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Abstract

To help better interpret experimental measurement of nanoparticle size, it is impor-

tant to understand how their diffusion depends on the physical and chemical features

of surface ligands. In this study, explicit solvent molecular dynamics simulations are

used to probe the effect of ligand charge and flexibility on the diffusion of small gold

nanoparticles. The results suggest that despite a high bare charge (+18 e), cationic

nanoparticles studied here have reduced diffusion constants compared to a hydrophobic

gold nanoparticle by merely a modest amount. Increasing the ligand length by 10 CH2

units also has a limited impact on the diffusion constant. For the three particles studied

here, the difference between estimated hydrodynamic radius and radius of gyration is

on the order of one solvent layer (3-5 Å), confirming that the significant discrepancies

found in the size of similar nanoparticles by recent transmission electron microscopy

and dynamic light scattering measurements were due to aggregation under solution con-

ditions. The limited impact of electrostatic friction on the diffusion of highly charged

nanoparticles is found to be due to the strong anti-correlation between electrostatic

and van der Waals forces between nanoparticle and environment, supporting the gen-

erality of recent observation for proteins by Matyushov and co-workers. Including the

first shell of solvent molecules as part of the diffusing particle has a minor impact on

the total force autocorrelation function but reduces the disparity in relaxation time

between the total force and its electrostatic and van der Waals components.
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1 Introduction

Nanomaterials are used in many important applications such as imaging,1–3 catalysis,4,5

energy6 and food production.7,8 To control their stability in solution and interaction with

other materials, nanomaterials are often functionalized with surface ligands.9 For guiding

the design of surface functionalization, it is essential to understand how surface ligands

impact the physical and chemical properties of nanomaterials. A simple but important

physical property is the effective size of the nanomaterial, which can be measured us-

ing different techniques, such as transmission electron microscopy (TEM),10 dynamic light

scattering (DLS),11,12 small angle X-ray scattering (SAXS)13 and fluctuation correlation

spectroscopy (FCS).14 Due to the different experimental conditions, the measured effec-

tive size can vary rather significantly. For example, in a recent study15 of MTAB ((16-

mercaptohexadecyl)trimethylammonium bromide) functionalized gold nanoparticules, the

effective radii determined from DLS for a series of particles of different gold cores are ap-

proximately three times of the values measured with TEM. Such large differences suggest

that the nanoparticles aggregate to a considerable degree in solution; this could occur de-

spite the charged nature of surface ligands because the asymmetric distribution of MTAB

ligands15–19 leaves a considerable degree of exposed hydrophobic areas, which promote ag-

gregation. Taking the larger effective radii of the gold nanoparticules into consideration was

important to matching the computed and measured T2 relaxation times of surface ligands,

which were observed to exhibit generally fast dynamics at the sub-nanosecond time scale;19

whether ligand dynamics are significantly perturbed by aggregation remains to be analyzed

systematically.

Another factor that might have contributed, at least in part, to the difference between

TEM and DLS measured radii is that the interfacial solvent and counter ions contribute

significantly to the hydrodynamic radius (RH) inferred from the DLS experiment. For pro-

teins in solution,20 for example, RH differs from the radius of gyration (Rg) by 20-30% as

typical for spherical objects.21 Since (gold) nanoparticles are often significantly charged,
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with the bare surface charge density exceeding 0.1 C/m2, we expect that interfacial solvent

and ion contribute significantly to both equilibrium and dynamic properties of nanoparti-

cles, as observed for ζ potential and electrophoretic mobility in recent studies.19,22,23 At a

qualitative level, we anticipate that charged ligands at the surface slow down diffusion and

therefore increase RH , as discussed for molecular ions24,25 and recently, for small metal oxide

nanoparticles.26 These previous analyses focused on relatively low values of charge (< 5e),

thus whether highly charged nanoparticles experience substantially stronger electrostatic

friction (thus a larger difference between RH and Rg) remains to be clarified. Moreover, the

difference between RH and Rg for nanoparticles with flexible surface ligands has not been

systematically analyzed. A particular question of interest is whether flexible and charged

surface ligands are coupled more strongly with the surrounding solvent and counter ions

than rigid ligands, due to the soft modes associated with the collective rearrangements of

flexible ligands. Along this line, we note that the behaviors of nanoparticles might differ

from colloids,27 for which length scale separation is better justified.28

In this work, we study the diffusion of three small gold nanoparticles with different surface

ligands using explicit solvent molecular dynamics simulations, which allow us to explicitly

compare RH and Rg with molecular level of insights. Specifically, we compare three types

of surface ligands that differ in length and charge states, and the results help make clear the

quantitative contributions of surface charge and ligand flexibility to diffusion and therefore

the value of RH . By analyzing the force-force correlation function of the nanoparticle,

we discuss how compensation between electrostatic and van der Waals interactions leads

to a rapid decay of the force autocorrelation function29 and reduced total friction for the

cationic particles despite their high apparent charges, as recently recognized for proteins by

Matyushov and co-workers;30 we also explicitly analyze the impact of including the first layer

of solvent as part of the diffusing particle, which significantly reduces the relaxation times

of electrostatic and van der Waals forces but only slightly modifies the relaxation time of

the total force on the particle. These results have implications to the applicability of the
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Stokes-Einstein model to nanoparticles with a molecularly rough and charged surface.

