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Abstract

Within the context of a simple avoided crossing, we investigate the investigate the effect of a
complex-valued diabatic coupling in determining spin-dependent rate constants and scattering
states. We find that, if the molecular geometry is not linear and the Berry force is not zero,
one can find significant spin polarization of the products. This study emphasizes that, when
analyzing nonadiabatic reactions with spin orbit coupling (and a complex-valued Hamiltonian),
one must consider how Berry force affects nuclear motion — at least in the context of gas phase
reactions. Work is currently ongoing as far as extrapolating these conclusions to the condensed

phase where interesting spin selection has been observed in recent years.
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1 Introduction

Electronic spin is one of the most fundamental observables in quantum mechanics, and manip-
ulating spin (so-called “spintronics”) is regarded as one of the most promising research fields. '~
Over the past few decades, a plethora of techniques have shown how electronic spin can be al-

tered and polarized through many mechanisms, including giant and tunnel magnetoresistance, '!?
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spin-orbital torques, spin-transfer torques, spin-Hall effects, and most recently (and
discussed in detail below) chiral-induced spin selectivity (CISS).?'=* One of the hopes of modern
electronics is that, someday in the future, one will be able to produce electronic devices with low

34,35

energy cost that use electronic spin for random access memories, sensors, *® or even quantum

computers, %3738

Now, when discussing electronic spin, there has historically been a disconnect between the
chemistry and physics communities. On the one hand, within the spintronics community in physics
department, one usually supposes that the nuclei are fixed, and one investigates only how collective
electronic, magnetic, and otherwise static material effects can manipulate electronic spin states. On
the other hand, within the realm of chemical dynamics, spin is usually regarded as a fixed quantum
number and nuclear dynamics occur along a potential energy surface of fixed spin character (sin-
glets or triplets, etc.). For the most part, chemists (who deal with nuclear dynamics and chemical
reactions) and physicists (who deal with magnetic fields and electronic dynamics) have not worked
on overlapping problems with synergy — and in particular, from our point of view, the coupling
between nuclear dynamics and electronic spin has not been fully explored.

Of course, there are exceptions to the statement above. Most obviously, the electronic paramag-
netic resonance (EPR) community does span both the chemistry and physics communities, and has
long allowed for explicit coupling between nuclear degrees of freedom and electron spin.* Second,
within the chemistry community, there has been a push as of late***! to study photo-induced inter-
system crossing (ISC), whereby nuclei switch between states of different spin character, as allowed
by spin-orbit coupling (SOC). The usual picture here is that, within the realm of photochemistry,

the lowest triplet state (77 ) is almost always lower in energy than the first excited singlet state (.S;),*



and so ISC is a very interesting dynamical (as opposed to thermodynamic) process that can precede
equilibration. As such, largely led by the work of Gonzalez et al,*** there is now a growing desire
to model the coupled nuclear-electronic-spin dynamics underlying ISC for realistic systems using

variants of Tully’s fewest switch surface hopping model (FSSH).>°

To date, the question of how to
model ISC with Tully’s FSSH remains not fully solved, as recent work in our group has pointed
out two subtleties regarding the nature of ISC in the context of molecules with an odd number of

electrons:

* When the number of electrons is odd and SOC is present, the electronic Hamiltonian be-
comes complex-valued (with complex-valued derivative couplings d>!). Such a complex-
valued derivative coupling presents obvious difficulties for the surface hopping algorithm:
how should we choose the direction to rescale nuclear momenta after a hop?>? Usually, the
rescaling direction is d, but if d is complex-valued, what does this imply? Note that, if the
number of electron is even and there is no magnetic field (so that there is time-reversal sym-

metry), the Hamiltonian and d will always be real.”"

* In the presence of a complex-valued electronic Hamiltonian, it is known that nuclei will

experience a Lorentz-like “magnetic” force arising from Berry’s phase. !

Given that the complex-valued nature of the Hamiltonian arises from the electronic spin, both of
these effects represent spin-dependent nuclear phenomena.

Third, within the condensed matter physics discipline, there has also been a recent push to
study spin-dependent nuclear dynamics in so far as it relates to ferromagnetic materials with strong
SOC. 13-1562 Here, the basic premise is that, when one runs current through a material, the spins of
the transmitted electrons will interact with the built-in magnetic field of the material (which is dic-
tated by the nuclear positions, i.e. the “lattice”). This interaction can lead both to changes in the spin
of the transmitting electrons, as well as changes in the magnetic moment of the material (i.e. mag-
netic domain walls can move as nuclei relax). A recent review of this so-called “Current-induced

spin-orbit torques” (as relevant to ferromagnetic and antiferromagnetic systems) appeared recently



in Reviews of Modern Physics.!> Overall, the question of how one couples nuclear dynamics and
electronic spin appears to be in the zeitgeist nowadays.

With this background in mind, the goal of this paper is quite limited, and yet we feel prescient.
In this paper, we will address a very simple question that, to our knowledge, has not yet been studied.
Namely, for a simple, nonadiabatic, activated (as opposed to photo-induced) chemical reaction, how
are the reaction rates and scattering cross-sections affected by the presence of electronic spin (and
a complex-valued Hamiltonian)? We emphasize that our focus here will be on systems with two
spatially distinct electronic states (or potentially two spin states plus two spatially distinct electronic
states) with unbound nuclear states; as we will show in a future publication, the dynamics become
even more interesting in systems with three or more spatially distinct electronic states or systems
with bound nuclear states and electric current (which are closer to CISS models). Nevertheless,
even within a limited framework of two electronic states, we will show that Berry’s magnetic force
can indeed have a significant influence on the nuclear dynamics and lead to an observable spin
polarization.

This paper is structured as follows: In Sec. 2, we discuss some apriori well-known conditions
for observing Berry’s force as induced by spin-polarization. These conditions will guide our un-
derstanding of the results below. In Sec. 3, we present our model Hamiltonian with two spatial
electronic states. In Sec. 4, we present results and highlight the practical consequences of Berry’s
phase as far as inducing spin polarization. In Sec. 5, we hypothesize about the potential connections

between our results and exciting modern experiments that fall under the title CISS.

2 Background

In all that follows, unless stated otherwise, we will use a, b to represent diabatic spin-free (e.g.
spatial) states, j, k to represent adiabatic spin-free states, o, o’ to represent spins, and m, n to rep-

resent adiabatic electronic states that includes spin.



Consider a general two-site Hamiltonian with SOC and time-reversal symmetry (TRS):

H = Tnu + Z EQ(R)CLUCGU + Z tab(R)clgcba + Z SaabU’(R)Cj;nga’ (1)
a,o a#b,o a#b,o,0’
Here, 1), = —%VQR is the nuclear kinetic operator, a,b = 1,2 and 0,0’ =1, |, M is the nuclear

mass, R = (z,y) is the nuclear position operator, and ¢, is the electronic annihilation operator
at site a and spin . We allow the on-site energy F,(R), the diabatic coupling t.,(R) and the
spin-orbit coupling .../ (R) to vary as functions of nuclear position. By TRS, ¢,,(R) is real and
Satot (R) = 53, (R) and s (R) = —s;;,,(R). As shown in Fig. 1, we consider the case where
there is a curve crossing between the two states, which results in an energy barrier in the middle. We
assume the potential surfaces are unbound in the reaction coordinate, corresponding to a reaction
associated with a binary collision. Both the adiabatic energy surfaces and diabatic energy surfaces

are doubly degenerate because of Kramer’s rule.

Energy
~

Figure 1: Schematic representation of the energy surface of our model. Note that the nuclear coordinates R are two-dimensional, and here we only
show the reaction coordinate.

Mathematically, within the diabatic electronic basis |1 1) , |1 ]),|2 1), |2 |), the overall nuclear-



electronic Hamiltonian (Eq. (1)) can be written as follows:

E\(R) 0 Vi(R) Vi(R)

A 0 E(R) -VIR) V/(R)
Vi(R) —Vi(R) ExR) 0

ViR VR 0 E(R)

where operator V includes all terms except the nuclear kinetic operator. The matrix element V,; o
(a,b = 1,2, 0,0’ =7,]) should be understood as <aa|V|ba’>, so by comparing with Eq. (1), one
finds that V; = ¢ + si421 and Vi = si49;. Note that the adiabatic ground state energy (doubly

degenerate) of Hamiltonian (2) is simply>®

E,(R) = Ei(R) ‘g E5(R) _ \/<E1(R) — E2<R>> + V2(R) + V2(R) 3)

which can be analytically derived via matrix diagonalization.

