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Avalanche induced coexisting localized and thermal regions in disordered chains
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We investigate the stability of an Anderson localized chain to the inclusion of a single finite interacting thermal
seed. This system models the effects of rare low-disorder regions on many-body localized chains. Above a
threshold value of the mean localization length, the seed causes runaway thermalization in which a finite fraction
of the orbitals are absorbed into a thermal bubble. This “partially avalanched” regime provides a simple example
of a delocalized, nonergodic dynamical phase. We derive the hierarchy of length scales necessary for typical
samples to exhibit the avalanche instability, and show that the required seed size diverges at the avalanche
threshold. We introduce a dimensionless statistic that measures the effective size of the thermal bubble, and use
it to numerically confirm the predictions of avalanche theory in the Anderson chain at infinite temperature.
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I. INTRODUCTION

Sufficiently strong disorder localizes noninteracting parti-
cles in any dimension [1]. Each single-particle orbital is then
exponentially localized with an (energy-dependent) localiza-
tion length. Rare low-disorder regions have no deleterious
effects on such systems as the asymptotic decay of the as-
sociated orbitals is set by the disorder strength of the typical
regions.

In one dimension d = 1, finite but weak interactions be-
tween the particles preserve localization [2–25]. In such
“many-body localized” (MBL) systems, the orbitals are
dressed into quasilocal integrals of motion called localized
bits (or l-bits) [26–33]. These l-bits underlie the persistent lo-
cal memory observed in several quantum optical experiments
[34–43].

What of the effects of rare regions in interacting localized
systems? Interacting rare regions are much better baths than
their noninteracting cousins as their densities of states are ex-
ponentially larger [44–47]. They seed thermal bubbles which
can grow by thermalizing nearby l-bits. As the bubble grows,
it becomes a more effective bath that can absorb more distant
l-bits. If this process runs away, then the system undergoes a
thermalization “avalanche.”

De Roeck and Huveneers (DRH) argued that avalanches
destabilize MBL at any disorder strength in d > 1, so that
MBL is an unstable dynamical phase [44]. In d = 1 however,
the instability is present only if the l-bit localization length
exceeds a threshold value. Avalanche theory thus predicts the
existence of stable MBL and thermalizing phases, and the
properties of the phase transition between them [48].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Despite the far-reaching implications of the avalanche in-
stability, it has been tested in relatively few studies. Refer-
ences [49,50] numerically found the instability in toy models
defined in the l-bit basis, while Ref. [51] showed that a central
spin can thermalize many l-bits at a vanishing interaction
scale. However, a recent numerical study reports no evidence
of avalanches in MBL spin chains [52]. Furthermore, experi-
ments with ultracold atoms suggest a surprising robustness of
the MBL phase in two dimensions [39]. Using two-component
mixtures in an optical lattice with only one of the components
experiencing a disorder potential, Ref. [39] reported persistent
local memory in the disordered component despite interac-
tions with the clean component.

In this paper, we test the avalanche instability for an
Anderson chain coupled to a single interacting thermal seed
(Fig. 2). We focus on the Anderson chain as the l-bits are
uniquely defined and numerically accessible. The Anderson
l-bits have a distribution of localization lengths, whereas DRH
assumed that the MBL l-bits are characterized by a unique
localization length [53].

Our first result is that introducing a single thermal seed into
a system with a distribution of localization lengths will result
in a partial avalanche. This occurs when the mean localization
length exceeds the critical value

[ξ ] > ξc ≡ 2

ln 2
. (1)

When the system avalanches the resulting thermal bubble
absorbs a noncontiguous finite fraction f̄∞ of the chain’s
l-bits, and coexists with the remaining localized l-bits. The
partially avalanched Anderson-seed model thus provides an
example of a delocalized nonergodic phase that is robust to
all perturbations which preserve the free-fermion structure
of the chain Hamiltonian. For the Anderson chain with box
disorder, we compute f̄∞ as a function of the disorder strength
h (Fig. 3).

Next, for [ξ ] > ξc (or equivalently for disorder strengths
h < hc), we identify the length scale up to which the thermal
bubble must grow before the instability argument ensures
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FIG. 1. Phase diagram of avalanches. Density plot illustrating the
fraction of samples which avalanche close to the threshold. Typical
samples avalanche (region I) only when h < hc and the initial thermal
seed is sufficiently large, or more precisely, when the hierarchy of
scales Eq. (2) is observed. As h approaches hc from below, the
necessary seed size for typical samples to avalanche diverges as
|h − hc|−2 after preasymptotic scaling of |h − hc|−1. For h < hc with
small seeds, rare samples may still avalanche (region II). For h > hc

no samples avalanche (region III).

that typical samples exhibit avalanches. As this length scale
diverges as h → hc from below (with exponent ν = 2), the
probability that a thermal seed of fixed finite size sets up
a runaway avalanche vanishes in the same limit. Figure 1
summarizes the behavior of the ensemble averaged fraction
of l-bits absorbed into the thermal bubble f̄ as a function of h
and the thermal seed size.

In more detail, we identify three length scales: ldir, lFS, and
l�. The scale ldir sets the number of l-bits with significant
direct coupling to the bare thermal seed, and is proportional
to the number of degrees of freedom in the thermal seed
[Eq. (4)]. The second scale lFS is the Harris-Luck scale;
this sets the number of l-bits required to accurately deter-
mine whether the disorder strength h is above or below the
threshold value hc [54–57]. Thermal bubbles of spatial extent
greater than the third scale l� typically grow indefinitely
if h can be determined accurately on the scale l�, i.e., if
l� � lFS.

We present analytical arguments that typical samples
avalanche if

L � ldir � l�, lFS. (2)

As l� and lFS diverge near h = hc,

l� ∼ |h − hc|−1,

lFS ∼ |h − hc|−2,
(3)

while the seed size and thus ldir remain finite, typical
samples partially avalanche only in region I of Fig. 1.
In contrast, though rare samples may avalanche in re-
gion II, in typical samples the thermal bubble is of finite
extent.