In the following, we first summarize the computational models and simulation details.

Next, we present the computational results, which include finite size effect on computed dif-

fusion constants, impacts of ligand properties and counter ion concentration on nanoparticle

diffusion, and behaviors of velocity and force autocorrelation functions. Finally, we draw a

few conclusions.

2 Computational Methods

We study three small gold nanoparticle (Au-NP) systems, which are functionalized with short

hydrophobic (-S(CH2)5H), short cationic (-S(CH2)5NH+
3 ) and long cationic (-S(CH2)15NH+

3 )

ligands, respectively; they are referred to Au25SC5H18, Au25SC5N18 and Au25SC15N18, re-

spectively, since they share the same gold core (Au25) and each contains 18 ligands (see

Table 1). A very small gold core is chosen in this work so that the molecular nature of the

nanoparticle/water interface is prominent (see snapshots in Fig. 1). The structures of the

Au-NP systems are set up based on the crystal structures31,32 of similar gold clusters using

the CHARMM-GUI33 Nanomaterial Modeler. Since the small nanoparticles feature a high

surface curvature, all primary amines are assumed to be protonated as they can effectively

avoid each other.34,35

Table 1: Model ligands used in this work.a

Model ligand Chemical formula
SC5H -S(CH2)5H
SC5N -S(CH2)5NH3

+

SC15N -S(CH2)15NH3
+

a. Each gold nanoparticle contains 25 Au atoms and is functionalized with 18 ligands; thus the

functionalized particles are referred to as Au25SC5H18, Au25SC5N18 and Au25SC15N18. The amine groups

are considered to be fully protonated, which is likely a good approximation considering the large curvature

of the small Au-NPs studied here.34,35

Explicit solvent molecular dynamics simulations are conducted for the nanoparticles in

salt solution. Most production runs are conducted with a simulation box of 100 Å in length.
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(a) (b) (c)

Figure 1: Snapshots for the Au-NPs studied in this work: Au25L18, in which L=SC5H, SC5N
and SC15N (see Table 1 for their chemical structures). Among those, Au25SC5H18 can be
considered to be largely spherical with a uniform surface, while the other two Au-NPs exhibit
a significant degree of surface roughness due to the anisotropic packing of charged ligands.

For the cationic particles, simulations >100 ns using smaller boxes are first carried out to

more thoroughly sample the ligand configurations; snapshots of the nanoparticles are then

solvated in larger boxes for the computation of diffusion constants. For Au25SC15N18, we

explicitly study the finite size effect on the computed diffusion constant by comparing results

with three box sizes (80, 100 and 120 Å). The simulations are conducted with 150 mM NaCl,

which is the physiological salt concentration; this choice is motivated by the consideration

that gold nanoparticles are extensively used in biological studies.36–38 For Au25SC15N18, a

set of simulations with minimal salt (i.e., with only Cl− ions to neutralize the bare charge

of the nanoparticle, which is +18 e) is also conducted for comparison. For a summary of

system sizes and lengths of simulations, see Table 2.

The nanoparticles are treated with the INTERFACE force field,39 which has been shown

to describe gold surface and nanoparticles well.39–41 The salt ions, water molecules and lig-

ands are treated using the standard models available as part of the CHARMM36/CgenFF

model;42–45 since the chemical groups in the ligands are highly similar to those in the protein

force field in CHARMM36, the penalty scores are small. The long simulations for examining

the solvation structure of nanoparticles and equilibrating ligand configurations have been

conducted with OpenMM 7.246 using the NPT ensemble, while shorter simulations for the
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Table 2: Computational details for simulations conducted in this work.a

Au-NP Box Length (Å) Number of atoms Simulation lengths
Au25SC5H18 100 ∼94,000 8×2 ns
Au25SC5N18 55 ∼16,800 3×120 ns
Au25SC5N18 100 ∼94,500 12×2 ns
Au25SC15N18 80 ∼48,600 120 ns + 12×2 ns
Au25SC15N18 100 ∼94,510 12×2 ns
Au25SC15N18 100b ∼94,510 6×2 ns
Au25SC15N18 120 ∼164,760 12×2 ns
Au25SC15N18 100b,c ∼94,510 12×2 ns

a. For each charged Au-NP system, a long (∼120 ns) simulation was used with the small box size to collect

configurations that were then studied with multiple shorter simulations for the computation of velocity

autocorrelation functions. The salt (NaCl) concentration is 150 mM, unless otherwise stated. b. The

system density is equilibrated with NPT simulations, which reduces the box size by ∼1-2 Å. c. With

minimal salt rather than 150 mM NaCl.

