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Abstract

Within the context of a simple avoided crossing, we investigate the investigate the effect of a

complex-valued diabatic coupling in determining spin-dependent rate constants and scattering

states. We find that, if the molecular geometry is not linear and the Berry force is not zero,

one can find significant spin polarization of the products. This study emphasizes that, when

analyzing nonadiabatic reactions with spin orbit coupling (and a complex-valued Hamiltonian),

one must consider how Berry force affects nuclear motion – at least in the context of gas phase

reactions. Work is currently ongoing as far as extrapolating these conclusions to the condensed

phase where interesting spin selection has been observed in recent years.
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1 Introduction

Electronic spin is one of the most fundamental observables in quantum mechanics, and manip-

ulating spin (so-called “spintronics”) is regarded as one of the most promising research fields.1–10

Over the past few decades, a plethora of techniques have shown how electronic spin can be al-

tered and polarized through many mechanisms, including giant and tunnel magnetoresistance,11,12

spin-orbital torques,13–15 spin-transfer torques,16–18 spin-Hall effects,19,20 and most recently (and

discussed in detail below) chiral-induced spin selectivity (CISS).21–33 One of the hopes of modern

electronics is that, someday in the future, one will be able to produce electronic devices with low

energy cost that use electronic spin for random access memories,34,35 sensors,1,36 or even quantum

computers.6,37,38

Now, when discussing electronic spin, there has historically been a disconnect between the

chemistry and physics communities. On the one hand, within the spintronics community in physics

department, one usually supposes that the nuclei are fixed, and one investigates only how collective

electronic, magnetic, and otherwise static material effects can manipulate electronic spin states. On

the other hand, within the realm of chemical dynamics, spin is usually regarded as a fixed quantum

number and nuclear dynamics occur along a potential energy surface of fixed spin character (sin-

glets or triplets, etc.). For the most part, chemists (who deal with nuclear dynamics and chemical

reactions) and physicists (who deal with magnetic fields and electronic dynamics) have not worked

on overlapping problems with synergy – and in particular, from our point of view, the coupling

between nuclear dynamics and electronic spin has not been fully explored.

Of course, there are exceptions to the statement above. Most obviously, the electronic paramag-

netic resonance (EPR) community does span both the chemistry and physics communities, and has

long allowed for explicit coupling between nuclear degrees of freedom and electron spin.39 Second,

within the chemistry community, there has been a push as of late40,41 to study photo-induced inter-

system crossing (ISC), whereby nuclei switch between states of different spin character, as allowed

by spin-orbit coupling (SOC). The usual picture here is that, within the realm of photochemistry,

the lowest triplet state (T1) is almost always lower in energy than the first excited singlet state (S1),42
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and so ISC is a very interesting dynamical (as opposed to thermodynamic) process that can precede

equilibration. As such, largely led by the work of Gonzalez et al,43–49 there is now a growing desire

to model the coupled nuclear-electronic-spin dynamics underlying ISC for realistic systems using

variants of Tully’s fewest switch surface hopping model (FSSH).50 To date, the question of how to

model ISC with Tully’s FSSH remains not fully solved, as recent work in our group has pointed

out two subtleties regarding the nature of ISC in the context of molecules with an odd number of

electrons:

• When the number of electrons is odd and SOC is present, the electronic Hamiltonian be-

comes complex-valued (with complex-valued derivative couplings d51). Such a complex-

valued derivative coupling presents obvious difficulties for the surface hopping algorithm:

how should we choose the direction to rescale nuclear momenta after a hop?52 Usually, the

rescaling direction is d, but if d is complex-valued, what does this imply? Note that, if the

number of electron is even and there is no magnetic field (so that there is time-reversal sym-

metry), the Hamiltonian and d will always be real.51

• In the presence of a complex-valued electronic Hamiltonian, it is known that nuclei will

experience a Lorentz-like “magnetic” force arising from Berry’s phase.53–61

Given that the complex-valued nature of the Hamiltonian arises from the electronic spin, both of

these effects represent spin-dependent nuclear phenomena.

Third, within the condensed matter physics discipline, there has also been a recent push to

study spin-dependent nuclear dynamics in so far as it relates to ferromagnetic materials with strong

SOC.13–15,62 Here, the basic premise is that, when one runs current through a material, the spins of

the transmitted electrons will interact with the built-in magnetic field of the material (which is dic-

tated by the nuclear positions, i.e. the “lattice”). This interaction can lead both to changes in the spin

of the transmitting electrons, as well as changes in the magnetic moment of the material (i.e. mag-

netic domain walls can move as nuclei relax). A recent review of this so-called “Current-induced

spin-orbit torques” (as relevant to ferromagnetic and antiferromagnetic systems) appeared recently
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in Reviews of Modern Physics.15 Overall, the question of how one couples nuclear dynamics and

electronic spin appears to be in the zeitgeist nowadays.

With this background in mind, the goal of this paper is quite limited, and yet we feel prescient.

In this paper, we will address a very simple question that, to our knowledge, has not yet been studied.

Namely, for a simple, nonadiabatic, activated (as opposed to photo-induced) chemical reaction, how

are the reaction rates and scattering cross-sections affected by the presence of electronic spin (and

a complex-valued Hamiltonian)? We emphasize that our focus here will be on systems with two

spatially distinct electronic states (or potentially two spin states plus two spatially distinct electronic

states) with unbound nuclear states; as we will show in a future publication, the dynamics become

even more interesting in systems with three or more spatially distinct electronic states or systems

with bound nuclear states and electric current (which are closer to CISS models). Nevertheless,

even within a limited framework of two electronic states, we will show that Berry’s magnetic force

can indeed have a significant influence on the nuclear dynamics and lead to an observable spin

polarization.

This paper is structured as follows: In Sec. 2, we discuss some apriori well-known conditions

for observing Berry’s force as induced by spin-polarization. These conditions will guide our un-

derstanding of the results below. In Sec. 3, we present our model Hamiltonian with two spatial

electronic states. In Sec. 4, we present results and highlight the practical consequences of Berry’s

phase as far as inducing spin polarization. In Sec. 5, we hypothesize about the potential connections

between our results and exciting modern experiments that fall under the title CISS.

2 Background

In all that follows, unless stated otherwise, we will use a, b to represent diabatic spin-free (e.g.

spatial) states, j, k to represent adiabatic spin-free states, σ, σ′ to represent spins, and m,n to rep-

resent adiabatic electronic states that includes spin.
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Consider a general two-site Hamiltonian with SOC and time-reversal symmetry (TRS):

H = T̂nu +
∑
a,σ

Ea(R)c†aσcaσ +
∑
a6=b,σ

tab(R)c†aσcbσ +
∑

a6=b,σ,σ′
saσbσ′(R)c†aσcbσ′ (1)

Here, T̂nu = − h̄2

2M
∇2

R is the nuclear kinetic operator, a, b = 1, 2 and σ, σ′ =↑, ↓,M is the nuclear

mass, R = (x, y) is the nuclear position operator, and caσ is the electronic annihilation operator

at site a and spin σ. We allow the on-site energy Ea(R), the diabatic coupling tab(R) and the

spin-orbit coupling saσbσ′(R) to vary as functions of nuclear position. By TRS, tab(R) is real and

sa↑b↑(R) = s∗a↓b↓(R) and sa↑b↓(R) = −s∗a↓b↑(R). As shown in Fig. 1, we consider the case where

there is a curve crossing between the two states, which results in an energy barrier in the middle. We

assume the potential surfaces are unbound in the reaction coordinate, corresponding to a reaction

associated with a binary collision. Both the adiabatic energy surfaces and diabatic energy surfaces

are doubly degenerate because of Kramer’s rule.

Figure 1: Schematic representation of the energy surface of our model. Note that the nuclear coordinatesR are two-dimensional, and here we only
show the reaction coordinate.

Mathematically, within the diabatic electronic basis |1 ↑〉 , |1 ↓〉 , |2 ↑〉 , |2 ↓〉, the overall nuclear-
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electronic Hamiltonian (Eq. (1)) can be written as follows:

H = T̂nu + V̂ = T̂nu +



E1(R) 0 Vt(R) Vs(R)

0 E1(R) −V ∗s (R) V ∗t (R)

V ∗t (R) −Vs(R) E2(R) 0

V ∗s (R) Vt(R) 0 E2(R)


(2)

where operator V̂ includes all terms except the nuclear kinetic operator. The matrix element Vaσ,bσ′

(a, b = 1, 2, σ, σ′ =↑, ↓) should be understood as 〈aσ|V̂ |bσ′〉, so by comparing with Eq. (1), one

finds that Vt = t + s1↑2↑ and Vs = s1↑2↓. Note that the adiabatic ground state energy (doubly

degenerate) of Hamiltonian (2) is simply58

Eg(R) =
E1(R) + E2(R)

2
−

√(E1(R)− E2(R)

2

)2

+ V 2
t (R) + V 2

s (R) (3)

which can be analytically derived via matrix diagonalization.

