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ABSTRACT

Radio frequency signals have the potential to convey rich

information about a node’s motion and surroundings.

Unfortunately, extracting such information is challenging,

previously requiring accurate phase measurement, large antenna

array structures, or extensive training. In this paper, we present

LeakyTrack, a novel system that enables non-coherent and

training-free motion sensing with a single antenna. The key idea

is to create unique spectrally coded signals at different spatial

directions so that geometric properties of the receiving node, as

well as any potential objects in the environment, leave spectral

footprints on the collected signal. To do so, we exploit a THz

leaky-wave antenna and realize a color-coded scan in which signals

with distinct spectral characteristics simultaneously emit across

the angular domain. LeakyTrack infers nodal and environmental

motion by analyzing the received spectral profile. We evaluate the

performance of LeakyTrack via extensive over-the-air experiments.
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1 INTRODUCTION

Radio frequency (RF) sensing employs the fundamental principle

that changes in the characteristics of electromagnetic (EM) waves

as they travel in the wireless medium can provide rich information

about a receiver’s properties (such as distance, velocity, shape, size,

and orientation) as well as the objects that have interacted with

the waves on their route. It is typically viewed that such properties

(i) cannot be inferred with a single antenna, as a single antenna

provides only one spatial observation point; and (ii) cannot be

inferred solely based on detecting incident power, but rather require

careful timing analysis of the phase of the incoming signal, i.e.,

coherent reception.

In this paper, we for the first time, show that neither of these

common beliefs are true. In particular, we present the design and

experimental evaluation of LeakyTrack, a novel non-coherent and

training-free system that identifies nodal and environmental motion

using a single antenna. Our key idea is to divide the region around

a sensing node into a virtual canvas of segments and to assign

a unique color code to each segment. If these segments were to

be painted based on their color codes, the sensing module can

discover a target’s location based on its color. We propose a similar

concept of "painting by numbers" in which the number represents

a wavenumber (or equivalently frequency). In particular, we create

a unique spectral code in each direction and develop a method to

correlate spatial information with spectral properties, i.e., to map

the canvas to colors. Our key contributions are as follows:

First, we transmit unique spectral codes in the spatial domain by

introducing a novel RF sensing architecture inwhich the transmitter

(TX) and receiver (RX) are equipped with a Leaky-Wave Antenna

(LWA). A LWA is a passive device that allows a travelingwave inside

a waveguide to leak into free-space with the key property that the

emission angle from the waveguide is coupled to the frequency of

the input signal [7]. We exploit this property and develop the first

LWA-based nodal and environmental sensing system.While a naive

LWA implementation would create a spectral code at each direction

by varying the frequency of the input signal (i.e., painting one

segment at a time), we instead show how to simultaneously scan a

wide range of spatial angles (i.e., painting the entire canvas at once)

by injecting a time-domain terahertz (THz) pulse, or equivalently a

broadband signal in frequency domain, into the LWA. Consequently,

different frequency components are decomposed and emerge at

different directions, thus filling the entire angular space with signals

that have unique spectral content or color, which we also refer to

as a color-coded scan.
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Second, we demonstrate how LeakyTrack senses nodal and

environmental mobility by analyzing the spectral profile of

the collected signals. In particular, we first devise a model that

allows a LWA-equipped receiving node to locally predict its

angular location and orientation relative to the TX. Since we

deliberately discriminate transmissions of different frequencies

in the spatial domain, the RX only captures certain signals with

unique spectral codes. We show that the location-specific spectral

codes experience a further non-uniform and frequency-dependent

loss at the RX LWA related to the RX’s orientation. LeakyTrack

leverages these insights to jointly extract location and orientation

from the spectral information that was harvested rapidly, via a

single pulse of broadband emission. In addition to tracking device

motion, we characterize the impact of environmental objects on

the color-coded signals. Intuitively, the presence of an object in

the wireless medium can obstruct the reception of certain signals.

Analogous to the shadow of an object in a painted canvas that

affects only certain colors, in a color-coded scan, the object is

unlikely to attenuate all emitted frequencies evenly. Instead, it

imposes a partial and frequency-selective distortion according

to its geometric properties. LeakyTrack identifies such features,

including the object’s angular location and size, by measuring the

object’s spectral footprints.

Finally, we implement the key components of LeakyTrack and

perform extensive over-the-air experiments in various settings. Our

testbed consists of a THz pulse generator, a broadband receiver, and

custom LWAs configured in numerous topologies including with

obstructing objects. Our key findings are as follows:

(i) We experimentally realize a color-coded scan by injecting a

THz pulse into a LWA and measuring the emitted spectral-spatial

profiles in different directions.We demonstrate that LeakyTrack can

successfully sense and track the RX’s parameters, even in complex

real-world trajectories, with average estimation error of < 1◦ for

angular position and < 2◦ for rotation angle.

(ii) We find that such motion inferences are feasible only within

certain regimes. We characterize these detection zones, considering

the physical limitation of our single-antenna architecture and the

inherent spectral behavior of the color-coded scan.We discover that

LeakyTrack is prone to higher errors in regimes where spectrum is

a slow-varying or irregular function of angle. Further, rotating a

device causes power attenuation due to frequency misalignment,

which ultimately yields negligible spectral information being

received such that spatial inferences cannot be made. Nonetheless,

we show that a surprisingly large range of rotation angles can be

accurately tracked.

(iii) We measure the frequency-selective blockage footprints of

objects at different locations and sizes. Within the field-of-view of

the color-coded scan, we find that LeakyTrack accurately estimates

the object’s geometric properties such as spatial position and size. A

relatively larger object leaves more pronounced spectral footprints

making the detection easier; nonetheless, under full blockage, the

object positioning would be ambiguous.

(iv) We experimentally explore the tradeoff between estimation

accuracy, airtime overhead, and computation complexity and

quantify how improved computational efficiency costs lower

estimation accuracy or higher airtime channel use.

2 RELATEDWORK

Radio frequency (RF) spectrum has been very attractive as a sensing

modality for interactive systems as RF sensors, unlike vision-based

techniques, are unaffected by lighting or atmospheric conditions

and better preserve privacy. RF-based sensing has been explored

extensively in the literature. Unfortunately, achieving high

sensing resolution often demands complex system architectures;

namely, large antenna arrays, coherent wideband transceivers, and

extensive training or calibration.

Multi-Antenna RF Sensing. Multi-antenna radio systems

have been exploited in the literature to sense Received Signal

Strength (RSS) and Angle of Arrival (AOA) to infer the motion of

a radio-equipped node (a.k.a. active sensing) or an object (a.k.a.

passive sensing) [8, 30, 39]. The sensing resolution, however, is

limited by the number of antennas in the systems. Other works

emulate multiple receiving or transmitting antennas by creating

a synthetic aperture based on the movement of the active or

passive target [2]. Even though such solutions eliminate the need

for large arrays, they restrict the type of motion that can be

detected. More recently, mmWave devices allow for miniaturized

phased-array antennas to create highly directional beams. Scanning

the space by steering such directional beams can automatically

correlate the relative positioning of an RF source (transmitter or

an object reflecting RF signals) with RX’s location through the

beam direction in-use [37]. Instead, we propose a single-antenna

architecture that is capable of sensing objects and tracking any

arbitrary motion of a receiver.