computation of velocity and force autocorrelation functions for the analysis of diffusion and

friction, respectively, have been carried out with the CHARMM package47 interfaced47,48

with OpenMM 7.2 in the NVE ensemble to minimize the impact of thermostat on the com-

puted correlation functions; the impact of adjusting the solvent density is also explicitly

tested and shown to be a few percent on the computed diffusion constant. For the NPT sim-

ulations, the Langevin thermostat49 with a friction constant of 1 ps−1 is used for temperature

control (T=300 K), and the Monte Carlo barostat is used for pressure control (p=1 bar). For

the computation of non-bonded interactions, the Particle-mesh-Ewald method50 with a grid

size ∼ 1 Å is applied to electrostatic interactions. Switching with a switch distance of 10.0

Å and a cutoff of 12.0 Å is applied to the van der Waals interactions. Shake51 is applied to

constrain bonds involving hydrogen atoms, enabling the use of a 2 fs integration time step.

While the diffusion constant can be computed using mean square displacement and the

Einstein relation, we use the integration of velocity autocorrelation function since the object

of interest is a single nanoparticle; previous studies52 suggested that it might take a long time

for a large Brownian solute to reach its asymptotic behavior, an effect closely related to the

long-time tail in the velocity autocorrelation function.29,53 The apparent diffusion constant
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(DPBC) can be computed in the following fashion,29,54

DPBC(L) =
1

3

∫ ∞
0

Cvv(t)dt =
1

3

∫ ∞
0

〈v(0) · v(t)〉dt ≈ 1

3

[ ∫ t∗

0

〈v(0) · v(t)〉dt+

∫ ∞
t∗

a′0t
− 3

2dt
]
,

(1)

in which we explicitly indicate the long-time tail of Cvv(t) and the box size (L) dependence

of the computed diffusion constant; the choice of t∗ and a′0 is discussed below. Finite size

corrections due to hydrodynamic considerations have been reported;55,56 for a cube geometry

in 3D, we have

D0 = DPBC(L) +
kBTζ

6πηL
∼ DPBC(L) +

2.84kBT

6πηL
, (2)

in which η is the dynamic solvent viscosity. As discussed below, we observe that the cor-

rection seems to work well for the present systems and leads to a consistent estimate of D0

largely independent of the simulation box length L.

3 Results and Discussion

3.1 Surface Ligand Properties

Before discussing nanoparticle diffusion, we first briefly summarize the structural and dy-

namical features of surface ligands in the three nanoparticle systems. As illustrated by the

snapshots in Fig. 1, the particle with short, hydrophobic ligands (-SC5H) features a rather

homogeneous surface; by comparison, the short but cationic ligands (-SC5N) feature less

homogeneous packing, while the long cationic ligands (-SC15N) feature even more heteroge-

neous distributions, which lead to a rather rough surface at the molecular scale. These trends

are further illustrated by a spherical Voronoi tessellation57 of the terminal heavy atoms in

the ligands (Fig. 2a-c), which indicate a notable degree of ligand clustering in Au25SC15N18.

Nevertheless, the difference of the maximal and minimal eigenvalues of the moment of iner-

tia tensor averages to about 10%, 11% and 30% of the largest eigenvalue for Au25SC5H18,

Au25SC5N18 and Au25SC15N18, respectively, suggesting that the three nanoparticles on av-
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erage do not differ significantly from a spherical shape.

As discussed in our recent analysis of similar gold nanoparticles,19 surface ligands rear-

range their conformations at the nanosecond time scale, even for the ligands that exhibit

transient clustering or bundling behavior15–19 due to the long hydrophobic segments. Here

we quantify ligand flexibility by the P2 correlation functions of two vectors for each ligand:

the S-N/S-C vector that points from each sulfur to the terminal heavy atom (N or C) in

the same ligand, and the terminal C-N/C-C bond vector of each ligand. As shown in Fig.

2d, the correlation in C-N/C-C bond vectors decays much faster, on the order of ∼50 ps

for Au25SC5H18 and Au25SC15N18, and ∼100 ps for Au25SC5N18, than the S-N/S-C vectors,

which have relaxation times longer than a nanosecond, especially for the case of long cationic

ligand. These results are consistent with a picture in which the surface ligands rearrange

their overall orientations in nanoseconds, yet locally the terminal groups are able to sample

different orientations at a much faster time scale. Importantly, these time scales are sub-

stantially longer than the decay time of the particle’s velocity autocorrelation function (a

few picoseconds, as shown below), thus surface ligand dynamics and particle diffusion are

not expected to be tightly coupled.

3.2 Velocity AutoCorrelation (VAC) Function

The VAC functions for the various systems are shown in Fig. 3; the top panels are semi-log

plots for normalized VAC functions, while the bottom panels are log-log plots for unnormal-

ized VAC functions, which help clarify the short-time and long-time behaviors, respectively.