2.1 Berry Curvature of Complex Hamiltonians

Though wewill perform quantum scattering simulations, it is helpful to consider the Berry force

effect within a classical picture of the nuclear dynamics. When an electronic Hamiltonian is not

real (i.e. Im{H} 6= 0, as in Hamiltonian (2)), classical dynamics along the ground state does not

follow the usual (conservative) Newton’s laws: The forces that nuclei feel are not just the simple

energy gradient−∇Eg (where Eg is defined in Eq. (3)). In particular, for an arbitrary system (with

or without TRS) moving along adiabatic surfacem, nuclei feel an effective “Berry magnetic force”,

defined by:53,61,63

FB
m = h̄

p

M
×Bm =

2h̄

M
Im

{∑
n6=m

dmn(p · dnm)

}
(4)
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Here, dmn is the derivative coupling between surfacem and n:

dmn =
〈ψm|∇H|ψn〉
En − Em

(5)

In 2D and 3D systems, this Berry force is equivalent to the Lorentz force produced by a magnetic

field of the form:

Bm = ∇× (i 〈ψm|∇|ψm〉) = −i
∑
n6=m

dmn × dnm (6)

If a general Hamiltonian does not obey TRS, FB
m can be different for each of the adiabats, such

that nuclei can in principle experience completely different magnetic forces on different surfaces.

That being said, when a system does have TRS and an odd number of electrons, fromKramer’s rule,

each adiabatic surface will be doubly degenerate with a time reversal state (“Kramer doublets”), and

the Berry forces on the two surfaces are related to each other. To prove this statement, suppose states

m′, n′ are the time-reversal states of m, n, i.e. |m′〉 = Θ |m〉 and |n′〉 = Θ |n〉, where Θ is the

time-reversal operator. The derivative coupling shown in Eq. (5) betweenm′ and n′ is

dm′n′ =
〈ψm′|∇H|ψn′〉
En′ − Em′

=
〈Θψm|(∇H)Θ|ψn〉

En − Em
(7)

Because H obeys TRS, we have HΘ = ΘH (and hence (∇H)Θ = Θ(∇H)), and thus

dm′n′ =
〈Θψm|Θ(∇H)ψn〉

En − Em
(8)

By the antiunitarity of Θ, 〈Θu|Θv〉 = 〈u|v〉∗, so that

dm′n′ =
〈ψm|∇H|ψn〉∗

En − Em
= d∗mn (9)
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The corresponding Berry magnetic force on adiabatic surfacem′ is

FB
m′ =

2h̄

M
Im

{∑
n′ 6=m′

dm′n′(p · dn′m′)

}
=

2h̄

M
Im

{∑
n 6=m

d∗mn(p · d∗nm)

}
= −FB

m (10)

Eq. (10) shows that, given TRS and the same momentum, the nuclei feel equal and opposite forces

on different Kramer doublet surfaces.

2.2 Detailed Balance and Equilibrium For Systems with TRS

Although our primary interest is the nature of chemical reactions in the condensed phase, for

the present paper, we will simulate below the small unbound system shaped as in Fig. 1 within

a microcanonical ensemble. In restricting ourselves to a small system, our rationale is that, be-

cause we can employ exact scattering theory for small systems, we will be able to avoid any and

all semiclassical approximations and make definitive statements about quantum dynamics without

regard to any question of accuracy; all results here should be appropriately extendable to larger,

open systems with some caveats. See Sec. 5.1 for a more detailed discussion of this point. With

this framework in mind, consider a system whereby two molecules can undergo a binary collision

(with both electrons and nuclei rearranging), and we will label the reactant terminal as terminal #1

and the product terminal as terminal #2. For each terminal, we label the interior quantized states

as µ/ν (terminal #1) or µ′/ν ′ (terminal #2); σ, σ′ =↑, ↓ denote specific spin states. We assume that

there is no SOC asymptotically within terminals #1 or #2, so that one can label all incoming and

outgoing states with pairs of labels µσ, etc.

The very first question we must ask is: What is the nature of equilibrium for such a system?

After a quick second of thought, one realizes that there cannot be any spin polarization in the

terminals. After all, at equilibrium, we must find that the population of electronic state µ with spin
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↑ in terminal #1 is:

P1,µ↑ =
1

Z
〈1, µ ↑|e−βH |1, µ ↑〉 =

1

Z
〈1, µ ↑|e−βΘ−1HΘ|1, µ ↑〉

=
1

Z
〈1, µ ↑|Θ−1e−βHΘ|1, µ ↑〉 (11)

where Z is the partition function. Using the fact that Θ = KU , whereK is the antilinear complex

conjugation operator and U is the unitary operator that interconverts between up and down spin, it

follows that:

P1,µ↑ =
1

Z
〈1, µ ↓|K−1e−βHK|1, µ ↓〉 =

1

Z
〈1, µ ↓|e−βH∗|1, µ ↓〉

=
1

Z
〈(1, µ)∗ ↓|e−βH |(1, µ)∗ ↓〉 (12)

Using the fact that there is no SOC asymptotically, one can assume that the spatial state |1, µ〉 has

a real wave function, and so at equilibrium:

P1,µ↑ = P1,µ↓ (13)

For our purposes below, it will be helpful to rederive these equilibrium (Boltzmann) statistics

for the internal quantum states explicitly using scattering theory. According to time reversibility,

we know that for a scattering process with translational energy E, the transmission rate Ta,µσ→bµ′σ′

satisfies64

Ta,µσ→b,µ′σ′(E) = Tb,µ′σ̃′→a,µσ̃(E + εµ − εµ′) (14)

Here, a, b are indices of terminals (either the same or different), εµ, εµ′ are the bound energies of the

quantized states µ, µ′ and σ̃, σ̃′ are the opposite spin of σ, σ′. In other words, if σ =↑, then σ̃ =↓,

etc.

Now, we suppose that the terminals are in contact with a bath at temperature kTbath = 1/β
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that promotes collisions and dictates (on average) the translational energy of collision as E. Let us

define the state-to-state rate constant

ka,µσ→b,µ′σ′ =
1

β

∫
dEe−βETa,µσ→b,µ′σ′(E) (15)

In terms of k, Eq. (14) reads

ka,µσ→b,µ′σ′ = eεµ−εµ′kb,µ′σ̃′→a,µσ̃ (16)

There are two key properties of these state-to-state resolved transmission factors and rate con-

stants that must be emphasized. First, in Eq. (14), by letting b = a and µ′ = µ, we recover the

equality

Ta,µσ→a,µσ(E) = Ta,µσ̃→a,µσ̃(E) (17)

i.e. the reflection probability is not changed by switching spin.

Second, according to the conservation of probability,

∑
b,µ′σ′

Ta,µσ→b,µ′σ′(E) =
∑
b,µ′σ′

Ta,µσ̃→b,µ′σ′(E) = 1 (18)

Therefore, if we invoke Eq. (17), we find:

∑
b,µ′σ

(b,µ′σ′ 6=a,µσ)

Ta,µσ→b,µ′σ′(E) =
∑
b,µ′σ

(b,µ′σ′ 6=a,µσ̃)

Ta,µσ̃→b,µ′σ′(E) (19)

Or, in terms of k,

∑
b,µ′σ

(b,µ′σ′ 6=a,µσ)

ka,µσ→b,µ′σ′ =
∑
b,µ′σ

(b,µ′σ′ 6=a,µσ̃)

ka,µσ̃→b,µ′σ′ (20)
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At this point, we can prove that Boltzmann statistics arise. According to standard kinetics, the

change in population of any one internal state is:

dPa,µσ
dt

=
∑
b,µ′σ

(b,µ′σ′ 6=a,µσ)

(−Pa,µσka,µσ→b,µ′σ′ + Pb,µ′σ′kb,µ′σ′→a,µσ) (21)

If we apply Eq. (20) to the first term of Eq. (21) and we apply Eq. (16) to the second term of Eq. (21),

we arrive at:

dPa,µσ
dt

=
∑
b,µ′σ

(b,µ′σ′ 6=a,µσ̃)

(−Pa,µσka,µσ̃→b,µ′σ′ + eβ(εµ′−εµ)Pb,µ′σ′ka,µσ̃→b,µ′σ′)

=
∑
b,µ′σ

(b,µ′σ′ 6=a,µσ̃)

e−βεµka,µσ̃→b,µ′σ′(−eβεµPa,µσ + eβεµ′Pb,µ′σ′) (22)

Similar expressions can be obtained starting from dPb,µ′σ′

dt
. Ultimately, because all populations must

be stationary at equilibrium (dPa,µσ
dt

= 0), we find that the equilibrium populations must indeed

satisfy:

Pa,µσ =
e−βεµ

Z
(23)

Here Z =
∑

µ e
−βεµ is the normalization constant, i.e. the total partition function.

For the seasoned reader, the above arguments just recapitulate facts that are well known from

statistical mechanics: detailed balance at equilibrium follows from the time-reversible dynamics of

a system in contact with a thermal bath. And as long as SOC vanishes far away from a crossing

point, so that spin is a good quantum number in the terminals, Boltzmann equilibrium statistics

still follow from the time-reversal symmetry properties of the transmission probabilities (despite

the more complicated spin-dependent nature of those probabilities in Eq. (14)). Nevertheless, the

argument above tells us only about equilibrium, not the approach to equilibrium. With this goal in

mind, let us now turn our attention to reaction rates and dynamics, using the transmission proba-
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bilities defined above.