2.1 Berry Curvature of Complex Hamiltonians

Though we will perform quantum scattering simulations, it is helpful to consider the Berry force
effect within a classical picture of the nuclear dynamics. When an electronic Hamiltonian is not
real (i.e. Im{H} # 0, as in Hamiltonian (2)), classical dynamics along the ground state does not
follow the usual (conservative) Newton’s laws: The forces that nuclei feel are not just the simple
energy gradient —V I/, (where F, is defined in Eq. (3)). In particular, for an arbitrary system (with
or without TRS) moving along adiabatic surface m, nuclei feel an effective “Berry magnetic force”,
defined by: 36163

2h
Fn]? = h% x B, = Mlm{z dmn<p : dnm)} “4)
n#m



Here, d,,,, is the derivative coupling between surface m and n:

_ (W[ VH[P)
dn = W %)

In 2D and 3D systems, this Berry force is equivalent to the Lorentz force produced by a magnetic

field of the form:

By, =V X (i (| VItom)) = =i D down X du (©)
n#m

If a general Hamiltonian does not obey TRS, F,f can be different for each of the adiabats, such
that nuclei can in principle experience completely different magnetic forces on different surfaces.
That being said, when a system does have TRS and an odd number of electrons, from Kramer’s rule,
each adiabatic surface will be doubly degenerate with a time reversal state (“Kramer doublets™), and
the Berry forces on the two surfaces are related to each other. To prove this statement, suppose states
m’, n are the time-reversal states of m, n, i.e. |m’) = ©|m) and |n’) = © |n), where O is the

time-reversal operator. The derivative coupling shown in Eq. (5) between m' and n’ is

_ (U |VH[Yw) _ (OUn|(VH)O[Yn)
dmln/ B En’ - Em’ B En - Em (7)

Because H obeys TRS, we have HO = O H (and hence (VH)© = O(V H)), and thus

(OYm| OV H)n)

d Iyl —
m'n E L. ®)
By the antiunitarity of ©, (Qu|Ov) = (u|v)”, so that
_ (OnlVHP)"
d, = BB d,. 9)



The corresponding Berry magnetic force on adiabatic surface m’ is

n/#m/ n#m

Eq. (10) shows that, given TRS and the same momentum, the nuclei feel equal and opposite forces

on different Kramer doublet surfaces.

2.2 Detailed Balance and Equilibrium For Systems with TRS

Although our primary interest is the nature of chemical reactions in the condensed phase, for
the present paper, we will simulate below the small unbound system shaped as in Fig. 1 within
a microcanonical ensemble. In restricting ourselves to a small system, our rationale is that, be-
cause we can employ exact scattering theory for small systems, we will be able to avoid any and
all semiclassical approximations and make definitive statements about quantum dynamics without
regard to any question of accuracy; all results here should be appropriately extendable to larger,
open systems with some caveats. See Sec. 5.1 for a more detailed discussion of this point. With
this framework in mind, consider a system whereby two molecules can undergo a binary collision
(with both electrons and nuclei rearranging), and we will label the reactant terminal as terminal #1
and the product terminal as terminal #2. For each terminal, we label the interior quantized states
as p/v (terminal #1) or i/ (terminal #2); o, 0’ =7, | denote specific spin states. We assume that
there is no SOC asymptotically within terminals #1 or #2, so that one can label all incoming and
outgoing states with pairs of labels uo, etc.

The very first question we must ask is: What is the nature of equilibrium for such a system?
After a quick second of thought, one realizes that there cannot be any spin polarization in the

terminals. After all, at equilibrium, we must find that the population of electronic state ;. with spin



1 in terminal #1 is:

1 _ 1 ho-—
Pig == L te L, ut) = = (1, p4e P 011, 1)

Z Z
1
= Z (Lutle e Ol ut) D

where Z is the partition function. Using the fact that © = KU, where K is the antilinear complex
conjugation operator and U is the unitary operator that interconverts between up and down spin, it

follows that:

1 1 .
Pryg = (Lp K e KL pd) = — (L pde™ ™01 i d)
1
= (L) Ue (1, )" ) (12)

Using the fact that there is no SOC asymptotically, one can assume that the spatial state |1, zt) has

a real wave function, and so at equilibrium:

Pyy= Py (13)

For our purposes below, it will be helpful to rederive these equilibrium (Boltzmann) statistics
for the internal quantum states explicitly using scattering theory. According to time reversibility,
we know that for a scattering process with translational energy F, the transmission rate T, ;o by/0

satisfies **

Ta,,ua—)b,u’a’(E) = Tb,u’&’%a,u&(E + € — 6,u’> (14)

Here, a, b are indices of terminals (either the same or different), ¢, €, are the bound energies of the
quantized states y, ¢/ and &, 6" are the opposite spin of o, ¢’. In other words, if o =7, then 6 =/,
etc.

Now, we suppose that the terminals are in contact with a bath at temperature k7T, = 1/



that promotes collisions and dictates (on average) the translational energy of collision as E. Let us

define the state-to-state rate constant

1 _
k'a,,ua%b,,u’a’ = B /dE€ 6ET(1,/LO’*)b,/.L,O'/(E>
In terms of k, Eq. (14) reads

L Eu—€,r
ka,,uo’—>b,u’cr’ =ehr m kb,,u’&’—m,u&

15)

(16)

There are two key properties of these state-to-state resolved transmission factors and rate con-

stants that must be emphasized. First, in Eq. (14), by letting b = a and p/ = u, we recover the

equality
Ta,ua—m,ua (E) = Ta,u&—)a,,u& (E)

i.e. the reflection probability is not changed by switching spin.

Second, according to the conservation of probability,

Z Ta,ua—)b,u’a’(E) - Z Ta,u&%b,u’o”(E> =1
b,u’ o’ b,u' o’
Therefore, if we invoke Eq. (17), we find:
Z Ta,uoﬁb,,u’a’ (E) = Z Ta,,u&%b,,u’o’ (E>

bu'c bu'c
(bpu'o'#a,p0) (b’ o' #a,ud)

Or, in terms of k,

E ka,ua%b,u’a’ = E ka,u&%b,u’a’

bu'c bu'c
(b o' #a,uo) (b’ o' #a,ué)

10
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(18)

(19)

(20)



At this point, we can prove that Boltzmann statistics arise. According to standard kinetics, the

change in population of any one internal state is:

dP, .o
T - Z (_Pa,wka,ucrﬁbw’cr’ + Pb,u’o’kb,u’a’ﬁa,w) (21)
b, o
(bp' o' #a,uo)

If we apply Eq. (20) to the first term of Eq. (21) and we apply Eq. (16) to the second term of Eq. (21),

we arrive at:

dP,
SHO €,1—€
T B Z (_Pa»uoka,uéﬁb,u’a’ + eflw #)Pb,u’a’ka,m?%b,u’o’)
b, o
(b o' #a,uo)

§ —fe € €
= € B Hka,u&%b,u’o’(_eﬂ a a,puo + eﬂ W Pb,,u’a’) (22)
b, o
(b o' #a,us)

de,,u’U

Similar expressions can be obtained starting from —=& *. Ultimately, because all populations must

be stationary at equilibrium (dpj—y“’ = 0), we find that the equilibrium populations must indeed
satisfy:
e~ Ben
P, a,uo — 7 (23)

Here Z = ) u e~ Pe is the normalization constant, i.e. the total partition function.

For the seasoned reader, the above arguments just recapitulate facts that are well known from
statistical mechanics: detailed balance at equilibrium follows from the time-reversible dynamics of
a system in contact with a thermal bath. And as long as SOC vanishes far away from a crossing
point, so that spin is a good quantum number in the terminals, Boltzmann equilibrium statistics
still follow from the time-reversal symmetry properties of the transmission probabilities (despite
the more complicated spin-dependent nature of those probabilities in Eq. (14)). Nevertheless, the
argument above tells us only about equilibrium, not the approach to equilibrium. With this goal in

mind, let us now turn our attention to reaction rates and dynamics, using the transmission proba-

11



bilities defined above.