For a simple Brownian particle of mass m that experiences instantaneous (thus constant)

friction ζ, the VAC function is expected to be a single exponential decay29 with the short

time expansion in the following form,

Cvv(t) =
kBT

m
e−

ζ
m
t =

kBT

m

(
1− Ω2

0

t2

2
+ · · ·

)
, (3)
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Figure 2: Structural and dynamical properties of surface ligands. (a-c) Voronoi tessellation 57

of ligand terminal atom projected onto the surface for random snapshots from the Au-NP
simulations; the less uniform Voronoi cell areas in (c) is consistent with the more heteroge-
neous distributions of the long surface ligands in Au25SC15N18. (d). P2 correlation function
for two vectors that characterize ligand dynamics; S-N/S-C is the vector from each sulfur to
the nitrogen/carbon atom at the end of each ligand; C-N/C-C is the bond vector involving
the terminal nitrogen/carbon atom of each ligand.
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in which the “Einstein frequency” Ω0 is given by Ω2
0 = m

3kBT
〈v̇ · v̇〉 = 〈δF2〉

3mkBT
; F is the total

force on the particle due to the environment.
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Figure 3: Computed velocity autocorrelation functions for the various nanoparticle systems.
(a-b) are semi-log plots for the normalized correlation functions, and (c-d) are log-log plots
for the unnormalized correlation functions.

As shown in Fig. 3a-b, the VAC functions are clearly not single exponentials for all the

systems studied here, highlighting the complexity of the nanoparticle/environment interac-

tions (see Sect.3.4). We note that even with the shortest ligand, -SC5H, the mass ratio of

the nanoparticle and solvent is ∼ 6780/18 ∼ 377, thus the nanoparticle is expected to be

well in the Brownian limit.54 Plotting the unnormalized VAC functions against t (Fig. 4)

indicates that Ω0 is the highest for Au25SC5N18 (also see Sect.3.4). This can be explained as

the following. For the hydrophobic particle, Au25SC5H18, the interaction with the environ-
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ment is expected to be weak; a small 〈δF2〉 thus leads to a lower Ω0. For the two cationic

particles, both feature positively charged amines and therefore the magnitude of force fluc-

tuation due to the environment is expected to be similar; however, the particle with the

longer ligand is more massive by almost 25% (9595 vs. 7070 amu), leading to a smaller Ω0

for Au25SC15N18. In fact, the initial slopes of the logarithm of VAC functions (expected

to be −ζ/m for a Langevin model) for the two cationic particles have a ratio ∼0.75, which

is close to their mass ratio, further supporting that the friction experienced by the cationic

particles are similar in magnitude. For additional discussions of friction, see Sect.3.4, which

explicitly analyzes the time dependence of particle-environment interactions.

After t reaches the characteristic “hydrodynamic time”,

th = ρmR
2/η, (4)

which is the time taken by a viscous shear wave in the solvent with dynamic viscosity η and

mass density ρm to propagate across the Brownian particle of radius R, the VAC function is

expected reach the asymptotic form that decays algebraically,29

Cvv(t) ∼ a0t
− 3

2 , (5)

in which a theoretical prediction58 for a0 is 2kBT

ρm(4πη/ρm)
3
2

=
2kBT

√
ρm

(4πη)
3
2

, for the limit of heavy

particle at infinite dilute concentration and when the particle’s diffusion constant is negligible

compared to the solvent’s kinematic viscosity. For the nanoparticles studied here, the size

is in the range of 5-10 Å (see below), the value of th is in the range of 0.8 to 3.1 ps; the

estimate is made with the viscosity of the TIP3P water model used here,59 which is lower

than the experimental value by almost a factor of 3.60 Accordingly, the predicted value of

a0 is ∼0.1 Å2·ps−
1
2 .

Inspection of Fig. 3c-d suggests that the hydrophobic particle Au25SC5H18 exhibits

behaviors closest to these predictions: the slope of ln[Cvv(t)] and ln[t] approaches -1.5 after
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t ∼2 ps; at t = 2.0 and t = 3.0 ps, the computed Cvv(t) values are 0.0300 and 0.0164

Å2/ps2, respectively; these are in decent agreement with the theoretical predictions (a0t
−3/2)

of 0.0361 and 0.0196 Å2/ps2, respectively. For the cationic particles, the agreement with

the theoretical prediction appears to be less good. For Au25SC5N18, which has a similar

size as Au25SC5H18 but charged, the slope of ln[Cvv(t)] and ln[t] in the similar time range

is slightly shallower than the expected value of -1.5. For Au25SC15N18, which is larger in

size by at least 3 Å, ln[Cvv(t)] vs. ln[t] approximately exhibits the expected slope of -1.5

for t beyond at least 3 ps; the value of Cvv(t) is, however, substantially lower than the

prediction of a0t
−3/2: at t=5.0 and 6.0 ps, for example, the computed values are 0.0027 and

0.0023 Å2/ps2, respectively, in comparison to the theoretical predictions of 0.0091 and 0.0069

Å2/ps2. Finally, it is worth noting that the behavior of ln[Cvv(t)] for the small box size of 80

Å is fairly distinct from the larger ones for t ∼ 2− 5 ps (see Fig. 3c), highlighting the finite

size effect on VAC function. For more thorough understanding of the long-time tail of Cvv(t)

for charged particles, more extensive sampling of simulation conditions is likely required.

