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Abstract: In this paper, an ultra-weak local discontinuous Galerkin (UWLDG) method
for a class of nonlinear fourth-order wave equations is designed and analyzed. The UWLDG
method is a new DG method designed for solving partial differential equations (PDEs) with
high order spatial derivatives. We prove the energy conserving property of our scheme and
its optimal error estimates in the L2-norm for the solution itself as well as for the auxiliary
variables approximating the derivatives of the solution. Compatible high order energy con-
serving time integrators are also proposed. The theoretical results are confirmed by numerical
experiments.
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1 Introduction
In recent years, many numerical methods have been defined and analyzed for the wave

equations [2,4,8,12,13,23,38,41,42]. The nonlinear fourth-order wave equations arise commonly
from the studies of vibration of beams and thin plates [25]. In this paper, we are interested in
the numerical methods for a class of nonlinear fourth-order wave equations [7, 24,27–32,40],

utt +∆2u+ u+ f(u) = 0, x ∈ Ω, t ∈ [0, T ], (1.1)

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x). (1.2)
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For the sake of simplicity, we only consider the periodic boundary condition. The solution
u = u(x, t), x ∈ Ω ∈ Rd, d = 1, 2, t ∈ [0, T ] is a real-valued function, and the initial conditions
u0 and v0 are assumed to be as smooth as necessary. Levandosky [30] proved that our problem
(1.1) admits a unique local solution for nonlinearity f(u) which satisfies

f(0) = 0; (1.3)
f ∈ C1(R) and |f ′(u)| ≤ c|u|p−1, for 1 < p ≤ 2∗∗ − 1, (1.4)

where 2∗∗ = ∞ for 1 ≤ d ≤ 4 and 2∗∗ =
2d

d− 4
for d ≥ 5, denotes the critical exponent for the

embedding of H2(Rd) into Lq(Rd), 2 ≤ q ≤ 2∗∗.
There are many numerical methods proposed in the literature for solving the fourth-order

equations [1,3,5,6,22,26,33]. In [1], Achouri designed a second-order conservative finite differ-
ence scheme for the two-dimensional fourth-order nonlinear wave equation. The mixed finite
elements for the fourth-order wave equations also have been studied by He et al. in [26].
They considered mixed finite element method with explicit and implicit discretization in time
and derived the optimal error estimate in the L2 norm. In [5, 6], Baccouch applied the local
discontinuous Galerkin (LDG) method for the fourth-order Euler-Bernoulli partial differential
equation (PDE) in one dimension, including superconvergence analysis and a posterior error
estimate.

We consider an ultraweak-local discontinuous Galerkin (UWLDG) method introduced in
[36] for (1.1). The DG method is a class of finite element methods using completely discon-
tinuous basis functions. The first DG method was introduced in 1973 by Reed and Hill [34]
in the framework of neutron transport. It was later developed for time-dependent nonlinear
hyperbolic conservation laws, coupled with the Runge-Kutta time discretization, by Cockburn
et al. [14–16]. Since then, the DG method has been intensively studied and successfully ap-
plied to various problems in a wide range of applications due to its flexibility with meshing, its
compactness and its high parallel efficiency. The UWLDG method is a discontinuous Galerkin
method designed for PDEs with high order spatial derivatives, which combines the advan-
tage of the LDG method and the ultra-weak DG (UWDG) method. The idea of the LDG
method [17, 18, 38, 39] is to rewrite the equations with higher order spatial derivatives into a
first order system, then apply the DG method to this system and design suitable numerical
fluxes to ensure stability. The UWDG method [9] is based on repeated integration by parts to
move all spatial derivatives to the test function in the weak formulation, and to ensure stability
by carefully choosing numerical fluxes. In our method, at first, we rewrite the equation (1.1)
as a second-order system. Then we repeat the application of integration by parts, and choose
suitable numerical fluxes to ensure stability. Compared to the LDG method, we introduce
fewer auxiliary variables, thereby reducing memory and computational costs. Compared to the
UWDG method, we do not need any internal penalty terms to ensure stability.
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We define the energy

Eu =

∫
Ω

(
1

2
(ut)

2 +
1

2
(∆u)2 +

1

2
u2 + F (u)

)
dx,

where F ′(s) = f(s) and F (0) = 0. For the equation (1.1) Eu is a constant. Therefore, we
would like to design a numerical method that conserves the energy Eu. Energy conserving DG
methods for wave equations have been developed in [11,19–21,37]. Recently, Chou et al. [11,37]
developed an optimal energy-conserving local DG method for multi-dimensional second-order
wave equation in heterogeneous media. Later, Fu and Shu [20] proposed an optimal energy con-
serving DG method for linear symmetric hyperbolic systems on general unstructured meshes.
They proved a priori optimal error estimates for the semi-discrete scheme in one dimension, and
also in multi-dimensions for Cartesian meshes when using tensor-product polynomials. They
also proposed an energy-conserving ultra-weak DG method for the generalized Korteweg-de
Vries (KdV) equations in one dimension [21], and proved its optimal error estimate. In this
work, we design an optimally convergent energy-conserving method for the nonlinear fourth-
order equations. We choose the alternating fluxes, and prove that the energy is conserved both
in one-dimensional and two-dimensional cases. We also prove the optimal error estimates in
the L2-norm for the solution itself as well as for the auxiliary variables.

The organization of the paper is as follows. In Section 2, we introduce some notations
and the UWLDG method. In Section 3, the energy conserving property of our scheme will
be discussed. In Section 4, we will introduce some projections and give the optimal error
estimates in the L2-norm for one-dimensional and two-dimensional cases. Time discretization
will be shown in the Section 5. The theoretical results are confirmed numerically in Section 6.
In Section 7, we give some concluding remarks.

2 The UWLDG scheme

2.1 Notations
Let us introduce some notations. Throughout this paper, we adopt standard notations

for the Sobolev spaces such as Wm,q(D) on the subdomain D ⊂ Ω equipped with the norm
∥ · ∥Wm,q(D). If D = Ω, we omit the index D; and if q = 2, we set Wm,q(D) = Hm(D),
∥ · ∥Wm,q(D) = ∥ · ∥Hm(D); and we use ∥ · ∥D to denote the L2 norm in D.

Let Ωh denote a tessellation of Ω with shape-regular elements K, and the union of the
boundary faces of elements K ∈ Ωh, denoted as ∂Ω = ∪

K∈Ωh

∂K. We denote the diameter of
K by hK , and set h = max

K
hK . For example, in the one-dimensional case, K is a subinterval;

in the two-dimensional case, K is a rectangle for Cartesian meshes. The finite element space
with the mesh Ωh is of the form

Wh = {η ∈ L2(Ω) : η|K ∈ Qk(K), ∀K ∈ Ωh},
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where Qk(K) is the space of tensor product of polynomials of degree at most k ≥ 0 in each
variable defined on K. In the one-dimensional case, Qk(K) = Pk(K) which is the space of
polynomial of degree at most k ≥ 0 on K.

