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Abstract

We construct short retractions of a CAT(1) space to its small convex subsets.
This construction provides an alternative geometric description of an analytic tool
introduced by Wilfrid Kendall.

Our construction uses a tractriz flow which can be defined as a gradient flow for
a family of functions of certain type. In an appendix we prove a general existence
result for gradient flows of time-dependent locally Lipschitz semiconcave functions,
which is of independent interest.

1 Introduction

Recall that a subset K in a metric space U is called weakly conver if any two points
x,y € K can be connected by a minimizing geodesic in K.

Let U be a metric space and K C U. A distance nonexpanding map f: U — K such
that f(z) = x for any « € K is called a short retraction to K. If in addition a local
Lipschitz constant of f is strictly less than 1 at any point z ¢ K, then we say that f is a
strictly short retraction from U to K.

1.1. Theorem. LetU be a complete length CAT (k) space. Suppose K is a weakly convex
closed subset in U and there is p € U such that |p — x| < § for any point v € K.

(a) If p € K and k < 1, then there is a short retraction ®: U — K.

(b) If k < 1, then there is a strictly short retraction ®: U — K.

This statement is a generalization of the following well known statement about CAT(0)
spaces: If U is a complete length CAT(0) space and K is a closed convexr subset in U,
then the closest point projection U — K is a short retraction. Moreover, if U is a CAT (k)
space for some k < 0, then the closest point projection is a strictly short retraction.

The theorem and a small trick imply the following;:

1.2. Corollary. LetU be a complete length CAT (k) space. Denote by A the diagonal in
U XU; that is, A ={(x,z) eU x U }.
Suppose there is a point p € U such that |p — x| < § for any point v € U.
(a) If k < 1, then there is a short retraction W: U X U — A.
(b) If k < 1, then there is a strictly short retraction V: U x U — A.

It is well known that if U is a complete length CAT(0) space, then the midpoint map
UxU—Uis \%—Lipschitz and therefore it induces a short retraction U4 x U — A. The
corollary provides an analogous statement for CAT(1) spaces.



Motivation. In [1, (4.1)], Wilfrid Kendall observed that if B is a regular geodesic ball of
radius 7 < 7 in a manifold with sectional curvature at most 1, then, for an appropriate
choice of constant A, the function

1+ X—cos|z—y|s

cos [p — x|p- cos |p — y|s

(z,y) —

has convex level sets in B x B. He also shows the existence of a nonnegative convex
function on B x B that vanishes only on the diagonal [1, (4.2)]. These observations
became a useful tool to study the Dirichlet problem and its relatives; they allowed to
extend a number of results from Hadamard manifolds to Riemannian manifolds of small
size and more generally to CAT(1) spaces [2-6].

Our original goal was to make this tool transparent for geometers. Corollary 1.2 can be
considered as a more geometric version of this tool. While Kendall’s condition is optimal
for uniqueness and regularity questions, the existence statements can be derived from
Theorem 1.1 in a slightly greater generality, as we are going to explain now.

We will need the following definition, introduced by Stefan Wenger [7]; for the defini-
tions of ultrafilters and ultracompletions we refer to [7-9].

A metric space U is called 1-complemented if for some non-principal ultrafilter w there
exists a short retraction of the ultracompletion U* to U. Examples of 1-complemented
spaces include all proper spaces, all CAT(0) spaces and all LP spaces for 1 < p < oo [8,
Proposition 2.1].

Recall that if ¢ is CAT(k), then so is U*. Applying these observations together with
Theorem 1.1, we obtain

1.3. Theorem. Let U be a complete length CAT(1) space. Assume there ezists some
p € U such that |p — x| < § for any point v € U. Then U is 1-complemented.

Let us list a few existence results which follow from the theorem, assuming that the
space U is as above:

(a) The existence of a solution u of Dirichlet problem on the minimization of energy in
Wh2(Q,U) on any Lipschitz domain  in a Riemannian manifold with prescribed
trace tr(u); see [10] and [8, Theorem 1.4].

(b) The existence of a minimal integral k-current filling any prescribed boundary in U;
see [11] and [7, Theorem 3.3].

(c¢) The existence of a conformally parametrized disc u : D — U of minimal area for a
given boundary curve v, which is a Jordan curve of finite length in U; see [12] and
[8, Theorem 1.2].

(d) For any Radon measure p on U there exists a center of mass x € U for the measure p
2, 13].