Third, we derive the conditions on the coupling strength
between a single l-bit and a thermal seed which determine

when the two systems are either very strongly or very weakly
hybridized [Eqs. (30), (31)]. On applying these conditions to
the Anderson-seed model near the avalanche threshold, we
obtain the remarkable result that there are approximately ten
l-bits with intermediate values of couplings to the bare thermal
seed. This provides conservative bounds on ldir:

lS � ldir � lS + 9.9, (4)

where lS is proportional to the number of degrees of freedom
in the thermal seed. This implies that most l-bits in numer-
ically accessible finite-size chains are in the intermediate
regime in which the extent of hybridization between the l-
bit and the seed is partial with large eigenstate-to-eigenstate
variations (Appendix A).

As we find significant seed sizes to be necessary, the chain
lengths L accessible to exact diagonalization are L ≈ 10 ∼
ldir. As Eq. (2) is not satisfied, it is difficult to conclusively
identify avalanches. Furthermore, the partially avalanched
Anderson-seed system is delocalized, but nonergodic. These
phases are also notoriously hard to characterize numerically
[58–61].

To address the challenge of identifying the nonergodic
delocalized phase, we present our fourth result: a dimension-
less statistic [v] which measures the size of a noncontiguous
thermal bubble. This statistic characterizes the seed connected
to the Anderson chain by its effectiveness as a bath for a
probe l-bit. Specifically, we use a modified ratio of the matrix
elements between eigenstates to their energy level spacing
to determine the number of degrees of freedom in the total
system that couples to the probe l-bit (previously introduced
in Ref. [48]). The measure [v] grows linearly with L with
slope f̄ /ξc if and only if a finite fraction f̄ of the l-bits in the
chain have been absorbed into a thermal bubble. We see robust
evidence for linear growth for [ξ ] > ξc in the Anderson-seed
system.

As an aside, we also confirm that [v] detects the MBL
transition in the interacting disordered fermionic chain (cor-
responding to the disordered Heisenberg model). We find
that the finite-size estimate of the critical disorder strength
agrees with that extracted from standard spectral mea-
sures, despite the inclusion of an external thermal seed
(Sec. VII).

The outline of the paper is as follows. In Sec. II we
introduce the model of interest, a disordered fermionic or
spin chain coupled to a thermal seed. In Sec. III, we derive
the conditions under which the thermal seed absorbs the
first few l-bits. We subsequently generalize the theory of
DRH in Sec. IV, and show that due to fluctuations on the
localization length the avalanche instability only leads to
at most partial thermalization. We then turn to the length
scales that control the probability that a finite thermal seed
can set up a runaway (partial) avalanche in Sec. V. After
deriving further conditions on the Anderson-seed model to
see the runaway avalanche instability in Sec. VI, we turn to
finite-size numerics in Sec. VII. We define the dimensionless
measure [v] and present numerical evidence in favor of partial
avalanches in the Anderson-seed model. Finally, we discuss
the implications of this work for MBL systems in Sec. VIII.
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II. MODEL

The random-XXZ chain provides a canonical model of both
single-particle and many-body localization:

HD = J
L−1∑
n=1

(
sx

nsx
n+1 + sy

nsy
n+1 + �sz

nsz
n+1

) +
L∑

n=1

hnsz
n. (5)

Here sν
n = 1

2σ ν
n are the usual spin- 1

2 operators, the local
fields are drawn independently from the box distribution hn ∈
[−h, h], and we use open boundary conditions. Under the
Jordan-Wigner transformation, the XXZ chain maps to an
interacting disordered fermionic model [62,63]:

HD = J

2

L−1∑
n=1

(a†
nan+1 + H.c.) +

∑
n

μna†
nan

+ J�

L−1∑
n=1

a†
nana†

n+1an+1 (6)

up to an additive constant. Above,

μn =
{

hn − J�, for 1 < n < L,

hn − 1
2 J�, for n = 1, L,

(7)

and the fermionic creation and annihilation operators satisfy
the usual anticommutation relations {an, a†

m} = δmn.
In this article, we focus on two values of � in the random-

XXZ chain:
(1) The random-XX chain (� = 0), which maps to the

non-interacting Anderson model Eq. (6) [1].
(2) The random-Heisenberg chain (� = 1), which maps

to an interacting and disordered fermionic model.
To probe the avalanche instability, we couple one end of

the disordered chain to an external thermal seed with even
Hilbert space dimension d0. The total Hamiltonian acts on
the Hilbert space obtained by taking the tensor product of the
Hilbert spaces of the thermal seed and the chain and is given
by

H = HT ⊗ 1 + 1 ⊗ HD + V. (8)

The Hamiltonian is depicted in Fig. 2(a) in the fermionic
representation. We discuss the first and third term in Eq. (8) in
turn below.

The Hamiltonian of the thermal seed HT is given by a
d0 × d0 random matrix of bandwidth 4WT drawn from the
Gaussian orthogonal ensemble (GOE). We take d0 to be an
even integer; we explain why below. The eigenvalues wa of
HT have mean [wa] = 0 and variance [w2

a] = W 2
T . The square

brackets [·] denote ensemble averaging with respect to the
GOE matrix HT and the on-site disorder in the spin chain.
We refer to a single instance of this ensemble as a sample.
An important quantity in subsequent analysis is the density of
states of the thermal seed at maximal entropy:

ρ0 = d0

πWT
. (9)

For even d0, we define spin- 1
2 operators on the thermal seed

as follows. Let d0 ∈ 2N. Such a thermal seed may be obtained
by coupling a d0

2 -level system to a spin- 1
2 particle (with

label T). The required seed spin- 1
2 operators are then sν

T for

(a)

(b)

FIG. 2. The Anderson-seed model. An Anderson chain coupled
to a thermal seed in (a) the physical (p-bit) basis, and (b) the diagonal
(l-bit) basis. Under the Jordan-Wigner transformation, the random-
XX chain coupled to a thermal seed maps to this model.

ν = x, y, z. Furthermore, the Jordan-Wigner transformation
on the spins with labels {T, 1, 2, . . . , L} defines a fermionic
creation operator a†

T on the thermal seed that satisfies the
usual anticommutation relations {an, a†

m} = δmn for n, m ∈
{T, 1, 2, . . . , L}.