Coherent Wideband Solutions. Another body of work

exploits Time of Flight (ToF) measurements or phase variations at

coherent transceivers for RF sensing [1]. It is important to note

that the spatial resolution of such systems is a function of the total

bandwidth of the transmitted waveform and depending on the

utilized bandwidth the ranging accuracy can vary from a couple of

meters to few centimeters. Hence, using mmWave and Terahertz

frequencies, with a large swath of available spectrum, is inherently

more advantageous. Yet, the key challenge is that extracting ToF or

phase information requires tight synchronization between nodes,

which becomes increasingly challenging in higher frequencies.

Furthermore, due to extremely higher attenuation, received signals

can have low SNR, demanding expensive low-noise electronics to

extract phase reliably [34].

Instead, in LeakyTrack, we adopt a noncoherent approach

that relies solely on the relative power over different frequency

sub-channels to infer nodal or environmental motions. This

relaxation simplifies the sensing architecture, eliminates the need

to keep tight synchronization between the transmitter and receiver,

and is robust to small-scale channel variations.

Training Based RF Sensing. Other works adopt training

techniques such that the recognition system uses a classifier that

is trained and tested under a similar environmental conditions

in which it will be deployed. These solutions follow the general

architecture of machine learning-based classification systems that

are tailored for a specific sensing purpose, e.g., human presence

detection [2], fall detection [29, 36], activity recognition [6, 22],

and localization [32, 42]. Depending on the technology in-use

and the training set size, tracking small-scale motions with even
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sub-millimeter accuracy has been demonstrated for gesture

sensing applications [24]. The training phase, however, may be

computationally demanding and time-consuming, especially since

detection accuracy or ability to discriminate fine-grained target

pattern is typically a function of the training set size [10].

Instead, LeakyTrack requires no training and no pre-computation.

In particular, we introduce an explicit model that correlates the

nodal and environmental movements to the received spectral

properties that are independent of the environment. Furthermore,

LeakyTrack not only classifies the type of activity (e.g., type of

motion), but it also estimates the amount of that activity (e.g., the

amount of receiver rotation or changes in an object location).

Visible Light Sensing. A popular non-RF solution is visible

light localization and tracking. Typically, multiple existing

indoor luminaries are used to achieve sub-meter accuracy with

multi-lateration [23, 40]. Other works use non-linear intensity

differences between two sensors to estimate AOA and localize

using fingerprinting with 3+ light sources of known location [43]

or unknown positions [18]. Another related approach is to use

cameras to capture images of distinguishable LED lamps and

localize using image processing techniques [13, 21]. Another

recent trend in light-based systems is to localize digitally to

guarantee high resilience against random noise [25, 38]. Finally,

in LiDAR ranging systems, the target is illuminated with laser

light and differences in laser return times are used for distance

inference. The disadvantages of visible light sensing are rooted

in reflectivity limitations of light pulses causing vulnerability to

ambient light and inability to track passive objects, especially when

combined with nodal motion. Camera-based solutions require

much higher power and computational resources. Further, LiDAR

uses high-power lasers imposing eye-safety concerns.

Leaky Wave Antennas. Having been used in the RF region

since at least the 1940s, LWAs have a long history [7]. LWAs have

been studiedmainly as a potential candidate for THz networks since

they offer a low-profile and flexible solution for the challenging

problem of beam steering in the THz regime [3, 4, 12, 19, 33, 34].

Specifically, LWAs allows for controlling the beam steering

direction by tuning the transmit frequencies [17, 28]. Other

work explored the capacity and limitations of these antennas in

multiplexing [20, 26], terahertz radar [5, 27], link discovery [14, 15],

and physical-layer security [41]. In contrast, in this work, we

present the first-ever use of the LWA as a physical medium for

non-coherent RF sensing.

3 SYSTEM ARCHITECTURE

In this section, we explain the background of leaky-wave antennas

and present our sensing architecture.

3.1 Primer on Leaky-Wave Antennas

A leaky-wave antenna can be realized by two metal plates placed

in parallel with open sides. By cutting a slot in one of the plates, we

allow guided waves to “leak” energy into free-space, or to receive

energy from free-space. We can treat the leaky waveguide slot as a

finite-length aperture, which produces a diffraction pattern in the

far-field. For a diffracting aperture (i.e., slot length) of L and the

dominant TE1 mode, the far-field radiation electric field E can be

Figure 1: Two waves injected to the leaky-wave antenna

leak at different angles such that high-frequencywave (blue)

emits at lower angle compared to the low-frequency wave

(green), i.e., f1 > f2 results in ϕ1 < ϕ2.

derived as [16, 35]

E(f ,ϕ) ∝ sinc
(
[β(f ) − jα + k0 cosϕ]

L

2

)
, (1)

where sinc(x) = sinx/x , α is a parameter that describes the loss

of energy in the guided mode due to leakage out of the slot, k0 is

the free-space wave vector number (i.e., k0 =
2π f
c in which c is the

speed of light and f represents frequency), and ϕ is the propagation

angle of the free-spacewave relative to thewaveguide’s propagation

axis (so that ϕ = 0 corresponds to the emission in parallel to the

LWA’s plates).

In the above equation, β(f ) is the frequency-dependent

propagation constant of guided waves. For the parallel-plate

waveguide, the dominant transverse electric (TE) mode is TE1
mode, and the propagation constant β of the TE1 mode is

β(f ) = k0

√
1 − (

c

2b f
)2, (2)

where b represents the distance between the two metal plates of

the waveguide.

Frequency-dependent radiation in LWAs. Based on the

radiation pattern described in Eq. (1), the energy emitted

at a particular angle is coupled with the frequency of input

waves. The radiation function E(f ,ϕ) maximizes when

Re
{
(β(f ) − jα − k0cosϕ)

L
2

}
= 0. Because of the frequency

dependence of propagation constant β(f ), this condition results in

a coupling between frequency and emission angle from the slot,

given by

ϕ = sin−1
( c

2b f

)
(3)

Eq. (3) suggests that the larger the input frequency, the lower

the max-power emission angle from the slot. Fig. 1 depicts a LWA

device with two injected frequencies shown in blue (f1) and green

(f2) such that f1 > f2. We observe that the green-colored wave

emits at a larger angle compared to the blue-colored wave.

3.2 Sensing Architecture

We leverage the frequency-dependent radiations in LWAs for

enabling the nodal and environmental sensing functionality. We

equip wireless transmitter and receiver with a single LWA device.