If in the theorem we assume strict inequality |p — x| < 7, then the existence results
are known in all the cases (a—d). Moreover, the uniqueness holds true under this stronger
assumption in the cases (a), (b), and (d); see [2, 5]. In our boundary case uniqueness
definitely fails; for example geodesics between points in a round hemisphere are not unique.

The uniqueness in each case can be shown using Corollary 1.2. Indeed if there are
different solutions of one of these problems, then their product in U XU does not lie in the
diagonal. The latter contradicts the existence of the strictly short retraction ¥ provided
by Corollary 1.2.



About the proofs. We use a new tool which we call r-tractriz flow, a special time-
dependent gradient flow. It gives a family of maps ¢; for a given rectifiable curve ¢ —
+— ~y(t). The important properties of the tractrix flow are collected in Proposition 2.1. In
particular, (1) if ¢/ is CAT(1) and r < 7, then ¢, is short for any ¢, and (2) if r < 7, then
the local Lipschitz constant of ¢; at p is strictly less than 1 if p # ¢4(p).

In the proof of Theorem 1.1, the tractrix flow is applied in a space obtained by gluing
to U a spherical cone over K; this space is CAT(1) by Reshetnyak’s gluing theorem. In
Appendix B we indicate another way of proving Theorem 1.1.

In the proof of Corollary 1.2 the additional trick consists in identifying the product
space U X U with a subset of the spherical join U x U and applying Theorem 1.1 to the
latter.

The tricks in both proofs show that it is useful to consider singular spaces even in
the case when the original space U is smooth; this is a powerful freedom of Alexandrov’s
world. More involved examples of such arguments are given by Dmitry Burago, Sergei
Ferleger, and Alexey Kanonenko [14], Paul Creutz [15], and Stephan Stadler [16].
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2 Tractrix flow

For CAT (k) spaces, we will follow the conventions in [9].

First let us describe the tractrix flow informally. Suppose that two points p and ¢ in
U are connected to each other by a thread of fixed length r. Imagine that the point ¢
follows the curve v and drags p if the thread is tight; if the thread is not tight, then p does
not move. Then the trajectory of the point p will be called r-tractriz of p with respect
to . The family of maps ¢, that send the initial position of p to its position at the time
t will be called the r-tractriz flow defined by ~.

More formally, suppose 7: [a,b] — U is a 1-Lipschitz curve. An r-tractrix with respect
to 7 is defined as a gradient curve for the time-dependent family of functions

[t = —max{r, dist, ) };

here dist, denotes the distance function from the point 2. We also assume that the initial
point lies in B(y(a),r). (We denote by B(x,r) and B(z,r) the closed and open balls of
radius r centered at x.)

The r-tractriz flow with respect to 7 is defined as a family of maps

@i: B(v(a),r) = B(y(t),r)

whose trajectory t — ;(p) is the r-tractrix starting at p € B(y(a),7).
The following proposition includes the properties of the tractrix flow which will be
used further in the paper.

2.1. Proposition. Let~: [a,b] — U be a 1-Lipschitz curve in a complete length CAT (k)
space U for some k < 1 and v < m. Set By = B(y(t),r). Then the r-tractriz flow
i By — By is uniquely defined. Moreover



(a) For any t, the map ¢ is a limit of compositions ¥y, o --- oy, for 6 — 0, where
a =ty < - <t, =tis any partition of |a,t] with |t; — t,_1| < 0 and where
Yy, : By,_, — By, denotes the closest point projection.

(b) If the family of balls By is decreasing in t (that is, if By, D By, fort; < ty), then oy
is a strong deformation retraction from B, to By.

(c) If r = %, then @y is short for any t;

(d) If r = % and k < 1, then there is a positive constant € such that the local Lipschitz

constant of ¢, at p is bounded above by exp(—e-£), where { = |p — @i(p)|u-

Historically the first relative of the tractrix flow is the so called Sharafutdinov’s retrac-
tion [17] — a family of maps associated to a continuous family of convex sets (in our case
these sets are the balls B;). Second relative is the pursuer flow introduced and studied
by Stephanie Alexander, Richard Bishop, Robert Ghrist and Chanyoung Jun [18-21].

Time-dependent gradient flows were studied by Chanyoung Jun [19, 21], by Lucas C.
F. Ferreira and Julio C. Valencia-Guevara [22], and by Alexander Mielke, Riccarda Rossi,
and Giuseppe Savaré [23]. Unfortunately Proposition 2.1 does not follow directly from
the results in these papers; for this reason we provide in an appendix a short proof of the
existence of gradient flows of Lipschitz time-dependent family of semiconcave functions
in CAT (k) spaces.