The decomposition of the thermal seed into a d0
2 -level

system and spin- 1
2 particle is useful to define the seed-chain

interaction term V in Eq. (8) to have the same form as the
term in HD that couples neighboring sites:

V = J
(
sx

T ⊗ sx
1 + sy

T ⊗ sy
1 + �sz

T ⊗ sz
1

)
= J

2

(
a†

T a†
1

)(−� 1
1 −�

)(
aT

a1

)
+ �Ja†

TaTa†
1a1. (10)

See Fig. 2(a).

A. l-bit basis

In the Anderson model (� = 0), HD is bilinear in the
fermionic operators, and hence easily diagonalized:

HD =
L∑

α=1

ε̃α f †
α fα, (11)

where f †
α = ∑

n φα
n a†

n creates a fermion in the αth diagonal
orbital, and the single-particle energies ε̃α and orbitals φn

α are
the solutions to the equation

Jφα
n+1 + Jφα

n−1 + 2hnφ
α
n = 2ε̃αφα

n . (12)

The diagonal orbitals define the localized bits (or l-bits) of
the disordered chain in the absence of coupling to the seed
(V = 0) [26–29,31].

The single-particle energies have mean and variance given
by

[ε̃α] = 0,
[
ε̃2
α

] = 1
2 J2 + 1

3 h2. (13)

They are further bounded by the following inequality (which
is saturated as L → ∞):

−J − h � ε̃α � J + h. (14)

033262-3



P. J. D. CROWLEY AND A. CHANDRAN PHYSICAL REVIEW RESEARCH 2, 033262 (2020)

The l-bit orbitals φα
n are exponentially localized [1] with

localization length ξα and localization centers

n̄α =
∑

n

n
∣∣φα

n

∣∣2
. (15)

We index the orbitals according to their distance from the ther-
mal seed so that α < β ⇐⇒ n̄α < n̄β . This indexing scheme
implies that [|n̄α − α|] = O(ξα ).

Rewriting the seed-chain coupling V in the diagonal basis:

V =
L∑

α=1

J̃α (a†
T ⊗ fα + H.c.). (16)

The αth l-bit is coupled to the seed with strength that decays
exponentially with α:

J̃α = 1
2 Jφα

1 ∼ Je−α/ξα . (17)

The Hamiltonian of the Anderson-seed system in the l-bit
basis is shown in Fig. 2(b).

The interacting fermion system with � �= 0 is more com-
plex as HD cannot be simply diagonalized. Nevertheless, full
localization persists above a nonzero critical disorder strength
[2–25]. This many-body localized (MBL) phase is character-
ized by an extensive set of quasilocal integrals of motion (the
l-bits) which generalize the diagonal orbitals of the Anderson
model to the interacting case [26–33]. The expansion of H
in terms of the l-bit operators contains higher-order terms as
compared to the Anderson case:

HD =
∑

α

ε̃α f †
α fα +

∑
αβ

K̃ (2)
αβ f †

α fα f †
β fβ + · · · ,

V = a†
T ⊗

⎛
⎝∑

α

J̃ (1)
α fα +

∑
αβγ

J̃ (3)
αβγ f †

α fβ fγ + · · ·
⎞
⎠ + H.c.

(18)

The higher-order terms in HD encode diagonal interaction en-
ergies between the l-bits. These interaction energies decay ex-
ponentially with the distance between the l-bits [11,31,33,64].
We ignore these diagonal interaction energies henceforth. The
higher-order terms in V allow several l-bits to reconfigure si-
multaneously through their interaction with the thermal seed.
The typical strength of interaction terms that reconfigure the
αth l-bit (i.e., terms J̃ (n)

α in V which do not commute with
the l-bit occupation number f †

α fα) decays exponentially in the
order n; however as there are exponentially many-in-n such
terms they cannot be discarded by any naive argument. From
the Heisenberg equation of motion we see that the energy
scale associated with l-bit flip processes is given by∣∣∣∣df †

α fα
dt

∣∣∣∣ = |[H, f †
α fα]| = |[V, f †

α fα]|. (19)

Thus the effective coupling J̃α between the αth l-bit is given
by the norm of the commutator:

J̃α := |[V, f †
α fα]| ∼ Je−α/ξα . (20)

The coupling J̃α determines the interaction energy scale and
may be understood as a resummation of the terms J̃ (n)

α . Thus,
the qualitative features of the Hamiltonian in the l-bit basis
in the interacting case is the same as in Fig. 2(b) with ξα in

Eq. (20) defining the effective localization length of the αth
l-bit.

We note that the effective localization length defined
through Eq. (20) may be longer than that controlling the decay
of any single bare coupling, e.g., J̃ (1)

α in Eq. (18), as multiple
interaction terms contribute to the decay. This discrepancy has
been observed numerically in Ref. [33].

B. The localization length distribution in Anderson chains

The envelope of each single-particle orbital decays expo-
nentially, ∣∣φα

n

∣∣ ∼ e−|n−α|/ξα , (21)

with a characteristic localization length ξα . This localization
length varies as a smooth function of the single-particle en-
ergy as L → ∞,

ξα = ξ (ε̃α ). (22)

Thus, the distribution of localization lengths

p(ξ ′) := 1

L

∑
α

δ(ξ ′ − ξα ) (23)

converges to a simple analytic form set by the single-particle
density of states g(ε):

lim
L→∞

p(ξ ′) =
∫

dε g(ε) δ(ξ ′ − ξ (ε)). (24)

The distribution p(ξ ) is easily interpreted: consider the or-
bitals 1 < α < l which are centered within a region of length
l � 1 of the Anderson chain. The expected number of orbitals
in this region with localization lengths ξα ∈ [ξ, ξ + dξ ] is
given by l p(ξ )dξ .

III. STARTING AN AVALANCHE: ABSORBING THE FIRST
FEW L-BITS

In Ref. [44], DRH studied the effects of coupling a fi-
nite thermal seed to a localized chain. They assumed that
the avalanche could start, that is, that the seed hybridized
strongly with nearby l-bits and forms a small thermal bubble.
They then derived conditions that the thermal bubble grows
asymptotically, so that l-bits that are very distant from the
seed eventually hybridize with the thermal bubble and reach
thermal equilibrium. If the avalanche does not start, then the
asymptotic thermalization instability is immaterial.