We emphasize that LWA structures can easily meet the power, size,

weight, and cost considerations of future handheld devices since
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Figure 2: LeakyTrack design overview for passive and active sensing.

they are passive, light (< 3 oz), and cheap (< $10). We also envision

the capability of generating and detecting broadband signals (up

to 1 THz) or equivalently the ability to sweep through different

frequencies at wireless nodes.

In transmission mode, the injected signal to the LWA leaks

out and creates directional radiation whose characteristics (i.e.,

main-lobe direction) depends on the frequency of that signal.

In reception mode, the impinging waves are coupled into the

waveguide and then guided toward the broadband receiver located

at the end of the metal plates. The RX signal depends on the TX and

RX movement, as well as the potential object in the environment.

Therefore, we assume a fixed TX and aim to infer changes in

the environment or RX’s geometric properties by exploring the

spectral features of the received signal. To this end, LeakyTrack

relies solely on power measurements across a range of frequencies

and does not require timing or phase information.

Note that emissions from the LWA span in 3D space, as also

shown in Fig. 1, such that a signal emits narrowly in azimuth

(horizontal) but broadly in elevation (vertical). In principle, we can

develop mathematical models that allow nodal and environmental

sensing based on the 3D spatial-spectral codes. Yet, for simplicity,

we focus on 2D sensing, because unless two different receivers are

stacked on top of each other, 2D sensing is sufficient to distinguish

between receivers at different azimuth angles. We leave the 3D

expansion of LeakyTrack for future endeavors.

4 LEAKYTRACK DESIGN

In this section, we describe the design components of LeakyTrack

that leverages the spatial-spectral coupling in LWA radiation

patterns to enable a color-coded scan and infer the spatial locations

of LWA-equipped RXs as well as LWA-free objects.

4.1 Design Overview

LeakyTrack is the first non-coherent single-antenna sensing system

that can sense nodal and environmental motion using a LWA. We

leverage the antenna’s inherent frequency-dependent radiation

to deliberately discriminate the spread of different frequencies in

the angular space so that the spatial information correlates with

the spectral properties of the received signals. We introduce a

color-coded scan to simultaneously cover a wide spatial domain

in a single transmission. LeakyTrack then extracts the geometric

properties of a RX (e.g., location and orientation) and the passive

objects (e.g., location and size) based on their spectral footprints

on the received power spectrum profile. This can potentially

enable many applications including accurate indoor localization

and tracking, object and human presence detection, and efficient

coordination of directional wireless networks via fast mobility

adaptation and blockage recovery.

The fundamental design principles of LeakyTrack are illustrated

in Fig. 2. We inject a time-domain terahertz pulse (equivalently a

broadband signal) into the LWA. Different frequency components

will decouple and emerge at different directions forming a

color-coded scan as shown in Fig. 2. At the RX, a portion of these

EM waves arrive having spectral characteristic that depend on

objects in the wireless medium and the RX’s geometric properties.

The EM waves ultimately impinging on the RX’s LWA couple into

the waveguide through the open slot, travel inside the waveguide,

and are measured at the plate ends.

The LeakyTrack architecture can be used to infer the motion of

both the RX itself as well as the potential environmental object.

Sensing a LWA-equipped device (a.k.a. active sensing), we show

how to model the spectrum as a function of the device’s spatial

location and orientation relative to the TX’s waveguide. The

presence of objects within the field-of-view of our color-coded

scan obstructs the reception of certain EM waves and yields a

frequency-selective blockage. We show how this partial blockage

relates to the object’s geometric properties (e.g., position and size).

Note that we are referring to the objects that are partial obstruction

of a Line-Of-Sight (LOS) path since with a full blockage, no signal

is measured, and consequently, no spatial information is conveyed.

Therefore, LeakyTrack senses a static or moving object (a.k.a.

passive sensing) via measuring its spectral footprints (see Fig. 2).

Finally, LeakyTrack achieves the best of two worlds: the

high-resolution in wide-band RF sensing and low-complexity in

the architecture of non-coherent and single-antenna systems. In

particular, unlike conventional wide-band techniques that require

complex architectures due to the need for tight synchronization,

LeakyTrack simplifies the sensing architecture by relying solely on

the power or RSS measurements. On the other side, LeakyTrack

overcomes the shortcomings of RSS-based single-antenna

schemes by simultaneously transmitting waves with unique

spectral signatures in different directions. Next, we illustrate the

mathematical model that enables the nodal motion sensing and the

object sensing without a training phase.

4.2 Modeling Spatial-Spectral Footprints

We consider a static transmitter that creates frequency-dependent

radiation patterns by passing a THz pulse through a LWA. We first
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isolate and model the received spectrum as a function RX’s angular

position. Then, for a fixed RX placement, we explore the impact

of RX rotation on the spectral profile. Finally, we introduce an

optimization framework that extracts nodal motion by comparing

the modeled spectral profile against the measured spectrum.

4.2.1 Spectral Contribution of RX’s Location. To relate the received

spectral properties to the device’s location, the first step is to

model the frequency-dependent directional radiations in LWAs.

LeakyTrack enables a color-coded scan by injecting a THz pulse

(which contains a wide range of frequencies up to 1 THz) into the

TX’s waveguide. The LWA acts as a directional antenna emitting

waves into the free-space; albeit, with a spatial bias such that the

main lobe direction is a nonlinear function of the frequency. We

denote D(f ,ϕ) as the directivity gain of frequency f defined as

the radiant intensity that a LWA creates in a particular direction ϕ
against the average value over all directions:

D(f ,ϕ) =
|E(f ,ϕ)|

2
π

∫ π

2
0 |E(f ,ϕ)|dϕ

, (4)

where E(f ,ϕ) is the far-field electric field pattern in Eq. (1) and the

denominator represents the average radiated intensity over [0, π2 ].

The emitted signals from the waveguide subsequently traverse

in the wireless medium and impinge on RX’s LWA. Even though

such emissions happen simultaneously in all directions within a

sector of 90◦1, only those signals with sufficient directivity gain

along the RX’s LOS direction can be received.

Hence, we model rim (f ), the impinging power over any given

frequency, as follows:

rim (f ) ∝ Ptx (f )D(f ,ϕD )
( c

4πd f

)2
, (5)

where ϕD represents the LOS angle between the two nodes, Ptx (f )
is the transmit power budget for each frequency, and c is the

free-space speed of light. The term
( c
4πdf

)2
describes the free-space

Friis propagation loss. Fig. 3 demonstrates an example scenario with

frequency-dependent radiation patterns depicted in different colors.

Translation of a mobile device would change the relative TX-RX

angular positioning (i.e., ϕD ); hence, rendering impinging waves

with distinct spectral properties.

