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Abstract—Low-light imaging is a challenging task because of
the excessive photon shot noise. Color imaging in low-light is
even more difficult because one needs to demosaick and denoise
simultaneously. Existing demosaicking algorithms are mostly
designed for well-illuminated scenarios, which fail to work with
low-light. Recognizing the recent development of small pixels
and low read noise image sensors, we propose a learning-based
joint demosaicking and denoising algorithm for low-light color
imaging. Our method combines the classical theory of color filter
arrays and modern deep learning. We use an explicit carrier
to demodulate the color from the input Bayer pattern image.
We integrate trainable filters into the demodulation scheme
to improve flexibility. We introduce a guided filtering module
to transfer knowledge from the luma channel to the chroma
channels, thus offering substantially more reliable denoising.
Extensive experiments are performed to evaluate the performance
of the proposed method, using both synthetic datasets and
real data. Results indicate that the proposed method offers
consistently better performance over the current state-of-the-art,
across several standard evaluation metrics.

Index Terms—Quanta Image Sensors (QIS), low light, color
filter arrays, single-photon imaging, color demosaicking

I. INTRODUCTION
A. Motivations

Since the introduction of CMOS active pixel sensors in
the early 90’s, pixel pitch of digital image sensors have been
continuously shrinking. Today, the mainstream CMOS image
sensors (CIS) used on DSLR cameras are in the range of
3.5pum-8.3um, with smaller ones (down to sub-1um) used on
hand-held cameras [1]. While smaller pixels enjoy higher pixel
density per unit space and hence higher spatial resolution, they
have reduced full-well capacity that limits the signal-to-noise
ratio (SNR). As a result, using these small pixels for low-light
conditions where photons are scarce, the acquired images will
have very poor SNR.

To tackle this problem, alternative technologies to CMOS
image sensors (CIS) have been developed. A few notable
options include the single-photon avalanche diodes (SPAD)
[2], [3] and the quanta image sensors (QIS) [4]-[7]. These
single-photon image sensors are very sensitive to photons,
and hence they are good candidates for low-light imaging. In
particular, the latest prototype QIS have demonstrated a very
promising read noise, dark current, and their size (1.1um) is
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comparable to the smaller pixels of the CMOS technology [8],
[9]. Many new applications have also been proposed for these
sensors [10]-[14].

Regardless of the particular type of image sensors one
uses (CIS or QIS), a universal problem to all sensors is the
reconstruction of color images under low-light. That is, how
do we reconstruct the full color image from the raw signal that
is generated by an image sensor with a color filter array? If we
put aside the low-light condition, color reconstruction is solely
a demosaicking problem where solutions are plenty [15]-[19].
In low-light, the problem becomes much more challenging
because one needs to jointly denoise and demosaick. While
there are some existing methods for this task [20]-[28], these
optimization based methods are iterative and they tend to
oversmooth the images.

This paper presents an end-to-end learning-based color
reconstruction method by grounding the deep neural networks
on the known physical properties of the color acquisition
process. Our method is a generic solution to both CIS and
QIS with a small pixel pitch. The key observation here is that
although pixels with a small pitch suffer from low-light and
noise, the aliasing is weaker for smaller pixels. If we further
use a better sensor such as a QIS, then it is possible to further
reduce the noise. Therefore, with the appropriate combination
of algorithms and sensors, we propose an algorithm to produce
high-quality color imaging under extremely low-light condi-
tions (1.8 photoelectrons per pixel per frame), which could be
challenging with traditional methods.

B. Key ideas: Exploiting small pixels and low read noise

We summarize our key ideas in this subsection and discuss
the details later. Small pixels and low read noise are two very
important factors for color imaging in low-light. Traditional
CIS and their corresponding demosaicking algorithms usually
emphasize the mitigation of the aliasing (aka the Moire arti-
facts), for example, using advanced edge-aware demosaicking
methods [29] or using a post-processing module to remove the
demosaicking artifacts [30], [31]. However, aliasing is less a
problem when the pixels are small (Figure 1). This suggests
that we can use a simple method for demosaicking, possibly
some traditional methods, such as linear demodulation fol-
lowed by denoising, to reconstruct the color.

To elaborate on the aliasing problem, we show three illustra-
tions in Figure 1. In Figure 1(a), we plot the Nyquist sampling
limit of the color filter array as a function of the pixel pitch and
illustrate two color spectra associated with the sampling limits.
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Nyquist limit defines the lowest spatial sampling frequency
required to prevent aliasing. As the pixels become smaller,
we effectively oversample the scene and so the Nyquist limit
increases. If we use a f/5.6 optical system as an example,
then the maximum pixel pitch we can afford is 1.6um, which is
safely above the 1.1pm pitch of the current QIS. This argument
is further justified by looking at the synthetic data shown in
Figure 1(b) and (c), where we show the raw Bayer CFA data
and the corresponding color spectrum. It can be seen that
because of the small pixel pitch, QIS can potentially offer
a much better spectrum.