Section V discusses several length scales that control the
probability to start an avalanche and their requisite hierarchy
for a typical sample to avalanche. In this section, we have
a more modest aim: we identify parameter regimes of H
in which the bare thermal seed strongly hybridizes with a
nonzero number of nearby l-bits lS due to the direct interac-
tions in V :

lS > 0. (25)

The above condition is necessary but not sufficient for starting
an avalanche with high probability. We return to the sufficient
conditions in Sec. VI.
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A. Bandwidth condition: There exist resonances between the
thermal seed and nearby l-bits

The first l-bit can flip only if it can exchange an amount of
energy ε̃1 with the thermal seed. For small J , we thus require
the seed bandwidth 4WT to be larger than ε̃1. Using the bound
on single-particle energies in Eq. (14), we obtain the condition
in Eq. (28) for the Anderson model.

When � �= 0, and indeed in general MBL models, there
is no known general bound on |ε̃α|. Nevertheless, at strong
disorder strengths, we expect that, up to small corrections,
HD ≈ ∑

n ε̃α f †
α fα and ε̃α ≈ hα . The first relationship implies

that the variance of the l-bit energies is set by the variance of
HD:

[ε̃2
α] ≈ 4

tr
(
H2

D

) − (tr(HD))2

L2L
. (26)

Using a property of the box distribution that |hα| �
√

3[h2
α],

we obtain the following relation at strong disorder:

|ε̃α| ≈ |hα| �
√

3
[
h2

α

] ≈
√

3
[
ε̃2
α

]
�

√
3
2 J2 + 3

4�2J2 + h2. (27)

In summary, enforcing the condition that 4WT > |ε̃1| gives

4WT >

{
J + h (Anderson),√

3
2 J2 + 3

4�2J2 + h2 (Heisenberg).
(28)

In numerical experiments, this bound must be satisfied by a
reasonable margin as the density of states of the thermal seed
vanishes at the edge of its spectrum.

B. Coupling strength condition: The thermal seed is sufficiently
strongly coupled to nearby l-bits

For V = 0 the eigenstates of H are product states of the
thermal seed and a configuration of the l-bits in the disordered
chain |ψi〉 = |wa〉 ⊗ |cb〉. Here i = (a, b) where a = 1 . . . d
enumerates the states of the bath and b = 1 . . . 2L enumerates
the states of the chain. Consider the fate of the product eigen-
state |ψi〉 = |wa〉 ⊗ |cb〉 when interactions are reintroduced.
Let the closest l-bit with index α = 1 be unoccupied, i.e.,
f1|cb〉 = 0. At small V , the l-bit hybridizes with the seed if
the typical matrix element Vi j between |ψi〉 and a second
eigenstate |ψ j〉 = |wc〉 ⊗ |cd〉 exceeds the typical energy level
spacing of the seed δi j ∼ ρ−1

0 . Here δi j = |Ei − Ej | is the
separation of the energies of the state |ψi〉, |ψ j〉. The typical
matrix element is given by

Vi j = 〈ψi|V |ψ j〉 = 1
2 Jφα

1 · 〈wa|a†
T|wc〉 · 〈cb| f1|cd〉

∼ J̃α · 1√
d0

· 1. (29)

Hybridization requires that typically Vi j � ρ−1
0 . In the

Heisenberg case the interaction in the l-bit basis is more
highly structured. However the structure of matrix elements
remains simple; specifically we take the matrix elements of
local operators to follow the eigenstate thermalization hy-
pothesis (ETH) [65–67]. From the ETH it follows that the
distribution of matrix elements is characterized by a single
scale, here J̃α , and Eq. (29) follows.

How much larger should Vi j be as compared to ρ−1
0 in

order for the l-bit to be strongly hybridized? This is tricky to
quantify as the distribution of |Vi j/δi j | is broad even within
a sample. In Appendix A, we use a second probe l-bit to
define a statistic [v] (detailed in Sec. VII) which depends
on the |Vi j/δi j |. Using [v] we determine that a thermal seed
hybridizes strongly with a single l-bit if

J̃αρ0√
d0

> cS ≈ 0.31. (30)

When Eq. (30) is satisfied by the first lS l-bits, the seed
strongly hybridizes with these l-bits and the thermal bubble
grows by lS l-bits.

Similarly, the typical configurations of the thermal seed
and l-bit do not hybridize significantly if

J̃αρ0√
d0

< cW ≈ 0.01. (31)

When Eq. (31) is satisfied by the first l-bit, the seed and l-
bit remain very weakly coupled. Consequently, the thermal
bubble does not grow larger than the seed and the avalanche
does not start.

We observe that cW and cS are approximately two orders of
magnitude apart. At values of J̃αρ0/

√
d0 between cW and cS,

the l-bit is partially absorbed into the thermal bubble and there
is significant eigenstate-to-eigenstate variation in the degree
of absorption. As the numerically accessible chain lengths are
short, most l-bits are in this intermediate coupling regime in
our numerical study in Sec. VII.

IV. THEORY OF THE RUNAWAY INSTABILITY

We first review the avalanche theory of DRH [44] and
derive the condition for the runaway thermalization instability
for a unique l-bit localization length. We then extend the
avalanche theory to the case of finite localization length distri-
butions and apply it to the Anderson-seed model. We identify
the critical disorder strength hc below which the instability is
present, and discuss the properties of the partially avalanched
regime.

In order to differentiate between complete and partial
avalanches, we define f̄ ∈ [0, 1] to be the fraction of l-bits
that are a part of the thermal bubble when the avalanche
ceases. In infinitely long chains, the fraction f̄ depends on the
disorder strength h and the number of l-bits that are directly
thermalized by the seed ldir.