For the computation of diffusion constant, for the few cases where Cvv(t) fits well to the

form of t−3/2, we fit the prefactor based on ln[Cvv(t)] for t in the range of 2.5 and 6.0 ps,

and integrate the contribution from the long-time tail analytically starting from t∗=6.0 ps

in Eq. 1. As shown in Table 3, the difference between this approach with truncating the

integration at 10 ps is a few percent, which is adequate for the current purpose of comparing

different systems. Therefore, for the rest cases and discussions, we simply conduct numerical

integration of Cvv(t) up to t∗=10 ps.

3.3 Diffusion Constant: Finite Size Effect and Impact of Ligand

Properties

Using Au25SC15N18 as an example, we explicitly examine the finite size effect, as often

observed for protein diffusion55 and other subtle structural features that are sensitive to

interfacial water structure and density61,62. As shown in Fig. 4a and summarized in Table
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3, there is significant finite size effect; with box sizes of 80 and 100 Å, for example, the

computed apparent diffusion constants, DPBC , differ by more than 10%. Considering that

Rg is only about 8 Å, it is remarkable that with L on the order of 100 Å, the finite size

correction derived by Hummer and co-workers55,56 is almost of the same magnitude as the

computed apparent diffusion constant. Encouragingly, once the correction is included, the

estimated large-box limit, D0, is almost identical using simulations with the three box sizes

(Table 3). Although the instantaneous shape of the cationic particles is clearly not spherical

(see Fig. 1), the ligand rearrangement is fast as discussed in the above subsection, thus the

average shape does not deviate significantly from being spherical, explaining the apparent

lack of requiring a shape correction factor63 for the finite size correction.
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Figure 4: Computed velocity autocorrelation functions (solid lines) and the cumulative time
integral, 1

3

∫ t
0
Cvv(τ)dτ (dotted lines), for the various systems. (a) shows the results for

Au25SC15N18 under different simulation conditions, and (b) compares results for the three
nanoparticles with L=100 Å.

Comparing the diffusion constants for the three nanoparticles, it is evident that both

ligand charge and length make notable contributions. While Au25SC5H18 and Au25SC5N18

have rather similar Rg values of ∼5 Å, the cationic particle has almost 25% reduction in

the diffusion constant, highlighting the limited contribution from electrostatic friction (see

discussion in Sect.3.4). Increasing the ligand length by ten CH2 units to Au25SC15N18 further

decreases the diffusion by another ∼15%. The diffusion constants can be converted to RH
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Table 3: Computed properties for Au-NPs studied in this work.a

Au-NP Box Length (Å) DPBC (Å2/ps) D0 (Å2/ps) RH (Å) Rg (Å)
Au25SC5H18 100 0.064 (0.062) 0.083 8.2 5.1±0.03
Au25SC5N18 100 0.047 0.066 10.4 5.5±0.03
Au25SC15N18 80 0.032 0.056 12.2 8.2±0.1
Au25SC15N18 100 0.035 (0.034) 0.055 12.4 8.1±0.1
Au25SC15N18 100b 0.035 0.054 12.6 8.1±0.1
Au25SC15N18 120 0.036 0.053 12.8 8.2±0.1
Au25SC15N18 100b,c 0.036 0.055 12.4 8.2±0.1

a. DPBC is the apparent diffusion constant (Eq. 1); D0 is the diffusion constant corrected for finite size

effect (see Eq. 2); RH is the hydrodynamic radius estimated using the Stokes-Einstein relation with the

stick boundary condition (see Eq. 6); Rg is the radius of gyration. The statistical errors for DPBC are

0.002, 0.003 and 0.004 Å2/ps for Au25SC15N18, Au25SC5N18 and Au25SC5H18, respectively. The DPBC

values without parentheses are obtained by truncating the integration of the velocity autocorrelation

function at t=10 ps; values with parentheses are obtained by fitting Cvv(t) to the form of a′0t
−3/2 in the

range of 2-6 ps, and then integrating the contributions from t > 6 ps analytically using the fitted a′0 value.

b. The system density is equilibrated with NPT simulations, which reduces the box size by ∼1-2 Å. c.