Interference of Background Reflection. We consider a LOS

channel model due to the sparse scattering at frequencies above

100 GHz [31]. In particular, the likelihood of multipath interference

is low due to the high reflection attenuation (e.g., every bounce

off of an object costs 10 dB [19]). Nonetheless, it is worth noting

that signals may still suffer from distortion under background

reflection. Such reflections, if they exist, would have different

departure angles compared to the LOS path. Hence, the spectral

content of a non-LOS (NLOS) path would be different from the

LOS’s spectral characteristics provided there is sufficient angular

separation between the two paths. Hence, one can devise strategies

to identify and isolate the LOS spectral band for RF sensing with

LeakyTrack. However, we limit the scope of this paper to LOS

channels and leave the exploration of NLOS scenarios for future

work.

1The angular range can be increased to 360◦ by extending the node architecture, for
instance by employing a multi-face LWA structure. However, exploring such solutions
is beyond the scope of this paper.

Figure 3: Nodal motion tracking by creating

frequency-dependent radiation patterns and processing the

spectral characteristics of the received waveform.

4.2.2 Spectral Contribution of RX’s Orientation. Finally, the

impinging waves are coupled into the RX LWA and guided toward

the broadband detector. Intuitively, if the RX’s LWA is parallel

to the TX’s LWA, then the air-to-waveguide coupling loss is

negligible, and we expect similar spectral characteristics for

coupled and impinging waves. However, when the incident angle

is different from ϕD , then the coupled waves would experience a

mismatch loss. In principle, the LWA has a reciprocal radiation

pattern; thus, when operated as a receiver, free-space waves with

frequency f would couple best into the waveguide if they arrive at

the slot with the angle given by Eq. (3). The amount of coupling

mismatch loss depends on the discrepancy between the correct

angle (for each frequency f ) and the incident angle.

We denote θrot as the RX’s rotation angle compared to perfect

alignment with the TX’s LWA. In other words, θrot is the difference
between the angle of incidence and departure. We assume a

reciprocal frequency-dependent reception pattern as defined in

Eq. (4). Hence, we can model the composite impact of TX and

RX spatially-biased LWA filters as D(f ,ϕD ) × D(f ,ϕD + θrot ).
Nonetheless, LWAs are passive devices and cannot amplify signals.

Therefore, the power of the coupled waves for any given frequency

cannot be larger than the impinging power. We account for this

physics-driven requirement by bounding the effective directivity

to the original transmit directivity:

Def f (f ,ϕD ,θrot ) = min
(
D(f ,ϕD )D(f ,ϕD + θrot ),D(f ,ϕD )

)
,

(6)

where Def f (f ,ϕD ,θrot ) characterizes the effective end-to-end

directivity gain at any frequency. Note that θrot can be a positive

or negative scalar, depending on the RX’s orientation. If the

incident angle is far from the angle of departure (i.e., large θrot ),
one would expect that the RX receives no signal. However, our

analysis reveals that LeakyTrack can support a fairly large θrot
without complete loss of signal (see Sec. 6).

Rotation Direction. Although all frequency components

would encounter some coupling loss on the waveguide interface,

this attenuation is non-uniform across different sub-channels

and depends on the rotation direction. Fig. 3 shows the power

spectrum of impinging and coupled waves for clockwise (CW) and

counter-clockwise (CCW) rotations.
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Figure 4: Object tracking based on the frequency-selective

distortion imposed by the object’s spatial footprints.

CW rotation of RX’s LWA (negative θrot ) makes the angle of

incidence smaller than the optimum angle. Recall from Sec. 3 that

the angle of emission (here reception) is inversely and non-linearly

proportional to the frequency. Hence, with smaller incident angles,

higher-frequency tones within the spectral band of the impinging

waves are better coupled into the waveguide, whereas lower tones

suffer from increased coupling mismatch loss.

Conversely, with CCW rotation (positive θrot ), the increase

in the angle of incidence yields a relatively better coupling

for low-frequency components while imposing higher loss on

high-frequency components of the impinging waves. Fig. 3

demonstrates an example scenario in which the spectral band of

coupled waves differs from the that of impinging waves depending

on the direction of rotation. In LeakyTrack, we take hints from

these insights to extract the amount and the direction of rotation.

4.2.3 Integrating Nodal Parameters. Since the RX’s spatial location

and orientation both contribute to the spectral properties of the

received waveform, we can write the received power for a given

frequency f, LOS angle ϕD , and rotation angle θrot as follows:

r (f ,ϕD ,θrot ) ∝ Ptx (f )Def f (f ,ϕD ,θrot )
( c

4πd f

)2
(7)

Note that the first-order spectral attributes are embedded in the

effective directivity pattern Def f (f ,ϕD ,θrot ). First, recall that Ptx
is a scalar representing the transmit power. Second, we assume

that the distance d is slowly changing such that the amount of

spectral change induced by Friis path loss is not significant between

two consecutive inferences. Nonetheless, as different frequencies

experience different propagation attenuations, this opens up the

possibility to harness this distance-dependent loss for ranging and

proximity estimation, which is a subject of our future work.

4.2.4 Frequency-Selective Blockage. The emitted EM waves suffer

from penetration loss when encountering an object on their route

toward the receiver. In a color-coded scan, the scattering object is

unlikely to attenuate all frequency components evenly. Instead, the

object induces a partial and frequency-selective distortion according

to its geometric features. Fig. 4 depicts a scattering object located

at angle θb relative to the transmitter. The object’s spatial footprint

imposes a spectral distortion on the waves emerging at directions

of θb ± θw in which θw denotes the half-angle size of the object in

the angular regime.

We model the spectral distortion due to the presence of an object

located at center angle θb (w.r.t the TX) with half-angle size of θw
as follows:

Bndx (f ,θb ,θw ) =

∫ θb+θw
θb−θw

D(f ,ϕ)dϕ

∫ π

2
0 D(f ,ϕ)dϕ

, (8)

where Bndx represents blockage index andD(f ,ϕ) is the directivity
gain as defined in Eq. (4). When θw = 0, no object exits between the

TX and RX and the blockage index Bndx = 0. Maximum blockage

occurs when the center of the object is located at ϕf (i.e., the

max-power emission angle). Note that θw is the projected size

of an object from TX’s point of view, such that θw of a big object

that is far from the TX may be similar to the half-angle size of a

smaller object closer to the TX.

4.3 Motion Detection and Tracking

While Eq. (7) models the expected relative power spectrum based on

RX geometric properties, we can also measure the actual received

power spectrum at the RX. We envision a periodic color-coded

scan to track the nodal and environmental motion by measuring

the spectral variations. In practice, power measurements are

available over a discrete set of frequencies depending on the clock

sampling rate. We denote rmsr (f ) as the power measurement for

any frequency f within the available set of frequencies. Therefore,

we estimate the geometric parameters of the RX as well as any

potential objects via the non-linear least squares optimization

framework below that minimizes the distance between measured

data and our model after proper scaling:

ϕ∗D ,θ
∗
rot ,θ

∗
b
,θ∗w =

argmin
ϕD,θrot ,θb ,θw

∑
f

|rmsr (f ) − r (f ,ϕD ,θrot )(1 − Bndx (f ,θb ,θw ))|2,

(9)

where ϕ∗
D

is the LOS departure angle estimate and θ∗rot is

the estimated rotation angle relative to the perfect waveguide

alignment. θ∗
b

and θ∗w capture the object’s spatial placement

and size. Moreover, the summation is over the discrete range of

frequencies supported by the broadband detector. We emphasize

that no phase information is used in this methodology; thus,

LeakyTrack is a non-coherent scheme. Note that environmental

mobility (i.e., movement of an object) manifests as changes in θ∗
b
in

consecutive measurements. Similarly, nodal motion can be inferred

from LOS or rotation angle variations.