In this section, we assume that the avalanches start with
probability 1. That is, we study the functional dependence of
f̄ on h in the following limit:

f̄∞(h) := lim
ldir→∞

f̄ (h, ldir ). (32)

We emphasize the order of limits L → ∞ first so that ldir � L
always. DRH predict that f̄∞(h) is a step function of unit
height. Our extended avalanche theory predicts a nontrivial
function f̄∞(h) for h < hc in the Anderson-seed model (hori-
zontal axis of Fig. 1), with an intermediate critical value

f̄c := lim
h→h−

c

f̄∞(h). (33)
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A. Review of DRH avalanche theory

The setup in Ref. [44] is identical to that in Fig. 2(b) with
all ξα equal. Suppose the starting seed has strongly hybridized
with the first (α − 1) l-bits with

α � ldir. (34)

The thermal bubble then has Hilbert space dimension d =
d02α−1 and density of states ρ = ρ02α−1. That is, the thermal
bubble has an exponentially larger density of states as com-
pared to the bare seed. From Eq. (30), the l-bit with index
α strongly hybridizes with this thermal bubble if its direct
coupling is large enough:

J̃αρ√
d

= J̃αρ0

√
2α−1

d0
> cS. (35)

Using Eq. (17), we find

Jρ0√
2d0

e
−α

(
1
ξα

− ln 2
2

)
> cS. (36)

The above condition is satisfied by a greater and greater
margin with increasing α provided that the localization length
of each l-bit is above the threshold value

ξα > ξc = 2

ln 2
. (37)

DRH thus predict complete thermalization à la the ETH with
f̄∞ = 1 when Eq. (37) holds, and localization with f̄∞ = 0
otherwise. Numerical studies on toy models in the l-bit basis
confirm this prediction [49,50].

Spectral function of the seed operator

The DRH avalanche theory assumes that the ETH holds in
the thermal bubble at every stage of the avalanche process.
Precisely, the theory requires that after α l-bits have been
absorbed into the thermal bubble, the matrix elements of the
seed operator are given by the ansatz

〈ba|a†
T|bb〉 =

√
FB(ω)

ρ
ηab ∼ 1√

d02α−1
, (38)

where |ba〉, |bb〉 are eigenstates of the thermal bubble with
respective energies ba and bb corresponding to infinite temper-
ature, ω = ba − bb, ρ = ρ02α−1 is the relevant bubble density
of states, FB(·) is the spectral function of a†

T in the thermal
bubble, and ηab are random numbers with zero mean and unit
variance. One might be concerned that this ansatz is inaccurate
because the larger the α, the (exponentially) longer it takes
for the αth l-bit to be absorbed into the thermal bubble, and
thus the smaller the scale of structure in the spectral function
FB(ω). Specifically, the αth l-bit decays at a rate set by
Fermi’s golden rule,

�α =
(

J̃α√
d

)2

ρ ∼ J2ρ0e−2α/ξα , (39)

implying that the peaks of the spectral function have width �α .
The ETH ansatz in Eq. (38) is valid in a small energy window

if this scale far exceeds level spacing, i.e., �αρ � 1. As

�αρ =
(

J̃αρ√
d

)2

∼ J2ρ2
0 e2α(1/ξc−1/ξα ) (40)

exponentially grows with α when ξα > ξc, Eq. (38) holds
with increasing accuracy as the size of the thermal bubble
increases in the avalanching regime. References [50] and [44]
also discuss this “back-action” of the absorbed l-bits on the
spectral function. As both studies conclude that more detailed
treatments only provide subleading corrections to the DRH
theory, we do not discuss the issue of back-action further.

B. Partial avalanches in the Anderson model

When the distribution p(ξ ) of l-bit localization lengths has
finite width (as in the Anderson chain), only a fraction of the
l-bits may have long enough localization lengths by Eq. (37)
to be absorbed into the thermal bubble. The avalanche ceases
when the l-bits that are not a part of the thermal bubble are too
weakly coupled to the bubble to be absorbed. The stopping
condition is that the inequality

J̃αρ0

√
2 f̄∞L

d0
< cW (41)

is satisfied by a fraction (1 − f̄∞) of the total number of the
l-bits.

We derive a self-consistency equation for f̄∞ below. The
fraction f̄∞ is determined by the properties of the disorder
distribution {hn} alone and is generally between 0 and 1 below
a critical value of the disorder strength.

A few notational points before we proceed. Let ξmin (ξmax)
denote the minimum (maximum) localization length (i.e.,
p(ξ ) > 0 only if ξ ∈ [ξmin, ξmax]). The mean localization
length is given by

[ξ ] =
∫ ∞

0
ξ p(ξ )dξ = lim

L→∞
1

L

L∑
α=1

ξα, (42)

where p(ξ ) is the ensemble distribution of localization
lengths.

Consider a small segment α/L ∈ [s, s + ds] of the dis-
ordered chain for s ∈ [0, 1] for α � ldir. Let f∞(s) be the
fraction of l-bits absorbed by the thermal bubble in this
segment. This “local” fraction is related to the global fraction
by integrating over s:

f̄∞ =
∫ 1

0
f∞(s)ds. (43)

In the limit of large L, it follows from Eqs. (17) and (41) that
the l-bit with index α does not hybridize with the bubble if

ξα <
sξc

f̄∞
. (44)

The local fraction of l-bits which satisfy the above condition
is thus

1 − f∞(s) =
∫ sξc/ f̄∞

0
dξ ′ p(ξ ′). (45)
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Integrating over s, we obtain an equation which determines
f̄∞ implicitly:

f̄∞ = 1 −
∫ 1

0
ds

∫ sξc/ f̄∞

0
dξ ′ p(ξ ′)

= 1 −
∫ ξc/ f̄∞

0
dξ ′ p(ξ ′)

(
1 − f̄∞ξ ′

ξc

)
. (46)

Solutions to Eq. (46) determine the fraction of l-bits absorbed
into the thermal bubble. These solutions define three distinct
regimes. We describe these regimes below, and delegate some
mathematical details to Appendix B.