With minimal salt rather than 150 mM NaCl.

through the Stokes-Einstein relation with the stick boundary condition (see discussion below

for its applicability) as summarized in Table 3. The results indicate that even with long and

flexible ligands as -SC15N, the difference between RH and Rg is limited. The difference of

around 4 Å corresponds to one layer of solvent surrounding the cationic groups in the ligand,

as supported by the radial distribution function of water oxygen around the ligand nitrogen

(Fig. 5a); the strong solvent-nitrogen peak suggests that the residence time for the first layer

of solvent is expected to be longer than th (Eq. 4) and thus should be considered to be part of

the diffusing particle. For the short cationic ligand, -SC5N, the solvent distribution is almost

identical (Fig. 5a), thus RH and Rg differ also by ∼4 Å. For the hydrophobic particle, the

solvent doesn’t exhibit any significant feature around the ligand (Fig. 5a), thus RH and Rg

differ merely by approximately the excluded solvent size of ∼3 Å, which corresponds to the

onset of the solvent-ligand radial distribution function. We note that due to the significant

flexibility of surface ligands, water molecules are able to penetrate close to the surface of the

nanoparticle, as was illustrated in our previous studies of similar nanoparticles23,35,64 as well

as prior simulation analyses of chromatographic systems.65
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Figure 5: Radial distribution functions (RDFs) of solvent oxygen (a) and chloride ions (b)
around the ligand nitrogen in different nanoparticles from simulations with L=100 Å. The
dash lines are the integrated radial distribution functions.

Since both cationic particles bear a considerable degree of charge (+18 e), we also evaluate

the contribution of counter ion concentration by running a set of simulations with minimal

salt for Au25SC15N18. It turns out that the physiological salt concentration only perturbs

the diffusion constant by a few percent (Table 3), similar to a previous analysis of metal

oxide (phosphotungstate) nanoparticle.26 The relatively small effect is likely because despite

significant enhancement of chloride distribution near the nanoparticle surface, the number

of chloride ions tightly associated with the nanoparticle is modest; for Au25SC15N18, it is

∼0.15 ion per ligand (Fig. 5b), which corresponds approximately to three chloride ions for

the particle; the somewhat low level of association is likely due to the fact that some cationic

groups are shielded due to the wrapping of the flexible ligands on the particle surface (see a

snapshot in Fig. 1c),19 which is further supported by the higher level of chloride association

observed for the cationic particle with shorter ligands (Fig. 5b). This level of ion association

is still possible even under the minimal salt condition, which explains the modest change of

diffusion constant.
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3.4 Stokes-Einstein Model and Electrostatic friction

The Stokes-Einstein model66–68 relates the diffusion constant of a spherical Brownian particle

with its effective size and solvent viscosity,

DSE =
kBT

cπηRH

, (6)

in which c is 4 and 6 for slip and stick boundary conditions, respectively.69,70 It is derived

using a Markovian approximation to the friction kernel (see below), leading to DE = kBT
ζ

;

continuum analysis with different boundary conditions is then used to relate the friction ζ

to liquid viscosity η and the (spherical) size of the Brownian particle. As discussed previ-

ously,54,71 for a particle with surface roughness comparable to the solvent size, the solvent

can exert torque on the diffusing particle and therefore the stick boundary condition is likely

more appropriate. Therefore, for the current study, we use c = 6; indeed, if c = 4 was

used, the RH will be substantially larger than Rg (e.g., RH would be 12.3 Å even for the

hydrophobic particle, whose Rg=5.1 Å), which is not as physical.

To understand the applicability of the Stokes-Einstein model, it is thus important to

examine the behavior of the translational friction, which in general is time dependent and

enters the description of diffusion via the generalized Langevin equation (GLE);29 the time

dependence can be written in the form of a memory kernel, Mζ(t),

ζ(t) = ζ(0)Mζ(t), (7)

in which ζ(0) = β
3
〈δF2〉 = mΩ2

0. Standard derivations using Fourier-Laplace transform of

the generalized Langevin equation lead to the result,29,30

DGLE = 3[β2〈δF2〉τζ ]−1 =
kBT

mΩ2
0τζ

, (8)

in which τζ =
∫∞
0
Mζ(t)dt is the relaxation time of the memory function.
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It is generally not straightforward to compute Mζ(t), which is defined in terms of the

auto-correlation function of the random force due to the environment.29,72 It is much more

straightforward to compute the auto-correlation function of the total force on the particle due

to the environment from microscopic simulations (note that the total force includes both fric-

tional and random forces in the GLE framework;72 in the projection operator framework,29

the random force is orthogonal to the velocity of the particle),

〈δF · δF(t)〉 = 〈δF2〉MF (t), (9)

in which MF (t) is the normalized total force auto-correlation function with a correlation

time τF . The normalized VAC function, Cvv(t)/Cvv(0), Mζ(t) and MF (t) are related to each

other with well-establish expressions in terms of their Fourier-Laplace transforms; 29,73 e.g.,

[Ω2
0M̃ζ(ω)]−1 = [Ω2

0M̃F (ω)]−1 − (iω)−1.

To further understand factors that dictate the diffusion constant, it is thus useful to eval-

uate τF and also various contributions to 〈δF2〉; for example, since δF contains both van der

Waals and electrostatic contributions, 〈δF2〉 should contain the corresponding contributions

and the cross-correlation of van der Waals and electrostatic terms:

〈δF2〉 = 〈δF2
elec〉+ 〈δF2

vdW 〉+ 2〈δFelec · δFvdW 〉 (10)

Remarkably, in previous work,25,30 it was observed for proteins that, 〈δFelec · δFvdW 〉 ≈

−〈δF2
elec〉, thus,

〈δF2〉 ≈ 〈δF2
vdW 〉 − 〈δF2

elec〉; (11)

it is of interest to investigate if this observation applies more broadly to other systems, such

as the nanoparticles in the current study.