For any v ∈Wh, in the one-dimensional case, Ωh =
N⋃
j=1

[xj− 1
2
, xj+ 1

2
] and

K = Ij = (xj− 1
2
, xj+ 1

2
), xj =

1

2
(xj− 1

2
+ xj+ 1

2
), j ∈ ZN = {1, 2, · · · , N},

denote the cells and cell centers, respectively. We use v+
j+ 1

2

and v−
j+ 1

2

to denote the right and
left limit values of v at xj+ 1

2
, respectively. As usual, the average and the jump of the function

v at xj+ 1
2

are denoted as

{{v}}j+ 1
2
=

1

2
(v+

j+ 1
2

+ v−
j+ 1

2

), [[v]]j+ 1
2
= v+

j+ 1
2

− v−
j+ 1

2

,

respectively. In the two-dimensional case, we associate to this partition Ωh the set of all faces
Γh. Let e ∈ Γh be an edge shared by two elements KL and KR, (we refer to [39] for a proper
definition of “left” and “right” in our context, for rectangular meshes these are the usual left
and bottom directions denoted as “left” and right and top directions denoted as “right”). The
normal vectors νL and νR on the edge e point exterior to KL and KR respectively. Assuming
ψ is a function defined on KL and KR, let ψ− denote (ψ|KL

)|e and ψ+ denote (ψ|KR
)|e, the

left and right traces, respectively. We denote the jump and the average of φ on the edge e by

[[φ]] = φ+ − φ−, {{φ}} =
1

2
(φ+ + φ−).

2.2 The UWLDG method
In this subsection, we will define the semi-discrete DG method for the nonlinear wave

equation (1.1). First of all, we rewrite the equation as a second-order system:

utt +∆w + u+ f(u) = 0, (2.1)
w −∆u = 0. (2.2)

Then the discontinuous Galerkin method is defined as follows: find uh, wh ∈Wh, such that for
all φ, ψ ∈Wh we have

((uh)tt, φ)K+(wh,∆φ)K+⟨∇̃wh · n, φ⟩∂K−⟨w̃h,∇φ · n⟩∂K + (uh, φ)K + (f(uh), φ)K = 0,

(2.3)

(wh, ψ)K − (uh,∆ψ)K − ⟨∇̂uh · n, ψ⟩∂K + ⟨ûh,∇ψ · n⟩∂K = 0. (2.4)
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Here n denotes the outward unit vector to ∂K, and

(φ,ψ)K :=

∫
K
φ(x)ψ(x)dx, ⟨φ,∇ψ · n⟩ :=

∫
∂K

φ(x)(∇ψ(x) · n)dγ,

for any φ, ψ ∈ H1(Ω). The tilde terms ∇̃wh and w̃h, and the hat terms ∇̂uh, ûh are cell
boundary terms obtained from integration by parts, and they are the so-called numerical
fluxes. To complete the definition of the DG scheme we need to define the numerical fluxes
ûh, ∇̂uh, w̃h, ∇̃wh. Here, we choose the alternating fluxes [36]:

ûh = u+h , ∇̂uh = (∇uh)+, w̃h = w−
h , ∇̃wh = (∇wh)

−; (2.5)

or

ûh = u−h , ∇̂uh = (∇uh)−, w̃h = w+
h , ∇̃wh = (∇wh)

+; (2.6)

or

ûh = u−h , ∇̂uh = (∇uh)+, w̃h = w−
h , ∇̃wh = (∇wh)

+; (2.7)

or

ûh = u+h , ∇̂uh = (∇uh)−, w̃h = w+
h , ∇̃wh = (∇wh)

−. (2.8)

It is crucial that ŵh and ∇̂uh come from the opposite sides, and ∇̃wh and ũh come from the
opposite sides (alternating fluxes).

Remark 2.1. For the numerical fluxes, we can also take the general case,

ûh = {{uh}}+ α1[[uh]] + β1[[∇uh]], α1, β1 ∈ R,

∇̂uh = {{∇uh}}+ α2[[∇uh]] + β2[[uh]], α2, β2 ∈ R,

w̃h = {{wh}} − α2[[wh]] + β1[[∇wh]],

∇̃wh = {{∇wh}} − α1[[∇wh]] + β2[[wh]].

For simplicity, in this paper we will only consider the alternating fluxes (2.5).

3 Energy conservation
In this section, we will demonstrate that the UWLDG scheme (2.3)-(2.4) conserves the

discrete energy. Experience shows that the scheme conserving the discrete energy can often
behave better, especially in long time simulation.
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Theorem 3.1. The energy

Eh(t) =

∫
Ω

(
1

2
(uh)

2
t +

1

2
w2
h +

1

2
u2h + F (uh)

)
dx, (3.1)

is conserved by the semi-discrete UWLDG method (2.3)-(2.4), with numerical fluxes (2.5)-(2.8)
for all time.

Proof. Without loss of generality, we choose the flux (2.5). In equation (2.3), we take the test
function to be φ = (uh)t:

((uh)tt, (uh)t)K+(wh,∆(uh)t)K+⟨(∇wh)
− · n, (uh)t⟩∂K − ⟨w−

h ,∇(uh)t · n⟩∂K
+ (uh, (uh)t)K + (f(uh), (uh)t)K = 0. (3.2)

By taking the time derivative of equation (2.4), and choosing the test function ψ = wh, we can
obtain

((wh)t, wh)K − ((uh)t,∆wh)K − ⟨(∇uh)+t · n, wh⟩∂K + ⟨(uh)+t ,∇wh · n⟩∂K = 0. (3.3)

Addition of equations (3.2) and (3.3) becomes

((uh)tt, (uh)t)K + ((wh)t, wh)K + (wh,∆(uh)t)K − ⟨w−
h ,∇(uh)t · n⟩∂K + ⟨(∇wh)

− · n, (uh)t⟩∂K
− ((uh)t,∆wh)K + ⟨(uh)+t ,∇wh · n⟩∂K − ⟨(∇uh)+t · n, wh⟩∂K + (uh, (uh)t)K + (f(uh), (uh)t)K = 0.

We define

B1
K(w,φ) = (w,∆φ)K − ⟨w−

h , (∇φ · n)⟩∂K + ⟨(∇wh)
− · n, φ⟩∂K , (3.4)

B2
K(u, ψ) = (u,∆ψ)K − ⟨u+h , (∇ψ · n)⟩∂K + ⟨(∇uh)+ · n, ψ⟩∂K . (3.5)

Then we integrate by parts, and sum over K to obtain∑
K

(
B1

K(wh, (uh)t)−B2
K((uh)t, wh)

)
= 0.