(i) No avalanches for sufficiently localized chains. A trivial
solution to Eq. (46) is f̄∞ = 0. The thermal bubble then fails
to absorb a nonzero fraction of the l-bits in the chain. The
stability of the f̄∞ = 0 solution determines whether or not the
l-bits are asymptotically localized for arbitrarily large thermal
seeds. For [ξ ] < ξc, f̄∞ = 0 is the only solution and is stable:

f̄∞ = 0 for ξc > [ξ ] :=
∫ ∞

0
dξ ′ ξ ′ p(ξ ′). (47)

Thus, when [ξ ] < ξc, there is no avalanche instability. The
condition [ξ ] = ξc determines the avalanche threshold. Below
threshold h < hc ([ξ ] > ξc), f̄∞ = 0 remains a solution, but is
unstable.

(ii) Complete avalanches for sufficiently delocalized
chains. When the localization lengths ξα are all larger than
the threshold value ξc, all l-bits are absorbed into the thermal
bubble

f̄∞ = 1 for ξmin > ξc. (48)

This is the DRH result of Sec. IV A.
(iii) Partial avalanches for generic distributions. When

ξmin < ξc < [ξ ], there is a stable solution to Eq. (46) with a
nonzero f̄∞ satisfying f̄∞ � f̄c := ξc/ξmax:

f̄c � f̄∞ < 1 for ξmin < ξc < [ξ ]. (49)

As f̄∞ < 1, the resulting avalanche is only partial. At late
times, a noncontiguous thermal bubble comprising a fraction
f̄∞ of the l-bits coexists with the remaining localized l-bits.
This intermediate partially avalanched regime is generic: if
p(ξ ) has any finite width as [ξ ] is tuned through the critical
value ξc, then Eq. (49) will be satisfied.

Figure 3 shows the dependence of f̄∞ on the disorder
strength h for a model with the same p(ξ ) as the Anderson
model in Eq. (11). The p(ξ ) for the Anderson model with
box disorder was obtained numerically; see Appendix C.
Numerically, the disorder strength and thermal bubble fraction
at threshold take the values

hc ≈ 1.37 and f̄c ≈ 0.67. (50)

The inset of Fig. 3 schematically depicts the spatial structure
of the thermal bubble below threshold.

A number of comments are in order. First, Fig. 3 shows
the unique stable solution to Eq. (46). Although f̄∞ = 0 is a
solution at any h, its instability below threshold indicates that
if an avalanche starts, it forms a thermal bubble with ∼ f̄∞L �
f̄cL l-bits. Second, the f̄∞ vs h curve is discontinuous at
threshold if and only if the disorder distribution has bounded
support. That is, f̄c is nonzero if and only if ξmax < ∞, as

FIG. 3. Thermal fraction of l-bits in the Anderson-seed model.
The fraction f̄∞ of l-bits absorbed into a thermal bubble as a
function of disorder strength h (solid green line). Insets schematically
depict the resulting system. The leftmost red rectangle represents
the thermal seed, while the circles represent the l-bits ordered by
their distance from the seed. The red l-bits participate in the thermal
bubble; the red lines remind the reader that thermalization is medi-
ated by interactions with the seed. For h > hc, the thermal seed only
strongly hybridizes with finitely many l-bits in its vicinity. For h < hc

however, a thermalization avalanche forms a noncontiguous thermal
bubble of ∼ f̄∞L l-bits.

is the case for the Anderson model with box disorder. Third,
the fraction of l-bits absorbed into the thermal bubble within a
segment α/L ∈ [s, s + ds] [given by f∞(s)] can exhibit strong
dependence on the distance from the seed. For example,
Eq. (45) implies that f∞(s = 0) = 1 and f∞(s = 1) � 1 for
h < hc. Most dramatically, f∞(s = 1) → 0 as h → h−

c ; i.e.,
the l-bits at the end of the chain are always localized at
threshold.

The partially avalanched phase is thus an example of
a delocalized nonergodic phase. A number of spectral and
dynamical properties immediately follow from the simple
picture of a thermal bubble with ∼ f̄∞L l-bits coexisting with
localized l-bits. These are summarized in Table I. We return
to these spectral properties in Sec. VII, when we numerically
test the predictions of the extended avalanche theory for an
Anderson chain coupled to a thermal seed.

C. Avalanches in the random-Heisenberg model

The key difference between an MBL system and an An-
derson chain coupled to a single thermal seed is that, in the
MBL chain, for [ξ ] > ξc, the avalanche instability leads to
complete thermalization irrespective of the distribution of l-bit
localization lengths. This is because an MBL system has a
finite density of rare low-disorder regions of any given size,
and thus a finite density of thermal seeds. As the coupling
strength between any l-bit and the closest seed participating
in the bubble J̃α is finite as L → ∞, the left-hand side of the
inequality

J̃αρ0

√
2 f̄∞L

d0
� cS (51)
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TABLE I. Properties of avalanched systems. Partially avalanched systems are delocalized, but nonergodic, and do not satisfy the predictions
of the ETH. The table summarizes the behavior of various spectral properties in the localized, partially avalanched, and completely avalanched
regimes. The symbol sth denotes the thermal entropy density at the appropriate energy density from which eigenstates are drawn.

No Avalanche Partial Avalanche Complete Avalanche
(Many-Body
Localized) (Nonergodic, Delocalized) (Ergodic, Delocalized)

Nearest-neighbor energy level repulsion No No Yes
Scaling of eigenstate entanglement entropy Area law Subthermal volume law with

coefficient < sth

Volume law with coefficient sth

Eigenstate entanglement entropy of individual p-bits [ξ ]-dependent
subthermal value

Bimodally distributed
between maximal and

subthermal values

Maximal

Spectrum of local operators Discrete Discrete and continuous
components

Continuous

Local memory as t → ∞ Yes On a fraction of the sites No

is exponentially larger than the right-hand side and every l-bit
is absorbed into the thermal bubble.

Nevertheless, it may be that the distribution of localization
lengths plays a role in analytical predictions about the MBL
transition based on avalanches [48]. The numerical study
of Ref. [33] suggests that deep in the MBL phase, the l-
bits of the random-Heisenberg model are characterized by a
unique localization length. Ascertaining whether the localiza-
tion length is necessarily unique at intermediate strengths near
the putative MBL transition is an interesting topic for future
study.