A lower read noise is as important as smaller pitch as
far as color reconstruction is concerned. If the sensor has a
strong read noise, a linear demodulation scheme may not be
able to keep the essential level of signal-to-noise for reliable
denoising. As we will show in this paper, while we can still
reconstruct color images for small pitch CIS, we can get better
performance at low light using QIS type of low-noise sensors.

C. Scope and Contributions

There are two main contributions of this paper:

o Frequency-selection. The proposed demosaicking algo-
rithm is rooted in the classical theory of color filter arrays.
We develop a color processing module to demodulate the
color channels by selecting the known carrier frequencies
of the color filter array. Existing deep learning-based
solutions using generic convolutional neural networks
largely do not use the physics of the color filter arrays.

o Guided reconstruction. The proposed algorithm leverages
the physics that the luma channel has a much better
signal-to-noise ratio than the chroma channels. As such,
signal details that are preserved by the luma channel can
be used to guide the filtering of the chroma channels.
Existing generic convolutional neural networks do not
exploit these characteristics of the data.

CMOS Image Sensors

Fig. 1. [Left] Nyquist limit decreases with pixel pitch. At f-number value of f/5.6, QIS is diffraction-limited since Nyquist limit exceeds the optical cut-off
frequency. [Top Right] An average of 10 QIS frames at photon level of 5.5¢~. The CFA is a Bayer pattern. [Bottom Right] Fourier spectrum of the color.
Notice that interference between base-band luminance and chrominance components at (7, 0), (0, 7) and (7, 7) is minimal.

Quanta Image Sensors

An assumption we make in this paper is that the microlens
of the sensor can converge light onto the sensing site. We also
assume that crosstalk is minimal. Thus, the color crosstalk
in the imaging scenarios is limited. This is merely a sim-
plification consistent with the demosaicking literature [22]—
[28], [32]-[34]. Treatment of the crosstalk can be done in
two ways: (i) new color filter arrays as in [21], [35], and
(ii) reconstruction algorithm that can perform deconvolution.
To keep the focus of the present paper, we decide to leave
crosstalk as future work.

To demonstrate the performance of the proposed algorithm,
we report findings using both synthetic data and real data. We
also present ablation studies that show the importance of each
module in the proposed algorithm. The QIS camera used in
this study is the PathFinder camera developed by Gigajot Tech
Inc. [20], [36].

II. BACKGROUND

The pipeline of our color image reconstruction method is
shown in Figure 2. The goal is to take the input from the
color filter array, and jointly demosaick and denoise the signal.
Because this paper is positioned at the intersection of image
sensors and demosaicking algorithms, in the following we
highlight a few works relevant to both.

A. Related Work

Classical demosaicking algorithms. Classical demosaick-
ing methods are developed for CIS with well-illuminated
images. Under low-light conditions where the noise is heavy,
the demosaicking algorithm must also have denoising capabil-
ities. It is important to note that the order of denoising and
demosaicking matters [15], [22], [37], [38]. If demosaicking is
performed first, then the interpolation will destroy the spatial
independence of the noise. This will substantially complicate
the denoising process [39]. If denoising is performed first, then
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Fig. 2. Color imaging. As the light of the scene object arrives at the camera, the color filter array selects the wavelengths to pass through. This generates
the Bayer pattern. Modeling the incident photons as a Poisson process, we obtain three channels of signals as illustrated by the three temporal responses of
red, green, and blue pixels. After modeling the read noise of the sensor and performing the analog-to-digital conversion (ADC), we obtain a single frame or
a stack of frames based on the camera. A CIS usually captures a single frame with high bit-depth (eg. 14 bits). QIS usually captures a stack of low bit-depth
frames. The proposed method is an end-to-end solution known as the frequency-selection network (FS-Net). The output of the network is the reconstructed

color image.

most of the image priors cannot be used because the mosaicked
images do not have natural image statistics [37], [40]-[43].
Joint demosaicking and denoising methods are better options
here. However, most of the joint demosaicking and denoising
methods are iterative [22]-[28].

Deep neural network based demosaicking. State-of-the-
art demosaicking algorithms are largely based on deep neural
networks. The idea is to modify a generic deep neural network
by adding a space-to-depth layer that converts the raw Bayer
image into 4 Bayer channels with quarter resolution. The
network processes these down-sampled channels then upscale
them to a full-resolution color image using a depth-to-space
layer. For example, the Demosaic-Net by Gharbi et al. [40]
uses a residual network and a customized dataset within a
curriculum training approach. Dong et al. [41] use generative
adversarial training. Tan et al. [18], Cui et al. [30], Niu-Ouyang
[31] use multi-phase approaches. Ehret et al. [43] study burst
reconstruction without ground truth. Wu et al. [17] and Kiku
et al. [16] use a guided filter for chrominance reconstruction,
however, they do not consider the effect of noise.