2.3 Reaction Rates for Systems with TRS

Given the background above, let us consider a simple thought experiment. Suppose we start

with a system out of equilibrium, or more specifically a system in local equilibrium only, i.e. with

all population in one terminal. Given TRS, from the argument above, we will necessarily find that

– at long times – the systems will reach an equilibrium state without any spin-polarized population

anywhere. Nevertheless, one can ask: what about short times? Will one ever observe spin-polarized

populations at short times? Or vice versa, in language adapted to the canonical ensemble, for a

system with time reversal symmetry, can we find spin-dependent reaction rate constants?

In general, yes, we can find spin-dependent rate constants. Or, in blunt language, suppose that,

at the beginning of a simulation, the system is equilibrated only at terminal #1, i.e. P1,µ↑ = P1,µ↓ =

e−βεµ

Z1
(where Z1 is the partition function of terminal #1). For very short times, we can ignore

the build-up of population in other terminals or any changes in P1,µ↑, P1,µ↓ as functions of time.

Therefore, the short time expression for polarization in any other terminal (say #2) becomes

kpolar =
∑
µ′

dP2,µ′↑ − P2,µ′↓

dt

=
∑
µ,µ′

P1,µ↑(k1,µ↑→2,µ′↑ − k1,µ↑→2,µ′↓) + P1,µ↓(k1,µ↓→2,µ′↑ − k1,µ↓→2,µ′↓)

=
1

Z1

∑
µ,µ′

e−βεµ(k1,µ↑→2,µ′↑ − k1,µ↑→2,µ′↓ + k1,µ↓→2,µ′↑ − k1,µ↓→2,µ′↓) (24)

In general, k1,µ↑→2,µ′↑ 6= k1,µ↓→2,µ′↓ and k1,µ↓→2,µ′↑ 6= k1,µ↑→2,µ′↓, so the polarization in terminal

#2 (as given by Eq. (24)) is not zero. Our goal in this paper will be to analyze the size of these spin

polarizations.

That being said, there are two caveats to this general conclusion that must now be discussed; in

particular, there are two cases where spin polarization will never occur.
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2.3.1 Caveat #1: System with Inversion Symmetry

For a systemwith time reversibility, the transmission rates are connected by Eq. (14). Moreover,

if the system also satisfies inversion symmetry (IS) between terminal #1 and #2, then for inversion

symmetric pairs of states |1, µ〉, |2, µ̃〉 and |1, ν〉, |2, ν̃〉, we have εµ = εµ̃, εν = εν̃ , and

k1,µ↑→2,ν̃↑ = k2,µ̃↑→1,ν↑

k1,µ↑→2,ν̃↓ = k2,µ̃↑→1,ν↓ (25)

In such a case, if the system begins in equilibrium in terminal #1, then the overall spin polarization

in terminal #2 is zero even at short times:

kpolar =
1

Z1

∑
µ,µ′

e−βεµ(k1,µ↑→2,µ′↑ + k1,µ↓→2,µ′↑ − k1,µ↓→2,µ′↓ − k1,µ↑→2,µ′↓)

=
1

Z1

∑
µ,µ′

e−βεµ(k1,µ↑→2,µ′↑ + k1,µ↓→2,µ′↑ − eβ(εµ−εµ′ )(k2,µ′↑→1,µ↑ + k2,µ′↓→1,µ↑)) (by TRS)

=
1

Z1

∑
µ,ν

e−βεµ(k1,µ↑→2,ν̃↑ + k1,µ↓→2,ν̃↑)−
1

Z1

∑
µ,ν

e−βεµ̃(k2,µ̃↑→1,ν↑ + k2,µ̃↓→1,ν↑) (by IS)

= 0 (by IS) (26)

The significance of Eq. (26) is that, for a system with inversion symmetry, provided that one equili-

brates all dynamics initially in one terminal, no spin polarization will ever be observed in the other

terminal. There is no such constraint for systems lacking inversion symmetry, such as systems with

a chiral helical potential.65–67 However, one must note that lack of inversion symmetry is only a

necessary (but not sufficient) condition for chirality, since a molecular system can be both achi-

ral and inversion asymmetric (e.g. one water molecule). We are continuing to explore the exact

relationship between structural chirality and nuclear-induced spin-polarization in our laboratory.
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2.3.2 Caveat #2: System with Two Terminals and No Spin Flip

Although our entire discussion above has been in the context of a system with two terminals,

all of the conclusions above were in fact general and applicable to the case of arbitrarily many

terminals. However, for a system with two terminals (and not three or more) and no possibility

of spin flip, there is one more key symmetry worth mentioning. Namely, if we assume that one

terminal has an equilibrated set of internal quantum states, the total transmission will necessarily

be equal for the up spin and down spin; thus, no spin polarization can be observed. The proof is

given in Appendix B.

This concludes the necessary background as far as understanding spin-dependent rate constants.

3 Simulation Details

3.1 Observables

In order to gain information for spin-dependent reaction rates, below we will study a quasi-1D

system where the diabatic surfaces E1 and E2 are unbound in one direction. We imagine a simple

complex-valued avoided crossing (see Fig. 2), and we define two coordinates: (1) a longitudinal

(reaction) coordinate, where nuclei are incoming and outgoing, and along which the magnitude of

the potential energy surfaces changes; (2) a transverse coordinate, where the nuclear wave function

is bound and alongwhich only the phase of the diabatic coupling changes. The nuclei will enter with

a small enough energy such that one always starts and ends on the ground adiabatic electronic state.

Nevertheless, in the transverse coordinate, there is enough energy such that the nuclei can switch

between different bound states. Therefore, each individual state of interest is characterized by two

numbers: the transverse eigenstate nT and electronic spin σ. By design, all SOC parameters are

negligible outside the reaction region, so that the spin is a good quantum number for the incoming

and outgoing waves.

From the arguments in Appendix B, it is clear that, for the case of two terminals, many spin-
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dependent effects can be washed away if we average over an equilibrated set of initial conditions.

With this caveat in mind, below, we will report state-to-state transmission (rather than a total rate

constant that would be the integral over many state-to-state transmission rates). In particular, in

what follows below, we will report transmission rates from the ground transverse state (nT = 0) of

electronic diabatic state 1 to all other possible transverse states corresponding to diabatic state 2. In

other words, if the initial spin is σ and we denote the final spin σ′, the spin-dependent transmission

rate we report is:

Tσ→σ′ =
∑
nT

T1,0σ→2,nT σ′ (27)

Beyond raw transmission, we will also report the absolute spin polarization (∆T ) and the rela-

tive spin polarization (P ):

∆T = T↑→↑ + T↓→↑ − T↑→↓ − T↓→↓ (28)

P =
∆T

Toverall
=
T↑→↑ + T↓→↑ − T↑→↓ − T↓→↓
T↑→↑ + T↓→↑ + T↑→↓ + T↓→↓

(29)

By investigating these three observables (T ,∆T and P ) for a series of Hamiltonians (that break

spatial symmetry in one way or another), we will necessarily learn about how Berry force affects

spin-dependent chemical reaction rates.

3.2 Form of the Hamiltonian

The Hamiltonians studied below will be characterized by three different criteria:
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3.2.1 Form of SOC

The first criterion is the form of the SOC. Generally, a Hamiltonian with SOC has the form

HSO = α(σxL̂x + σyL̂y + σzL̂z)

= α
∑
a,b

(Lx − iLy)abc
†
a↑cb↓ + (Lx + iLy)abc

†
a↓cb↑ + (Lz)ab(c

†
a↑cb↑ − c

†
a↓cb↓) (30)

where a, b = 1, 2 are the indices of diabatic states, α is the SOCmagnitude and the L̂’s are electronic

angular momentum operators. Comparing Eq. (30) with Eq. (1), the two SOC terms in our model,

s↑↑(R) and s↑↓(R), correspond to the z-component and xy-components of SOC, respectively. Here,

we will assume that only one of s↑↑(R) or s↑↓(R) is nonzero, so that the Hamiltonian can be

categorized into two cases:

1. A two-state case: s↑↑(R) 6= 0, s↑↓(R) = 0, where the two opposite spins are decoupled. The

effective Hamiltonian of each spin consists of two electronic states:

H↑↑ = − h̄2

2M
∇2

R +

E1(R) Vt(R)

V ∗t (R) E2(R)

 , H↓↓ = H∗↑↑ (31)

2. A four-state case with s↑↑(R) = 0, s↑↓(R) 6= 0. Here, Berry curvature arises only from the

complex-valued nature of the spin-flipping SOC.

3.2.2 Geometry of Diabatic Potential Energy Surfaces

The second criterion is the geometric form of the diabatic potential energy surfaces. Again we

consider two cases: a bent geometry and a linear geometry. See Fig. 2.