Therefore,

((uh)tt, (uh)t)Ωh
+ ((wh)t, wh)Ωh

+ (uh, (uh)t)Ωh
+ (f(uh), (uh)t)Ωh

= 0,

and

d

dt

∫
Ωh

(
1

2
(uh)

2
t +

1

2
w2
h +

1

2
u2h + F (uh)

)
dx = 0.
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4 Error estimates
We study the optimal error estimates for the UWLDG method defined in (2.3)-(2.4) for

the equation (1.1). In subsection 4.1, we introduce some projections and inequalities that will
be used in our proof. In subsection 4.2, we give the error estimate in the L2 norm.

4.1 Projections
In this subsection, we will introduce some projections that will be used in our analysis

on different types of meshes. First, let us define the commonly used L2 projection Ph: For
w ∈ L2(Ωh) and ∀K ∈ Ωh, Phw ∈Wh

(Phw − w, ξ)K = 0, ∀ξ ∈ Qk(K). (4.1)

4.1.1 Projection in the one-dimensional case

First, we introduce some projections in the one dimensional case. For k ≥ 1 we can define
the projections P±

1h into Wh which satisfy: ∀j ∈ ZN , where Zr = {1, 2, · · · , r},∫
Ij

uvhdx =

∫
Ij

P±
1huvhdx, (4.2)

for any vh ∈ Pk−2(Ij) and

P±
1hu

(
x±
j∓ 1

2

)
= u

(
xj∓ 1

2

)
, (P±

1hu)x

(
x±
j∓ 1

2

)
= ux

(
xj∓ 1

2

)
. (4.3)

4.1.2 Projection for the Cartesian mesh in the two-dimensional case

For the Cartesian mesh in the two-dimensional case, we use the tensor products of the
projections in the one-dimensional case [36]. On a rectangle Ki,j = Ii × Jj , for u ∈ W 1,∞(K),
we define

Π±u := (P±
1hx ⊗ P±

1hy)u, (4.4)

with the subscripts indicating the application of the one-dimensional operators P±
1h with respect

to the corresponding variable. To be more specific, we shall list explicitly the formulations for
Π−u on a rectangular element K = Ii × Jj := (xi− 1

2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
). We have∫

K
Π−u(x, y)vh(x, y)dxdy =

∫
K
u(x, y)vh(x, y)dxdy, (4.5a)∫

Ii

Π−u(x, y−
j+ 1

2

)vh(x, y
−
j+ 1

2

)dx =

∫
Ii

u(x, y−
j+ 1

2

)vh(x, y
−
j+ 1

2

)dx, (4.5b)
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∫
Ii

(Π−u)y(x, y
−
j+ 1

2

)vh(x, y
−
j+ 1

2

)dx =

∫
Ii

uy(x, y
−
j+ 1

2

)vh(x, y
−
j+ 1

2

)dx, (4.5c)∫
Jj

Π−u(x−
i+ 1

2

, y)vh(x
−
i+ 1

2

, y)dy =

∫
Jj

u(x−
i+ 1

2

, y)vh(x
−
i+ 1

2

, y)dy, (4.5d)∫
Jj

(Π−u)x(x
−
i+ 1

2

, y)vh(x
−
i+ 1

2

, y)dy =

∫
Jj

ux(x
−
i+ 1

2

, y)vh(x
−
i+ 1

2

, y)dy, (4.5e)

Π−u(x−
i+ 1

2

, y−
j+ 1

2

) = u(x−
i+ 1

2

, y−
j+ 1

2

), (4.5f)

(Π−u)x(x
−
i+ 1

2

, y−
j+ 1

2

) = ux(x
−
i+ 1

2

, y−
j+ 1

2

), (4.5g)

(Π−u)y(x
−
i+ 1

2

, y−
j+ 1

2

) = uy(x
−
i+ 1

2

, y−
j+ 1

2

), (4.5h)

(Π−u)xy(x
−
i+ 1

2

, y−
j+ 1

2

) = uxy(x
−
i+ 1

2

, y−
j+ 1

2

), (4.5i)

for all vh ∈ Qk−2(K) and K ∈ Ωh. Similarly, we can define the projection Π+.

4.1.3 Approximation property of projections and inequalities

The projections defined above have the following approximation properties [10], for any
u ∈ Hk+1:

∥ue∥+ h∥ue∥∞ + h
1
2 ∥ue∥Γh

≤ Chk+1∥u∥Hk+1 , (4.6)

where ue = πhu− u, πh = Ph, P
±
1h, Π

±, and C is a positive constant dependent on k but not
on h.

4.2 A priori error estimate
Let us state the a priori error estimate for the nonlinear fourth-order equations (1.1). In

the following analysis, without loss of generality, we choose the fluxes (2.5). Let

eu = u− uh, ew = w − wh,

be the errors between the numerical and exact solutions. Since u and w clearly satisfy the
scheme (2.3)-(2.4) as well, we can obtain the cell error equations: for all φ, ψ ∈Wh

((eu)tt, φ)K+(ew,∆φ)K+⟨(∇ew)− · n, φ⟩∂K−⟨(ew)−,∇φ · n⟩∂K + (eu, φ)K + (f(u)−f(uh), φ)K = 0,

(4.7)

(ew, ψ)K − (eu,∆ψ)K − ⟨(∇eu)+ · n, ψ⟩∂K + ⟨(eu)+,∇ψ · n⟩∂K = 0. (4.8)

We denote

ηu = u− P1u, ξu = uh − P1u, ηw = w − P2w, ξw = wh − P2w,
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where P1 and P2 are some projections onto the finite element space. For the one-dimensional
case, we can choose (P1,P2) = (P+

1h, P
−
1h), and (P1,P2) = (Π+,Π−) for the two-dimensional

Cartesian mesh. Taylor expansion on f(u) provides the identity

f(uh) = f(u)− f ′(u+ θ(uh − u))eu, (4.9)

where θ is a constant in [0, 1]. To obtain an optimal error estimates, we need some supercon-
vergence results of B1

K and B2
K in two dimensions [36].

Lemma 4.1. Let B1
K(ηw, φ) and B2

K(ηu, ψ) be defined by (3.4) and (3.5). Then we have for
k ≥ 1,

B1
K(ηw, φ) = 0, B2

K(ηu, ψ) = 0, ∀u,w ∈ Pk+2(K), φ, ψ ∈ Qk(K). (4.10)

Lemma 4.2. Let B1
K(ηw, p) and B2

K(ηu, q) defined by (3.4) and (3.5). Then we have

|B1
K(ηw, φ)| ≤ Chk+2∥w∥W 2k+4,∞(Ωh)

∥φ∥L2(K), (4.11)

|B2
K(ηu, ψ)| ≤ Chk+2∥u∥W 2k+4,∞(Ωh)

∥ψ∥L2(K), (4.12)

where φ, ψ ∈ Qk(K) and the constant C is independent of h.