Existing deep neural network-based solutions are generic
in the sense that there is no consideration of the physics of
the color filter arrays. Furthermore, down-sampling the RAW
image to quarter resolution leads to a loss of resolution. As
we will show in this paper, we can achieve better results by
carefully including physical insights of color acquisition into
the design and by processing the full-resolution RAW image
directly without the need for down-sampling.

B. Quanta Image Sensors

What are QIS? The method proposed in our paper applies
to both CIS and QIS. While CIS have been in use in cameras
since the 1990s, QIS is a new type of image sensors. QIS

was originally proposed in 2005 as a candidate solution for
the performance challenges associated with the shrinking pixel
sizes [4]. The principle of QIS is to partition a typical CMOS
pixel into many tiny cells called “jots”, where each jot is a
single-photon detector. Depending on the desired level of bit-
depth, the sensor can be operated in a single-bit mode or a
multi-bit mode. If it operates in single-bit mode, then each jot
will output a binary signal to reflect whether the number of
photons exceeds a certain threshold. For multi-bit, the sensor
quantizes the photon counts into multi-bit signals before the
pixel reaches saturation. Readers interested in the early work
of QIS image reconstruction and signal processing theory can
consult, e.g., [6], [11], [44]-[49].

QIS vs SPAD. QIS is a generic concept according to
its inventor [4]. It can be implemented using the existing
CIS technology or a single-photon avalanche diode (SPAD).
The QIS we use in this paper is the CIS-based sensor. It is
different from a SPAD-QIS such as [50]. SPAD-QIS amplifies
signal using avalanche multiplication. This requires a high
electrical voltage (typically higher than 20V) to accelerate
the photoelectron. Along with a larger transistor count and
higher operating voltage in the SPAD pixels, SPAD-QIS has a
high dark count (> 10e™), a large pitch (> 5um), a low fill-
factor (< 70%), and a low quantum efficiency (< 50%). In
contrast, CIS-QIS does not require avalanche multiplication.
It has significantly better fill-factor, quantum efficiency, and
dark current. SPAD-QIS are excellent candidates for resolving
time-stamps, e.g., time-of-flight applications [12], [51]-[55],
whereas CIS-QIS offers higher spatial resolution and detection
efficiency. A comparison between CIS-QIS and SPAD-QIS can
be found in the recent literature, e.g., [20].
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III. FREQUENCY SELECTION DEMOSAICKING NETWORK

The proposed method leverages the classical frequency se-
lection with new modifications. In this section, we first provide
a background on frequency selection (III.A). Afterward, we
present our modifications of learned demosaicking low-pass
filters and guided filtering of chroma channels using the luma
channel (III.B). We also present the loss functions (III.C) and
the training process (II.D).

A. Frequency selection

Consider a color image @, € RZ*W>*3 We denote the
normalized light intensities in the red, green and blue channels
at the pixel (m,n) as

Tyrgp(m,n) = [J:T(m, n), xg(m,n), xb(m,n)] ,

6]

where m =0,...,H —1,n=0,...,W—1. The color image
Trgy € REXWX3 j5 sub-sampled by the color filter array
(CFA) to create a mosaicked image zcpa € R¥*"W . Assuming
that the CFA follows the standard Bayer pattern, it can be
shown that the pixel (m,n) of the mosaicked image takes the
form (See [56], [57]):

zcepa(m,n) =z (m,n) + zq(m,n) (/™ + &™)

+ zg(m,n)e ™M)

2)

where the components 7, z, and x are defined as a linear
transformation of the latent RGB color pixels:

xr(m,n) 1/4  1/2  1/4] [x.(m,n)
To(m,n)| = |-1/4 0 1/4| |z4(m,n) 3)
xg(m,n) 1/4  —1/2 1/4| |xp(m,n)

=0y

Note that Equation (2) is a forward model. That is, given the
luma and chroma components (zr,, z,,3) we can determine
zcra- The inverse problem, which is the demosaicking prob-
lem, is to determine (zr,,zq,xg) from xcpa.