Proof. Consider f; = —max{r,dist,)} as a family of functions defined in B(y(t),r + 9)
for sufficiently small § > 0. Note that the family f; is Lipschitz. By CAT(1)-comparison,
each f; is Ad-concave for a fixed \. Moreover if r < 7, then A = 0 and if r = 7, then A — 0
as 0 — 0.

Consider the map ¢;: a(a) — a(t), where « is a fi-gradient curve. By A.4, if . (p) is
defined, then it is unique.

Consider the function ¢(t) = |¢:(p) —v(t)|. By the definition of the flow, we have that
0" < 0if ¢ > r. It follows that ¢, is defined for all ¢ and maps B, to B;.

(a). Given a partition a =ty < t; < --- < t, =t with |[t; — t;_1] < 0, consider a locally
constant approximation ft of the family f; defined by ft = fi, if t; <t < t;1;. Denote by
¢, the corresponding flow.

Given p € B,, set p; = @, (p). Observe that p; = vy, (pi—1) for each .

By the distance estimate (A.2) the flow ¢, converges to ¢; as the partition gets finer
and finer, hence the result.

(b). 1t is sufficient to notice that ¢;(p) =pif |p —y(s)| < r for all a < s < ¢.

(c¢). Applying the distance estimate (A.2) for s = 0, we get that

lp:(p) — ()| < |p — g-e>1
for any p.q € Bo, t > a. Ifr < %, then the inequality holds for arbitrary A > 0; hence (c)
follows.

(d). The proof of the strict inequality follows directly from (a) and the following general
consequence of the CAT (k) comparison:

There exists some € > 0 such that the closest point projection ¥ : B(w,% +e) —
— B(w, %) in any CAT(k) is strictly short and satisfies

2
[9(p) = 9(q)| < e~ PP —g]. O



3 Proofs

Recall that spherical join U x V of two metric spaces U and V is defined as the unit sphere
(equipped with the angle metric) in the product of Euclidean cones Coneld x Cone V. If
diameters of U and V do not exceed 7, then U x ) can be defined as a metric space that
admits an onto map ¢: U x V x [0, 7] — U xV such that

‘L(ula U1, tl) - L(u27 Vg, t2) ‘Z/I*V =

= arccos|sin t;- sinty- cos |uy — ugy + costy- costy- cos [vg — valy].

1]

Recall that the join of two CAT(1) spaces is CAT(1) [24, Corollary 3.14].

Proof of 1.1. Consider the join of K with a one-point space, J = K % {s}. Since J is a
CAT(1) space, by Reshetnyak’s gluing theorem [9, 8.9.1], the space W glued from U and
J along K is a CAT(1) space; moreover Y and J are convex subsets in W.

Let v be the geodesic in W from p to the pole s of J.
Set B; = B(v(t), T)y, then s

o By=B(p3uLT,

¢ Bz = J, in particular Bz NU = K,

_ v
¢ the family B; is decreasing in ¢. B J
To see the last statement, note that J C By. Further, by
definition of a spherical join we have |z — plyy < |z —(s)|w p K u

for any x € K. By construction of the metric on W the

same inequality holds for any z € U, Therefore B, C By. Finally, by CAT(1) comparison,
B, > B;,NBy= B, forany s >t > 0.

According to 2.1(b), the J-tractrix flow ¢, is a strong deformation retraction of By to
. By 2.1(c) ¢z is a short. If & < 1, then by 2.1(d), ¢z is a strictly short retraction.
Since U is CAT(1), given a point z € B(p, 1)y there is unique geodesic v, parametrized
by its length from p to . By CAT(1) comparison, the map

1y — 2y > 7
o) =47 il |p =l > =
Yol = |p — xly) if |p— 2y <

B

(VB

is a short retraction of U to B(p, Su= BoNU. Moreover © is strictly short retraction if
Kk < 1.

Therefore the composition ® = ¢z o © induces a short retraction of ¢ to K which is
strictly short if k < 1.

Finally, we need to take care of the case k < 1 and p ¢ K. Denote by p € K the closest
point to p; by CAT(k) comparison it exists and unique. Note that |p — z|y < |p — 2|y
for any x € K; therefore K C B(p, ). It remains to apply the construction above with
p instead p. O

Proof of 1.2. Consider the spherical join U xU and the map ¢ described at the beginning
of the section. Note that @ implies that the map (u,v) + ¢(u,v, ) induces a length
preserving map

O: LU xU) — UxU.