Tradeoff between Airtime Overhead and Computational

Complexity. Finding a global minimum for the non-linear least

squares problem in Eq. (9) would require a brute-force search over a

discrete set of values for the variables of interest (namely, ϕD , θrot ,
θb , and θw ). The computational complexity of such an exhaustive

search relates to the search space size such that the number of

iterations is on the order of N 4 when each variable tries N values.

Alternatively, we can solve this non-linear least squares problem

via computationally efficient algorithms such as Gauss-Newton

and Davidon-Fletcher-Powell. Nonetheless, these algorithms

are sensitive to the initial parameter estimates since inaccurate

initialization (that is far from the optimum values) can yield

ill-conditioning, divergence, or landing on a local minimum
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Figure 5: The custom LWA used in our measurement setup.

rather than a global minimum. To avoid stale initial estimates, we

need to increase the tracking rate, meaning the number of pulse

transmissions per unit time, rendering higher airtime overhead

and channel use. Therefore, we study the tradeoff between

computational complexity and airtime overhead in Sec. 6.3.

5 EXPERIMENTAL PLATFORM

To evaluate the performance of LeakyTrack, we conduct extensive

over-the-air experiments. The key components of our measurement

setup are the THz pulse emitter, broadband detector, and our

custom-built LWA. For THz pulse generation and detection, we

use the T-Ray 4000 TD-THz system [11]. The interchangeable

fiber-coupled sensor heads deliver a picosecond duration

time-domain THz pulse or equivalently a broadband waveform in

the frequency-domain that ranges up to 1 THz. On the receiver

side, with the sampling rate of 12.8 THz (1 sample every 78

femtoseconds), we can observe frequencies up to 6.4 THz with

a resolution of 3.13 GHz. We build a custom LWA device that

consists of two 4 × 4 cm2 metal plates with a thickness of 1 mm, as

shown in Fig. 5. We put the plates in parallel with 1 mm separation

and create a slot on one plate with 3 cm length and 1 mm width

to allow guided waves to leak into free space. Note that the slot

length should be at least an order of magnitude larger than the

plate separation to allow the energy leak out along the aperture

as waves propagate inside the waveguide. Slot length and plate

separation impact the spatial-spectral properties of the color-coded

scan and such dependencies are captured in Eq. (1)-(3).

Fig. 6 demonstrates our measurement setup for nodal sensing.

Our broadband source generates THz pulses which are focused to

the LWA via a lens with a focal distance of 6 cm. The composing

frequencies then decouple and emit at different directions realizing

Figure 6: Our experimental setup for active sensing.
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Figure 7: Our experimental setup for passive object sensing.

a color-coded scan. The RX’s LWA and the broadband detector

are mounted on a rotating arm that facilitates different LOS and

orientation configurations.

Fig. 7 depicts our experimental setup for passive object detection

and tracking. Reflection and absorption coefficients of an object

vary depending on frequency and the material’s properties. Yet,

exploring the absorption and scattering behavior of different

materials in sub-THz bands is beyond the scope of this paper.

Here, as a proof-of-concept analysis, we use objects made from

aluminum sheets in multiple sizes.

Due to hardware limitations of the low-power THz source, we

are bound to conduct experiments in small scales (up to a meter).

In particular, our THz source emits an average power of roughly

−10 dBm, which is the time-averaged power, integrating over the

entire (1 THz) spectral band. Hence, the power in 1 kHz bandwidth

is −100 dBm. Scaling up the transmitter-receiver distance could be

achieved by increasing the power of the transmitter. For example,

prior work reported a CMOS-based widely tunable source that

achieves about −10 dBm in 1 kHz bandwidth, over the entire range

100 − 300 GHz offering a factor of 109 increase in output power

compared to our THz source [9]. Exploring the details of such

CMOS-based technologies (e.g., power efficiency) is beyond the

scope of this paper. Note that the LWA is itself a passive device and

increasing the transmit power does not affect the spatial-spectral

patterns nor the design of LeakyTrack. Further, time-domain

measurements are translated to power spectrum via a 4096-point

FFT, which are then directly used as input to the LeakyTrack.

Hence, LeakyTrack does not require any pre-processing techniques

and it is not computationally demanding.

6 EVALUATION

In this section, we evaluate the key components of LeakyTrack via

over-the-air experiments.

6.1 Nodal Motion Sensing

We explore the capability of LeakyTrack in nodal motion sensing

for three types of mobility: (i) Translational Mobility: in which

the RX’s position changes while keeping the same orientation; (ii)

Rotational Mobility: in which the RX has a fixed location but varying

orientation; and (iii) Concurrent Translation and Rotation: where

we consider real-world motions with a mixture of both translation

and rotation.

6.1.1 Translational Mobility. We first experimentally investigate

the performance of LeakyTrack in detecting and tracking

translational motion.
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Figure 8: Translational mobility experiment: (a) the schematic of measurement setup, (b) Nodal motion parameters estimated

by LeakyTrack, (c) the angle-frequency coupling in LWAs, theory vs. experiment.

Setup. We study a fixed LWA-equipped TX and a mobile RX.

Fig. 8a depicts our experimental setup in which the TX conducts

a color-coded scan by injecting a pulse into its LWA. The RX

travels along the trajectory A–>B–>C–>D while measuring the

received power spectrum. To isolate the spectral variation due to

translation, we mandate continued alignment between the RX and

TX waveguides (i.e., θrot is zero). We use each measured signal

independently and as stand-alone data to extract nodal motion

parameters. In other words, our inference scheme does not include

the history of previous measurement instances here.

Fig. 8b presents the motion parameter estimates (including LOS

and rotation angles) achieved by LeakyTrack against the ground

truth. We observe that LeakyTrack accurately infers the LOS angle

for a range of angles. In particular, Fig. 8b reveals that the LOS angle

(i.e., ϕD ) estimates deviate from ground truth for angles above 60◦.

Moreover, LeakyTrack mistakenly detects rotation when the RX

approaches point D in the trajectory (equivalently,ϕD getting below

18◦ in the angular domain).

To understand the reasons behind these imperfections, we

measure the spectral characteristics of radiations as a function

of emission angle and compare it with the model from Sec. 3.