2.3 Reaction Rates for Systems with TRS

Given the background above, let us consider a simple thought experiment. Suppose we start
with a system out of equilibrium, or more specifically a system in local equilibrium only, i.e. with
all population in one terminal. Given TRS, from the argument above, we will necessarily find that
— at long times — the systems will reach an equilibrium state without any spin-polarized population
anywhere. Nevertheless, one can ask: what about short times? Will one ever observe spin-polarized
populations at short times? Or vice versa, in language adapted to the canonical ensemble, for a
system with time reversal symmetry, can we find spin-dependent reaction rate constants?

In general, yes, we can find spin-dependent rate constants. Or, in blunt language, suppose that,
at the beginning of a simulation, the system is equilibrated only at terminal #1,i.e. P 4 = P, =
% (where Z; is the partition function of terminal #1). For very short times, we can ignore
the build-up of population in other terminals or any changes in P, .4, P, ., as functions of time.

Therefore, the short time expression for polarization in any other terminal (say #2) becomes

dPs v — Py
kpolar = Z 20 Tdt 2L

/

s

= Pryn(brproagwr — ko) + P (kuusomr — k-2
Hop!

1

e —Bep
7, £4° (
ot

kLutoz et = Rptsout + Koo = K-z (24)
In general, ki 30 0 7# K12,y and ki -0 04 # k12,00, SO the polarization in terminal
#2 (as given by Eq. (24)) is not zero. Our goal in this paper will be to analyze the size of these spin
polarizations.

That being said, there are two caveats to this general conclusion that must now be discussed; in

particular, there are two cases where spin polarization will never occur.

12



2.3.1 Caveat #1: System with Inversion Symmetry

For a system with time reversibility, the transmission rates are connected by Eq. (14). Moreover,
if the system also satisfies inversion symmetry (IS) between terminal #1 and #2, then for inversion

symmetric pairs of states |1, 41), |2, fi) and |1,v), |2, 7), we have €, = €;, €, = €5, and

k1 pt—2,01 = K2pro10t

K1 ut—2,00 = Kopr—1,0y (25)

In such a case, if the system begins in equilibrium in terminal #1, then the overall spin polarization

in terminal #2 is zero even at short times:

1 _
kpolar = Z E € 56”(k1,m—>2,u’T + kl,ui—%;ﬂT - k17u¢—>2,u’¢ - kl,uT—>27u’i)
Bl

1 —Be €u—€,
= 2 ¢ (ko + R = €77 (ka1 + Bapei1)) (by TRS)
! Hop!
L, 1
= e koot + kw2 — o Y e P ko gy + ko pi1,p) (b IS)
1 1
v wv
=0 (by IS) (26)

The significance of Eq. (26) is that, for a system with inversion symmetry, provided that one equili-
brates all dynamics initially in one terminal, no spin polarization will ever be observed in the other
terminal. There is no such constraint for systems lacking inversion symmetry, such as systems with
a chiral helical potential.®>*” However, one must note that lack of inversion symmetry is only a
necessary (but not sufficient) condition for chirality, since a molecular system can be both achi-
ral and inversion asymmetric (e.g. one water molecule). We are continuing to explore the exact

relationship between structural chirality and nuclear-induced spin-polarization in our laboratory.

13



2.3.2 Caveat #2: System with Two Terminals and No Spin Flip

Although our entire discussion above has been in the context of a system with two terminals,
all of the conclusions above were in fact general and applicable to the case of arbitrarily many
terminals. However, for a system with two terminals (and not three or more) and no possibility
of spin flip, there is one more key symmetry worth mentioning. Namely, if we assume that one
terminal has an equilibrated set of internal quantum states, the total transmission will necessarily
be equal for the up spin and down spin; thus, no spin polarization can be observed. The proof is
given in Appendix B.

This concludes the necessary background as far as understanding spin-dependent rate constants.

3 Simulation Details

3.1 Observables

In order to gain information for spin-dependent reaction rates, below we will study a quasi-1D
system where the diabatic surfaces Iy and I, are unbound in one direction. We imagine a simple
complex-valued avoided crossing (see Fig. 2), and we define two coordinates: (1) a longitudinal
(reaction) coordinate, where nuclei are incoming and outgoing, and along which the magnitude of
the potential energy surfaces changes; (2) a transverse coordinate, where the nuclear wave function
is bound and along which only the phase of the diabatic coupling changes. The nuclei will enter with
a small enough energy such that one always starts and ends on the ground adiabatic electronic state.
Nevertheless, in the transverse coordinate, there is enough energy such that the nuclei can switch
between different bound states. Therefore, each individual state of interest is characterized by two
numbers: the transverse eigenstate ny and electronic spin o. By design, all SOC parameters are
negligible outside the reaction region, so that the spin is a good quantum number for the incoming
and outgoing waves.

From the arguments in Appendix B, it is clear that, for the case of two terminals, many spin-

14



dependent effects can be washed away if we average over an equilibrated set of initial conditions.
With this caveat in mind, below, we will report state-to-state transmission (rather than a total rate
constant that would be the integral over many state-to-state transmission rates). In particular, in
what follows below, we will report transmission rates from the ground transverse state (ny = 0) of
electronic diabatic state 1 to all other possible transverse states corresponding to diabatic state 2. In
other words, if the initial spin is o and we denote the final spin ¢’, the spin-dependent transmission

rate we report is:

TG—)U’ — Z Tl,Oo—>2,'rLTo’ (27)

nr

Beyond raw transmission, we will also report the absolute spin polarization (A7) and the rela-

tive spin polarization (P):

AT = Toop + Tyt — Ty, — Tis, (28)
AT T+ T =Ty — Ty
Toverall TT—>T + T¢—>T + TT—>¢ + T¢—>¢

P = (29)

By investigating these three observables (7,AT and P) for a series of Hamiltonians (that break
spatial symmetry in one way or another), we will necessarily learn about how Berry force affects

spin-dependent chemical reaction rates.

3.2 Form of the Hamiltonian

The Hamiltonians studied below will be characterized by three different criteria:

15



3.2.1 Form of SOC

The first criterion is the form of the SOC. Generally, a Hamiltonian with SOC has the form

Hgp = a(alex + iny + aziz)

=« Z —iLy) abc 1Co) + (Ly +1iL )abc LGt + (L) b(cZchT — CLCN) (30)

where a, b = 1, 2 are the indices of diabatic states, « is the SOC magnitude and the L’s are electronic
angular momentum operators. Comparing Eq. (30) with Eq. (1), the two SOC terms in our model,
s++(R) and sy (R), correspond to the z-component and zy-components of SOC, respectively. Here,
we will assume that only one of s4(R) or sy (R) is nonzero, so that the Hamiltonian can be

categorized into two cases:

1. A two-state case: st (R) # 0, s+, (R) = 0, where the two opposite spins are decoupled. The
effective Hamiltonian of each spin consists of two electronic states:
h? Ei(R) Vi(R)

Hit = =53V + , H, =Hj GD
Vi (R) E(R)

2. A four-state case with s+(R) = 0, sy (R) # 0. Here, Berry curvature arises only from the

complex-valued nature of the spin-flipping SOC.

3.2.2 Geometry of Diabatic Potential Energy Surfaces

The second criterion is the geometric form of the diabatic potential energy surfaces. Again we
consider two cases: a bent geometry and a linear geometry. See Fig. 2.

The parameters for the bent system are

Ei(R,0) = A(1 + tanh(e(@ - %))) (32)
Es(R,0) = A(1 — tanh<e(9 - %))) (33)

16



where R = /22 +y? and # = atan (y/x) are the polar coordinates. We place a hard wall at
R=Rpimor R= Ry, ie Fy = Fy=+00if R < R, or R > R,,,... As far as the couplings

are concerned, we set:

Cexp(—€*(0 — 3)* +iWu(z,y)) Two-state Case
Vi(R,0) = (34)

Cexp(—€*(0 — %)?) Four-state Case

0 Two-state Case
Vi(R,0) = (35)

Dexp(—€*(0 — 2)? + iWu(z,y)) Four-state Case

The incoming and outgoing terminals of the system are located at # = 0 and 6 = 7/2, respectively.
We choose R,,in, = 4, Riypuz = 8, ¢ = 5 and M = 1000 (all in atomic units, same below), and fix
D < C in our simulations.