In particular, © is short.



Note that the diagonal \%-A is a convex set in \/LE(Z/{ x U). Moreover @ implies that

the restriction of © to \/Li -A is distance preserving. In particular, the image K = O( \/Li A)
is a weakly convex set in U *U.

Further note that |¢ — ylyw < 5 for any y € U xU and ¢ = O(p,p). Applying 1.1,
we get a short retraction ®: U xU — K. Since O is short, it induces the needed short
retraction W: U x U — A.

Finally, by 1.1, if K < 1, then ® is a strictly short retraction and therefore so is ¥. [J

A Time-dependent gradient flow

Here we prove the existence, uniqueness and contractivity of the gradient flow for a time-
dependent family of functions. The proof relies mostly on the corresponding statements
for time-independent families — with minor conditions on the space. The same proof
works nearly without changes for spaces with lower curvature bound and it should work
in nearly any space with well defined angles between geodesics starting at one point.

Time-independent flow. Suppose U is a complete length CAT(k) space.

For a locally Lipschitz semiconcave function f defined on an open set Dom f C U, the
differential d,f: T, — R is defined at each point p € Dom f; it is a concave, Lipschitz,
and positive-homogeneous of degree 1 function on the tangent space at p.

Further, for any point p € Dom f there is unique tangent vector u € T, such that the
following two conditions

(u,w) = dp f (w),

dpf
o (u,u) = d, f(u)

hold for any tangent vector w € T,.! The vector u is called the gradient of f at p; briefly
u=V,f.

A locally Lipschitz map t — «(t) is called f-gradient curve if it satisfies the following
equation

(2] oﬁ(t) = Va(t)f

for any ¢t. Here a*(t) € Ty denotes the right velocity vector; that is,

log, ot + €

ot (t) = lim g (t)[ ( )]’
e—0+ £

where v = log, ¢ if the vector v € T, points form p in the direction of ¢ and |v| = [p — q.

The following proposition can be extracted from [25, Theorem 1.7] or [26].

A.1. Proposition. Let U be a complete length CAT(k) space and f a Lipschitz and
semiconcave function defined on an open set Dom f C U. Then for any point p € Dom f
there is a unique f-gradient curve t — «(t) with initial point «(0) = p defined on a

Here tangent vector means element of tangent cone, we use this term despite the tangent cone is not
a vector space. The scalar product (u,w) is defined as |u|-|w|- cos® where ¢ is the angle between the
vectors.



mazimal semiopen interval [0,T) for some T € (0,00]. Moreover if T < oo then «
escapes from any closed set K C Dom f.

Time-dependent gradient flow. Our next aim is to define a gradient flow for a time-
dependent family of functions and prove an analog of Proposition A.1 for this flow. Let f;
be a family of functions defined on open subsets Dom f; of &. More precisely, we assume
that the parameter ¢t lies in a real interval I and

Q={(x,t) eU x1: z€Domf, }

is an open subset in U x I.

A family of functions f; is called Lipschitz if the function (x,t) — f;(x) is L-Lipschitz
for some constant L.

A family of functions f; will be called semiconcave if the function =z — fi(z) is A-
concave for each t. A family f; is called locally semiconcave if for each (pg,ty) € €2 there
is a neighborhood 2 and A € R such that the restriction of f; to € is A-concave.

Note that one cannot expect that a direct generalization of equation @ holds for any
family of functions f;.

For example, consider a 1-Lipschitz curve « in the real line. It is reasonable to assume
that «v is an f;-gradient curve for the family f;(z) = —|z—«(t)]. (Indeed « can be realized
as a limit of gradient curves for a family of functions obtained by smoothing f;.) On the
other hand, o' (¢) might be undefined, but even if it is defined, a™(¢) # 0 in general,
while Va(t)ft =0.

Instead we define f;-gradient curve as a Lipschitz curve o that satisfies the following
inequality for any point p, time ¢, and small € > 0:

9 distp OOé(t + 5) < distp OOé(t) — g'da(t)ft(/r[a(t)p]) + 0(5),

where T,,) € Ty denotes a unit tangent vector at ¢ in the direction of p (if there is no
geodesic [a(t) p|] then we impose no condition).