Fig. 8c plots the peak frequency of measured power spectrum vs.

receiver’s angle for a range of 10◦ to 80◦ degrees with a resolution

of 1◦. In the same plot, we show the theoretical spectral peak from

Eq. (3). The results show good agreement between the model and

measurement data for angles above 20◦. When ϕD is below 20◦,

the corresponding peak frequencies are above 400 GHz and those

components are fundamentally weaker, due to the spectrum of

the illumination source used in our measurements. Hence, when

exposed to coupling loss, the signal level degrades to the noise level

yielding an increased measurement error. Additionally, Eq. (3) does

not account for non-idealities in the waveguide geometry such as

finite non-zero plate thickness that contributes to a more complex

spectrum. These effects are likely to become more pronounced at

small angles, where the effective propagation length inside the

leaky-wave slot is larger.

Moreover, as shown in Fig. 8c, for angles above 55◦, the peak

frequency is a relatively flat (or slowing varying) function of the

emission angle. This means that radiation at those emission angles

are expected to have similar spectral characteristics making it

difficult for LeakyTrack to extract the correct angle. Besides, the

spectral resolution of any real-world broadband receiver is finite

and bound to its clock sampling rate. The frequency resolution

in our setup is 3.1 GHz; thus, a small spectral shift may cause an

estimation error of several degrees in this regime.

Findings: LeakyTrack can successfully extract the RX’s spatial

position by conducting a color-coded scan and assessing the spectral

profile of received signals. Yet, LeakyTrack is prone to estimation errors

at regimes where spectrum is a slowly varying or irregular function

of emission angle.

6.1.2 Rotational Mobility. Here, we first experimentally explore

how spectral properties vary as a function of RX rotation. Then,

we analyze the capability of LeakyTrack in inferring the amount of

rotation in different settings. To this end, we consider a fixed LOS

configuration with path angle ϕD = 30◦ and rotate the RX’s LWA

such that angle of incident changes in steps of 2◦ in both CW and

CCW directions. At each rotation setting, we collect raw data from

the broadband detector located at one end of the waveguide.

We find that total RX power is maximum when the receiving

waveguide is perfectly aligned with the transmitting waveguide.

Any other orientation configuration imposes a power attenuation

due to the coupling mismatch loss. Interestingly, Fig. 9 reveals that

the attenuation is non-uniform across the spectrum. Specifically,

for any CW rotation, the lower half of the band faces a relatively

higher attenuation compared to higher frequency components.

Since the effective impinging angle decreases (see Fig. 3), the

antenna frequency-dependent directivity shifts toward higher

frequencies, i.e., positively biasing higher tones while weakening

lower ones. As shown in Fig. 9a, the extent of weakening worsens

with larger rotation angles.

Similarly, Fig. 9b demonstrates that CCW rotation introduces

non-uniform frequency-dependent loss by moving the directivity
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Figure 9: The power spectrum of the received signals with

different RX’s rotation configurations.
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Figure 10: LeakyTrack rotation estimation for a range of CW

and CCW rotation angles at fixed LOS angle of 37 degrees.

pattern of the RX’s LWA toward lower frequencies. Nonetheless,

LWA is a passive device and cannot amplify the signal; thus, the

coupled waves’ power at any frequency cannot be more than that

of impinging waves. These measurement insights were the building

block for LeakyTrack’s rotation inference illustrated in Sec. 4.

Next, we analyze the performance of LeakyTrack in estimating

nodal rotation in fixed LOS configurations. We exploit the same

setup, but this time, we locate the RX’s LWA along with the

broadband detector at different angular positions such that ϕD
adopts a discrete choice of angles from 25◦ to 65◦.

Fig. 10 presents the nodal motion estimates against the amount

of true rotation when the geometric angle between the TX and RX

waveguides is 37◦. We observe that LeakyTrack can successfully

track RX rotation for a range of CW and CCW rotations (shown

within dashed lines) while consistently extracting the correct and

fixed LOS angle. Beyond this detection range (which we also call

detection zone), however, the estimates deviate from the ground

truth. Obviously, if the rotation angle is too large, then the received

spectral information becomes close to the noise level, and the

rotation angle cannot be correctly detected. Note that the maximum

measurable rotation is asymmetric with respect to the direction of

rotation. We further characterize the detection zone below.

Finally, Fig. 11 summarizes LeakyTrack’s performance in rotation

tracking. By compiling all measurements at a given rotation angle

(at each ϕD ), we extract the measurement uncertainty in the

rotation angle as a function of the true degree of rotation. The

figure depicts the average extracted rotation angle at many values

of ϕD along with error bars to indicate standard deviation. The

uncertainty increases somewhat for larger rotations since a smaller

signal is measured. Nevertheless, over the range of accessible

rotation angles, the average estimation error is less than 1.5◦.

Findings: We experimentally showed how the spectral

characteristics of impinging waves change with LWA orientation.

LeakyTrack leverages these spectral inferences and accurately

estimates the rotation angle and direction of a LWA-equipped node.

6.1.3 Detection Zone. The results in Fig. 8b and Fig. 10 suggest

that device motion inference is feasible only within certain regimes.

In principle, LeakyTrack can conduct a color-coded scan over a

range of 90◦ as signal leakage falls within a sector of 90◦. However,

as discussed above, these emissions are relatively less well-behaved

close to 0◦. To overcome this physics-driven limitation, we can

extend the sensing architecture. For instance, although we excite
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Figure 11: The overall rotation estimation accuracy of

LeakyTrack.

the transmitter’s LWA in a single-sided configuration, it would be

possible to excite the device from both sides, thus doubling the

accessible angular by producing a symmetric emission pattern at

angles 90◦ < ϕD < 180◦. Further, a more complicated waveguide

slot geometry could be employed to cover a larger range of angles.

Yet, exploring such architectures is beyond the scope of this paper.

The rotation detection zone is somewhat different since rotation,

unlike translation, can cause severe power attenuation. Obviously,

if the rotation angle is too large, then no spectral information is

received, and the rotation angle cannot be detected. Yet, predicting

the maximum sensible value of θrot for any given RX location ϕD
is not straightforward.

Let us denote γth as the power detection threshold that should

be set based on the noise statistics. We can define the spectral edges

of a received signal as follows:

fmin = argmin
f

Def f (ϕD ,θrot , f ) > γth ,

fmax = argmax
f

Def f (ϕD ,θrot , f ) > γth ,
(10)

where fmin and fmax are the minimum and maximum spectral

tone whose power is above γth . Clearly, perfect alignment

(θrot = 0) yields the maximum received spectral band (fmax -

fmin ). However, this band shrinks with device rotation either by

decreasing fmax under CCW rotation or increasing fmin under

CW rotation. If the spectral band of the coupled signal gets to

zero, the received spectral profile would not carry any meaningful

information and thus rotation detection becomes infeasible. Hence,

we define the detection zone as the maximum rotation angle that

provides non-zero spectral band (i.e., fmax > fmin ).