The parameters for the bent system are

E1(R, θ) = A(1 + tanh
(
ε(θ − π

4
)
)

) (32)

E2(R, θ) = A(1− tanh
(
ε(θ − π

4
)
)

) (33)

16



where R =
√
x2 + y2 and θ = atan (y/x) are the polar coordinates. We place a hard wall at

R = Rmin or R = Rmax, i.e. E1 = E2 = +∞ if R < Rmin or R > Rmax. As far as the couplings

are concerned, we set:

Vt(R, θ) =


C exp

(
−ε2(θ − π

4
)2 + iWu(x, y)

)
Two-state Case

C exp
(
−ε2(θ − π

4
)2
)

Four-state Case
(34)

Vs(R, θ) =


0 Two-state Case

D exp
(
−ε2(θ − π

4
)2 + iWu(x, y)

)
Four-state Case

(35)

The incoming and outgoing terminals of the system are located at θ = 0 and θ = π/2, respectively.

We choose Rmin = 4, Rmax = 8, ε = 5 andM = 1000 (all in atomic units, same below), and fix

D � C in our simulations.

The parameters for the linear system are

E1(x, y) = A(1 + tanh(εy)) (36)

E2(x, y) = A(1− tanh(εy)) (37)

We place a hard wall at x = −Lx
2
or x = Lx

2
, i.e. E1 = E2 = +∞ if x < −Lx

2
or x > Lx

2
.

As far as the couplings are concerned, we set:

Vt(x, y) =


C exp(−ε2y2 + iWu(x, y)) Two-state Case

C exp(−ε2y2) Four-state Case
(38)
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Vs(x, y) =


0 Two-state Case

D exp(−ε2y2 + iWu(x, y)) Four-state Case
(39)

The incoming and outgoing terminals of the system are located at y = −Ly
2
and y = Ly

2
, respec-

tively. We choose Lx = 8, Ly = 4, ε = 5 andM = 1000 in our simulations.

3.2.3 Geometry dependence of the SOC Phase

Our third criterion is the phase changing direction u(x, y) (see Eq. (34), (35), (38) and (39)).

We investigate two types of phase modulation functions u:

1. Radial dependence: u(x, y) =
√
x2 + y2

2. Linear dependence: u(x, y) = x cosφ+y sinφ. Hereφ is a parameter specifying the coupling

direction.

3.3 Berry Curvature

Recall that, for a system in 2D, the Berry curvature can be quantified by an effective magnetic

field (see Eq. (6)). Here, we will give analytic expressions for that magnetic field along the adiabatic

ground state.68

3.3.1 Two-State Case

In the two-state case, the spin is a well-defined quantity everywhere, so we can use spin to label

the adiabatic ground surfaces. As discussed before, the equivalent magnetic fields for the up and

down spin surfaces are equal and opposite.

For the case of a bent geometry, the equivalent magnetic field for adiabatic state |0 ↑〉 is given

by

B0↑(R, θ) = − A|Vt|2

(∆2 + |Vt|2)
3/2

Wε

2R
(sech2 θ̃ + 2θ̃ tanh θ̃)γ(θ)ez (40)
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Eq. (40) is proved in Appendix A. For the case of linear geometry, the equivalent magnetic field for

|0 ↑〉 is

B0↑(x, y) = − A|Vt|2

(∆2 + |Vt|2)
3/2

Wε

2
(sech2 ỹ + 2ỹ tanh ỹ)γ′(x, y)ez (41)

In Eqs. (40) and (41), ∆ = (E2−E1)
2

, θ̃ = ε(θ − π
4
), ỹ = εy and γ(θ), γ′(θ) are unitless factors

depending on u(x, y):

γ(θ) =


1 u(x, y) =

√
x2 + y2

cos (θ − φ) u(x, y) = x cosφ+ y sinφ

(42)

γ′(x, y) =


x√

x2 + y2
u(x, y) =

√
x2 + y2

cosφ u(x, y) = x cosφ+ y sinφ

(43)

For the bent geometry, since the diabatic crossing point is located at θ = π
4
, where the diabatic

coupling Vt also reaches its maximum, it is worthwhile to report B0↑ at θ = π
4
as a representative

value of the Berry curvature strength:

B0↑(R,
π

4
) = −AWε

2CR
γ(
π

4
)ez (44)

In all expressions above, the equivalent magnetic field for the |0 ↓〉 surface is B0↓(x, y) =

−B0↑(x, y).

3.3.2 Four-state Case

One can perform the same calculation as above for the four-state case. However, since the

adiabatic ground state is doubly degenerate, and spin is not a good quantum number, the definition

of the two adiabatic ground states is left as a matter of choice. Here we choose our ground adiabatic
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states as (in the diabatic basis |1 ↑〉 , |1 ↓〉 , |2 ↑〉 , |2 ↓〉):

|0α〉 = η
[
Vt,−Vs,

√
|Vt|2 + |Vs|2

∆−
√

∆2 + |Vt|2 + |Vs|2
, 0
]T

|0β〉 = η
[
Vs, Vt, 0,

√
|Vt|2 + |Vs|2

∆−
√

∆2 + |Vt|2 + |Vs|2

]T
(45)

where η is the normalization constant. In our simulations, we set Vt � Vs, so when θ � π
4
,

|0α〉 ≈ |1 ↑〉 and |0β〉 ≈ |1 ↓〉 and when θ � π
4
, |0α〉 ≈ |2 ↑〉 and |0β〉 ≈ |2 ↓〉. Therefore, in the

terminals, the α and β states can be approximated as having up spin and down spin, respectively.

For the bent geometry,B0α is given by

B0α(R, θ) =
A|Vs|2

(∆2 + |Vt|2 + |Vs|2)
3/2

Wε

2R
(sech2 θ̃ + 2θ̃ tanh θ̃)γ(θ)ez , (46)

and when θ = π
4
,

B0α(R,
π

4
) =

AWε

2R

D2

(C2 +D2)3/2
γ(
π

4
)ez . (47)

For the linear geometry, B0α is given by

B0α(x, y) =
A|Vs|2

(∆E2 + |Vt|2 + |Vs|2)
3/2

Wε

2
(sech2 ỹ + 2ỹ tanh ỹ)γ′(x, y)ez (48)

In all expressions above,B0β(x, y) = −B0α(x, y).
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4 Computational Results

4.1 Methods for Calculating Transmission Probabilities

To calculate transmission probabilities, we have run two-dimensional quantum scattering cal-

culation, where we solve the Schrodinger Equation:69

(H − E) |Ψ〉 = 0 (49)

Here, H is the model Hamiltonian, E is the incoming energy and |Ψ〉 is the overall wave function.

|Ψ〉 is defined in three regions:

|Ψ(x, y)〉 =


|ψinc(x, y)〉+ |ψr(x, y)〉 Region I

|ψs(x, y)〉 Region II

|ψt(x, y)〉 Region III

(50)

Region II is the region of interest, and regions I/III are located (respectively) on the incoming/outgoing

sides of region II. The region definition for each geometry is shown in Fig. 2.

Figure 2: Region setup for scattering calculation in (a) Bent geometry; (b) Linear geometry. The definitions of longitudinal coordinate (R‖) and
transverse coordinate (R⊥) are marked in the figure. Note for the linear geometry, there is one unique R‖ and one unique R⊥.

The four parts of the wave function are: the incoming wave |ψinc〉, the reflecting wave ψr, the
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transmitting wave |ψt〉 and the interior wave function ψs. Their specific expressions are defined as

|ψinc(x, y)〉 =eik
I
nincµinc

yuInincµinc(x) |ninc〉 (51)

|ψr(x, y)〉 =
∑
n,µ

rnµe
−ikInµyuInµ(x) |n〉 (52)

∣∣ψt(R‖, R⊥)
〉

=
∑
n,µ

tnµe
ikIIInµR‖uIIInµ(R⊥) |n〉 (53)

Here, |ψ(x, y)〉 denotes the electronic wave function at nuclear positions (x, y), |n〉 is the electronic

state, rnµ and tnµ are the reflection and transmission coefficients in channel nµ, R‖ and R⊥ are the

longitudinal and transversal coordinates in region III. For the bent geometryR‖ = −x andR⊥ = y;

for the linear geometry, R‖ = y and R⊥ = x.
∣∣uInµ〉 and ∣∣uIIInµ〉 are the µth transverse eigenstates

associated with electronic state n in regions I and III, which satisfy

(− h̄2

2M

∂2

∂x2
+ V I

n)
∣∣urnµ(x)

〉
= EI

nµ

∣∣uInµ(x)
〉

(54)

(− h̄2

2M

∂2

∂R2
⊥

+ V III
n )
∣∣utnµ(R⊥)

〉
= EIII

nµ

∣∣uIIInµ(R⊥)
〉

(55)

Here V I
n and V III

n are the diabatic energies of electronic state n in regions I and III. In regions I and

III, the wave numbers associated with energies E0, nuclear transverse state µ and electronic state n

are kInµ =
√

2M(E0 − EI
nµ) and kIIInµ =

√
2M(E0 − EIII

nµ), respectively.

As discussed above, we fix the incoming transverse state to be the ground state (i.e. µinc = 0)

in all calculations. To calculate the spin-dependent transmission rates, we choose ninc to be either

adiabatic state |0 ↑〉 or adiabatic state |0 ↓〉.