V. AVALANCHES AT FINITE ldir

The number of l-bits that are directly thermalized by the
bare thermal seed, ldir, controls the probability of an avalanche
starting below threshold. If ldir is too small, then only rare
samples will avalanche and f̄ ≈ 0 irrespective of the value of
[ξ ] (see Fig. 1).

In this section, we derive the minimum value of ldir

such that typical samples avalanche below threshold and
f̄ (h, ldir ) ≈ f̄∞(h) for h < hc. We find that the minimum value
is set by the maximum of two length scales, l� and lFS, so that

ldir > max(l�, lFS): typical samples avalanche;

ldir < max(l�, lFS): typically finite thermal bubble.

We show that l� and lFS diverge with different exponents as
h → hc. Consequently, the probability to start an avalanche
with fixed ldir rapidly (exponentially) goes to zero as threshold
is approached h → h−

c , and f̄ (h, ldir ) rapidly approaches zero
as h → h−

c [see Fig. 5(b)]. In comparison, f̄∞(h) jumps at
h = hc (see Fig. 3). The different length scales ldir, lFS and
l∗ are illustrated in Fig. 4, which shows a sample in which the
thermal bubble fails before growing beyond l∗. The resulting
phase diagram is summarised in Fig. 1.

We note that multiple diverging length scales near a dy-
namical transition in a disordered system is reminiscent of
infinite-randomness physics. We return to this point in the
discussion section.

A. ldir: Locus of direct thermalization due to the seed

L-bits with index α � ldir are sufficiently strongly coupled
to the seed so as to directly hybridize with it. Thus, ldir sets
the scale to which the thermal bubble is guaranteed to grow.
As the weak and strong coupling thresholds, cW and cS, are
separated by over an order of magnitude, it is not possible
to define this length precisely. However, by the arguments in
Sec. IV, the length is bounded by the relation

cW � J̃ldir ρ0√
d0

� cS. (52)

FIG. 4. Schematic avalanche. The thermal seed (red rectangle) and the red l-bits form a noncontiguous thermal bubble. The blue l-bits
have short localization length and are weakly coupled to the thermal bubble. Direct coupling to the seed adds ldir l-bits to the thermal bubble
(red shaded area). The boundary to the direct coupling region is spread over ≈9.9 sites. Below the Harris-Luck scale lFS, fluctuations in the
window averaged disorder make it impossible to determine whether the system is above or below the avalanche threshold. The thermal bubble
has to grow to a size comparable to l� to cause runaway thermalization. In the figure, ldir < max(l�, lFS) and the thermal bubble is typically of
finite extent.
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Using |φα
1 | ∼ e−α/ξα and considering a typical sample (i.e.,

taking ξα ≈ [ξ ] in the vicinity of the seed) we obtain

lS � ldir � lW = lS + [ξ ] ln
cS

cW
, (53)

where the length scale lS sets the range of l-bits strongly
coupled to the seed,

lS/W := [ξ ] ln

(
Jρ0

2cS/W
√

d0

)
. (54)

As the avalanche threshold is approached [ξ ] → ξc the length
scale ldir remains finite and specified by lS � ldir � lS + 9.9.

B. l�: A length scale controlling runaway thermalization

Define pstop(l ) to be the probability that a thermal bubble
with ∼ f̄∞l l-bits is stable to the inclusion of more l-bits, i.e.,
that the thermal bubble “stops” at length l . For h < hc, this
probability is exponentially decaying. We define this decay
length to be l�

pstop(l ) ∼ e−l/l� . (55)

A thermal bubble of length l > l� has a finite probability of
absorbing O(L) l-bits. Below, we derive an expression for l�,
and discuss the implications of its divergence near threshold.

Consider a partially avalanched Anderson chain below
threshold (h < hc) of length l � 1. By Eq. (46), the thermal
bubble has ∼ f̄∞l l-bits. Suppose we increase the length of
chain to some L � l . If the (L − l ) l-bits in the extended part
of the chain are too weakly coupled to the bubble, then the
thermal bubble’s size remains ∼ f̄∞l . The condition for weak
coupling is

J̃αρ0

√
2 f̄∞l

d0
< cW ∀α > l. (56)

By taking J̃α = 1
2 Jφα

1 ≈ 1
2 Je−α/ξα and rearranging, we find

that the thermal bubble’s size is self-consistently ∼ f̄∞l if

ξα <
α

f̄∞l/ξc + lW/[ξ ]
∀α > l. (57)

Here lW [Eq. (54)] sets the number of l-bits with strong or
intermediate coupling to the seed.

The probability that Eq. (57) is satisfied for all α > l is
given by the product of the probabilities that each l-bit satisfies
Eq. (57) [68]. Thus, the stopping probability for a thermal
bubble with ∼ f̄∞l l-bits is

pstop(l ) =
L∏

α=l+1

∫ α/( f̄∞l/ξc+lW/[ξ ])

0
dξ ′ p(ξ ′). (58)

The number of terms in the product which are less than unity
[i.e., those with α < ξmax( f̄∞l/ξc + lW/[ξ ])] scales with l ,
and hence the probability that the thermal bubble stops at
length l is exponentially small for l > l� [Eq. (55)].

In Appendix B 1, we show that l� diverges as the avalanche
threshold is approached from the avalanching phase:

l� ∼ ξc

f̄c([ξ ] − ξc)
∝ |h − hc|−1. (59)

(a)

(b)

FIG. 5. Length scales near the avalanche threshold. The upper
plot shows the instability scale l� (green), and the Harris-Luck scale
lFS (yellow) diverging as δh → 0, while the length of the chain L
(blue) and the locus of direct thermalization ldir (red) remain finite.
The lower plot depicts f̄ as a function of δh for fixed ldir in the
thermodynamic (magenta) and finite chain (cyan). The mean thermo-
dynamic fraction f̄ deviates from f̄c when l� becomes comparable to
ldir and approaches zero as δh → 0−. At finite values of L (cyan), f̄L

saturates to an O(L−1) value when l� > L or δh ∼ L−1. This O(L−1)
value decreases with increasing δh. At larger L however, the blue
dashed line is to the right of the yellow dashed line, and f̄L saturates
to an O(L−1) value when lFS > L.