The parameters for the linear system are

Ei(z,y) = A(1 + tanh(ey)) (36)
Es(z,y) = A(1 — tanh(ey)) (37)
We place a hard wall at z = —% orxr = %,i.e. F=Fy,=+xifz < —% orr > %

As far as the couplings are concerned, we set:

Cexp(—e*y* + iWu(z,y)) Two-state Case
Vi(z,y) = (38)

C exp(—€*y?) Four-state Case

17



0 Two-state Case
Vi(z,y) = (39)

D exp(—e®y? + iWu(x,y)) Four-state Case

The incoming and outgoing terminals of the system are located at y = —% and y = %, respec-

tively. We choose L, =8, L, = 4, ¢ = 5 and M = 1000 in our simulations.

3.2.3 Geometry dependence of the SOC Phase

Our third criterion is the phase changing direction u(z, y) (see Eq. (34), (35), (38) and (39)).

We investigate two types of phase modulation functions u:
1. Radial dependence: u(x,y) = /22 + 3>

2. Linear dependence: u(z,y) = z cos ¢+y sin ¢. Here ¢ is a parameter specifying the coupling

direction.

3.3 Berry Curvature

Recall that, for a system in 2D, the Berry curvature can be quantified by an effective magnetic
field (see Eq. (6)). Here, we will give analytic expressions for that magnetic field along the adiabatic

ground state. ®®

3.3.1 Two-State Case

In the two-state case, the spin is a well-defined quantity everywhere, so we can use spin to label
the adiabatic ground surfaces. As discussed before, the equivalent magnetic fields for the up and
down spin surfaces are equal and opposite.

For the case of a bent geometry, the equivalent magnetic field for adiabatic state |0 1) is given

by

AV o
Bo(R,0) = —— AN We 25+ 9 tanh §)1(0)e. (40)

(A2 4 V)7 2R

18



Eq. (40) is proved in Appendix A. For the case of linear geometry, the equivalent magnetic field for

01) s

AViP We L i
By (z,y) = — Vi . 3/27(sech2y + 2y tanh §)7 (z,y)e. (41)
(A% +|Vi[%)

In Egs. (40) and (41), A = (E2;E1), 0 = el — 7). ¥ = ey and y(0),~'(0) are unitless factors

depending on u(x,y):

1 u(z,y) = /2? + y?

v(0) = (42)
cos (0 — ¢) wu(z,y) =xcos¢+ ysing

X
— u(x,y) = 22+ y?
V(@ y) = VI Y (43)

cos ¢ u(z,y) = xcos P+ ysin ¢

For the bent geometry, since the diabatic crossing point is located at 6 = 7, where the diabatic
coupling V; also reaches its maximum, it is worthwhile to report By at = 7 as a representative

value of the Berry curvature strength:

=2
4 2CR \4’%

By (R (44)

In all expressions above, the equivalent magnetic field for the |0 |) surface is By (z,y) =
_BOT<x> y) .
3.3.2 Four-state Case

One can perform the same calculation as above for the four-state case. However, since the
adiabatic ground state is doubly degenerate, and spin is not a good quantum number, the definition

of the two adiabatic ground states is left as a matter of choice. Here we choose our ground adiabatic
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states as (in the diabatic basis |1 1) ,]|1]),|2 1), |2 {)):

VIV + Vi T
|OO[> :n[‘/;f7_v;a 0:|

A= /A2 4 VP 4 |V

VI + IV ]’ 43)

A= /A4 VP 4 |V

08) = Vi, Vi,

where 7 is the normalization constant. In our simulations, we set V; > Vi, so when 6 < 7,

|0a) ~ |1 1) and |03) ~ |1 |) and when 6 > T,

Oca) ~ |2 1) and [08) ~ |2 |). Therefore, in the
terminals, the o and [ states can be approximated as having up spin and down spin, respectively.

For the bent geometry, B, is given by
A|V,)? We

By.(R,0) = — (sech? A + 20 tanh 0)y(f)e. , (46)
(82 + Vi + V)" 2R

and when 0 = 7,

AWe D? s
2R (o oo “

BOa (Rv ) =

SN

4
For the linear geometry, B, is given by

AlV[* We
(AE® + V2 + Vi)Y 2

By (2,7) = (sech® §j + 27 tanh §)7'(z, y)e. (48)

In all expressions above, Bos(z,y) = — B (T, y).
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4 Computational Results

4.1 Methods for Calculating Transmission Probabilities

To calculate transmission probabilities, we have run two-dimensional quantum scattering cal-

culation, where we solve the Schrodinger Equation: ®

(H—E)|T) =0 (49)

Here, H is the model Hamiltonian, £ is the incoming energy and | V) is the overall wave function.

|W) is defined in three regions:

/

|Vine(z,y)) + |- (x,y)) Regionl

(W (z,9)) = 4 |1hs(z, 1)) Region II (50)

[V, y)) Region III
\

Region Il is the region of interest, and regions I/II1 are located (respectively) on the incoming/outgoing

sides of region II. The region definition for each geometry is shown in Fig. 2.

(a) (b)
Ry 4_T Ry |¢t)§ R,

— III
e)
A I R,
— II II
R, Ry

wlsh sl

hbinc) w)r) wjinc) W)r)

Figure 2: Region setup for scattering calculation in (a) Bent geometry; (b) Linear geometry. The definitions of longitudinal coordinate (&) and
transverse coordinate (12 ) are marked in the figure. Note for the linear geometry, there is one unique R and one unique R .

The four parts of the wave function are: the incoming wave |;,.), the reflecting wave v,., the
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transmitting wave |v;) and the interior wave function ;. Their specific expressions are defined as

|wmc(l‘7 y)) :eikii"cwncyuzmpmnc (I) |nmc> (51)

(o, y)) =3 rae*rutald () [n) (52)
n,

(R, RL)) =Y tupe™ufial (RL) |n) (53)

7l1‘

(x,y)) denotes the electronic wave function at nuclear positions (z, y), |n) is the electronic
state, r,,, and ,,, are the reflection and transmission coefficients in channel nu, R and 12, are the
longitudinal and transversal coordinates in region III. For the bent geometry B = —z and R, = y;

for the linear geometry, R = y and R, = x. |ul,,) and |ulll) are the ;™ transverse eigenstates

associated with electronic state n in regions I and III, which satisfy

h2 82 1 r 1 1
hQ 62 1T t 111 IH
(Coarprz Ve [ (RL)) = Eo [ (R1) (55)

Here V! and V! are the diabatic energies of electronic state n in regions I and III. In regions I and

III, the wave numbers associated with energies ), nuclear transverse state 1 and electronic state n

are k,,, = \/QM(EO — E},) and k,}, = \/2M(E0 — EM), respectively.
As discussed above, we fix the incoming transverse state to be the ground state (i.e. p;n. = 0)
in all calculations. To calculate the spin-dependent transmission rates, we choose 7, to be either

adiabatic state |0 1) or adiabatic state |0 ).

4.2 Simulation Results of the Two-state System

We begin our investigation by plotting the transmission and spin polarization for the two-state
system (V; # 0 and V; = 0) with bent geometry. As shown in Fig. 3a, we calculate the transmission

rates T+_,+ and T)_,| with model parameters A = 0.02, C' = 0.005, W = 0.2. We set u(x,y) =
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\/m and the overall incoming energy 0.001 < £ < 0.038. As would be expected for any
scattering process through or over an energetic barrier, the transmission is close to zero for both
spins when the incoming energy is less than the barrier height (which is given by Eyyrpier = A —
C = 0.015 here); vice versa, when energy is over the barrier height, the transmission increases
dramatically.