4.2.1 Error estimates for the initial conditions

Since initial conditions play an important role in the proof of optimal error estimate of
the UWLDG scheme (2.3)-(2.4), we need to choose suitable projections for the initial condi-
tions. Here we have two initial conditions u(x, 0) and ut(x, 0). We take the initial condition
uh(x, 0) = P+

1h(u(x, 0)) and uh(x, y, 0) = Π+u(x, y, 0) in one dimension and two dimensions
respectively. For the other initial condition (uh)t(0) we take the standard L2 projections
(uh)t(0) = Ph(ut(0)), and we have following lemma.

Lemma 4.3. Suppose the initial conditions of the UWLDG scheme (2.3)-(2.4) are given by

• One-dimensional case:

uh(x, 0) = P+
1h(u(x, 0)), (uh)t(x, 0) = Ph(ut(x, 0)); (4.13)

• Two-dimensional case:

uh(x, y, 0) = Π+(u(x, y, 0)), (uh)t(x, y, 0) = Ph(ut(x, y, 0)). (4.14)

There holds the following estimate

∥ξu(0)∥ = 0, ∥(ξu)t(0)∥ ≤ Chk+1, ∥ξw(0)∥ ≤ Chk+1, (4.15)
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where C is a constant independent of h.

Proof. We choose t = 0 in equation (4.8), in one dimension, due to the choice of uh(x, 0) we
have

(ew(0), ψ)K = 0,

we choose ψ = wh(x, 0)− Ph(w(x, 0)), and obtain ∥ew(0)∥ ≤ Chk+1, and ∥ξw(0)∥ ≤ Chk+1.
In two dimensions, we have

(ew(0), ψ)K = B2
K(eu(0), ψ),

by Lemma 4.2,

|B2
K(eu(0), ψ)| ≤ Chk+2∥u∥W 2k+4,∞(Ωh)

∥ψ∥L2(K),

we choose ψ = wh(0)− Ph (w(0)), then we have

| (ew(0), wh(0)− Ph(w(0)))Ωh
| ≤ Chk+1∥wh(0)− Ph(w(0))∥ ≤ Chk+1∥ew(0)∥+ Ch2k+2,

therefore

∥ew(0)∥2 = (ew(0), w(0)− Ph(w(0))) + (ew(0), Ph(w(0))− wh(0))

≤ Chk+1∥ew(0)∥+ Ch2k+2,

we obtain ∥ew(0)∥ ≤ Chk+1.

4.2.2 Error estimates for t > 0

Here we assume the nonlinear term f(u) satisfies |f ′(u)| ≤ Cf |u|p−1, p > 1. To estimate
the error between u and uh, we need to first estimate (eu)t = ut − (uh)t, and we have the
following lemma.

Lemma 4.4. For the one-dimensional case and two-dimensional Cartesian meshes, if u and
w are the smooth solutions of the equation (2.1) and (2.2), and uh, wh are numerical solutions
of the scheme (2.3)-(2.4) with the smooth initial condition and periodic boundary condition,
Wh is the space of piecewise polynomials with degree k ≥ 1, then we have the following error
estimate:

∥(eu)t∥+ ∥ew∥ ≤ Chk+1 + C

∫ t

0
Ads, (4.16)

where A =
(
1 + h−(p−1)d/2∥ξu∥p−1 + hk(p−1)

)(
∥ξu∥+ hk+1

)
, and C is a constant independent

of h.
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Proof. Along the same line in the proof of Theorem 3.1, we take the time derivative of the
equation (4.8), and take φ = (ξu)t and ψ = ξw, to obtain

((eu)tt, (ξu)t)K + (ew,∆(ξu)t))K + ⟨(∇ew)− · n, (ξu)t⟩∂K − ⟨(ew)−,∇(ξu)t · n⟩∂K
+ (eu, (ξu)t)K +(f(u)−f(uh), (ξu)t)K = 0, (4.17)

((ew)t, ξw)K − ((eu)t,∆ξw)K − ⟨(∇eu)+t · n, ξw⟩∂K + ⟨(eu)+t ,∇ξw · n⟩∂K = 0. (4.18)

First, we estimate the nonlinear part, for any v ∈Wh we have

(f(u)− f(uh), v)Ωh
=

∫
Ωh

f ′(u+ θ(uh − u))(u− uh)vdx

≤ Cf

∫
Ωh

|u+ θ(uh − u)|p−1(u− uh)vdx

≤ 2p−1Cf

∫
Ωh

(|u|p−1 + |eu|p−1)|u− uh||v|dx

≤ 2p−1Cf

(
∥u∥p−1

L∞ + (∥ξu∥L∞ + ∥ηu∥L∞)p−1
)
(∥ηu∥+ ∥ξu∥) ∥v∥,

where for the first equality we have used the Taylor expansion (4.9) of f . By the Sobolev
embedding results we have ∥u∥L∞ ≤ C∥u∥k+1, for k > d/2 − 1. We also have ∥ξu∥L∞ ≤
h−d/2∥ξu∥, ∥ηu∥L∞ ≤ hk. Therefore,

(f(u)− f(uh), v)Ωh
≤ C

(
1 + h−(p−1)d/2∥ξu∥p−1 + hk(p−1)

)(
∥ξu∥+ hk+1

)
∥v∥ (4.19)

= CA∥v∥.

• One-dimensional case.

For the one-dimensional case, since k ≥ 1, we can choose (P1,P2) = (P+
1h, P

−
1h). By the stability

results and properties of the projections P±
1h we have

((ξu)tt, (ξu)t)Ωh
+ ((ξw)t, ξw)Ωh

=((ηu)tt, (ξu)t)Ωh
+ ((ηw)t, ξw)Ωh

+(eu, (ξu)t)Ωh
+ (f(u)− f(uh), (ξu)t)Ωh

.

By (4.19), we have

1

2

d

dt
(∥(ξu)t∥2 + ∥ξw∥2) ≤ Chk+1(∥(ξu)t∥+ ∥ξw∥) + C(hk+1 + ∥ξu∥)∥(ξu)t∥+ CA∥(ξu)t∥

≤ Chk+1(∥(ξu)t∥+ ∥ξw∥) + C(∥ξu∥+A)(∥(ξu)t∥+ ∥ξw∥).

Since ∥ξu∥ ≤ (1 + ∥ξu∥p−1)∥ξu∥ ≤ A,

1

2

d

dt
(∥(ξu)t∥2 + ∥ξw∥2) ≤ Chk+1(∥(ξu)t∥+ ∥ξw∥) + CA(∥(ξu)t∥+ ∥ξw∥)

≤ C(hk+1 +A)
(
∥(ξu)t∥2 + ∥ξw∥2

) 1
2 .