Fig. 12 shows the range of detectable rotations as a function of

RX angular placement. We observe, for a surprisingly large range of

angles which depends on ϕD , rotation can be tracked. The reason

is that the impinging waves contain a wide range of frequencies at

any emission angle. For certain RX locations, the detection zone is

dominated by physical considerations. For instance, for ϕD < 32◦,

the maximum CW rotation is bound to θrot > −ϕD . Beyond this

limit, the effective incident angle becomes negative meaning the

impingingwaveswould hit the opposite plate. Similarly, forϕ > 65◦,

the maximum CCW rotation is limited to θrot < 90 − ϕD . Even
though waves with incident angles higher than 90◦ would still

couple into the waveguide, they propagate on the opposite direction

inside the waveguide; hence, we cannot measure such signals unless

we place a second detector at the opposite end of the waveguide.
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Figure 12: Range of detectable at different RX locations.

Moreover, Fig. 12 reveals that CW rotation offers a relatively

wider detectable range compared to CCW. This can also be observed

in Fig. 10. The reason is lower frequencies are more resilient toward

coupling mismatch loss. In other words, a fixed amount of CCW

rotation renders higher loss on large frequency components (fmax )

compared to the loss on lower frequencies (fmin ) caused by the

same amount of CW rotation.

Findings: As the misalignment between transmitting and receiving

LWAs increases, ultimately, no signal gets coupled in and no spectral

inference can be made. Nonetheless, a large range of rotation angles

can be accurately tracked.

6.1.4 Concurrent Translation and Rotation. In real-world systems,

devices can traverse complex trajectories in which both translation

and rotation are combined. Hence, we aim to characterize the

performance of LeakyTrack in such nodal mobility scenarios.

Due to hardware limitations, realizing continuous motion in our

experiments is not possible. Therefore, we emulate continuous

motion by discretizing the space of movement, and each time

we configure the RX at the pre-selected location and orientation

before collecting the measurement data.

Setup. We consider a pseudo-random trajectory in which ϕD
varies between 25◦ to 65◦ in steps of 5◦ and the rotation angle takes

multiples of 2◦ on both CW and CCW directions (e.g., ±2,±4,±6,

etc.) as long as it falls within the detection zone described in

Sec. 6.1.3. Initially, the RX chooses a random ϕD and rotation angle

from the above sets. Subsequently, at each measurement snapshot,

the RX can jump into a different position and orientation provided

that it stays within the acceptable regions. Note that this trajectory

does not mandate a constant translation/rotation speed as the

amount of movement between consecutive measurements might

vary. We run LeakyTrack on the collected trace to infer the nodal

motion parameters. We emphasize that LeakyTrack’s estimation

at each snapshot is a stand-alone function of the power spectrum

measured at that instance, independent of other previous instances.

Fig. 13 plots the nodal motion parameters and the geometric

true values in an example pseudo-random trajectory. In this

experiment, the angular placement of the RX and its orientation

both contribute to the received spectral profile. Nonetheless, the

parameters estimated by LeakyTrack accurately follow the ground

truth values. Note that the rotation angles are reported with respect

to perfect alignment with the TX’s LWA. Of course, one can easily

find the amount of rotation between subsequent measurements.

Findings:We demonstrate that LeakyTrack can sense complex nodal

mobility patterns that include combined rotation and translation with

high accuracy.
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Figure 13: Concurrent translation and rotation estimation

by LeakyTrack in a pseudo-random trajectory.

6.2 Environmental Sensing

Setup. Fig. 14 shows the schematic of our measurement setup. The

receiver is placed facing the LWA slot at a distance of 25.4 cm

from the LWA and has a lens with a diameter of 4 cm. We move

an aluminum object from right to left with steps of 2 mm such

that the object trajectory is perpendicular to the LWA-RX axis. For

each object placement, we inject a THz pulse to the waveguide and

measure the received spectrum. We can find a geometric Field of

View (FoV) for any given configuration, as shown in the figure. In

principle, an object can only impact the received spectral profile

when located within the FoV. Further, we mark the angle at which

the object first touches the FoV as the right edge (RE) and the angle

at which the object leaves the FoV as the left edge (LE).

6.2.1 Exploring Frequency-Selective Object Footprints. To

experimentally explore an object’s spectral footprints, we deploy

the setup in Fig. 14 and place the RX at the angle of 35◦. Fig. 15a

presents the measured power heatmap over different frequencies

as a function of the object’s location (θb ). For each (f ,θb ) element,

we normalize the corresponding power to the maximum received

power over the entire angular and spectral range. This heatmap

includes the frequency range of 150 GHz to 500 GHz with a

resolution of 3.1 GHz.

The yellow high-power region (power values close to 1)

corresponds to the object placed outside of the FoV; hence,

the spectral distortion is negligible. This region spans over

245 to 285 GHz with maximum power at 265 GHz which also

follows the expected spectral peak from Eq. (3). When the object

angle approaches 35◦ from RE, the power corresponding to the

second-half of the spectrum (265 − 285 GHz) drops faster. This is

because, due to the angle-frequency coupling in LWA, the object

blocks the waves that contain mostly higher tones. As expected,

the overall power loss is maximum when the object is located at

Figure 14: The schematic of object sensing experiments.

65



LeakyTrack: Non-Coherent Single-Antenna Nodal and Environmental Mobility Tracking with a Leaky-Wave Antenna SenSys ’20, November 16–19, 2020, Virtual Event, Japan

25
.2
26

.1
26

.9
27

.8
28

.7
29

.6
30

.5
31

.4
32

.3
33

.2
34

.1 35
35

.9
36

.8
37

.7
38

.6
39

.5
40

.4
41

.3
42

.2
43

.1
43

.9
44

.8
45

.7

Object Center Angle (deg)

497494491488484481478475472469466463459456453450447444441438434431428425422419416413409406403400397394391388384381378375372369366363359356353350347344341338334331328325322319316313309306303300297294291288284281278275272269266263259256253250247244241238234231228225222219216213209206203200197194191188184181178175172169166163159156153150

F
re

qu
en

cy
 (

G
H

z)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Power heatmap

150 200 250 300 350 400 450
Frequency (GHz)

0

0.2

0.4

0.6

0.8

1

N
or

m
la

iz
ed

 P
ow

er Obj out of FOV
Obj within RE and C
Obj located at C
Obj within LE and C

(b) Power spectrum for 4 different object locations

Figure 15: Experimental exploration of frequency-selective

spectral variations due to an object in the wireless medium.

the center of the FoV. As θb shifts to larger angles, the power at

high-frequency components recovers relatively faster. Finally, the

object’s spectral footprint gets negligible as it leaves the FoV.