In Fig. 3b, we plot the absolute spin polarization AT, as calculated by Eq. (28) at each in-
coming energy. For most incoming energies (0.010 < E < 0.034), the down spin is significantly
preferred. The absolute polarization reaches its maximum magnitude (0.038) when the incoming
energy is slightly above the barrier (£ ~ 0.022 here), and decreases when the incoming energy
gets even higher. The reason that polarization decreases at high energy, as the nuclear momentum
increases, is two-fold: (1) the relative bending effect of a magnetic field becomes weaker (which
can be inferred from the classical expression of cyclotron motion radius 7. = Mwv/B), and (2) the
time the nuclei spend in the crossing region (where the magnetic field is strongest) is also shorter;
remember that Berry force is not homogeneous but highly localized in space (i.e. localized to the
crossing region). Not intuitively, when the incoming energy approaches the threshold for populat-
ing the first excited state (£ > (0.034), the up spin is preferred. (The exact physical motivation
behind such a polarization is unclear; one can only speculate for now.)

Lastly, in Fig. 3c, we plot the relative spin polarization P as calculated by Eq. (29). Around
E = 0.02, P follows the same pattern as A7 in so far as the down spin is preferred, though the
peak minimum is shifted to a lower energy (around £ = 0.015, as marked by the triangles). For
very low energies, we find that the transmission of the up spin is actually preferred; however, any
preference at such a low energy is likely not very meaningful as the total transmission is effectively

negligible.
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Figure 3: Two-state system simulation results for a bent geometry. (a) Spin-specific transmission rate 7'(F), (b) transmission rate difference
AT(E) and (c) polarization P(E) as functions of energy; see Eqs. (28),(29). The energy barrier is shown by the vertical dashed line. The
polarization peaks are marked with black triangles in (b) and (c). The parameters are A = 0.02, C = 0.005, W = 0.2 and u(z,y) = /22 + y2.
See Egs. (32),(33),(34). Note that, while spin polarization is observed, the details of which spin is favored at which energy is rather complicated.

4.2.1 Polarization Dependence on the Phase Gradient Magnitude, Energy Gap and Cou-

pling Strength

Having identified spin polarization for one Hamiltonian, we will now turn our attention to the
more important question: how does spin polarization change for different Hamiltonians? Specifi-
cally, we will focus on three parameters: the phase gradient magnitude W, the half energy gap A
and the coupling strength C'. We will vary one parameter at a time, and fix all other parameters as
their default values: W = 0.2, A = 0.02 and C' = 0.005. Results are plotted in Fig. 4. As one
might expect, we find that changing the phase gradient I/ has no influence on the total transmis-
sion (Fig. 4a), but this change does affect the polarization (both absolute and relative) dramatically
(Fig. 4b,c). By contrast, increasing the half energy gap A both shifts the transmission and leads
to a broadened and deepen polarization peak (Fig. 4d-f); The former result is intuitive because
changing A leads to a change in the energy barrier; the latter result is more interesting and will
be discussed below. Finally, changing the coupling strength C' also affects both transmission and
polarization (Fig. 4g-i). As the diabatic coupling strength increases, the transmission increases and
shifts to low energy, because, with a strong coupling strength, the energy barrier of the adiabatic
ground state is lower and the system becomes more adiabatic. However, more interestingly, as C

increases, the relative polarization becomes smaller, as will also be discussed below in detail.
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Figure 4: The total transmission T'(E) (a,d,g), absolute polarization AT'(E) (b,e,h) and relative polarization P(E) (c,f,i) with different phase
gradient magnitude W, half energy gap A and diabatic coupling strength C' for a two-state system with a bent geometry. The polarization peaks
(which will be plotted in Fig. 5 below) are marked with black triangles (b,c,e,f,h,i). The default parameters are A = 0.02, C' = 0.005, W = 0.2
and u(z,y) = /x2 + y2. See Egs. (32),(33),(34). Increasing W does not change transmission but does amplify polarization (a-c); Increasing A
shifts both transmission and polarization (d-f); Increasing C shifts transmission and polarization, but also reduces transmission (g-i).

To better analyze the data in Fig. 4, in Fig. 5 we plot (in red) the peak value for the relative
polarization P, (i.e. which is defined as the extreme value of the relative polarization P(E) when
E > 0.9Frier [see the black triangles in Fig. 4]) as a function of the three parameters W, C A.
We also plot (in blue) the peak in absolute polarization AT'(E).

We begin with P(E). As would be expected qualitatively from the analytic expression for the

effective magnetic field in Eq. (44), we find the following:

* The peak polarization P, has a linear dependence on W (Fig. 5a).

* The peak polarization becomes smaller as the diabatic coupling strength C' increases (Fig.

5b) and one enters the adiabatic limit.

* The peak polarization P, increases with half energy gap A (Fig. 5c¢).
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Note that interpreting the last results above is difficult: A is not as simple as just changing the
adiabaticity of the rate process because A modulates both the asymptotic energy gap as well as
the gradients of the diabatic curves at the crossing point. Overall, the spin-polarization appears to
track very well with the form of the effective magnetic field at the crossing point (Eq. (44)), and our
preliminary conclusion is that the relative spin-polarization should be largest in the nonadiabatic
limit.

Next, we turn to AT(E). As far as dependence on W and A, the peak in AT'(E) follows the
peak in P(FE) qualitatively. However, realizing that the total transmission must go to zero in the
extreme nonadiabatic limit (when C' — 0), it makes sense that we find that the peak in absolute
spin polarization (i.e. the maximum AT'(E)) has a maximum for an intermediate value of C'. Thus,
for the experimentalist interested in measuring or producing large spin polarization, there is a sweet

spot for the Hamiltonian.

—a— peak —u— ATpcak
0.05
() (b) (c)
0 L
. 005} . w
i
~0at . .
-0.15r r r
0.2 A . A . A P S R A . A . A . A
0 0.1 0.2 03 0 02 04 06 08 1 0.01 0.015 0.02 0.025 0.03
w C x 10 A

Figure 5: Peak relative polarization Pp. and peak absolute polarization AT),cqx (see black arrows in Fig. 3c and Fig. 3b) as functions of

W,C,A for the two-state system with bent geometry. The default parameters are A = 0.02, C' = 0.005, W = 0.2 and u(z,y) = /22 + y2.
The magnitude of Ppeqp increases with W and A but decreases with C', which agrees with the strength of effective magnetic field (Eq. (44))
qualitatively. Thus, the relative peak polarization goes up in the nonadiabatic limit. Vice versa, the peak absolute polarization has a maximum

around C' = 0.003.

4.2.2 Polarization Dependence on the Phase Gradient Direction and Geometry of Energy

Surface

Having investigated how spin polarization depends on the magnitude of the phase gradient of

the diabatic coupling (1), let us next turn our attention to the direction of the phase gradient. We

26



will work with both the bent and linear geometries.

First, for the case of a bent geometry, we will set perform simulations for a family of possible
phases u(z,y) = xcos¢ + ysin¢ where ¢ € [0,2r]. In Fig. 6a, we show some representative
results for P(E) with different angles ¢, and in Fig. 6b, we plot the dependence of Pp..x on ¢.
Overall, we find that the polarization P(F) is largest when ¢ = 7 or %’r, i.e. where the phase
gradient is perpendicular to the momentum of the nuclei. Vice versa, when ¢ = ?jf or 1}T7r, the
phase gradient is parallel to the momentum, and the polarization is almost zero. As above, our
result can be explained by considering the analytic expression for the effective magnetic field at the
crossing point. As shown in Egs. (42) and (44), the effective magnetic field at a diabatic crossing
point is proportional to cos (¢ — 7 ), and both the polarization and the magnetic field are maximized
when ¢ = 7 or %r. Note that, in Fig. 6b, we have fit the computed P,,q. — ¢ curve by cos (¢ — 7),
and we find that the relative polarization agrees quantitatively with the strength of the effective
magnetic field at the crossing point (Eq. (44)).

Second, we turn to the case of a linear geometry, where x is the transverse direction and y is the
direction of incoming momentum. Again, we perform simulations for the same family of possible
phases. Note that, in Fig. 6¢ (and unlike Figs. 6a,b), we now observe no polarization for any u(x, i)
— even though there is a nonzero Berry force (see Eq. (41)). To rationalize this finding, note that
the diabatic potential energies in this system have a plane of reflection symmetry that is parallel to
the direction of incoming and outgoing momentum. In other words, even though incoming nuclei
moving in the y direction will feel opposite Berry magnetic forces in the x direction (depending on
their spin [up or down]) and therefore bend either to left (—x) or right (4+x), their total transmission
in the y direction will not depend on the spin.”® Overall, Fig. 6¢ must remind us that, even though
the spin polarization can be mapped to the effective magnetic field in Eq. (44), systems with the
same Berry curvature magnitude can yield completely different observable spin current behavior;
after all, quantum wavepacket motion depends just as much (and usually far more) on the adiabatic
potential energy surfaces than it depends on the Berry force.