If at(t) = V) fi for all ¢, then @ holds; it follows from @. On the other hand, the
example above shows that the converse does not hold; that is, ® generalizes the defini-
tion @. Our defining inequality @ is closely related to the so called evolution variational
inequality [27, Thm 4.0.4(iii)].

A.2. Distance estimate. Let f; and h; be two families of A-concave functions on a
CAT(k) space U and s = 0. Assume f; and hy have common domain Q@ C U x R and
|fe(z) — he(z)| < s for any (x,t) € Q. Assume t — «ft) and t — B(t) are f;- and
hi-gradient curves respectively defined on a common interval t € [a,b); set £(t) = |a(t) —
— B(t)|y- If for all t a minimizing geodesic [a(t) B(t)] lies in {x € U : (x,t) € Q}, then

° C(t) < XL(t) +2-5/0(t),
assuming that the left hand side is defined. Moreover
© (0P + 3 < (Ua) +32)-e> 00,

In particular the inequalities hold for any t € 1 if Q D B(p,2-r) x I and «(t), 5(t) €
€ B(p,r) for any t € L.



Note that if f; = h; then s = 0; in this case the second inequality can be written as
(6] 0(t) < l(a)-eMtD,

In particular it implies uniqueness of the future of gradient curve with given initial data.
This inequality also makes it possible to estimate the distance between two gradient curves
for close functions. In particular, it implies convergence of f;*-gradient curves if a sequence
of L-Lipschitz and A-concave families f;' converges uniformly as n — oo.

Proof. Fix a time moment ¢ and set f = f; and h = h;. Let p be the midpoint of the

geodesic [a(t)B(t)]. Let v: [0,4(t)] — U be an arc length parametrization of [a(t)5(t)]

from «(t) to B(t). Note that da)f(Taq)y) is the right derivative of f o~y at 0 and
—dogyh (1)) is the left derivative of h o~y at £(t). Since f and h are A\-concave,

F(a(t) + L) day f (Tay) + 3-A-L(E)%,
h(B(t)) + £(t)-dawh(Nsay) + 5-A-L(E)?,

Adding these inequalities up and taking into account that |f(z) — h(z)| < s for any z, we
conclude that

da@)f Maqyp) T dayh(Tipyp) = A-L(E) +2-5/L(L).
Applying the triangle inequality and the definition of gradient curve at p, we get that

lt+e)=la(t+e)—Bt+¢e)| <
<la(t+¢e) —pl+|B(t+¢e) —pl <
< () = pl = e-dagy f Magyp) + 1B +€) — pl — e-dpayh(Ta()y) + 0(e) =

(1) = e-(A-L(t) +2-5/L(1)) + o(e)

for € > 0; hence the statement.

Since « and [ are Lipschitz, ¢t — £(t) is a Lipschitz function. By Rademacher’s
theorem, its derivative ¢’ is defined almost everywhere and it satisfies the fundamental
theorem of calculus. Therefore @ implies @. ]

A.3. Proposition. LetU be a complete length CAT (k) space. Suppose f; is a family of
A-concave functions for t € |a,b) and Dom f; D B(z,2-r) for some fivzed z € U, r > 0 and
any t.

Let «: [a,b) — B(z,r) be Lipschitz. Then « is an f;-gradient curve if and only if

[ felp) = froa(t)

(7) dist, oa(t + ¢) < dist, oa(t) — p — ()]

— 5 Ip—a®)l| + o)

for any t € [a,b) and p € B(z,r) \ {«a(t)}.

Proof. Note that geodesics [a(t)p] lie in Dom f; for any t.
Since f; is A-concave, we have

f(p) = foalt)
P — a(t)]

ft( a(tp]) —%|p—&(t)|

8



Hence the only-if part follows.
Given a point p € U and t, consider a point p € [«a(t)p]. Applying @ for p and the
triangle inequality, we get
f() — foalt)
p—a(t)|
% — 2:1p— a(t)| can be made arbitrary close
t0 da(t) ft (Nas)p))- Therefore, given 6 > 0, the following inequality

dist, oa(t + ¢) < dist, oa(t) — e- —2:p—alt)]| +o(e).

By taking p close to «(t), the value

dist, oa(t + ¢) < dist, oa(t) — €'da(t)ft(T[a(t)p}) +ed

holds for all sufficiently small positive values €. Therefore ® holds. [

Now we are ready to formulate and prove an analog of Proposition A.1 for time-
dependent family.