4.2 Simulation Results of the Two-state System

We begin our investigation by plotting the transmission and spin polarization for the two-state

system (Vt 6= 0 and Vs = 0) with bent geometry. As shown in Fig. 3a, we calculate the transmission

rates T↑→↑ and T↓→↓ with model parameters A = 0.02, C = 0.005, W = 0.2. We set u(x, y) =
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√
x2 + y2 and the overall incoming energy 0.001 ≤ E ≤ 0.038. As would be expected for any

scattering process through or over an energetic barrier, the transmission is close to zero for both

spins when the incoming energy is less than the barrier height (which is given by Ebarrier = A −

C = 0.015 here); vice versa, when energy is over the barrier height, the transmission increases

dramatically.

In Fig. 3b, we plot the absolute spin polarization ∆T , as calculated by Eq. (28) at each in-

coming energy. For most incoming energies (0.010 < E < 0.034), the down spin is significantly

preferred. The absolute polarization reaches its maximum magnitude (0.038) when the incoming

energy is slightly above the barrier (E ≈ 0.022 here), and decreases when the incoming energy

gets even higher. The reason that polarization decreases at high energy, as the nuclear momentum

increases, is two-fold: (1) the relative bending effect of a magnetic field becomes weaker (which

can be inferred from the classical expression of cyclotron motion radius rc = Mv/B), and (2) the

time the nuclei spend in the crossing region (where the magnetic field is strongest) is also shorter;

remember that Berry force is not homogeneous but highly localized in space (i.e. localized to the

crossing region). Not intuitively, when the incoming energy approaches the threshold for populat-

ing the first excited state (E > 0.034), the up spin is preferred. (The exact physical motivation

behind such a polarization is unclear; one can only speculate for now.)

Lastly, in Fig. 3c, we plot the relative spin polarization P as calculated by Eq. (29). Around

E = 0.02, P follows the same pattern as ∆T in so far as the down spin is preferred, though the

peak minimum is shifted to a lower energy (around E = 0.015, as marked by the triangles). For

very low energies, we find that the transmission of the up spin is actually preferred; however, any

preference at such a low energy is likely not very meaningful as the total transmission is effectively

negligible.
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Figure 3: Two-state system simulation results for a bent geometry. (a) Spin-specific transmission rate T (E), (b) transmission rate difference
∆T (E) and (c) polarization P (E) as functions of energy; see Eqs. (28),(29). The energy barrier is shown by the vertical dashed line. The

polarization peaks are marked with black triangles in (b) and (c). The parameters areA = 0.02, C = 0.005,W = 0.2 and u(x, y) =
√
x2 + y2.

See Eqs. (32),(33),(34). Note that, while spin polarization is observed, the details of which spin is favored at which energy is rather complicated.

4.2.1 Polarization Dependence on the Phase Gradient Magnitude, Energy Gap and Cou-

pling Strength

Having identified spin polarization for one Hamiltonian, we will now turn our attention to the

more important question: how does spin polarization change for different Hamiltonians? Specifi-

cally, we will focus on three parameters: the phase gradient magnitude W , the half energy gap A

and the coupling strength C. We will vary one parameter at a time, and fix all other parameters as

their default values: W = 0.2, A = 0.02 and C = 0.005. Results are plotted in Fig. 4. As one

might expect, we find that changing the phase gradient W has no influence on the total transmis-

sion (Fig. 4a), but this change does affect the polarization (both absolute and relative) dramatically

(Fig. 4b,c). By contrast, increasing the half energy gap A both shifts the transmission and leads

to a broadened and deepen polarization peak (Fig. 4d-f); The former result is intuitive because

changing A leads to a change in the energy barrier; the latter result is more interesting and will

be discussed below. Finally, changing the coupling strength C also affects both transmission and

polarization (Fig. 4g-i). As the diabatic coupling strength increases, the transmission increases and

shifts to low energy, because, with a strong coupling strength, the energy barrier of the adiabatic

ground state is lower and the system becomes more adiabatic. However, more interestingly, as C

increases, the relative polarization becomes smaller, as will also be discussed below in detail.
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Figure 4: The total transmission T (E) (a,d,g), absolute polarization ∆T (E) (b,e,h) and relative polarization P (E) (c,f,i) with different phase
gradient magnitudeW , half energy gap A and diabatic coupling strength C for a two-state system with a bent geometry. The polarization peaks
(which will be plotted in Fig. 5 below) are marked with black triangles (b,c,e,f,h,i). The default parameters are A = 0.02, C = 0.005,W = 0.2

and u(x, y) =
√
x2 + y2. See Eqs. (32),(33),(34). IncreasingW does not change transmission but does amplify polarization (a-c); Increasing A

shifts both transmission and polarization (d-f); Increasing C shifts transmission and polarization, but also reduces transmission (g-i).

To better analyze the data in Fig. 4, in Fig. 5 we plot (in red) the peak value for the relative

polarizationPpeak (i.e. which is defined as the extreme value of the relative polarizationP (E)when

E > 0.9Ebarrier [see the black triangles in Fig. 4]) as a function of the three parametersW,C,A.

We also plot (in blue) the peak in absolute polarization ∆T (E).

We begin with P (E). As would be expected qualitatively from the analytic expression for the

effective magnetic field in Eq. (44), we find the following:

• The peak polarization Ppeak has a linear dependence onW (Fig. 5a).

• The peak polarization becomes smaller as the diabatic coupling strength C increases (Fig.

5b) and one enters the adiabatic limit.

• The peak polarization Ppeak increases with half energy gap A (Fig. 5c).
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Note that interpreting the last results above is difficult: A is not as simple as just changing the

adiabaticity of the rate process because A modulates both the asymptotic energy gap as well as

the gradients of the diabatic curves at the crossing point. Overall, the spin-polarization appears to

track very well with the form of the effective magnetic field at the crossing point (Eq. (44)), and our

preliminary conclusion is that the relative spin-polarization should be largest in the nonadiabatic

limit.

Next, we turn to ∆T (E). As far as dependence on W and A, the peak in ∆T (E) follows the

peak in P (E) qualitatively. However, realizing that the total transmission must go to zero in the

extreme nonadiabatic limit (when C → 0), it makes sense that we find that the peak in absolute

spin polarization (i.e. the maximum ∆T (E)) has a maximum for an intermediate value ofC. Thus,

for the experimentalist interested in measuring or producing large spin polarization, there is a sweet

spot for the Hamiltonian.
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Figure 5: Peak relative polarization Ppeak and peak absolute polarization ∆Tpeak (see black arrows in Fig. 3c and Fig. 3b) as functions of
W ,C,A for the two-state system with bent geometry. The default parameters are A = 0.02, C = 0.005,W = 0.2 and u(x, y) =

√
x2 + y2.

The magnitude of Ppeak increases withW and A but decreases with C, which agrees with the strength of effective magnetic field (Eq. (44))
qualitatively. Thus, the relative peak polarization goes up in the nonadiabatic limit. Vice versa, the peak absolute polarization has a maximum

around C = 0.003.

4.2.2 Polarization Dependence on the Phase Gradient Direction and Geometry of Energy

Surface

Having investigated how spin polarization depends on the magnitude of the phase gradient of

the diabatic coupling (W ), let us next turn our attention to the direction of the phase gradient. We
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will work with both the bent and linear geometries.

First, for the case of a bent geometry, we will set perform simulations for a family of possible

phases u(x, y) = x cosφ + y sinφ where φ ∈ [0, 2π]. In Fig. 6a, we show some representative

results for P (E) with different angles φ, and in Fig. 6b, we plot the dependence of Ppeak on φ.

Overall, we find that the polarization P (E) is largest when φ = π
4
or 7π

4
, i.e. where the phase

gradient is perpendicular to the momentum of the nuclei. Vice versa, when φ = 3π
4
or 11π

4
, the

phase gradient is parallel to the momentum, and the polarization is almost zero. As above, our

result can be explained by considering the analytic expression for the effective magnetic field at the

crossing point. As shown in Eqs. (42) and (44), the effective magnetic field at a diabatic crossing

point is proportional to cos (φ− π
4
), and both the polarization and the magnetic field are maximized

when φ = π
4
or 7π

4
. Note that, in Fig. 6b, we have fit the computed Ppeak − φ curve by cos (φ− π

4
),

and we find that the relative polarization agrees quantitatively with the strength of the effective

magnetic field at the crossing point (Eq. (44)).

Second, we turn to the case of a linear geometry, where x is the transverse direction and y is the

direction of incoming momentum. Again, we perform simulations for the same family of possible

phases. Note that, in Fig. 6c (and unlike Figs. 6a,b), we now observe no polarization for any u(x, y)

– even though there is a nonzero Berry force (see Eq. (41)). To rationalize this finding, note that

the diabatic potential energies in this system have a plane of reflection symmetry that is parallel to

the direction of incoming and outgoing momentum. In other words, even though incoming nuclei

moving in the y direction will feel opposite Berry magnetic forces in the x direction (depending on

their spin [up or down]) and therefore bend either to left (−x) or right (+x), their total transmission

in the y direction will not depend on the spin.70 Overall, Fig. 6c must remind us that, even though

the spin polarization can be mapped to the effective magnetic field in Eq. (44), systems with the

same Berry curvature magnitude can yield completely different observable spin current behavior;

after all, quantum wavepacket motion depends just as much (and usually far more) on the adiabatic

potential energy surfaces than it depends on the Berry force.