The starting point of frequency selection is to inspect
the Fourier spectrum of xcpa. If we take the 2D discrete

Fourier transform of xcpa, we can show that the frequency
representation of xcpa is given by

%CFA(M7V) = iL(M’ V) + %051 (,u -, V) + aj1342(:“7” - 7T)
———

base-band

+ap(p—mv—m),

—_———

horizontal/vertical side-band
4)

diagonal side-band

where p and v are the 2D angular frequencies and (-) denotes
the Fourier transform of the argument. Equation (4) suggests
that the spectrum of the mosaicked image ZTcpa comprises a
linear combination of a luma channel z;, two alpha chroma
channels z,, and Z,,, and the beta chroma channels Zg.
Figure 3 illustrates the ideas of the frequency analysis. Given
a color image, we can inspect the image generated by the
color filter array. In the frequency domain, the luma channel
occupies the center of the spectrum, whereas the chroma
channels are located on the sides of the spectrum.

The Fourier spectrum in Equation (4) indicates that the
CFA is effectively modulating the color channels. As such,
a natural solution for demosaicking is to demodulate xcpa
so that we can retrieve (21, Zo, 23). Demodulation is feasible
here because we know the CFA and also its carrier frequency
from basic principles of sampling theorem in 2D domains.
Denoting the carrier frequencies for z,, T, and zg are wq,
and w,,, wg respectively, then the carriers are defined as

(using a7 as an example):
m
o)),

where A,, and 0,, are the amplitude and the phase offset of
the carriers. To demodulate the color, we multiply zcpa (m, n)
with the carriers c,, (m,n), followed by convolving with a
predefined lowpass filter g(m,n):

(&)

Cay (Myn) = Ag, cos (wgl

(6)

The computation for z,, and xg is performed in a similar
manner. For simplicity, we combine the two a channels by
simple averaging:

Zay (Mmyn) = (zera(m,n) X ¢, (m,n)) ® g(m,n)

Lo (ma 77,) =ZTay (ma 77,) + Ta, (m’ Tl)

(7
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Fig. 4. Implementation of the classical frequency selection. Given the input spectrum acpa, our goal is to remove the unwanted side-bands. By adopting the
classical demodulation scheme, i.e., carrier+lowpass+carrier, we can recover the main lobe. The demodulated signals are z, xg and z .. After post-processing
(typically the luma-denoising) and coordinate transform 7", we retrieve the RGB signal.

The base-band luma component is recovered by subtracting
the re-modulated (i.e., shifted to their original positions) z,,
T, and zg components from the input CFA image:

xr(m,n) = zcpa(m,n) — xq, (M,n) X oy (M,n) )

— Zay(M,N) X Co,(m,n) — xg(m,n) X cg(m,n).

The demodulation process is pictorially illustrated in Figure 4.
The input CFA image is first multiplied by the carriers. In
the Fourier domain (the red curves shown at the bottom),
the spectrum is shifted according to the carrier frequency.
Since we know the CFA, the carrier frequency is deterministic.
We then pass the signal through a lowpass filter. Afterward,
we multiply the signal with the carriers again to un-shift the
spectrum. The whole pipeline is reminiscent of the classical
sinusoidal demodulation problem in, e.g., [58, Chatper §].

To customize frequency selection for our problem, we make
the lowpass filters trainable. Specifically, we use three layers
of convolutional kernels of size 7 x 7 to reconstruct the vertical,
horizontal, and diagonal chroma channels. During training,
filters are regularized by enforcing the ¢; norm of the filter
coefficients such that it is equal to unity. This filter learning
approach is more flexible than the minimum mean-squared
error (MMSE) filter estimation such that those used in the
classical literature [33] since it performs the filter estimation
jointly with the luma and chroma denoising in an end-to-end
training approach.

B. Guided Filtering

The output of the frequency selection stage consists of the
luma signal xr, and the two color signals x, and xg. All
signals are corrupted by noise because during the frequency
selection process, we have only decoupled the colors from
the input and have not aggressively removed the noise. The
objective of the guided filtering step is to denoise.

The rationale behind the guided filtering step is the different
signal-to-noise ratios of xr,, T, and xz. The luma signal |,
by definition, is the average of the RGB signals, i.e., 1 =
(xR + 2x¢ + xp)/4. This averaging process suppresses the
noise more than that of the color channels. Classical papers
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Fig. 5. The proposed guided filtering step consists of three UNets: The luma
UNet, and two chroma UNets. Each UNet has a residual connection. Across
the networks, we transfer knowledge from the luma channel to the chroma
channels by concatenating features.

in color processing have long recognized this phenomenon,
e.g., [59], [60]. Instead of independently denoising the three
channels or jointly denoising the channels by treating them
as a spectral volume, it is more promising to first denoise the
luma channel, then use the recovered luma signal to guide the
filtering of the chroma signals.