A.4. Theorem. LetU be a complete length CAT (k) space and {fi} a family of function
defined on an open set Q = {(z,t) €U x R : x € Dom f; }. Suppose that f; is Lipschitz
and locally semiconcave. Then for any time moment a and initial point p € Dom f, there
is a unique fi-gradient curve t — «(t) defined on a mazximal semiopen interval [a,b).
Moreover if b < oo, then (a(t),t) escapes from any closed set K C .

Proof. Let L be a Lipschitz constant of f;. Fix b > a sufficiently small so that Dom f; D
D B(p,e-L) for any t € [a,b). Consider sequence a =ty < t;--- < t, = b and a piecewise
constant family of functions on B(p,e-L) defined by f, = f,. if t; <t <t

Note that ft is time-independent on each interval [t;,¢;,1). Applying A.1 recursively
on each interval [t;,t;11), we get that the proposition holds for ft. That is, there is a
unique }t-gradient curve & that starts at p and defined on the interval [a, b).

The distance estimates (A.2) show that as the partition gets finer, the gradient curves
& form a Cauchy sequence; denote its limit by a. Then

disty ot + <) < disty 04 (t) — & [f =T s atol] + oo
< dist, o (f) — e [ft(p) ]pfiofziif LI W ‘5‘(”'1 + ()

where

s = Stufﬂft(x) — fu(2)]}.

Since s — 0 as & — «, we get that @ holds for «; that is, o is an f;-gradient curve.

It proves a short time existence. Applying this argument recursively we can find a
gradient curve defined on a maximal interval [a,b). Uniqueness of this curve follows from
the distance estimate ©.

Note that « is L-Lipschitz. In particular, if b < oo, then «a(t) — p’ as t — b. If
(p',b) € €, then we can repeat the procedure, otherwise « escapes from any closed set in

Q. ]



B Another way

Here we indicate an alternative way to prove Theorem 1.1. The idea is taken from the
proof of Kirszbraun’s theorem; see [28, 5.1] or [9, 9.4.1 and 9.6.5].

Proof of 1.1. Set U = Coneld. Denote by K the subcone
of U spanned by K. The space U is the unit sphere in U
with angle metric; that is, Y = {z €U : |z| =1} and
lu — vl = £[0"], where o denotes the tip of the cone U.

Note that I is a CAT(0) space and K forms a convex
closed subset of /. In particular, for any point x there
is unique point & € K that minimize the distance to x;
that is, |z — x| = distx(z).

Consider the ray a,: t — t-p in U. Note that given
s € U the geodesics [s t-p] converge as t — oo to a ray,
say a,: [0,00) — U that is parallel to a.

Note that if |x| = 1, then || < 1. By assumption for
any k € K the function t — |ay(t)| is monotonically increasing. Therefore there is unique
value t, > 0 such that |a;(t,)| = 1; set 2’ = a;(t,) and define the map ® as x +— 2.

Evidently z +— 2’ is a retraction of U to K; that is, ®(z) € K for any = € U and
O(k) =k for any k € K.

It remains to show that x — x’ is short which can be done by straightforward lengthy
computations. We leave it as an advanced exercise to the reader. O

References
[1]  W. Kendall. “Probability, convexity, and harmonic maps with small image. I. Uniqueness and fine existence”. Proc.
London Math. Soc. (3) 61.2 (1990), 371-406.

[2] T. Yokota. “Convex functions and barycenter on CAT(1)-spaces of small radii”. J. Math. Soc. Japan 68.3 (2016),
1297-1323.

[3] C. Breiner, A. M. Fraser, L.-H. Huang, C. Mese, P. Sargent, and Y. Zhang. “Regularity of harmonic maps from
polyhedra to CAT(1) spaces”. Calc. Var. Partial Differential Equations 57.1 (2018), Art. 12, 35.

[4] B. Fuglede. “Harmonic maps from Riemannian polyhedra to geodesic spaces with curvature bounded from above”.
Calc. Var. Partial Differential Equations 31.1 (2008), 99-136.

[5] T. Serbinowski. “Harmonic maps into metric spaces of curvature bounded from above”. Thesis, University of Utah
(1996).

[6] A. Lytchak and S. Stadler. Improvements of upper curvature bounds. to appear in Trans. Amer. Math. Soc. 2019.
arXiv: 1910.05287 [math.DG].

[7] S. Wenger. “Plateau’s problem for integral currents in locally non-compact metric spaces”. Adv. Calc. Var. 7.2 (2014),
227-240.