This completes our discussion of the two state results.
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Figure 6: (a) Energy-polarization curve for the bent geometry for a few different phase directions φ. (b) Ppeak as function of φ for the bent
geometry. Note that for the bent systems, the overall spin polarization can be mapped directly onto the Berry force at the crossing point (see
Eqs. (42) and (44)), denoted “cos (φ− π

4
) fit” here. (c) Energy-polarization curve for the linear system for a few different phase dependence

functions u(x, y). Note here that, even though the Berry force has the same form as in Fig. 6a, there is no spin polarization (which highlights the
fact that the observed spin polarization depends on the both the magnitude of the Berry force and the shape of the potential energy surfaces). The

default parameters for all systems are A = 0.02, C = 0.005 andW = 0.2.

4.3 Simulation Results of the Four-state System

Let us next turn our attention to the four-state systemswith bent geometry. As above, we perform

scattering calculations with incoming nuclear energy 0.001 ≤ E ≤ 0.038; the system parameters

are A = 0.02, C = 0.005, D = 0.001,W = 0.2 (see Eqs. (32),(33),(34), (35)). Note that we now

have two diabatic coupling parameters, C and D. We set u(x, y) =
√
x2 + y2. The data is plotted

in Fig. 7. For the four-state system (and unlike the two-state system), one allows for spin-flipping

transmission, and so for a complete story, we must separately analyze all four cases for transmission

rates between individual initial and final spins. See Fig. 7a. We find that the energy-transmission

curve for the four-state system has a pattern which is similar to the curve for the two-state system.

The major contribution for transmission comes from spin-preserving transmission – since the spin-

preserving coupling Vt is much larger than the spin-flipping coupling Vs here (C � D).

In Fig. 7b,c, we calculate the absolute and relative polarizations for the transmission data and

find a preference for the transmission of spin up. Here, we analyze in detail the contribution from

spin-flipping transmission∆Tflip = T↓→↑−T↑→↓ and Pflip =
∆Tflip
Toverall

. Even though spin-preserving

transmission dominates spin-flipping transmission, we find that the major contribution to spin po-

larization comes from spin-flipping transmission. This is perhaps not so surprising since, although
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C � D, onlyD (which is the spin-flipping coupling) multiplies a diabatic coupling with complex-

valued character. Note that for a realistic Hamiltonian, SOCwill be present for both spin-preserving

and spin-flipping matrix elements, and recent studies on CISS systems have concluded that spin-

flipping transmission is not likely a major contribution to spin polarization for CISS systems.71–74
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Figure 7: Four-state system simulation results. (a) Spin-specific transmission rate T (E), (b) transmission rate difference ∆T (E) and (c)
polarization P (E) as functions of energy. In this figure, the ‘overall’ ∆T (E) and P (E) lines refer to Eq. (28) and Eq. (29), respectively; the

‘flipping’ ∆T (E) and P (E) lines refer to the contribution of spin-flipping transmission to the polarization (T↓→↑ − T↑→↓),
((T↓→↑ − T↑→↓)/Toverall), respectively. The parameters are A = 0.02, C = 0.005,D = 0.001,W = 0.2 and u(x, y) =

√
x2 + y2. See

Eqs. (32),(33),(34),(35). Note that, although the total transmission is dominated by spin-preserving processes, the spin polarization arises mostly
from spin-flipping processes.

4.3.1 Polarization Dependence on the Phase Gradient Magnitude, Energy Gap and Cou-

pling Strength

At this point, again we turn to the parameter dependence of spin polarization for the four-state

system with bent geometry. In addition to the phase changing rate W , the half energy gap A, the

spin-preserve coupling strength C, there is another parameter of interest: the spin-flipping cou-

pling strength D. As for the two-state case, we will vary one or two parameters at a time, and fix

all other parameters as their default value: A = 0.02, C = 0.005, D = 0.001,W = 1. The results

are plotted in Fig. 8. Similar to the two-state case, increasing W does not change the total trans-

mission, but dramatically increases polarization (Fig. 8a-c); increasing A shifts both transmission

and polarization to higher energies (Fig. 8d-f). The dependence of spin polarization on coupling

strengths C,D is more complicated. In addition, two points are worth noting:

• The transmission increases with C and spin polarization decreases with C, similar to two-
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state system (Fig. 8g-i). However, quantitatively speaking, the spin polarization (both abso-

lute and relative) is more sensitive to C in the four-state case relative to the two-state case.

For instance, by doubling the value of C from 0.005 to 0.01, the absolute polarization is re-

duced by a full 4/5 of it original value. (whereas for the two-state case, one would expect a

decrease of only 1/4). This sensitivity must arise somehow from the competition between

spin-preserving and spin-flipping transmissions, since spin-flipping transmission is the major

source of spin polarization.

• As far as the spin-flipping couplingD is concerned, increasingD does not strongly affect the

total transmission, but the polarization increases dramatically.
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Figure 8: The total transmission T (E) (a,d,g), absolute polarization ∆T (E) (b,e,h) and relative polarization P (E) (c,f,i) with differentW ,A,C
andD for the four-state systems with bent geometry. The polarization peaks (which will be plotted in Fig. 9 below) are marked with black triangles

(c,f,i). The default parameters are A = 0.02, C = 0.005,D = 0.001,W = 1 and u(x, y) =
√
x2 + y2. See Eqs. (32),(33),(34),(35). The

polarization for the four-state system is more sensitive to C (relative to the two-state case) and increases withD.

Next, let us turn to the dependence of peak polarization Ppeak on the different parameters of the

Hamiltonian. In Fig. 9, we plot Ppeak as a function ofW ,A,C,D. Here, Ppeak increases withW , A

and D and decreases with C, which agrees qualitatively with the expression for the magnetic field
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at the crossing point (Eq. (47)). It is worth mentioning that, according to Eq. (47), the relative ratio

betweenC andD is more important than the absolute value of each parameter as far as determining

the amount of polarization. In fact, Eq. (47) implies that given a certain C, the magnetic field at

the crossing point is maximized when D =
√

2C. Therefore, given only a small SOC, the spin

polarization can still be very significant if the non-SO coupling is small enough.
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Figure 9: Relative peak polarization Ppeak as a function of the model parametersW ,A,C,D for the four-state system with a bent geometry. The
default parameters are A = 0.02, C = 0.005,D = 0.001,W = 1 and u(x, y) =

√
x2 + y2. Note that Ppeak increases withW ,A,D but

decreases with C, which agrees with Eq. (47) qualitatively.

5 Discussion

From the data above, it is easy to conclude that Berry force can have a measurable effect on

spin-polarized transmission (at least for a model system). Armed with this knowledge, there are

quite a few outstanding items that we must highlight as unanswered questions – questions that will

hope to address over the next few years.
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5.1 Measuring Spin-Dependent Rate Constants in the Condensed Phase

The first outstanding question that we must address in the future is whether or not the spin po-

larization rates calculated above can be observed in the condensed phase (as opposed to the gas

phase) with finite temperature and some degrees of disorder or friction. To begin our discussion,

consider a system with nuclear and spin degrees of freedom where spin-flipping is not allowed and

where one operates in the nearly adiabatic limit. In the classical limit, the leading correction to the

dynamics will be the introduction of the Berry force in Eq. (4). However, for any classical system,

the presence of a magnetic field does not affect the equilibrium state according to the Fokker-Planck

equation.75 And as far as equilibrium rates are concerned, for realistic experiments in the condensed

phase, there will be a distribution of momenta for the reactants and it is possible that all Berry force

effects will be washed away entirely. After all, according to the transition state theory (TST) of

chemical reactions, one assumes an equilibrated velocity distribution across the barrier that sepa-

rates reactants from products and the presence of a magnetic field has no influence at all on the rate;

in general, this assumption seems to match most experiments.76 Dynamical corrections to TST are

well known and could in principle depend on amagnetic field; but in general, dynamical corrections

(like Kramers’ theory77,78) are small and, of course, any such correction would also need to keep

the equilibrium distribution unchanged by the magnetic field. Lastly, in the limit of an overdamped

reaction, momenta equilibrate very quickly and no magnetic field could possibly be detected. Thus,

if we think of a spin-dependent reaction as occurring on one classical surface, there cannot be any

magnetic field effect on the equilibrium rate constant.