Building upon this intuition, we use three deep networks
as shown in Figure 5. The luma denoising network is a
standard UNet [61] with the number of layers as shown in
the middle of Figure 5. On top of this luma network, we
introduce two smaller UNets for the chroma channels. The
size of the chroma channel UNet is 4 times less than that
of the luma channel UNet. When training the networks, we
pull the features generated by the encoder of the luma UNet,
and concatenate with corresponding features generated by
the chroma UNets. The chroma UNets are benefited from
this feature sharing since they can use the high frequency
information such as edges and textures from the luma denoiser.
The layers of all the three UNets are convolutional, with a
kernel size of 3 x 3. Following [62], [63], the number of
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Fig. 6. Visualization of the proposed guided filtering. Given the input @,
Ta,, g and the luma estimate Zp, the guided filter leverages the luma
estimate to reconstruct the chroma channels which are otherwise very difficult
to recover. The resulting image is Zgp.

feature channels at all image scales is kept fixed to avoid
unnecessary enlargement of the network size. We replace the
trainable transposed convolution layers in the standard UNet
with non-trainable bilinear upsampling layers to reduce the
total number of parameters [64].

The effectiveness of the proposed guided filtering step can
be visualized in Figure 6. In this example, we generate the
input signal using a QIS imaging model with a mean photon
arrival rate of 10 photoelectrons per pixel. Given the inputs
o, Ta, and xg, straight-forward denoising on each of these
channels independently will be extremely difficult because
there is not much signal in the input. With guided filtering,
since o, preserves most of the details of the image, it serves
as a strong prior to the chroma channels. As we can observe in
Figure 6, the reconstructed chroma channels are substantially
better than without the guided filtering.

C. Loss Functions

The overall system is trained end-to-end. To perform the
training, we define the overall training loss as

’C(f(-)) = ERGB(f@) + nl»cluma(f@) + 772»Cchr0ma(f(-))a (9)

where fg denotes the model parameterized by ©. There are
three terms contributing to the overall loss.

The RGB loss is defined as the sum of a mean absolute error
(MAE) loss and the perceptual loss. The MAE loss is the ¢
difference between the predicted image fe (€cra) and the true
image y,,,, Whereas the perceptual loss is the /> difference
between the feature embedding using a pre-trained network
[65]. The intuition is that if our network is performing well,
then the features of the reconstructed image should be close to
that of the clean image. Here, the features are obtained from
a VGG-19 network, although other embeddings can also be
used.

The luma and the chroma losses are defined as the ¢; loss
between the predicted luma and the ground truth luma, and

the predicted chroma and the ground truth chroma, respec-
tively. The hyper-parameters 71, 1o are chosen empirically to
minimize the validation loss.

D. Implementation

The training of the proposed model is based on the WED
database [66] which contains 4744 high-quality color images
of natural scenes. Color images are mosaicked using Bayer
CFA. We simulate shot noise in QIS using Poisson distribution
assuming fixed average photon counts per image, which is
sampled uniformly in the range [le~, 10e™] for every patch.
We also simulate readout noise by a zero-mean Gaussian
with the standard deviation set to 0.25e¢~. Images are then
normalized to the range [0, 1] by dividing by thrice the average
photon count and clipping to [0, 1].

In every training epoch, 128 x 128 patches are randomly
cropped from each image, and data augmentation is performed
by random flipping in the horizontal and vertical directions.
Pairs of clean and noisy patches are fed into the network with
batch size 64 for training. The network is trained for a total
of 1000 epochs in mixed precision using NVIDIA GeForce
RTX 2080 GPU with 8GBs of dedicated memory. Adam is
used for optimization with a learning rate of 10~* and 10~°
for the first and second 500 epochs, respectively.

Training hyper-parameters are 17; = 1, 3 = 1. The trainable
lowpass filter g(m, n) is modeled using a 7 x 7 kernel. The
perceptual loss is based on MSE loss computed at 8" and 35
layers of the VGG-19 network. For validation during training,
we compute the average PSNR and SSIM on the 18 color
images of McMaster dataset [19] every 50 epochs.

IV. EXPERIMENT

A. Evaluation Metric

We use the WED [66] database for training, the McMaster
dataset [19] for validation, and 24 images from the Kodak
dataset and 100 validation images of Div2k dataset [67] for
testing. This ensures no overlap between the three differ-
ent tasks. We simulate QIS noisy images at signal levels
{le=,2¢7,...,10e}, and we assume that the read noise is
0.25¢™ rms.