[8] C. Guo and S. Wenger. Area minimizing discs in locally non-compact metric spaces. to appear in Comm. Anal.
Geom. arXiv: 1701.06736 [math.MG].

. exander, . apovltc , an . etrunin. ETanarov geomelry: preiminary version no. 1. arAXlv: . 5 v
9] S. Alexander, V. Kapovitch, and A. Petrunin. Alezandrov geometry: preliminary versi 1. arXiv: 1903.08539v1
[math.DG].

[10] N. Korevaar and R. Schoen. “Sobolev spaces and harmonic maps for metric space targets”. Comm. Anal. Geom.
1.3-4 (1993), 561-659.

[11] L. Ambrosio and B. Kirchheim. “Currents in metric spaces”. Acta Math. 185.1 (2000), 1-80.

[12]  A. Lytchak and S. Wenger. “Area minimizing discs in metric spaces”. Arch. Ration. Mech. Anal. 223.3 (2017), 1123—
1182.

10


https://arxiv.org/abs/1910.05287
https://arxiv.org/abs/1701.06736
https://arxiv.org/abs/1903.08539v1
https://arxiv.org/abs/1903.08539v1

(13]

(14]

(15]
[16]

(17]
(18]
(19]

20]
(21]
(22]

(23]
(24]

(25]
[26]

27]

(28]

K. T. Sturm. “Probability measures on metric spaces of nonpositive curvature”. Heat kernels and analysis on man-
ifolds, graphs, and metric spaces (Paris, 2002). Vol. 338. Contemp. Math. Amer. Math. Soc., Providence, RI, 2003,
357-390.

D. Burago, S. Ferleger, and A. Kononenko. “Uniform estimates on the number of collisions in semi-dispersing bil-
liards”. Ann. of Math. (2) 147.3 (1998), 695-708.

P. Creutz. Plateau’s problem for singular curves. arXiv: 1904.12567 [math.DG].

S. Stadler. The structure of minimal surfaces in CAT(0) spaces. to appear in J. Eur. Math. Soc. arXiv: 1808.06410
[math.DG].

B. A. [ITapadyranuos. «O BBIIYKJIBIX MHOXKECTBAX B MHOIOOOpa3nu HEOTPHUIATEILHON KPUBU3HbBI» . Mamem. 3amem-

wu 26.1 (1979), 129—136.

S. Alexander, R. Bishop, and R. Ghrist. “Total curvature and simple pursuit on domains of curvature bounded
above”. Geom. Dedicata 149 (2010), 275-290.

C. Jun. Pursuit-evasion and time-dependent gradient flow in singular spaces. Thesis (Ph.D.)—University of Illinois
at Urbana-Champaign. 2012.

C. Jun. “Continuous pursuit curves on CAT(K) spaces”. Geom. Dedicata 173 (2014), 309-330.
C. Jun. Time-dependent gradient curves on CAT(0) spaces. arXiv: 1801.04583 [math.MG].

L. Ferreira and J. C. Valencia-Guevara. “Gradient flows of time-dependent functionals in metric spaces and applica-
tions to PDEs”. Monatsh. Math. 185.2 (2018), 231-268.

A. Mielke, R. Rossi, and G. Savaré. “Nonsmooth analysis of doubly nonlinear evolution equations”. Calc. Var. Partial
Differential Equations 46.1-2 (2013), 253-310.

M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature. Vol. 319. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences]. 1999.

A. Lytchak. “Open map theorem for metric spaces”. Algebra i Analiz 17.3 (2005), 139-159.

S. Ohta and M. Pélfia. “Gradient flows and a Trotter-Kato formula of semi-convex functions on CAT(1)-spaces”.
Amer. J. Math. 139.4 (2017), 937-965.

L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of probability measures.
Second. Lectures in Mathematics ETH Ziirich. 2008.

S. Alexander, V. Kapovitch, and A. Petrunin. “Alexandrov meets Kirszbraun”. Proceedings of the Gokova Geometry-
Topology Conference 2010. Int. Press, Somerville, MA, 2011, 88-109.

11


https://arxiv.org/abs/1904.12567
https://arxiv.org/abs/1808.06410
https://arxiv.org/abs/1808.06410
https://arxiv.org/abs/1801.04583

	Introduction
	Tractrix flow
	Proofs
	Time-dependent gradient flow
	Another way
	References