Next, consider a slightly more quantum-mechanical context where we imagine a curve-crossing

(as in Fig. 1). As we showed in Sec. 4.2.1 above, we expect the relative spin-polarization to be

maximized in the nonadiabatic limit. And yet, a very simple argument can demonstrate that in the

nonadiabatic limit, the Fermi’s golden rule (FGR) rate constant will not lead to spin polarization.
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After all, consider the reaction from state #1 to state #2 initially without spin. The FGR rate is

k1→2 =
2π

h̄Z1

∑
µ,µ′

e−βE1µ|V1µ2µ′|2δ(Eµ′ − Eµ) (56)

Notice that, since the rate depends only on the absolute value of couplings V1µ2µ′ , changing the

phases of the diabatic coupling does not affect reaction rates; Fermi’s golden rule does not depend

on whether the coupling is V1µ2µ′ or V ∗1µ2µ′ . With this in mind, suppose one allows spin to enter the

dynamics. By time reversibility, we know that we must find:

〈1, µσ|V |2, µ′σ′〉 = 〈1, µσ̃|V ∗|2, µ′σ̃′〉 = 〈1µσ̃|V |2µ′σ̃′〉∗ (57)

Therefore, the relevant FGR rate constant is now:

k1σ→2 =
2π

h̄Z1

∑
µ,µ′,σ′

e−βE1,µ|V1µσ2µ′σ′|2δ(Eµ′ − Eµ)

=
2π

h̄Z1

∑
µ,µ′,σ′

e−βE1,µ
∣∣V ∗1µσ2µ′σ′

∣∣2δ(Eµ′ − Eµ)

=
2π

h̄Z1

∑
µ,µ′,σ̃′

e−βE1,µ
∣∣V1µσ̃2µ′σ̃′

∣∣2δ(Eµ′ − Eµ)

= k1σ̃→2 (58)

Therefore, k1↑→2 = k1↓→2 so that, according to FGR, if one starts in equilibrium in terminal #1

with one spin orientation (up or down), the total probability of reaching terminal #2 cannot depend

on that initial spin orientation.

Now admittedly, the FGR argument presented above needs not be correct in general; one can

certainly imagine that spin-polarization arises at a level of theory beyond 2nd order perturbation

theory (i.e. the basis for FGR). Nevertheless, even so, from the classical argument above alone, one

could make a reasonably strong case that Berry phase and Berry force effects for the nuclei should

not yield any meaningful spin-dependence in the condensed phase – at least as far the equilibrium
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rate constants are considered only. That being said, however, for a system out of equilibrium (say,

with a temperature gradient or a current running through79–83), the arguments above become entirely

void and, no matter how we do the calculation, we have every reason to expect a Berry force effect

even in the condensed phase. Indeed, there is already a substantial literature that has investigated

Berry forces in the context of molecular conduction experiments.84–86 While we are currently work-

ing on the theory of non-equilibrium spin-dependent rate constants, it is already clear in practice

that modern experiments do exist showing that spin-polarization can be promoted by the presence

of a voltage24,25,28,87,88 – which brings us necessarily to the CISS effect.21,89

5.2 Implications for CISS Effect

Although we will examine CISS effects in more detail in a later paper, a few brief words of re-

view are perhaps appropriate regarding CISS (which represents the second outstanding question for

the current research). As shown by Naaman and co-workers, the original CISS effect was demon-

strated by the following scenario: Imagine that one shines light on a gold (Au) surface coated with

(chiral) dsDNA. If one measures the spin of the electrons ejected, one finds a spin preference for

one spin orientation versus another (all relative the principle axis of the dsDNA).23 And over the

years, it has been shown that this effect is not limited to dsDNA on gold: the effect occurs for vari-

ous molecules or materials.23–33,88 The basic molecular model of CISS effect is shown in Fig. 10:

somehow or another (and the underlying physics remain debatable), an electron undergoing chiral

transmission has a fundamental spin preference.
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Figure 10: A schematic model of the original CISS effect: an electron moving through a chiral potential has a probability of transmission that
depends on its spin. The sites on the molecule are numbered.

Amultitude of theories have been proposed to explain the CISS effect.65–67,71,74,89–99 Indeed, the

physics behind CISS has been and continues to be explored using approaches including (i) tight-

binding atomistic simulations (where one assumes Rashba-like SOC)67,91–94 as well as (ii) solid

state calculations, whereby one investigates transport in the context of band theory with SOC and a

chiral potential.66,89,96–98 However, while all these theoretical frameworks successfully predict spin

polarization in certain conditions, the fundamental physical force behind the CISS is not yet fully

understood. Two essential items remain not fully explained:

1. The magnitude of the observed spin polarization is not yet consistent with theory. For most

atomistic calculations, a SOC much larger than a free carbon atom (several meV) is required

for theory to match experiment. For some models,89,97 one must also require the energy of

the incoming electron to be comparable to the SOC gap; and yet, experimentally, CISS is

observed for systems with thermal energy much higher than SOC energy.23–25,87

2. For most theoretical models, calculations have not usually modeled incoherent effects present

for charge transport. And yet, for molecules like DNA and protein, studies have shown that

electron transfer can have a very large incoherent component.100–103 More broadly, the overall
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effect of nuclear motion has not yet been fully explored for CISS.

With this background in mind, the present paper offers another perspective on the CISS effect

with regards to both of the questions above. In particular, here we have studied exactly how nuclear

motion can become entangled with spin-dependent electronic dynamics, and we have shown that

nuclear motion can indeed lead to quantitative and qualitative differences in spin-dependent trans-

mission. For instance, for one model system above, we find that polarization of ~10% for some

energies can be obtained with parameters that are not too exaggerated relative to the parameters

used by other electronic-based models of CISS.67,91 Thus, one must wonder what we will find if we

begin to study CISS and properly include nuclear motion (an idea which is also now being pursued

independently by Fransson104). Though our simulations are in electronically closed systems with

odd number of electrons, as discussed in Sec. 5.1, the spin polarization induced by Berry force

should be observable (and could be even more evident) in open systems, where the steady state oc-

cupation of electrons is usually fractional. Indeed, for a typical CISS experiment, spin selectivity

is usually observed when the system is out of equilibrium (e.g. with a current or under illumina-

tion), and according to molecular electron conduction experiments, spin-polarization does increase

dramatically far away from equilibrium (i.e. with high voltage).24,25,28,87,88

Now, despite all of these enticing features, we must also admit that it is far too early to conclude

whether or not (in any definitive way) nuclear motion directly connects to the actual CISS experi-

ments. After all, consider the naïvete of the simulations above: (i) we modeled unbound nuclear

motion above (i.e. a nuclear scattering problem), which does not line up at all with Naaman’s ex-

periments; (ii) we have not attempted to match our parameters to Naaman’s experiments, and have

simulated simple scattering problems with two (rather than many) electronic states – more on this

below. For these reasons, one cannot draw any meaningful conclusions yet regarding whether or

not a nuclear Berry force is important for CISS; and yet, it is clear that future research should focus

on this point. From our perspective, we intend to run semi-classical surface hopping calculations

in the future using a recently defined FSSH protocol for treating complex-valued Hamiltonians.52
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5.3 The question of multiple electronic states

The third and final outstanding question regarding Berry force effects on reaction dynamics is

the question of multiple electronic states. As we demonstrated in Appendix B, the two-terminal

scattering case is special in so far as the fact that, when only two terminals are open, the overall

transmission from #1 to #2 must be symmetric and equal to the overall transmission from #2 to #1

even in the presence of an external magnetic field that breaks TRS. Obviously, this is a quirk of the

two-terminal case. Consider the following diagram with three symmetric terminals:

Figure 11: Schematic view of a symmetric three-terminal system with external magnetic field (pointing inward, marked as gray crossings).
Assuming the trajectories of particles are bent to right, the blue and red arrow show the favored flow and unfavored flow. In such system, the rate

constants k1→2 = k2→3 = k3→1, but in general k1→2 6= k2→1.

Clearly, with a magnetic field on, we will not find that k1→2 = k2→1. Instead, by symmetry, we will

find that k1→2 = k2→3 = k3→1. As a result, when we start from a certain terminal (say #1), some

reaction pathways will be preferred to others. Thus, the impact of Berry’s phase must be examined

carefully with many electronic states (and more than two terminals). Interestingly, a consensus has

emerged within the theoretical chemistry community that, for the most part, the geometric phase

around real-valued conical intersections does not usually play a big role. Althorpe et al. have

shown that one can disentangle the propagators for paths that circle a conical intersection different

numbers of times (i.e. have different winding numbers), and they have argued that in many cases

(and at least for the H2 + H reaction) there is little interference between these paths for unbound

systems.105 Nevertheless, it is not yet known what are the consequences (in practice) of a Berry

magnetic or geometric force (i.e. the force that appears with a complex-valued Hamiltonian) in the

presence of a conical intersection – which is a question we are currently exploring.
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Finally, there is one more key point worth mentioning. For the two-state system considered

above, a Berry force emerged from the dependence of the phase of the diabatic couplingWu(x, y)

(see Eqs. (34),(35),(38),(39)). And in this regard, one might question whether such a non-Condon

term can have a large effect on the overall spin-dynamics of a given system. After all, non-Condon

terms are entirely absent from the standard Marcus theory -— which often does pretty well (though

non-Condon effects can sometimes be important106,107). That being said, consider a case of three

electronic states (e.g. corresponding to super-exchange) where two diabatic states come close to-

gether but are also coupled weakly to a third state:

Hel(R) =


E1(R) V12 V13

V ∗12 E2(R) V23

V ∗13 V ∗23 E3(R)

 (59)

Notice that, if E1(R), E2(R) and E3(R) are not parallel, we will still find a nonzero Berry

force if the couplings V12, V13 and V23 are all nonzero and not all of them are real. Moreover, if

E1(R) andE2(R) are close together, the Berry force can be very large. Thus, in the future, in order

to model Berry force effects on nonadiabatic dynamics, it will be crucial to investigate systems with

more than two (spatial) electronic states.