Next, using the same setup, we study the spectral profile of

four regions: outside the FoV, between RE and C, exactly at C, and

between LE and C. Fig. 15b plots the normalized power spectrum

corresponding to these regions. The frequency-dependent power

distortion is again observable here. For such a small object in-use,

one might expect a narrow spectral footprint that involves sudden

power reduction over a small set of frequencies while other

components remain intact. But interestingly, Fig. 15b reveals that

the reduction spreads over a wide range of frequencies, albeit,

non-uniformly. The reason is mainly rooted in the radiation

properties of our color-coded scan in which each frequency

radiates not only at the maximum-power radiation angle, but also

over a range of angles surrounding it. LeakyTrack leverages such

non-uniform spectral footprints for object detection and tracking.

Findings: An object leaves spectral footprints since it obstructs

the reception of EM waves whose emission directions are correlated

with their spectral content. We experimentally characterized how this

partial blockage relates to the object’s position.

6.2.2 Object Tracking with LeakyTrack. For evaluating the sensing

accuracy of LeakyTrack, we consider the same setup as shown

in Fig. 14. We place the RX at 35◦ and move the object on a

rail perpendicular to the LWA-RX line. We define θw as the

angular representation of the object size. Fig. 16a shows the object

parameters estimates (θb and θw ) as a function of the true object

angle. We also mark the RE, C and LE points on the same plot. We

observe that, when the object is inside the FoV, the estimated θb is

in good agreement with the true object angle. However, this does

not hold true for the estimation of θw .
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Figure 16: LeakyTrack object tracking (a) before α
optimization, (b) after α optimization.

The reason behind the imprecise estimation of θw in LeakyTrack

is rooted in Eq. (8). According to this model, θw controls the spectral

width of the object-induced distortion such that larger θw translates

to a wider affected band. Obviously, θw = 0 means no object

was identified. However, there is another parameter embedded

in D(f ,ϕ) that also affects the spectral width. As defined in Eq. (1),

α accounts for the attenuation of the guided waves and determines

the angular spread of each frequency component emerging from

the waveguide: larger α corresponds to a wider spread and vice

versa. In principle, there is no simple analytical model for α ; yet,
for a fixed node architecture (i.e., a given LWA geometry), it is

a deterministic function of frequency that can be measured and

known a priori. Hence, we measure α values and incorporate them

into our model. Fig. 16b confirms the improved performance of

LeakyTrack after optimizing α .
Findings: LeakyTrack exploits the non-linear frequency-selective

blockage induced by an object to accurately estimate its geometric

properties such as spatial position and size.

6.2.3 Object Size. One key factor that determines the extent of

the spectral footprint is the object’s size. To investigate this factor,

we repeat our experiments with three different sized objects as

shown in Fig. 17. Fig. 18 shows the heatmap of the measured power

spectrum as a function of the object’s spatial location for these

three objects.

Figure 17: Deploying objects in different sizes into the

experimental setup.
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Figure 18: The power spectrum heatmap vs. object location

for different object sizes.

As expected, a larger object tends to occlude a wider set of

frequencies. Further, we observe that the full blockage (dark blue)

region expands as the object’s size increases. In such scenarios,

LeakyTrack can easily detect the presence of a blocking object; yet,

the position of the object would be ambiguous.

On the other extreme, a very small object yields an insignificant

spectral change that might get dissolved in the irregularities of

the frequency-dependent radiations or the existing channel noise.

Note that the absolute size of the object is irrelevant. Instead, the

spectral footprint is determined by the angular width of the object

which itself depends on the object’s orientation and distance to

the TX. However, the results in Fig. 16 show that LeakyTrack can

successfully extract θw without knowing distance or orientation.

Findings: Larger objects leave more pronounced spectral footprints

that makes detection easier; nonetheless, under full blockage, the object

positioning would be ambiguous.

6.3 Trading Airtime Overhead for
Computational Complexity

So far, we used a brute-force search mechanism in LeakyTrack,

in which the search space increases with the granularity of the

parameters of interest. In this approach, we estimated the nodal or

environmental motion parameters for each measurement instance

without using any information from previous instances. Here,

alternatively, we implement a less computationally demanding

scheme that leverages the past inferences. We envision periodic

THz pulse excitation (everyT seconds) so that the receiver updates

its motion estimates by assessing the received power spectrum

profile. At each measurement instance, we solve the non-linear

least squares problem in Eq. (9) using the Gauss-Newton algorithm

such that the estimates from the previous measurement are

adopted as the initial guess.

We emphasize that inaccurate initialization (that is far from

the optimum values) can yield ill-conditioning, divergence, or

landing into a local minimum rather than a global minimum.

Obviously, a faster tracking rate (i.e., smaller T ) offers a better

initialization status, yet costs higher time overhead and channel

use. In particular, since broadband pulse transmissions occupy the

entire spectral band, data transmissions in the close vicinity of a

sensing node need to be stopped or might otherwise experience

interference. Moreover, the speed of mobility (e.g., translation

or rotation velocity) also affects the staleness of the initial guess:

faster speed causes higher changes in the motion parameters

between two consecutive measurements separated by T . Instead of

evaluating these two factors separately, we consider the amount of

change in the RX’s spatial position during one cycle T .
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Figure 19: Exploring the impact of initialization on (a) The

estimation error and (b) The computational complexity.

We use the same setup as shown in Fig. 8a for translation-only

mobility. Fig. 19a presents LeakyTrack’s estimation error as a

function of the angular distance between the initial guess and the

correct LOS angle at each instance. A larger number on the x-axis

means that either the translation speed is increasing (for the same

T ) or T is growing (for the same mobility speed). In the latter case,

the x-axis is also inversely proportional to the airtime overhead.

We observe an overall trend of higher estimation error (average

and variance) when the initial guess (which is the estimate of

ϕD corresponding to the previous sample) is farther from the

current RX’s angular position. Hence, it is more likely that a local

minimum is achieved instead of the global minimum. Interestingly,

the error is not monotonically increasing, which is due to the

inherent non-linearity of the problem.

Further, we explore the number of iterations as a representation

of computational complexity in Fig. 19b. We observe that an

increasingly inaccurate initialization first yields more iterations.

Yet ultimately, LeakyTrack would not be able to converge to the

global minimum and terminates at a local minimum with fewer

iterations. Hence, the reduction in computational complexity can

sacrifice estimation accuracy when using a stale prior estimation.

In any case, the number of iterations for exhaustive search (not

shown) would be substantially higher.

Findings: We analyzed the tradeoff between estimation accuracy,

airtime overhead, and computational complexity. Increasing the

tracking rate (i.e., the number of pulse transmissions per unit time)

costs higher airtime overhead; yet, it offers better initialization that

can yield estimation accuracy comparable to that of brute-force

search, albeit with significantly less computational complexity.

7 CONCLUSION

We presented LeakyTrack, a novel non-coherent and training-free

system that enables nodal and environmental motion tracking

with a single leaky-wave antenna. LeakyTrack correlates spatial

information with spectral properties by creating unique spectral

codes simultaneously in all directions. We modeled the impact of

the RX’s geometric motion and a potential environmental object on

the spectral profile of the received signals. We implemented the key

components of LeakyTrack and demonstrated accurate estimation

through extensive over-the-air experiments.
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