11



Combining with the initial condition (4.13), we obtain

(
∥(ξu)t∥2 + ∥ξw∥2

) 1
2 ≤ C

(
hk+1 +

∫ t

0
Ads

)
,

where C is dependent on ∥utt∥Hk+1 , ∥ut∥Hk+3 , ∥u∥Hk+1 and independent on the mesh size h.

• Two-dimensional case.

For the two-dimensional Cartesian mesh, we choose (P1,P2) = (Π+,Π−), and have

((ξu)tt, (ξu)t)K+B1
K(ξw, (ξu)t)=((ηu)tt, (ξu)t)K+B1

K(ηw, (ξu)t)

+(eu, (ξu)t)K + (f(u)−f(uh), (ξu)t)K , (4.20)
((ξw)t, ξw)K −B2

K((ξu)t, ξw) =((ηw)t, ξw)K −B2
K((ηu)t, ξw). (4.21)

Summing over K in (4.20) and (4.21), and adding the two equations we have

((ξu)tt, (ξu)t)Ωh
+ ((ξw)t, ξw)Ωh

=((ηu)tt, (ξu)t)Ωh
+ ((ηw)t, ξw)Ωh

+(f(u)−f(uh), (ξu)t)Ωh

+ (eu, (ξu)t)Ωh
+
∑
K

(B1
K(ηw, (ξu)t)−B2

K((ηu)t, ξw)).

By Lemma 4.2,

|B1
K(ηw, φ)| ≤ Chk+2∥w∥W 2k+4,∞(Ωh)

∥φ∥L2(K), (4.22)

|B2
K((ηu)t, ψ)| ≤ Chk+2∥ut∥W 2k+4,∞(Ωh)

∥ψ∥L2(K), (4.23)

where φ, ψ ∈ Qk(K) and the constant C is independent of h. Then by the Cauchy-Schwartz
inequality and (4.19), we have

1

2

d

dt
(∥(ξu)t∥2 + ∥ξw∥2) ≤ Chk+1(∥(ξu)t∥+ ∥ξw∥) + C(hk+1 + ∥ξu∥)∥(ξu)t∥+ CA∥(ξu)t∥.

Next, by the Gronwall’s inequality and choosing uh(0) = Π+u(0), similar to the one-dimensional
case we have

(∥(ξu)t∥2 + ∥ξw∥2)
1
2 ≤ C

(
hk+1 +

∫ t

0
Ads

)
,

where C is dependent on ∥utt∥Hk+1 , ∥ut∥Hk+3 , ∥u∥Hk+1 , ∥ut∥W 2k+4,∞ , ∥u∥W 2k+6,∞ and indepen-
dent on the mesh size h. Together with the properties of projections, we get the error estimate
(4.16).

Theorem 4.1. For the one-dimensional case and two-dimensional Cartesian meshes, if u and
w are the smooth solutions of the equation (2.1) and (2.2), and uh, wh are numerical solutions
of the scheme (2.3)-(2.4) with the smooth initial conditions (4.13), (4.14) and periodic boundary
condition, Wh is the space of piecewise polynomials with degree k ≥ 1, then we have the following

12



error estimate:

∥eu∥ ≤ Chk+1, (4.24)

where C is a constant independent of h, and dependent on the solution u and T .

Proof. Here we just give the proof for the two-dimensional Cartesian mesh, as the proof for the
one-dimensional case is similar and simpler. First, by using product rule in the time derivative,
we obtain

−((ξu)t, φt)K−B1
K(ew, φ)=((ηu)tt, φ)K− d

dt
((ξu)t, φ)K+(eu, φ)K+(f(u)− f(uh), φ)K , (4.25)

for any fixed time τ ≤ T . We denote the time integral of the errors by

Eu =

∫ τ

t
eu(s)ds, Eη

u =

∫ τ

t
ηu(s)ds, Eξ

u =

∫ τ

t
ξu(s)ds,

Ew =

∫ τ

t
ew(s)ds, Eη

w =

∫ τ

t
ηw(s)ds, Eξ

w =

∫ τ

t
ξw(s)ds.

Take φ = Eξ
u in (4.25), then φt = −ξu,

((ξu)t, ξu)K +B1
K(ξw, E

ξ
u) =((ηu)tt, E

ξ
u)K +B1

K(ηw, E
ξ
u)−

d

dt
((ξu)t, E

ξ
u)K

+ (eu, E
ξ
u)K + (f(u)− f(uh), E

ξ
u)K . (4.26)

Integrating the equation (4.8) in time from time t to τ and taking ψ = ξw, we get

(Eξ
w, ξw)K −B2

K(Eξ
u, ξw) = (Eη

w, ξw)K −B2
K(Eη

u, ξw). (4.27)

Next, we add (4.26) and (4.27), since ξw = −(Eξ
w)t, and sum over K∑

K

(B1
K(ξw, E

ξ
u)−B2

K(Eξ
u, ξw)) = 0,

we have

1

2

d

dt
(∥ξu∥2 − ∥Eξ

w∥2) = ((ηu)tt, E
ξ
u)Ωh

+
∑
K

B1
K(ηw, E

ξ
u)−

d

dt
((ξu)t, E

ξ
u)Ωh

+ (eu, E
ξ
u)Ωh

+ (f(u)− f(uh), E
ξ
u)Ωh

+ (Eη
w, ξw)Ωh

−
∑
K

B2
K(Eη

u, ξw).

We estimate these terms one by one.

• Estimates of ((ηu)tt, E
ξ
u)Ωh

.

13



|((ηu)tt, Eξ
u)Ωh

| ≤ ∥(ηu)tt∥∥Eξ
u∥ ≤ Chk+1∥Eξ

u∥,

where

∥Eξ
u∥ =

(∫
Ωh

(∫ τ

t
ξuds

)2

dx

) 1
2

≤ (τ − t)
1
2

(∫
Ωh

∫ τ

t
ξ2udsdx

) 1
2

≤ (τ − t)
1
2

(∫ τ

t
∥ξu∥2ds

) 1
2

,

we obtain

|((ηu)tt, Eξ
u)Ωh

| ≤ Chk+1

(∫ τ

t
∥ξu∥2ds

) 1
2

.

• Estimates of (Eη
w, ξw)Ωh

.

By Lemma 4.4, we get

|(Eη
w, ξw)Ωh

| ≤ ∥Eη
w∥∥ξw∥ ≤ Chk+1∥ξw∥ ≤ Ch2k+2 + C

(∫ τ

0
Ads

)2

.

• Estimates of
∑
K

|B1
K(ηw, E

ξ
u)|+

∑
K

|B2
K(Eη

u, ξw)|.