6 Conclusion

In summary, we have investigated the effect of Berry’s phase (or more importantly, Berry force)

on nuclear dynamics in the context of a complex-valued model Hamiltonian with two electronic

states. Our quantum scattering simulations have demonstrated that magnified spin polarization can

arise for nuclear geometries without inversion symmetry and our scattering results can even be

roughly predicted using an analytic expression for Berry force at the crossing point. Overall, our

findings may provide some insight into recent CISS experiments, suggesting a possible role for

nuclear motion in promoting spin selective electronic transport, though a great deal more research
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(likely with large numerical simulations) will be needed to confirm such a hypothesis.
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A Derivation of The Effective Magnetic Field

Here we derive the effect magnetic field for the two-state system with bent geometry (Eq. (40)).

In the two-state system, the electronic Hamiltonian for the up spin is given by

H =

E1(R) Vt(R)

V ∗t (R) E2(R)

 (A.1)

where E1, E2, Vt are given in Eqs. (32),(33),(34). Now, we define θ̃ = ε(θ − π
4
), Ã(θ) = A tanh θ̃,

C̃(θ) = Ce−θ̃
2 , so that

H =

 A+ Ã C̃eiWu

C̃e−iWu A− Ã

 (A.2)
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The two adiabatic states and energies are

ψ0 =
1

η0

Ã−
√
Ã2 + C̃2

C̃e−iWu

 (A.3)

ψ1 =
1

η1

Ã+
√
Ã2 + C̃2

C̃e−iWu

 (A.4)

Ea
0 = A−

√
Ã2 + C̃2 (A.5)

Ea
1 = A+

√
Ã2 + C̃2 (A.6)

where η0 =

√
(Ã−

√
Ã2 + C̃2)

2

+ C̃2, η1 =

√
(Ã+

√
Ã2 + C̃2)

2

+ C̃2 are the normalization

constants. By substituting the equations above into Eq. (5), we recover

d01 =
〈ψ0|∇H|ψ1〉
Ea

1 − Ea
0

=
1

η0η1

(ÃC̃∇C̃ − C̃2∇Ã√
Ã2 + C̃2

− iWC̃2∇u(x, y)
)

= − 1

η0η1

( C̃2√
Ã2 + C̃2

ε

R

(
A sech2 θ̃ + 2Aθ̃ tanh θ̃

)
eθ + iWC̃2∇u(x, y)

)
(A.7)

Let us define∇u(x, y) = γ(x, y)eR + ζ(x, y)eθ. Then

d01 = − 1

η0η1

( C̃2√
Ã2 + C̃2

ε

R

(
A sech2 θ̃ + 2Aθ̃ tanh θ̃

)
eθ + iWC̃2ζ(x, y)eθ + iWC̃2γ(x, y)eR

)
(A.8)

Because the component in the eR direction (proportional to γ(x, y)) is exclusively imaginary, the

real component in the eθ direction (proportional to ζ(x, y)) will not contribute to the final Berry
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force. Substituting Eq. (A.8) into Eq. (6) gives the effective magnetic field:

B0 = −id01 × d10 = id01 × d∗01

= − 1

(η0η1)2

2WAC̃3ε

R

C̃√
Ã2 + C̃2

(sech2 θ̃ + 2θ̃ tanh θ̃)γ(x, y)ez

= −Wε

2R

AC̃2

(Ã2 + C̃2)
3/2

(sech2 θ̃ + 2θ̃ tanh θ̃)γ(x, y)ez (A.9)

Finally, using the fact that Ã = E1−E2

2
and C̃2 = |Vt|2, we arrive at Eq. (40).

B Proof of Two Terminal Symmetry

Here we prove the statement mentioned in Sec. 2.3.2, that spin polarization will not arise with

two terminals and no spin flip if the system is initially equilibrated in one terminal. We will begin

with most general Green’s function expression for transmission (valid for the case of arbitrarily

many terminals):76

T1,µσ→2,µ′σ′(E) = Tr
[
Γ1,µσ(E + εµ)G†(E + εµ)Γ2,µ′σ′(E + εµ)G(E + εµ)

]
(B.1)

G(E + εµ) =
1

E + εµ −H − Σ(E + εµ)
(B.2)

where Σ is the self-energy and Γ1,µσ,Γ2,µσ are the imaginary parts of the self-energies for terminals

#1 and #2 with spin σ and state µ.

Since there is no spin-flipping transmission, the spin polarization rate kpolar defined in Eq. (24)

is just

kpolar =
1

βZ1

∫
dE
∑
µ,µ′

e−β(E+εµ)(T1,µ↑→2,µ′↑(E)− T1,µ↓→2,µ′↓(E)) (B.3)
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By time-reversibility (Eq. (14)), we have

kpolar =
1

βZ1

∫
dE
∑
µ,µ′

(
e−β(E+εµ)T1,µ↑→2,µ′↑(E)− e−β(E+εµ′ )T2,µ′↑→1,µ↑(E)

)
=

1

βZ1

∫
dEtote

−βEtot
(

Tr

[(∑
µ

Γ1,µ↑(Etot)
)
G†(Etot)

(∑
µ′

Γ2,µ′↑(Etot)
)
G(Etot)

]

− Tr

[(∑
µ′

Γ2,µ′↑(Etot)
)
G†(Etot)

(∑
µ

Γ1,µ↑(Etot)
)
G(Etot)

])
(B.4)

Now, most generally, the overall Hamiltonian can be divided into blocks:

H =

H↑↑ H↑↓

H↓↑ H↓↓

 (B.5)

When there is no spin flip (i.e. H↑↓ = H↓↑ = 0), H↑↑ and H↓↓ are independent blocks. For the up

spin, onlyH↑↑ enters into the expression. By definingG↑(E) = (E−H↑↑−Σ↑)
−1, Γ1↑ =

∑
µ Γ1,µ↑

and Γ2↑ =
∑

µ′ Γ2,µ′↑, Eq. (B.4) can be simplified as (for

kpolar =
1

βZ1

∫
dEe−βE

(
Tr
[
Γ1↑G

†
↑Γ2↑G↑

]
− Tr

[
Γ2↑G

†
↑Γ1↑G↑

])
(B.6)

For notational convenience, we omit the energy dependence in Γ and G in Eq. (B.6)-(B.12), but

they remain functions of energy. To prove kpolar = 0, let us show that

Tr
[
Γ1↑G

†
↑Γ2↑G↑

]
= Tr

[
Γ2↑G

†
↑Γ1↑G↑

]
(B.7)

By separating the real and imaginary part of Σ↑, Σ↑ = Λ↑+ iΓ↑, and defining Ω↑↑ = E−H↑↑−Λ↑,
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the LHS of Eq. (B.7) can be expanded as

Tr
[
Γ1↑G

†
↑Γ2↑G↑

]
= Tr

[
Γ1↑

1

E −H↑↑ − Σ†↑
Γ2↑

1

E −H↑↑ − Σ↑

]

= Tr

[
Γ1↑

1

Ω↑↑ + iΓ↑
Γ2↑

1

Ω↑↑ − iΓ↑

]
(B.8)

The key point is that, when there are only two terminals, Γ↑ = Γ1↑ + Γ2↑. Therefore,

Tr
[
Γ1↑G

†
↑Γ2↑G↑

]
+ Tr

[
Γ2↑

1

Ω↑↑ + iΓ↑
Γ2↑

1

Ω↑↑ − iΓ↑

]
= Tr

[
Γ↑

1

Ω↑↑ + iΓ↑
Γ2↑

1

Ω↑↑ − iΓ↑

]
(B.9)

Vice versa, it is also true that:

Tr
[
Γ2↑G

†
↑Γ1↑G↑

]
+ Tr

[
Γ2↑

1

Ω↑↑ + iΓ↑
Γ2↑

1

Ω↑↑ − iΓ↑

]
= Tr

[
Γ2↑

1

Ω↑↑ + iΓ↑
Γ↑

1

Ω↑↑ − iΓ↑

]
(B.10)

Lastly, using the well known identityD−1−C−1 = D−1(D−C)−1C−1 and settingD = Ω↑↑− iΓ↑

andC = Ω↑↑+iΓ↑, it follows that Eq. (B.7) holds. Therefore, if we begin in equilibrium in terminal

#1, we can never find any polarization in terminal #2.

Furthermore, according to Eq. (B.7), for a system with only two terminals (with or without time

reversal symmetry), the rate constant must satisfy k1→2Z1 = k2→1Z2, as follows from the general

expressions:

k1→2 =
1

βZ1

∫
dEe−βE Tr

[
Γ1G

†Γ2G
]

(B.11)

k2→1 =
1

βZ2

∫
dEe−βE Tr

[
Γ2G

†Γ1G
]

(B.12)
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