This completes our discussion of the two state results.
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Figure 6: (a) Energy-polarization curve for the bent geometry for a few different phase directions ¢. (b) Ppcqr as function of ¢ for the bent
geometry. Note that for the bent systems, the overall spin polarization can be mapped directly onto the Berry force at the crossing point (see
Egs. (42) and (44)), denoted “cos (¢ — %) fit” here. (c) Energy-polarization curve for the linear system for a few different phase dependence
functions u(x, y). Note here that, even though the Berry force has the same form as in Fig. 6a, there is no spin polarization (which highlights the
fact that the observed spin polarization depends on the both the magnitude of the Berry force and the shape of the potential energy surfaces). The
default parameters for all systems are A = 0.02, C' = 0.005 and W = 0.2.

4.3 Simulation Results of the Four-state System

Let us next turn our attention to the four-state systems with bent geometry. As above, we perform
scattering calculations with incoming nuclear energy 0.001 < E < 0.038; the system parameters
are A = 0.02, C' = 0.005, D = 0.001, W = 0.2 (see Egs. (32),(33),(34), (35)). Note that we now
have two diabatic coupling parameters, C' and D. We set u(z,y) = \/m . The data is plotted
in Fig. 7. For the four-state system (and unlike the two-state system), one allows for spin-flipping
transmission, and so for a complete story, we must separately analyze all four cases for transmission
rates between individual initial and final spins. See Fig. 7a. We find that the energy-transmission
curve for the four-state system has a pattern which is similar to the curve for the two-state system.
The major contribution for transmission comes from spin-preserving transmission — since the spin-
preserving coupling V; is much larger than the spin-flipping coupling V here (C' > D).

In Fig. 7b,c, we calculate the absolute and relative polarizations for the transmission data and

find a preference for the transmission of spin up. Here, we analyze in detail the contribution from

ATle'p

7 . Even though spin-preserving
overall

spin-flipping transmission AT, = 1|+ =T}, and Py, =
transmission dominates spin-flipping transmission, we find that the major contribution to spin po-

larization comes from spin-flipping transmission. This is perhaps not so surprising since, although
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C > D, only D (which is the spin-flipping coupling) multiplies a diabatic coupling with complex-
valued character. Note that for a realistic Hamiltonian, SOC will be present for both spin-preserving
and spin-flipping matrix elements, and recent studies on CISS systems have concluded that spin-

flipping transmission is not likely a major contribution to spin polarization for CISS systems.”!~74
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Figure 7: Four-state system simulation results. (a) Spin-specific transmission rate T'(E), (b) transmission rate difference AT'(E) and (c)
polarization P(FE) as functions of energy. In this figure, the ‘overall’ AT'(E) and P(E) lines refer to Eq. (28) and Eq. (29), respectively; the
‘flipping” AT'(E) and P(E) lines refer to the contribution of spin-flipping transmission to the polarization (7' 4 — T}, ),

(Ty =+ — Ty 1)/ Toverair) respectively. The parameters are A = 0.02, C' = 0.005, D = 0.001, W = 0.2 and u(z, y) = /22 + y2. See
Eqgs. (32),(33),(34),(35). Note that, although the total transmission is dominated by spin-preserving processes, the spin polarization arises mostly
from spin-flipping processes.

4.3.1 Polarization Dependence on the Phase Gradient Magnitude, Energy Gap and Cou-

pling Strength

At this point, again we turn to the parameter dependence of spin polarization for the four-state
system with bent geometry. In addition to the phase changing rate W, the half energy gap A, the
spin-preserve coupling strength C, there is another parameter of interest: the spin-flipping cou-
pling strength D. As for the two-state case, we will vary one or two parameters at a time, and fix
all other parameters as their default value: A = 0.02, C' = 0.005, D = 0.001, W = 1. The results
are plotted in Fig. 8. Similar to the two-state case, increasing W does not change the total trans-
mission, but dramatically increases polarization (Fig. 8a-c); increasing A shifts both transmission
and polarization to higher energies (Fig. 8d-f). The dependence of spin polarization on coupling

strengths C',D is more complicated. In addition, two points are worth noting:

* The transmission increases with C' and spin polarization decreases with C', similar to two-
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state system (Fig. 8g-i). However, quantitatively speaking, the spin polarization (both abso-
lute and relative) is more sensitive to C' in the four-state case relative to the two-state case.
For instance, by doubling the value of C' from 0.005 to 0.01, the absolute polarization is re-
duced by a full 4/5 of it original value. (whereas for the two-state case, one would expect a
decrease of only 1/4). This sensitivity must arise somehow from the competition between
spin-preserving and spin-flipping transmissions, since spin-flipping transmission is the major

source of spin polarization.

* As far as the spin-flipping coupling D is concerned, increasing D does not strongly affect the

total transmission, but the polarization increases dramatically.
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Figure 8: The total transmission T'(E) (a,d,g), absolute polarization AT'(E) (b,e,h) and relative polarization P(E) (c,f,i) with different W,A,C
and D for the four-state systems with bent geometry. The polarization peaks (which will be plotted in Fig. 9 below) are marked with black triangles
(c,f,i). The default parameters are A = 0.02, C' = 0.005, D = 0.001, W = 1 and u(z,y) = \/x2 + y2. See Egs. (32),(33),(34),(35). The
polarization for the four-state system is more sensitive to C' (relative to the two-state case) and increases with D.

Next, let us turn to the dependence of peak polarization P, on the different parameters of the

Hamiltonian. In Fig. 9, we plot P, as a function of W,A,C,D. Here, P, increases with W/, A

and D and decreases with C', which agrees qualitatively with the expression for the magnetic field
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at the crossing point (Eq. (47)). It is worth mentioning that, according to Eq. (47), the relative ratio
between C' and D is more important than the absolute value of each parameter as far as determining
the amount of polarization. In fact, Eq. (47) implies that given a certain C', the magnetic field at
the crossing point is maximized when D = /2C. Therefore, given only a small SOC, the spin

polarization can still be very significant if the non-SO coupling is small enough.
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Figure 9: Relative peak polarization Ppqy, as a function of the model parameters W, A,C, D for the four-state system with a bent geometry. The

default parameters are A = 0.02, C = 0.005, D = 0.001, W = 1 and u(z,y) = /22 + y2. Note that Ppcar increases with W, A, D but
decreases with C, which agrees with Eq. (47) qualitatively.

5 Discussion

From the data above, it is easy to conclude that Berry force can have a measurable effect on
spin-polarized transmission (at least for a model system). Armed with this knowledge, there are
quite a few outstanding items that we must highlight as unanswered questions — questions that will

hope to address over the next few years.
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5.1 Measuring Spin-Dependent Rate Constants in the Condensed Phase

The first outstanding question that we must address in the future is whether or not the spin po-
larization rates calculated above can be observed in the condensed phase (as opposed to the gas
phase) with finite temperature and some degrees of disorder or friction. To begin our discussion,
consider a system with nuclear and spin degrees of freedom where spin-flipping is not allowed and
where one operates in the nearly adiabatic limit. In the classical limit, the leading correction to the
dynamics will be the introduction of the Berry force in Eq. (4). However, for any classical system,
the presence of a magnetic field does not affect the equilibrium state according to the Fokker-Planck
equation. > And as far as equilibrium rates are concerned, for realistic experiments in the condensed
phase, there will be a distribution of momenta for the reactants and it is possible that all Berry force
effects will be washed away entirely. After all, according to the transition state theory (TST) of
chemical reactions, one assumes an equilibrated velocity distribution across the barrier that sepa-
rates reactants from products and the presence of a magnetic field has no influence at all on the rate;
in general, this assumption seems to match most experiments.’® Dynamical corrections to TST are
well known and could in principle depend on a magnetic field; but in general, dynamical corrections
(like Kramers’ theory ’”7®) are small and, of course, any such correction would also need to keep
the equilibrium distribution unchanged by the magnetic field. Lastly, in the limit of an overdamped
reaction, momenta equilibrate very quickly and no magnetic field could possibly be detected. Thus,
if we think of a spin-dependent reaction as occurring on one classical surface, there cannot be any
magnetic field effect on the equilibrium rate constant.