One has

|B1
K(ηw, E

ξ
u)| ≤ Chk+2∥Eξ

u∥L2(K),

similarly, we have

|B2
K(Eη

u, ξw)| ≤ Chk+2∥ξw∥L2(K).

Then,

∑
K

|B1
K(ηw, E

ξ
u)|+

∑
K

|B2
K(Eη

u, ξw)| ≤ Ch2k+2 + C

∫ τ

0
∥ξu∥2ds+ C

(∫ τ

0
Ads

)2

.

• Estimates of (eu, E
ξ
u)Ωh

and (f(u)− f(uh), E
ξ
u)Ωh

.

By applying (4.19) we obtain

|(eu, Eξ
u)Ωh

|+ |(f(u)− f(uh), E
ξ
u)Ωh

| ≤ C∥ηu∥∥Eξ
u∥+ C∥ξu∥∥Eξ

u∥+ CA∥Eξ
u∥

≤ Ch2k+2 + C

∫ τ

0
∥ξu∥2ds+ C∥ξu∥2 + CA

(∫ τ

0
∥ξu∥2ds

) 1
2

.

Combining these inequalities together, we have

1

2

d

dt
(∥ξu∥2 − ∥Eξ

w∥2) ≤ Ch2k+2 + C

∫ τ

0
∥ξu∥2ds+ C∥ξu∥2
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+ C

(∫ τ

0
Ads

)2

+ CA

(∫ τ

0
∥ξu∥2ds

) 1
2

− d

dt

(
(ξu)t, E

ξ
u

)
Ωh

.

Integrating with respect to time in the above equation from 0 to τ ,

1

2
∥ξu(τ)∥2 −

1

2
∥ξu(0)∥2 +

1

2
∥Eξ

w(0)∥2 ≤ Ch2k+2 + C

(∫ τ

0
Ads

)2

+ C

∫ τ

0
∥ξu∥2ds+ ((ξu)t(0), E

ξ
u(0))Ωh

.

Hence, by choosing initial conditions (4.14) and Lemma 4.3, we have

1

2
∥ξu(τ)∥2 ≤ Ch2k+2 + C

∫ τ

0
∥ξu∥2ds+ C

(∫ τ

0
Ads

)2

,

and

1

2

(
∥ξu∥
hk+1

)2

≤ C + C

∫ τ

0

(
∥ξu∥
hk+1

)2

ds+ C

∫ τ

0

(
A

hk+1

)2

ds, (4.28)

where (
A

hk+1

)2

=

(
1 + h(k+1−d/2)(p−1)

(
∥ξu∥
hk+1

)p−1

+ hk(p−1)

)2(
∥ξu∥
hk+1

+ 1

)2

.

We choose h < 1, then ε = h(k+1−d/2)(p−1) < 1 and

(
A

hk+1

)2

≤ C

(
1 + ε

(
∥ξu∥
hk+1

)p−1
)2(

∥ξu∥
hk+1

+ 1

)2

≤ C

(
1 + ε2

(
∥ξu∥
hk+1

)2p−2
)((

∥ξu∥
hk+1

)2

+ 1

)
. (4.29)

Next, we denote

D =

(
∥ξu∥
hk+1

)2

, (4.30)

and D satisfies
D ≤ C

∫ τ

0

(
D + (1 + ε2Dp−1)(D + 1)

)
ds.

We can prove there exist a constant C such that satisfies D ≤ C (we provide the proof in
Appendix A). That is

∥ξu∥ ≤ Chk+1,

we can conclude

∥eu∥ ≤ Chk+1,
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where the constant C is independent of h.

Corollary 4.1. For the one-dimensional case and two-dimensional Cartesian meshes, if u and
w are the smooth solutions of the equation (2.1) and (2.2), and uh, wh are numerical solutions
of the scheme (2.3)-(2.4) with smooth initial condition and periodic boundary condition, Wh is
the space of piecewise polynomials with degree k ≥ 1, then we have the following error estimate:

∥(eu)t∥+ ∥ew∥ ≤ Chk+1, (4.31)

where C is independent on h.

Proof. Combining Theorem 4.1 and Lemma 4.4, we can easily get (4.31).

5 Time discretization
In this section, we consider the fully discrete method of scheme (2.3)-(2.4). We use the

UWLDG method for the spacial discretization, it can be of high order accuracy. Therefore, we
also would like to introduce an explicit, energy conserving, high order time stepping method.
As in LDG method, the auxiliary variable wh in our method could be solved in terms of uh in
an element-by-element fashion. After eliminating wh, we can get a linear second-order ordinary
differential system as follows:

Müh(t) = Auh(t).

Next, we consider a fourth-order time discretization. Here 0 ≤ t0 < t1 < t2 < · · · < tN = T is a
partition for the time travel [0, T ] with the uniform time step ∆t = tn − tn−1. Then, a fourth-
order accuracy fully discrete approximation unh to u(·, tn) is constructed as follows [11,35]: for
n = 1, · · · , N − 1, un+1

h is given by

un+1
h − 2unh + un−1

h

∆t2
=M−1Aunh +

∆t2

12
(M−1A)2unh, (5.1)

more precisely, we can rewrite it in the form of a second-order predictor step, for any φ, ψ ∈Wh

(
u∗h − 2unh + un−1

h

∆t2
, φ)K +B1

K(wn
h , φ) + (unh, φ)K + (f(unh), φ)K = 0, (5.2)

(wn
h , ψ)K −B2

K(unh, ψ) = 0. (5.3)

and the corrector step, for any φ, ψ ∈Wh

vnh =
u∗h − 2unh + un−1

h

∆t2
, (5.4)

(snh, ψ)K −B2
K(vnh , ψ) = 0, (5.5)
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(un+1
h , φ)K = (u∗h, φ)K − ∆t4

12
B1

K(snh, φ)−
∆t4

12
(vnh , φ)K − ∆t4

12
(f(vnh), φ)K . (5.6)

Since we need initial conditions for two time steps, we take Taylor expansion of u at t = 0.

u(∆t) = u(0) + ∆tut(0) +
∆t2

2
utt(0) +

∆t3

6
uttt(0) +O(∆t4).

We could get the terms utt(0), uttt(0) by the equation

utt +△2u+ u+ f(u) = 0,

utt(0) = −
(
△2u(0) + u(0) + f(u(0))

)
,

uttt(0) = −
(
△2ut(0) + ut(0) + f ′(u(0))ut(0)

)
.