In Figure 6, we show the normalized force autocorrelation function and its decomposition

at both short (< 1 ps) and long (1 ns) time scales for Au25SC15N18; the short-time behavior
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Figure 6: Normalized force autocorrelation functions computed for Au25L18 and their electro-
static and van der Waals components as well as the cross correlation between these compo-
nents. (a) and (b) show the behaviors for Au25SC15N18 at different time scales and highlight
that the compensation between electrostatic and van der Waals solvent-particle interactions
leads to dramatic difference in relaxation time scales for the total force and its components.
(c) and (d) show the short time behaviors for Au25SC5N18 and Au25SC5H18, respectively,
which highlight the minimal contribution from electrostatics in the latter case. In (c), the
dashed lines are results when the first solvation shell of the ligand nitrogens (see Fig. 5a) is
included as part of the diffusing particle.
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is also shown for the other two particles for comparison. Similar to previous analysis of

protein,30 for the cationic particles, we also observe that the electrostatic and van der Waals

contributions have long correlation times on the nanosecond time scale; moreover, they have

strong and persistent anti-correlations, which have an equal (zero) time value of ∼-0.8. As a

result, the total force auto-correlation function decays at a much faster time scale of merely ∼

20 fs (Fig. 6a), which is at least 4-5 orders of magnitude faster than the electrostatic and van

der Waals components. The cationic particle with the short ligand exhibits generally similar

features, although the electrostatic and van der Waals components relax somewhat faster

than Au25SC15N18; for example, by ∼ 1 ps, the normalized electrostatic component of MF (t)

decays to∼0.5 and 0.75 for Au25SC5N18 and Au25SC15N18, respectively. For the hydrophobic

gold particle, the electrostatic component is much weaker and decays on the picosecond time

scale (Fig. 6d). The total force correlation is dictated by the van der Waals component,

which decays at the timescale of ∼50 fs; i.e., without strong electrostatic interaction, the

solvent-particle force correlation in fact decays slower by a factor of two than the cationic

particles, again highlighting the significance of compensation between electrostatic and van

der Waals components for charged particles.

Table 4: Computed force fluctuations (in the unit of kcal2·mol−2·Å−2), Einstein frequency
(Ω0, in ps−1), approximate correlation time τF (in fs) and GLE diffusion constant (DGLE, in
Å2/ps) for Au-NPs studied in this work.a

Au-NP 〈δF2
elec〉 〈δF2

vdw〉 〈δFelec · δFvdw〉 〈δF2
tot〉 Ω0

b τF
c DGLE

d

Au25SC5H18 15 409 -13 399 3.7 39 0.071
Au25SC5N18 6060 6890 -4846 3206 10.2 26 0.013
Au25SC5N18

e 6476 9494 -5969 4030 – 17 0.016
Au25SC15N18 9420 9780 -8058 3164 8.8 22 0.016

a. The calculations are based on the 100 Å simulation boxes. b. Ω2
0 =

〈δF2
tot〉

3mkBT
. c. To estimate τF , a

truncation of 200 fs is introduced to the integration of MF (t) up to 200 fs (see Fig 6). d. Estimated based

on Eq. 8 by approximating τζ by τF . e. Calculations that include the solvent/ions within the first solvation

shell (3.5 Å) from the ligand nitrogen as part of the diffusing particle.

The compensation between electrostatic and van der Waals forces can also be appreci-

ated by examining the absolute magnitude of the force fluctuations, which are summarized

in Table 4). The dominant contribution of the van der Waals component is evident and
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expected for the hydrophobic particle, for which 〈δF2
elec〉 is merely ∼3-4% of 〈δF2

vdw〉. For

the charged particles, strong electrostatic interaction between the particle and the environ-

ment also increase 〈δF2
vdw〉 by a factor of ∼20 relative to the hydrophobic particle; due to

the anti-correlation between electrostatic and van der Waals force, however, the total force

fluctuations for the cationic particles are about only one order of magnitude higher than

the hydrophobic particle. In fact, although the two cationic particles exhibit different values

for 〈δF2
elec〉 and 〈δF2

vdw〉, they have similar total force fluctuations; for both cases, we note

that 〈δF2
tot〉 is approximately 30-40% of 〈δF2

vdw〉, which is remarkably similar to previous

observation for proteins.30

One is tempted to estimate the diffusion constant using Eq. 8 but replacing τζ by τF ,

which is defined as
∫ tcut
0

MF (t)dt, where tcut is an intermediate time between the molecular

collision time and relaxation time of the diffusing particle;73,74 we note that the low-frequency