Next, consider a slightly more quantum-mechanical context where we imagine a curve-crossing
(as in Fig. 1). As we showed in Sec. 4.2.1 above, we expect the relative spin-polarization to be
maximized in the nonadiabatic limit. And yet, a very simple argument can demonstrate that in the

nonadiabatic limit, the Fermi’s golden rule (FGR) rate constant will not lead to spin polarization.
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After all, consider the reaction from state #1 to state #2 initially without spin. The FGR rate is

ki =—— > e PPV, 0 P0(Ey — E,) (56)

!

bt

Notice that, since the rate depends only on the absolute value of couplings V;,2,/, changing the
phases of the diabatic coupling does not affect reaction rates; Fermi’s golden rule does not depend
on whether the coupling is V3,5, or V7, ,. With this in mind, suppose one allows spin to enter the

dynamics. By time reversibility, we know that we must find:
(L, po|VI2,)a’y = (1, ua|V*2, /6"y = (1uc|V|2u'c")" (57)

Therefore, the relevant FGR rate constant is now:
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123720t
2w
_ —BE,
A Z,e Wiz
o
2w
_ —BEx, -
W,y Z € 1M|Vlu&2u’0’

TN

= K152 (58)

k10—>2 -

2
S(E, —E,)

2
O(Ey — E,)

Therefore, k14,2 = k1,2 so that, according to FGR, if one starts in equilibrium in terminal #1
with one spin orientation (up or down), the total probability of reaching terminal #2 cannot depend
on that initial spin orientation.

Now admittedly, the FGR argument presented above needs not be correct in general; one can
certainly imagine that spin-polarization arises at a level of theory beyond 2nd order perturbation
theory (i.e. the basis for FGR). Nevertheless, even so, from the classical argument above alone, one
could make a reasonably strong case that Berry phase and Berry force effects for the nuclei should

not yield any meaningful spin-dependence in the condensed phase — at least as far the equilibrium
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rate constants are considered only. That being said, however, for a system out of equilibrium (say,
with a temperature gradient or a current running through %), the arguments above become entirely
void and, no matter how we do the calculation, we have every reason to expect a Berry force effect
even in the condensed phase. Indeed, there is already a substantial literature that has investigated
Berry forces in the context of molecular conduction experiments. % While we are currently work-
ing on the theory of non-equilibrium spin-dependent rate constants, it is already clear in practice

that modern experiments do exist showing that spin-polarization can be promoted by the presence

24,25,28,87,88 t 21,89

of a voltage — which brings us necessarily to the CISS effec

5.2 Implications for CISS Effect

Although we will examine CISS effects in more detail in a later paper, a few brief words of re-
view are perhaps appropriate regarding CISS (which represents the second outstanding question for
the current research). As shown by Naaman and co-workers, the original CISS effect was demon-
strated by the following scenario: Imagine that one shines light on a gold (Au) surface coated with
(chiral) dsDNA. If one measures the spin of the electrons ejected, one finds a spin preference for
one spin orientation versus another (all relative the principle axis of the dsSDNA).? And over the
years, it has been shown that this effect is not limited to dsDNA on gold: the effect occurs for vari-
ous molecules or materials.?*=3>% The basic molecular model of CISS effect is shown in Fig. 10:
somehow or another (and the underlying physics remain debatable), an electron undergoing chiral

transmission has a fundamental spin preference.
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Figure 10: A schematic model of the original CISS effect: an electron moving through a chiral potential has a probability of transmission that
depends on its spin. The sites on the molecule are numbered.

A multitude of theories have been proposed to explain the CISS effect. 6771748999 Indeed, the
physics behind CISS has been and continues to be explored using approaches including (i) tight-

binding atomistic simulations (where one assumes Rashba-like SOC)%7-91-4

as well as (ii) solid
state calculations, whereby one investigates transport in the context of band theory with SOC and a
chiral potential. °*3%%8 However, while all these theoretical frameworks successfully predict spin

polarization in certain conditions, the fundamental physical force behind the CISS is not yet fully

understood. Two essential items remain not fully explained:

1. The magnitude of the observed spin polarization is not yet consistent with theory. For most
atomistic calculations, a SOC much larger than a free carbon atom (several meV) is required

89,97

for theory to match experiment. For some models, one must also require the energy of

the incoming electron to be comparable to the SOC gap; and yet, experimentally, CISS is

observed for systems with thermal energy much higher than SOC energy. 32>

2. For most theoretical models, calculations have not usually modeled incoherent effects present
for charge transport. And yet, for molecules like DNA and protein, studies have shown that

electron transfer can have a very large incoherent component. '°*-1% More broadly, the overall
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effect of nuclear motion has not yet been fully explored for CISS.

With this background in mind, the present paper offers another perspective on the CISS effect
with regards to both of the questions above. In particular, here we have studied exactly how nuclear
motion can become entangled with spin-dependent electronic dynamics, and we have shown that
nuclear motion can indeed lead to quantitative and qualitative differences in spin-dependent trans-
mission. For instance, for one model system above, we find that polarization of ~10% for some
energies can be obtained with parameters that are not too exaggerated relative to the parameters
used by other electronic-based models of CISS. 67.91 Thus, one must wonder what we will find if we
begin to study CISS and properly include nuclear motion (an idea which is also now being pursued
independently by Fransson'®). Though our simulations are in electronically closed systems with
odd number of electrons, as discussed in Sec. 5.1, the spin polarization induced by Berry force
should be observable (and could be even more evident) in open systems, where the steady state oc-
cupation of electrons is usually fractional. Indeed, for a typical CISS experiment, spin selectivity
is usually observed when the system is out of equilibrium (e.g. with a current or under illumina-
tion), and according to molecular electron conduction experiments, spin-polarization does increase
dramatically far away from equilibrium (i.e. with high voltage).?*23-28.87.88

Now, despite all of these enticing features, we must also admit that it is far too early to conclude
whether or not (in any definitive way) nuclear motion directly connects to the actual CISS experi-
ments. After all, consider the naivete of the simulations above: (i) we modeled unbound nuclear
motion above (i.e. a nuclear scattering problem), which does not line up at all with Naaman’s ex-
periments; (i7) we have not attempted to match our parameters to Naaman’s experiments, and have
simulated simple scattering problems with two (rather than many) electronic states — more on this
below. For these reasons, one cannot draw any meaningful conclusions yet regarding whether or
not a nuclear Berry force is important for CISS; and yet, it is clear that future research should focus
on this point. From our perspective, we intend to run semi-classical surface hopping calculations

in the future using a recently defined FSSH protocol for treating complex-valued Hamiltonians. >?

36



5.3 The question of multiple electronic states

The third and final outstanding question regarding Berry force effects on reaction dynamics is
the question of multiple electronic states. As we demonstrated in Appendix B, the two-terminal
scattering case is special in so far as the fact that, when only two terminals are open, the overall
transmission from #1 to #2 must be symmetric and equal to the overall transmission from #2 to #1
even in the presence of an external magnetic field that breaks TRS. Obviously, this is a quirk of the

two-terminal case. Consider the following diagram with three symmetric terminals:

Figure 11: Schematic view of a symmetric three-terminal system with external magnetic field (pointing inward, marked as gray crossings).
Assuming the trajectories of particles are bent to right, the blue and red arrow show the favored flow and unfavored flow. In such system, the rate
constants k12 = k2,3 = ka1, butin general k1,2 # ka—1.