Remark 5.1. For the linear case f(u) = 0, we can easy prove the fully discrete UWLDG
method (5.1), conserves the energy

En+1 =

∥∥∥∥∥un+1
h − unh

∆t

∥∥∥∥∥
2

+

∥∥∥∥∥un+1
h + unh

2

∥∥∥∥∥
2

+

∥∥∥∥∥wn+1
h + wn

h

2

∥∥∥∥∥
2

− ∆t2

12

∥∥∥∥∥vn+1
h + vnh

2

∥∥∥∥∥
2


− ∆t2

4

∥∥∥∥∥un+1
h − unh

2

∥∥∥∥∥
2

+

∥∥∥∥∥wn+1
h − wn

h

2

∥∥∥∥∥
2

− ∆t2

12

∥∥∥∥∥vn+1
h − vnh

2

∥∥∥∥∥
2
 ,

for all n.

6 Numerical examples
In this section, we present numerical examples to verify our theoretical convergence prop-

erties of the UWLDG method.

Example 6.1.

First example, we consider the linear fourth-order equations in one-dimension with the
periodic boundary condition.

utt + uxxxx = 0, (x, t) ∈ [0, 2π]× (0, 10],

and the initial conditions

u(x, 0) = cos(x), ut(x, 0) = − sin(x).
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Table 6.1: Errors and the corresponding convergence rates for Example 6.1 when using Pk polynomials
on a uniform mesh of N cells. Final time t = 10.

Error of u Error of w

N L2 error order L∞ error order L2 error order L∞ error order
P1 10 4.60E-01 – 7.51E-01 – 4.37E-01 – 6.93E-01 –

20 1.13E-01 2.02 1.74E-01 2.11 1.12E-01 1.97 1.73E-01 2.00
40 2.82E-02 2.01 4.25E-02 2.03 2.77E-02 2.01 4.43E-02 1.96
80 7.04E-03 2.00 1.05E-02 2.02 7.00E-03 1.98 1.23E-02 1.84
160 1.76E-03 2.00 2.61E-03 2.01 1.78E-03 1.97 3.03E-03 2.03
320 4.40E-04 2.00 6.51E-04 2.00 4.39E-04 2.02 7.45E-04 2.02

P2 10 3.07E-03 – 7.26E-03 – 3.50E-03 – 1.03E-02 –
20 3.03E-04 3.34 1.10E-03 2.72 4.90E-04 2.84 1.77E-03 2.53
40 3.48E-05 3.12 1.49E-04 2.88 5.60E-05 3.13 2.06E-04 3.10
80 4.26E-06 3.03 1.94E-05 2.94 9.04E-06 2.63 3.61E-05 2.52
160 5.30E-07 3.01 2.48E-06 2.97 1.20E-06 2.91 3.91E-06 3.21
320 6.61E-08 3.00 3.15E-07 2.98 1.38E-07 3.12 5.49E-07 2.83

P3 10 7.44E-05 – 4.15E-04 – 9.66E-05 – 2.82E-04 –
20 4.68E-06 3.99 2.70E-05 3.94 1.68E-05 2.52 8.45E-05 1.74
40 2.92E-07 4.00 1.69E-06 4.00 7.92E-07 4.41 3.76E-06 4.49
80 1.82E-08 4.00 1.06E-07 4.00 6.28E-08 3.66 3.04E-07 3.63
160 1.14E-09 4.00 6.61E-09 4.00 4.87E-09 3.69 2.25E-08 3.75
320 7.12E-11 4.00 4.13E-10 4.00 2.76E-10 4.14 1.19E-09 4.24

The exact solution of the problem is

u(x, t) = cos(x+ t).

We implement the DG method (2.3)-(2.4) with the alternating fluxes (2.5) and use the
time discrete method (5.1). The errors of u and w, and numerical orders of accuracy for Pk

elements with 1 ≤ k ≤ 3 are listed in Table 6.1. We observe that our scheme gives the optimal
(k + 1)-th order of the accuracy.

The errors between the numerical solution and the exact solution at time t = 500 and
t = 1000 are shown in Figure 6.1. From these figures we observe that our numerical scheme
works well in long time simulation. We also display the energy error En

h − E0
h at various time

tn, where |En
h | is defined in Remark 5.1 in Figure 6.2. We can observe that the magnitude

of energy error is smaller than 10−6, indicating that our scheme indeed conserves the discrete
energy.

Example 6.2.

In this example, we present the two-dimensional linear fourth-order equations with the
periodic boundary condition on Cartesian meshes

utt +∆2u = 0, (x, y) ∈ [0, 2π]× [0, 2π], t ∈ (0, 1],
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Figure 6.1: The error of numerical solution and exact solution at t = 500 (left) and t = 1000 (right)
for Example 6.1 when using P2 polynomial on a uniform mesh of N = 20, 40, 80.
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Figure 6.2: We compute the |En
h −E0

h| for Example 6.1 when using P2 polynomial on a uniform mesh
of N = 80.
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the initial conditions are

u(x, y, 0) = cos(x+ y), ut(x, y, 0) = −2 sin(x+ y),

and the exact solution is
u(x, y, t) = cos(x+ y + 2t).

We test the space Qk, 1 ≤ k ≤ 3, and list the errors of u and w, and corresponding orders
in Table 6.2. Since our scheme is energy conserving rather than energy dissipative, the initial
error cannot be quickly damped and numerical orders of convergence tend to fluctuate. This
is common for energy conserving methods, for example see [37].

Example 6.3.
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Table 6.2: Errors and the corresponding convergence rates for Example 6.2 when using Qk polynomials
on a uniform mesh of N ×N cells. Final time t = 1.

Error of u Error of w

N ×N L2 error order L∞ error order L2 error order L∞ error order
Q1 8× 8 1.86E+00 – 8.36E-01 – 2.44E+00 – 9.28E-01 –

16× 16 4.59E-01 2.02 1.94E-01 2.11 7.13E-01 1.78 2.48E-01 1.90
32× 32 1.13E-01 2.02 4.63E-02 2.07 2.04E-01 1.80 1.05E-01 1.25
64× 64 2.80E-02 2.01 1.12E-02 2.04 4.94E-02 2.05 2.27E-02 2.20
128× 128 6.98E-03 2.00 2.78E-03 2.01 1.47E-02 1.75 8.06E-03 1.49
256× 256 1.74E-03 2.00 6.92E-04 2.01 2.92E-03 2.34 1.16E-03 2.79

Q2 4× 4 4.40E-01 – 3.43E-01 – 1.43E+00 – 1.10E+00 –
8× 8 3.96E-02 3.47 3.19E-02 3.43 3.87E-02 3.45 3.51E-02 3.45
16× 16 4.82E-03 3.04 4.04E-03 2.98 1.93E-02 2.55 1.15E-02 2.91
32× 32 5.82E-04 3.05 5.00E-04 3.01 1.88E-03 3.36 1.20E-03 3.27
64× 64 7.26E-05 3.00 6.32E-05 2.98 1.77E-04 3.41 1.39E-04 3.10
128× 128 9.07E-06 3.00 7.93E-06 2.99 3.27E-05 2.43 2.52E-05 2.47