Fourier components of MF (t) and Mζ(t) have distinct trends, and M̃F (0) =
∫∞
0
MF (t)dt in

fact approaches 0.73 Considering their much larger total force fluctuations, the cationic par-

ticles are expected to experience stronger frictions and thus expected to have lower diffusion

constants than the hydrophobic particle. Indeed, while the strong compensation between

electrostatics and van der Waals forces leads to shorter τF , using τF in Eq. 8 would predict

that the DGLE values (see Table 4) for the cationic particles to be ∼5 times lower than

the hydrophobic particle, while explicit computations of DPBC in Table 3 show only 30%

difference between Au25SC5N18 and Au25SC5H18. In other words, while DGLE deviates from

DPBC by only ∼10% for the hydrophobic particle, the discrepancies are substantially larger

for the cationic particles (compare Tables 3 and 4); note that since the key quantities in Eq. 8

are evaluated using the 100 Å box without considering finite size effects, the estimated DGLE

should be compared to computed apparent diffusion constant, DPBC , and the difference is

about a factor of 2-3. For charged proteins, we note that Matyushov and co-workers 30 also

observed that diffusion constant estimated using a simple hydrodynamic (Stokes-Einstein)

model did not quantitatively agree with MD results, which found rather weak dependence
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of diffusion constant on protein charge (up to |Q| = 5e).

One possible origin for the significant discrepancies observed for the cationic particles

is that, as discussed in Sect.3.3, the first solvation shell should be considered part of the

diffusing cationic particle. To examine this possibility, we re-compute the force fluctuations

and autocorrelation functions for Au25SC5N18. As shown in Fig. 6c, including the first

solvation shell as part of the diffusing particle leads to substantially faster relaxation of

both electrostatic and van der Waals forces, as well as their anti-correlation; accordingly, the

relaxation time estimated for the total force also becomes somewhat shorter (see Table 4).

However, the magnitude of the total force fluctuation, in fact, increases (see Table 4), thus

the predicted DGLE value remains substantially different from DPBC .

These observations suggest that for the cationic particles, MF (t) andMζ(t) are sufficiently

different. To match Eq. 8 with the computed DPBC values, the memory function would

feature an even shorter relaxation time than the total force autocorrelation function (i.e.,

τζ < τF ) for the cationic particles. Considering that τF is in the range of 20-30 fs, even shorter

τζ in the range of 6-10 fs is required; such short relaxation times for the memory function

might suggest that a Markovian model (i.e., the Stokes-Einstein model) might be a reasonable

approximation, although the VAC functions clearly do not follow the single exponential

behavior as expected for a Langevin model (Fig. 3). Therefore, it is worthwhile explicitly

investigating the memory function,29,72 which in principle can be obtained via analysis of

the VAC function75,76 or Fourier transform of the total force auto-correlation function (see

above).29,73 Alternatively, it is also possible that many more independent trajectories with

different initial ligand configurations are needed to more accurately compute the short-time

behaviors of MF (t); we note that τF was estimated to be about 5-6 fs for azurin in solution,30

which featured larger force fluctuations (〈δF2〉 ∼104 kcal2·mol−2·Å−2). More systematic

analyses along these lines are left for future work.
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4 Conclusions

To help better interpret experimental measurement of nanoparticle size, it is important to un-

derstand how their diffusion depends on the physical and chemical features of surface ligands.

In this study, using explicit solvent molecular dynamics simulations, we have examined the

diffusion behaviors of three gold nanoparticles functionalized with ligands of different charge

and flexibility. The results suggest that charge reduces the diffusion constant by a modest

amount (25%) despite the significant value of the bare charge (+18 e), while increasing the

ligand length by 10 more CH2 units further reduces diffusion by 15%. Accordingly, the es-

timated RH values based on the Stokes-Einstein model do not differ significantly from Rg

for the cationic particles. These results help confirm that the discrepancies found in the size

of similar nanoparticles by TEM and DLS measurements in Ref. 15 were due to a notable

degree of aggregation under solution conditions. The limited impact of electrostatic friction

on the diffusion of the nanoparticles is due in large part to the significant anti-correlation

between electrostatic and van der Waals interactions between the nanoparticle and environ-

ment, as was demonstrated recently for proteins by Matyushov and co-workers, 30 and such

strong compensation persists if the first shell of solvent molecules is considered to be part

of the diffusing particle. As a result of the compensation, the total force autocorrelation

function decays at a much faster time scale (tens of femtoseconds) than the electrostatic

and van der Waals components, which relax at the nanosecond time scale; including the

first shell of solvent molecules as part of the particle reduces the degree of disparity in the

relaxation time scales without significantly affecting the total force autocorrelation function.

Nevertheless, using the time scale associated with the total force autocorrelation function

as a proxy of the memory function relaxation time underestimates the diffusion constant

for charged nanoparticles, while the approximation works fairly well for the hydrophobic

nanoparticle. The impact of memory effects of the electrostatic friction on the diffusion of

charged nanoparticles deserves to be further analyzed. Along this line, the effect of explicit

electronic polarization on the dynamics of highly charged nanoparticles is also of major
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interest considering recent discussions of the topic for electrolyte solutions.77–79
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