Clearly, with a magnetic field on, we will not find that k,_,5 = ko_,;. Instead, by symmetry, we will
find that k15 = k9,3 = k3_,1. As aresult, when we start from a certain terminal (say #1), some
reaction pathways will be preferred to others. Thus, the impact of Berry’s phase must be examined
carefully with many electronic states (and more than two terminals). Interestingly, a consensus has
emerged within the theoretical chemistry community that, for the most part, the geometric phase
around real-valued conical intersections does not usually play a big role. Althorpe ef al. have
shown that one can disentangle the propagators for paths that circle a conical intersection different
numbers of times (i.e. have different winding numbers), and they have argued that in many cases
(and at least for the H, + H reaction) there is little interference between these paths for unbound
systems. ' Nevertheless, it is not yet known what are the consequences (in practice) of a Berry
magnetic or geometric force (i.e. the force that appears with a complex-valued Hamiltonian) in the

presence of a conical intersection — which is a question we are currently exploring.
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Finally, there is one more key point worth mentioning. For the two-state system considered
above, a Berry force emerged from the dependence of the phase of the diabatic coupling Wu(z, y)
(see Egs. (34),(35),(38),(39)). And in this regard, one might question whether such a non-Condon
term can have a large effect on the overall spin-dynamics of a given system. After all, non-Condon
terms are entirely absent from the standard Marcus theory -— which often does pretty well (though
non-Condon effects can sometimes be important'°*!%7). That being said, consider a case of three
electronic states (e.g. corresponding to super-exchange) where two diabatic states come close to-

gether but are also coupled weakly to a third state:

Ey(R) Vi Vi
Ha(R)=| Vi, Ey(R) Vi (59)
13 5 Es(R)

Notice that, if F;(R), E2(R) and E3(R) are not parallel, we will still find a nonzero Berry
force if the couplings V12, Vi3 and Va3 are all nonzero and not all of them are real. Moreover, if
E1(R) and E,(R) are close together, the Berry force can be very large. Thus, in the future, in order
to model Berry force effects on nonadiabatic dynamics, it will be crucial to investigate systems with

more than two (spatial) electronic states.

6 Conclusion

In summary, we have investigated the effect of Berry’s phase (or more importantly, Berry force)
on nuclear dynamics in the context of a complex-valued model Hamiltonian with two electronic
states. Our quantum scattering simulations have demonstrated that magnified spin polarization can
arise for nuclear geometries without inversion symmetry and our scattering results can even be
roughly predicted using an analytic expression for Berry force at the crossing point. Overall, our
findings may provide some insight into recent CISS experiments, suggesting a possible role for

nuclear motion in promoting spin selective electronic transport, though a great deal more research
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(likely with large numerical simulations) will be needed to confirm such a hypothesis.
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A Derivation of The Effective Magnetic Field

Here we derive the effect magnetic field for the two-state system with bent geometry (Eq. (40)).

In the two-state system, the electronic Hamiltonian for the up spin is given by

o Ey(R) Vi(R) A

Vi (R) Ex(R)

where E1, Es, V; are given in Egs. (32),(33),(34). Now, we define 0= €0 —7%), 121(9) = Atanh,
co) = Ce‘éQ, so that

H = (A.2)
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The two adiabatic states and energies are

1 |A—VA2Z+(C?

Yo = — B (A.3)
Mo Cle—iWu
1 |A+VA2C?

= — B (A.4)
T Cle~Wu

El=A— VA4 C? (A.5)
Ef = A+ A2+ C? (A.6)

- i . —— 2
where 7y = \/(A —VA2+C?) +C% o = \/(A + VA2 4+ C?) + C? are the normalization

constants. By substituting the equations above into Eq. (5), we recover

~ B - B
1 (jévé* —C?VA
VA2 4 C?
_ 1 ( C?
o™

— iWC?*Vu(z, y))

£ (A sech? 6 + 2A0 tanh 9~> eq +iWC?*Vul(z, y)> (A7)

VA2 C2 1t

Let us define Vu(z,y) = vy(x,y)er + ((z,y)ey. Then

1 C? € ~ ~ ~ ~ -
doy = — —(Asech? § + 2A0 tanh We? 2
01 - (\/mR < sech” 0 + 2A0 tan 0) eg +1WC((x,y)eg + iWCy(z, y)€R>

(A.8)

Because the component in the ey direction (proportional to v(z,y)) is exclusively imaginary, the

real component in the ey direction (proportional to ((x,y)) will not contribute to the final Berry
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force. Substituting Eq. (A.8) into Eq. (6) gives the effective magnetic field:

B() = —idgl X d10 = id(n X dEk)l

1 2WAC? 0 ) + 20 tanh §
_ WAC e ¢ (sech® @ + 20 tanh 0)~(z, y)e.

(mom)* R VA4 C?
We  AC? 5 ) ofeat B
= —Q—FEW(sech2 0 + 20 tanh 0)~(x,y)e, (A.9)
_I_

Finally, using the fact that A = B2 gnd C? = |V,|?, we arrive at Eq. (40).

B Proof of Two Terminal Symmetry

Here we prove the statement mentioned in Sec. 2.3.2, that spin polarization will not arise with
two terminals and no spin flip if the system is initially equilibrated in one terminal. We will begin
with most general Green’s function expression for transmission (valid for the case of arbitrarily

many terminals): ’®

T pos2wo (E) = Tr [T 0 (B + €,)GN(E + €)oo (E + €,)G(E + €,)] (B.1)
1

E =
Gt ) = pre — =SB+ )

(B.2)

where Y is the self-energy and I'y ., I'2 ., are the imaginary parts of the self-energies for terminals
#1 and #2 with spin ¢ and state p.

Since there is no spin-flipping transmission, the spin polarization rate £, defined in Eq. (24)
is just

1 — €
Fpolar = 57 / dE Y e PFH (T g, (E) = Tipuoszs(E)) (B.3)
1

!
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By time-reversibility (Eq. (14)), we have

1 _ ¢ - €,
Fpotar = 57 / dE j(e PELRT sz r(B) — e PE* ﬂTQ,ume(E))
1 '
o

1
— ﬁ/dEtote_ﬁEtot <TI'
1

( Z Fl,m(Etot)> GT(Etot) ( Z/ F27M’T(Et0t)> G(Etot)

Ty ) (B.4)

( Z F2,u’T(Etot)) GH(E) ( > Tyl Etot)> G (B

Now, most generally, the overall Hamiltonian can be divided into blocks:

H H
oo | B.5)
Hy Hy

When there is no spin flip (i.e. Hy = H; = 0), Hy and H | are independent blocks. For the up
spin, only Hy4 enters into the expression. By defining G4+(E) = (E— Hyp— %) 1, Ty = > T
and I'yy = >, I' 4, Eq. (B.4) can be simplified as (for

Kpotar = i / dEe—ﬁE(Tr [FITGmTGT} - [PQTG}PITGTD (B.6)

For notational convenience, we omit the energy dependence in [' and GG in Eq. (B.6)-(B.12), but

they remain functions of energy. To prove k.., = 0, let us show that
v [FMG}F%GT] —Tr [FQTG}FMGT] (B.7)

By separating the real and imaginary part of ¥4, ¥4 = Ay 4I'y, and defining O = E— Hyp — A4,
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the LHS of Eq. (B.7) can be expanded as

Tr [FlTG$F2TGT:| =Tr

1 1
r r
"E-Hy %l TE-Hy - ZT]

1 1
=Tr (T —7T - B.§
r{ Ty + iy QTQTT_ZFJ (B8

The key point is that, when there are only two terminals, I'y = I'14 + I's. Therefore,

1 1
T[F GIT G} Tr|T r
ek r[ T + Ty QTQTT_ZTJ

1 1
=Tr(T T B.9
r[ "y + 4Ty QTQTT_iFJ (B2

Vice versa, it is also true that:

1 1
T[F GiT G} Te|T r
e r[ T + iy QTQM—@TJ

(B.10)

1 1
=Tr(T r
{ T + il TQM—ZTJ

Lastly, using the well known identity D! —C~! = D=}(D — C')~'C~! and setting D = Qqy —il;
and C' = Q4114 it follows that Eq. (B.7) holds. Therefore, if we begin in equilibrium in terminal
#1, we can never find any polarization in terminal #2.

Furthermore, according to Eq. (B.7), for a system with only two terminals (with or without time
reversal symmetry), the rate constant must satisfy k1,021 = ko 12>, as follows from the general

expressions:

k1o = / dEe PP Tr[[1G'TG] (B.11)
/ “PETr[T,G'TH G (B.12)

1
ka1 = ﬁ_
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