Since no single image quality metric can address all ques-
tions, we use the following suite of evaluation metrics:

o Peak signal to noise ratio (PSNR), which is the negative
log of the mean squared error between the estimated
image and the ground truth image. The mean squared
error is computed per pixel per color. The is the usual
PSNR extended to three color channels.

o Structure Similarity Index Metric (SSIM) [68], used to
quantify the visual difference between two images.

e CIE 2000 color error metric, which measures the mean
square color difference in the CIELAB color space as
suggested by the CIE 2000 standard [69]. CIE 2000
metric captures better the color difference and is used
in previous literature in color filter arrays [21], [35]. We
use the implementation of skimage color module in [70]
to compute the CIE 2000 metric.
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o Learned Perceptual Image Patch Similarity (LPIPS) met-
ric, proposed by Zhang et al. [71]. This metric measures

 26.22\0.88

the perceptual difference between 2 images using deep
features. According to [71], this metric shows a good
correlation with human perception. To compute the deep
features, we use AlexNet.

B. Competing Methods

We compare the proposed method with the following clas-

sical and deep learning-based methods. We acknowledge other
approaches proposed in the past and recent years. However,
due to limited space, we have chosen to focus on a few
representative ones.

o Classical frequency selection (FS) by Condat [32], [33].
This method uses a linear demodulation scheme by
decorrelating the luma and chroma from the color data.

The denoising step uses a follow up work by Condat and
Mosaddegh [23] which applies total variation minimiza-
tion. This is a CIS-based method, so we apply Anscombe
transform [44] before the reconstruction to stabilize the
noise variance.

o Classical optimization-based algorithm, using the alter-
nating direction method of multiplier (ADMM). We use
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the implementation in [20]. The backbone optimization
algorithm is the Plug-and-Play ADMM (PnP-ADMM)
where we use BM3D as the denoiser [60].
Demosaic-Net by Gharbi et al. [40]. This is a generic deep
neural network solution designed for CIS. The method
has a standard convolutional structure that takes a raw
CFA color image and converts to a full RGB image. We
used the code provided by the authors of [40], and trained
the network from scratch using QIS data

MM-Net by Kokkinos and Lefkimmiatis [28]. The
method combines an explicit forward degradation model
with a deep neural network. The algorithm iterates like
classical optimization approaches, but each iteration is
executed by a deep network. We used the code provided
by the authors of [28], and trained from scratch using QIS
data and the pre-trained denoiser provided by the author.

esults of Synthetic Experiments

this section, we report the results of synthetic experi-
s. We first offer some visual comparisons. Figure 7 shows

a few snapshots of several testing images taken from the
Div2K dataset. A few observations we can see from these

€S:
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Fig. 8. Performance of synthetic QIS data with read noise = 0.25e™ at different signal levels. The first row shows the results of using 24 images in the
Kodak dataset, whereas the second row shows 100 images of the DIV2K dataset.
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Fig. 9. Visual evaluation using the Kodak dataset (synthetic dataset). The QIS data is simulated at 2e~. Observe the strong color noise in classical methods
such as FS, and over-smoothing in learning-based methods. Quantitative image quality metrics PSNR\SSIM are shown on the top right of every image.

o Details: It is evident from the first three rows of the im- a function of the photon level. We separately consider the
ages that the classical FS [23] and the ADMM approach Kodak dataset and the Div2K dataset so that we can see the
[20] have hallucinated the details whereas deep learning generalization capabilities of the methods. We make some
approaches tend to over smooth the details. The proposed observations:
method gives a more faithful recovery of details. First of all, the performance of the competing methods is

o Color: The proposed method has less false colors than consistent for both datasets. In particular, we observe that
classical methods. This is especially obvious when we learning-based methods are generally better than classical
compare the stair-case image and the feather image, methods across different photon levels. The gap appears
where color bleeding of the classical methods is severe.  smaller at stronger photon levels (10e™). Learning-based

A quantitative comparison is shown in Figure 8, where we methods are very competitive, especially between MM-Net

compared the PSNR, SSIM, CIE 2000, and LPIPS curves as and the proposed method, using PSNR and SSIM. However,
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Fig. 10. Visual evaluation of CIS data using the Div2K synthetic dataset. The CIS data is simulated at 2e™~ average signal level and 2e~ read noise.
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Fig. 11. (a) Initial Gaussian estimate of low-pass filters and the learned filters
by FSNet: (b) ga1, (¢) ga2 and (d) gg. First and second rows show the spatial
and frequency representations, respectively.
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as we have seen in the visual comparisons in Figure 7, similar
PSNR values can be drastically different visual appearance.
Further evidence can be seen from the CIE 2000 metric and
the LPIPS metric. In both metrics, the proposed method has a
more obvious gap compared to MM-Net and Demosaic-Net.

Second, as photon level drops, the gap between the proposed
method and the competing methods becomes larger. This is
particularly evident in the Kodak dataset where the proposed
method is almost 0.5dB higher than MM-Net and Demosaic-
Net in terms of PSNR. The visual comparison in Figure 9
confirms these numbers. The proposed FS-Net has a better
recovery of both details and colors.