Q3 4× 4 2.59E-02 – 2.03E-02 – 7.94E-02 – 3.78E-02 –
8× 8 1.59E-03 4.03 1.34E-03 3.93 4.95E-03 4.01 3.53E-03 3.42
16× 16 1.00E-04 3.99 8.33E-05 4.01 4.14E-04 3.58 3.04E-04 3.54
32× 32 6.20E-06 4.01 5.22E-06 4.00 1.93E-05 4.43 1.67E-05 4.19
64× 64 3.88E-07 4.00 3.27E-07 4.00 1.85E-06 3.38 1.13E-06 3.88
128× 128 2.42E-08 4.00 2.05E-08 4.00 1.04E-07 4.15 7.21E-08 3.98

We consider the nonlinear fourth-order wave equation (1.1), with a nonlinear term f(u) =

u3.

utt +∆2u+ u+ f(u) = g(x, y, t), (x, y, t) ∈ Ω× (0, 1],

the initial conditions are

u(x, y, 0) = cos(x+ y), ut(x, y, 0) = −2 sin(x+ y),

where Ω = [0, 2π]× [0, 2π], and u(x, y, t) = cos(x+ y + 2t).
We test the space Qk, 1 ≤ k ≤ 3, and list the errors of u and w, and the corresponding

orders in Table 6.3.

7 Concluding remarks
In this paper, we have developed an UWLDG method for a class of nonlinear fourth-

order wave equations. The UWLDG methods combine the LDG and UWDG methods for
solving time-dependent PDEs with high order spatial derivatives. The numerical fluxes have
been carefully chosen to make our scheme energy conserving. We have proved the optimal
error estimate in the L2-norm for the solution itself as well as for the auxiliary variables
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Table 6.3: Errors and the corresponding convergence rates for Example 6.3 when using Qk polynomials
on a uniform mesh of N ×N cells. Final time t = 1.

Error of u Error of w

N ×N L2 error order L∞ error order L2 error order L∞ error order
Q1 8× 8 9.86E-01 – 6.05E-01 – 1.50E+00 2.47 8.95E-01 –

16× 16 2.31E-01 2.10 1.35E-01 2.17 2.51E-01 2.58 1.39E-01 2.69
32× 32 5.54E-02 2.06 3.27E-02 2.04 1.10E-01 1.19 6.52E-02 1.09
64× 64 1.35E-02 2.04 8.05E-03 2.02 2.47E-02 2.15 1.39E-02 2.23

Q2 4× 4 3.75E-01 – 3.21E-01 – 1.21E+00 – 9.39E-01 –
8× 8 3.83E-02 3.29 3.29E-02 3.29 1.04E-01 3.54 7.69E-02 3.61
16× 16 4.78E-03 3.00 4.12E-03 3.00 1.87E-02 2.47 1.10E-02 2.81
32× 32 5.80E-04 3.04 5.06E-04 3.02 1.87E-03 3.32 1.19E-03 3.21
64× 64 7.25E-05 3.00 6.36E-05 2.99 1.68E-04 3.48 1.28E-04 3.22

Q3 4× 4 2.54E-02 – 2.04E-02 – 6.76E-02 – 2.42E-02 –
8× 8 1.57E-03 4.01 1.34E-03 3.93 3.64E-03 4.22 2.37E-03 3.35
16× 16 1.00E-04 3.97 8.35E-05 4.00 3.48E-04 3.38 2.62E-04 3.18
32× 32 6.20E-06 4.02 5.22E-06 4.00 1.80E-05 4.28 1.03E-05 4.66
64× 64 3.88E-07 4.00 3.27E-07 4.00 1.01E-06 4.15 4.89E-07 4.40

approximating its derivatives in the semi-discrete method, and have also shown that our scheme
preserves energy in the semi-discrete sense. Compatible high order energy conserving time
integrators are also proposed. The theoretical findings are confirmed by numerical experiments.
The algorithm can be easily designed on two-dimensional unstructured triangular meshes and
the stability can be easily proven, however optimal error estimates would be more challenging
and we would like to leave it for our future work.

Appendix A Estimate for D=
(

∥ξu∥
hk+1

)2
in Theorem 4.1.

Proof. By (4.28) and (4.29), we have

D ≤ C

∫ τ

0

(
D + (1 + ε2Dp−1)(D + 1)

)
ds. (A.1)

Here we denote H(D) = D + (1 + ε2Dp−1)(D + 1), and M(τ) =

∫ τ

0
H(D)ds, then

d

dτ
M = H(D).

By (A.1) we obtain,
D ≤ CM.
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Therefore, the proof of D could be bounded by a constant independent of h, equal to prove
that there exist a constant C⋆ independent on h, such that satisfy

M ≤ C⋆. (A.2)

Since H(s) is increasing for s > 0, and D ≤ CM we have

d

dτ
M = H(D) ≤ H(CM) ≤ C1H(M).

Firstly, we have

d

dτ
M ≤ C1H(M) = C1

(
M + (1 + ε2Mp−1)(M + 1)

)
,

and

dL(M)

dτ
= L′(M)

d

dτ
M =

1

H(M)

d

dτ
M ≤ C1, (A.3)

where
L(s) :=

∫ s

1

dz

H(z)
=

∫ s

1

dz

z + (1 + ε2zp−1)(z + 1)
.

Integrate with respect to time in (A.3), we have

L(M(τ)) ≤ L(M(0)) + C1T ≤ C1T, τ ∈ (0, T ].

If M(τ) ≤ 1, the proof is done. If M(τ) > 1, we have

L(M) =

∫ M

1

dz

z + (1 + ε2zp−1)(z + 1)

≥
∫ M

1

dz

(z + 1) + (1 + ε2zp−1)(z + 1)

≥ 1

2

∫ M

1

dz

(2 + ε2zp−1)z

=
1

2

∫ Mε
2

p−1

ε
2

p−1

dy

(2 + yp−1)y
(ε2zp−1 = yp−1)

=
1

4

∫ M( 1
2
ε2)

1
p−1

( 1
2
ε2)

1
p−1

dx

(1 + xp−1)x
(2xp−1 = yp−1)

=
1

4(1− p)
log

(
1 +

2M1−p

ε2

)
− 1

4(1− p)
log

(
1 +

2

ε2

)
.
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Therefore,

1

4(1− p)
log

(
1 +

2M1−p

ε2

)
− 1

4(1− p)
log

(
1 +

2

ε2

)
≤ C1T,

then we have

M ≤
(

2ea

2− ε2(ea − 1)

) 1
p−1

,

where a = 4(p− 1)C1T , we choose h sufficient small, so that ε2 ≤ 1
ea−1 , we obtain

M ≤ (2ea)
1

p−1 ≤ C⋆.

Hence, M ≤ max{1, C⋆} .
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