse results for the classical WENO algorithm if ¢ < 107 in (20). In what follows we present
some results obtained for the advection equation with the configuration explained before for the
new algorithm and the classical WENO. In all the cases, if the spatial domain is not specified in the
experiment, we have solved (49) with 2; = —1 and z,, = 67 with periodical boundary conditions. We
have obtained similar results for all the initial conditions with discontinuities that we have tested.

Let us start by with the initial condition in (50),

1, if —05<xz<0.5
fz)= { 0, other case . (50)

In Figure 4 we can see how the L! norm of the error for the new WENO algorithm and the classical
WENO behaves for different spatial resolutions as the time advances. We can see that the new
algorithm attains a smaller L' norm of the error at the beginning of the simulations, exactly as it
was described before. As we rise the spatial resolution, the gain obtained gets reduced. Figure 5
shows the L' norm of the error for both algorithms and different CFL conditions. The configuration
is the same as before but now we vary the CFL condition fixing the spatial resolution to n = 200
points. We can see how the new algorithm only obtains better results when the CFL condition is
set to 0.9. For the rest of the cases, we obtain similar results.
Let us continue with the initial conditions shown in (51), (52), and (53),

[ 1+42s, if—05<z<0
f(‘”)_{12x, if0 <z <05 (51)
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Figure 4: L! norm of the error for the new WENO algorithm and the classical WENO for different spatial resolutions
as the time advances in the simulation of the advection equation for the initial condition in (50). We have set
CFL = 0.9 and the final time of the simulation to ¢ = 14 seconds.

[ 2422, if —05<a2<0
f(x)_{ 242z, 0<z<05 (52)
_f sin(2x), if0<z< 3
flz) = { 0, other case. (53)

The results for the L' norm versus time of previous initial conditions using the new algorithm
and the classical implementation of the WENO algorithm can be observed in Figures 6, 7, and 8
respectively. The conclusions are similar to those obtained in the first experiment. Finally, Figure
9 shows where the new algorithm outperforms the results obtained by the classical implementation
of WENO at a particular time instant. In this case we have set ; = —1 and =, = 6 in (49), the
final time to t;y = 4, CFL = 0.9 and n = 50 points in order to force the errors of approximation to
show at a glance. We can see how we obtain a better performance of the new algorithm close to the
discontinuities.

7.2. Yang’s artificial compression

In this Subsection we analyze the effect of including the Yang’s artificial compression in the sim-
ulations. We can expect to obtain some improvement of the results obtained by the new algorithm,
as the Yang’s artificial compression is oriented to conserve the discontinuities sharp. Figures 10, 11,
12, 14, 15, 16 show the equivalent results to those presented in previous section (Figures 4, 5, 6, 7,
8, 9) but using the Yang’s artificial compression. Figure 13 has been also included due to the good
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Figure 5: In this plot we present the L' norm of the error for the new WENO algorithm and the classical WENO for
different CFL conditions. As in Figure 4 we have used the initial condition in (50) to solve the advection equation.
All the configuration is the same but now we vary the CFL condition fixing the spatial resolution to n = 200 points.

results obtained for CFL = 0.9. We can see how the results are improved due to the preservation
of discontinuities.

7.8. Advection in 2D

The results obtained when obtaining the numerical solution of the advection equation in 2D,

Uy + Uy + uy = 0, T <z<Tr Yp<y<yd,

u(z,y,0) = uo(,y). (54)

are very similar to the ones obtained in previous sections, so the conclusions are similar.

8. Conclusions

In this article we have presented and analyzed an strategy that allows to improve the results
obtained by WENO algorithm when approximating the solution of hyperbolic conservation laws.
This strategy consists in a nonlinear redesign of the WENO optimal weights. This new strategy
allows to control the order of accuracy of the interpolation close to the discontinuity but not in the
interval that contains it. The new strategy can be designed in a way that an algorithm of 2r —1 cells
can be obtained easily. The numerical experiments presented confirm all the theoretical conclusions
reached.
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compression with oo = 33, for different CFL conditions. As in Figure 10 we have used the initial condition in (50) to
solve (49). All the configuration is the same but now we vary the CFL fixing the spatial resolution to n = 200 points.
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Figure 12: L' norm of the error for the new WENO algorithm and the classical WENO plus the Yang’s artificial
compression with a = 33, for different spatial resolutions as the time advances in the simulation. We have used the
initial condition in (51) to solve (49). We have set CFL = 0.9 and the final time of the simulation to ¢ = 14s.
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Figure 13: L' norm of the error for the new WENO algorithm and the classical WENO plus the Yang’s artificial

compression with oo = 33, for different CFL conditions. As in Figure 10 we have used the initial condition in (51) to
solve (49). All the configuration is the same but now we vary the CFL fixing the spatial resolution to n = 200 points.
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Figure 14: L' norm of the error for the new WENO algorithm and the classical WENO plus the Yang’s artificial
compression with a = 33, for different spatial resolutions as the time advances in the simulation. We have used the
initial condition in (52) to solve (49). We have set CFL = 0.9 and the final time of the simulation to ¢ = 14s

x10°

. 4
-
45 ¥, K T
K, * * * Edx
Faky *E *aox
New WENO, n=150 . N e’ ok
WENO, n=150 ™ * 5
ik ey * * ¥
4 P * ** —
ke e
* Mo * * x
. A x AR " e
. S % * X > S
** wax
% WENO, n=600 o . ot . R ea
3s * egn® R _
* Kopgr* BT e
*
*x A X ¥
x, X kK
A ¥
*
3 N T *, _
e * ***
* * * **
** P * >
5 A R M
825 ok, * el
*
E - * R WWMJ
s N R WM,,;&*
£ - K
2 P - W
o2 * * PR i
‘60 *#**
e " e
- **N : M
* o T
*
* *#w* L Pruette
15 - W |
*
- et
> w* *
. #*M
*
I al i
w* ok X
* *
Al
05| g — _
"
*
| | | | | | |
2 4 6 8 10 12 4
time (s)

Figure 15: L' norm of the error for the new WENO algorithm and the classical WENO plus the Yang’s artificial
compression with a = 33, for different spatial resolutions as the time advances in the simulation. We have used the
initial condition in (53) to solve (49). We have set CFL = 0.9 and the final time of the simulation to ¢ = 14s.
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Figure 16: Numerical approximation of the solution of the advection equation for the new WENO algorithm and the
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