We also simulated a higher readout noise with standard
deviation of 2e~, which is similar to what we can get from a
standard CIS, and an average signal level of 2e~. We ran the
same networks used in the previous experiment: Demosaic-
Net, MM-Net, and FS-Net on a sample image from Div2K
dataset. Figure 10 shows that FS-Net can still give more details
and less color noise compared to other networks.

As shown in Figure 11, we show the spatial and spectral
representation of the isotropic Gaussian initialization for the
low-pass filters as well as the learned filters for the three
chrominance channels al, a2 and . We notice that the
network tends to maximize the spectral support of the chromi-
nance filters to make sure that no chrominance information is
lost. Although a wider spectrum implies more noise, this noise
is removed afterward in the guided denoising phase. At the
same time, the filter response is zeroed-out at the positions of
the luminance channel to avoid aliasing.

D. Real QIS Data

In this section, we report our experimental results on real
QIS data. To conduct the experiments, a QIS camera module
developed by Gigajot Tech Inc was used. The sensor has
a resolution of 1024 x 1024 and is equipped with a Bayer
color filter array. During the experiments, short exposure times
of 74us were used to limit the number of photoelectrons
per pixel per frame. Eight (8) “ground truth” images were
captured with a longer exposure time of 740us to minimize
the impact of photon shot noise, i.e., the average signal level
is approximately 10 times the short-exposure images. We then
perform the standard linear demosaicking algorithm in [29]
to recover the color, and then a simple BM3D denoising
algorithm to remove the residual noise. We chose to use the
same camera (instead of using a DSLR camera) to obtain the
ground truths because this can minimize the impact generated
by sensor characteristics and focus the comparison on the color
reconstruction.

Figure 12 shows the snapshots of two scenarios. We only
compare Demosaic-Net and MM-Net because the synthetic
experiments showed that they are better than classical methods.
When compared with these methods, we observe that they have
more color reconstruction error. For example, in the “Expo”
image, Demosaic-Net and MM-Net have severe color bleeding
occurring near the cap of the green marker (See the zoom-
in). They also have more noise issues showing up in the text
regions. In the “Duck” image, we observe similar problems
where the color bleeding is severe in the background color
chart.

Figure 13 shows the quantitative comparisons using the
“ground-truth” images. Two observations are worth men-
tioning. First, while Demosaic-Net and MM-Net offer very
competitive results in the synthetic data, they become worse
when it goes to the real data. Note that the training data we
use to train Demosaic-Net, MM-Net, and our proposed FS-
Net are identical. Thus there is no bias as far as the training
data is concerned. We believe that this phenomenon is due to
network designs. The results suggest that our physics-inspired
color demodulation plus the guided filter is more generalizable
to real data where there is uncertainty in the noise model and
sensor imperfectness.

The second observation is the inconsistency of different
metrics. For example, Demosaic-Net performs similarly with
MM-Net in PSNR and CIE2000, but it has better SSIM,
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Fig. 12. Real data reconstruction results. (a) Input, collected at 1.8e~ (Ist row) and 5.5¢ (2nd row), (b) Demosaic-Net, (c) MM-Net, (d) Proposed FS-Net,
and (e) Ground truth, obtained by very long-exposure, with post-processing using demosaicking and denoising.
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Fig. 13. Reconstruction results using real data. The performance evaluation is based on PSNR, SSIM, CIE2000, and LPIPS metrics.

Noisy Demosaic-Net MM-Net FS-Net

Fig. 14. Grayscale resolution chart captured with Integration time 224 usec, lens aperture f/1.8 and average signal level per frame is 8.4e~. For ideal
demosaicking, the result should not have any false colors.

and worse LPIPS. This suggests that no single metric can false colors. Besides, the resolution that can be recovered by
provide a complete description of the methods. Nevertheless, these two methods is less than that of the proposed FS-Net.
the proposed FS-Net has consistently much better results than

Demosaic-Net and MM-Net in all evaluation metrics.

To further evaluate the performance of the methods, we
captured a real resolution chart using a QIS and reconstruct the Finally, in Figure 15 we show the results using 2-bit and
image. Figure 14 shows the visual comparison. It is evident 3-bit data. As we can see, the performance of the proposed
from the figures that Demosaic-Net and MM-Net have more method remains competitive in these low bit-depth situations.



Raw, 1 out of 10 frames Demosaic-Net

MM-Net

11

FS-Net
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Fig. 16. Ablation study overview. There are two studies. Ablation study 1 concerns about the effectiveness of the demodulation performed by the frequency
selection. Ablation study 2 evaluates the significance of the guided filtering step.

TABLE I
COMPARISONS OF NETWORK COMPLEXITY AND SIZE
Method | Demosiac-Net MM-Net FS-Net
Complexity (GMAC) 2.20 12.44 2.76
# Parameters 524k 380k 546k

E. Computational Complexity

To evaluate the network complexity, we compute the the-
oretical total number of multiply-add operations (MAC) for
each network using code in [72]. We also compare the
total number of parameters for each network to evaluate the
required memory for the network weights.

Table I shows the comparison between Demosaic-Net, MM-
Net with 2 iterations, and FS-Net. We notice that DemosiacNet
has the least complexity since it processes a down-scaled
version of the image, and then do up-sampling at the end
of the network. However, this down-scaling leads to a loss
of resolution as we saw in visual comparison. MM-Net has
the least number of parameters since it reuses the same
network for multiple iterations. However, it has the highest
complexity. FS-Net has comparable complexity and network
size to Demosaic-Net while achieving superior image quality.

E Ablation Study

In this section, we report the ablation study results. All
our ablation analysis is based on synthetic experiments. The
photon level is set as 5e~. We use WED dataset for training,
and Kodak dataset for evaluation. Figure 16 summarizes our
ablation study. There are two evaluations: (i) The effectiveness
of the frequency selection method; (ii) the significance of the
guided filtering.

1) Ablation 1: Frequency selection: Our first ablation study
concerns the frequency selection. We want to see what will
happen if we do not use the frequency selection. However,
when the frequency selection is removed, there is essentially
no decoupling of the color and so the guided filtering will be-
come invalid. Therefore, if we remove the frequency selection
step, the best alternative is just to train an end-to-end network
that performs the entire demosaicking and denoising together.

To this end, we compare with Demosaic-Net by Gharbi et
al. [40] which is designed to solve the present problem. As
we have seen in the synthetic experiments Figure 7, Figure 8
and Figure 9, as well as the real experiments Figure 12
and Figure 14, the proposed frequency selection is evidently
better than Demosaic-Net, both visually and quantitatively.
We acknowledge that some benefit could be attributed to
the other components of the method, e.g., guided filtering



which will be studied in ablation study 2. However, since
removing frequency selection is equivalent to abandoning
the entire proposed method, the superior performance of the
proposed method over Demosaic-Net does provide supports to
the proposed method.

2) Ablation 2: Guided filtering: In the proposed method,
the denoising step is performed by an explicit guided filtering.
This involves using one UNet for the luma channel, and two
smaller UNets for the chroma channels. As we have seen in
Figure 6, this guided filtering is very effective because the
luma signals have substantially better signal-to-noise ratio than
the chroma signals. In this ablation study, we want to see
what will happen if we replace the guided filtering step with
other alternative denoising steps. We compare with several
alternative schemes as shown in Figure 17:

o UNet: We use a single UNet with a similar capacity to
replace the entire guided filtering module. The UNet takes
the noisy luma-chroma signals and denoise them before
the color conversion. This alternative scheme can be
regarded as asking the network to learn the best denoising
protocol instead of using an explicit guided filtering step.

o« DnCNN: We replace the UNet with another popular
denoising module DnCNN and the denoiser. The goal
is to see if other denoisers would make any difference.

o GF-1: We replace the frequency selection step by a
standard bilinear interpolation step, and train the network
to denoise such an input.

e GF-2: The proposed.

In all these configurations, the loss functions are identical to
that of the proposed scheme. That is, we use RGB-loss, luma-
loss, and chroma-loss. All networks are trained using the same
set of QIS data to ensure fairness.

chroma

Unet

luma DNCNN

el

chroma

Fig. 17. Ablation study 2. We replace the guided filtering step with various
denoising modules. The input arrows denote the input channels which are
either RGB or LAB.

The results of this experiment are shown in Table IL. In this
table, we observe that the proposed guided filtering scheme
offers the most competitive result. For example, we achieve
27.58dB while the baseline Demosaic-Net only achieves
26.98dB. Compared to a single UNet which achieves 27.48dB,
the proposed guided filtering still offer 0.1dB improvement.
In terms of the CIE2000 metric, the improvement is quite
substantial. We obtain 3.824 whereas the single UNet obtains
4.064.

V. CONCLUSION

This paper presents a new color reconstruction method for
small pixels. When pixels are small, the problem is unique in

the sense that the typical aliasing problems of large CMOS
pixels become less influential. This allows us to exploit the
classical frequency selection approaches where the color can
be demodulated using the known carrier frequencies. However,
frequency selection alone has limitations when the photon
level is extremely low because the shot noise is strong. We
overcome this challenge by integrating the frequency selection
method with a deep neural network-based guided filtering step,
where we use the luma channels to assist the denoising of the
chroma channels. Experimental results based on CIS and QIS
provide strong evidence that this physics-based design offers
more competitive performance in low-light. Future research
should focus on compressing the network capacity while
preserving the image reconstruction quality.
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