Above, ∼ indicates asymptotic equality. The proportionality
to |h − hc|−1 follows as [ξ ] is a continuous function of h with
finite gradient at the avalanche threshold. The diverging length
scale l� is shown in green in Fig. 5(a).

For h < hc, the chain typically avalanches if l� < ldir. The
resulting thermal bubble has ∼ f̄∞L l-bits and is described
by the partial avalanche theory of Sec. IV B. This regime is
depicted to the left of the dashed red line in Fig. 5(b).

For h < hc and l� > ldir, the thermal seed typically stops
after absorbing O(ldir ) l-bits. This regime occurs between the
red and blue dashed lines in Fig. 5(b). As runaway thermaliza-
tion occurs in atypical samples where the thermal seed absorbs
of order l� l-bits, the mean fraction of l-bits in the thermal
bubble satisfies the following inequality:

0 � f̄ (h, ldir ) < f̄∞(h), l� � ldir. (60)

As h → h−
c , stopping probability in Eq. (58) becomes nonde-

caying with l and consequently f̄ approaches zero [magenta
line in Fig. 5(b)].

Let us turn to the effects of a finite chain length L. At
finite L, there is a regime near threshold where l� > L > ldir.
In this regime, the stopping probability pstop is effectively
constant over the length of the chain. The thermal bubble
then typically grows to a size of order 1/| ln pstop| before
stopping. Consequently, the fraction of the l-bits in the chain
that typically participate in the thermal bubble decreases with
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L. Using the relationship between l� and disorder strength
near threshold [Eq. (59)],

f̄ (hc, ldir ) = O(L−1), |h − hc| � L−1. (61)

See the cyan curve in Fig. 5(b).
In this argument we have treated the localization lengths

of orbitals as iid drawn from the marginal distribution p(ξ ).
In reality there are correlations: nearby levels repel in energy,
and as the localization length is a function of the orbital energy
only, there are corresponding correlations in the localization
lengths of nearby levels. However these correlations decay
exponentially on a characteristic length set by the localization
lengths of the orbitals in question; as length scale is asymp-
totically smaller than l� as threshold is approached, the short
range correlations are irrelevant to the argument presented
here.

Thus far, we have ignored fluctuations of the disorder
strength on the scale of the thermal bubble; i.e., we have
implicitly assumed that l, l� � lFS. This assumption is mani-
fest in the appearance of the global mean localization length
[ξ ] in the definition of l�. Sufficiently close to threshold, the
windowed average of the disorder shows significant spatial
fluctuations, and the assumption that l, l� � lFS is violated.
We derive lFS next.

C. lFS: The Harris-Luck scale

The Harris-Luck scale [54–57] lFS sets the minimum size
of the window required to accurately estimate the average
disorder strength in the chain. As the average disorder strength
controls runaway thermalization (see Fig. 3), quantities such
as f̄ which can differentiate between the avalanched and
localized phases cannot be accurately determined on length
scales much smaller than lFS.

A precise definition of lFS is as follows. Consider the
localization length averaged over the l-bits within a spatial
window of length l:

ξ̄l = 1

l

l∑
α=1

ξα. (62)

The windowed average ξ̄l varies from one sample to the other
(or equivalently, with the position of the window within an
infinite sample). The deviation from the ensemble mean is set
by the central limit theorem:

|ξ̄l − [ξ ]| ∼
√

[(ξ̄l − [ξ ])2] ∼ σ (ξ )√
l

, (63)

where σ (ξ ) = [ξ 2] − [ξ ]2 and [ξ̄l ] = [ξ ].
If the deviation of the windowed average from the en-

semble mean is greater than the difference between [ξ ] and
ξc, no window averaged “order parameter” can consistently
determine whether the chain is above or below threshold. lFS

is defined as the threshold window size at which the deviation
is comparable to |[ξ ] − ξc|:

|ξ̄lFS − [ξ ]| = |[ξ ] − ξc| (64)

⇒ lFS = σ 2(ξ )

|[ξ ] − ξc|2 ∼ |h − hc|−2. (65)

Close to the avalanche threshold, lFS sets the minimum size
of a thermal bubble that can cause runaway thermalization.
This follows from the corrected version of Eq. (58) with [ξ ]
replaced by ξ̄al for l < lFS. Asymptotically, we then find

pstop(l ) ∼ exp

(
−l

f̄c(ξ̄(al ) − ξc)

ξc

)
, (66)

where a is an O(1) number. By the central limit theorem

ξ̄(al ) = [ξ ] + ηlσ (ξ )/
√

al, (67)

where ηl is a standard normal random variable [ηl ] = 0,
[η2

l ] = 1. Substituting (67) into (66) we obtain

pstop(l ) = exp

(
− l

l�
− ηl

f̄cσ (ξ )

ξc

√
l

a

)
. (68)

When the second term in the exponent is comparable to the
first term, the two terms may cancel and produce significant
stopping probability. Such cessation of the avalanche due to
such local fluctuations in the disorder cannot happen once the
first term dominates:

l � lFS = σ 2(ξ )

a([ξ ] − ξc)2
∼ |h − hc|−2. (69)

Close to threshold, when l� � l � lFS, the growing ther-
mal bubble will absorb typical regions. However, it will also
encounter rare regions where the Anderson chain appears
locally to be more localized. Such rare regions can stop the
growth of the bubble, and hence stop the avalanche. This mode
of failure due to rare regions becomes exponentially unlikely
once the thermal bubble grows to a length scale l > lFS. As
lFS diverges near threshold, the probability of an avalanche
starting goes to zero (magenta curve in Fig. 5), and the thermal
bubble size is typically ldir.

Finally, we emphasize that lFS controls finite-size scaling
near the avalanche threshold for large enough L [54–57].
Figure 5 depicts a preasymptotic regime in which the finite-
size corrections are set by l�. We depict this preasymptotic
regime as it is likely that numerically accessible chains are in
this regime.

VI. OBSERVING THE AVALANCHE INSTABILITY

The requisite hierarchy of length scales to conclusively
observe the avalanche instability in typical samples below
the avalanche threshold is l�, lFS � ldir � L. In this section,
we identify parameter regimes of the Anderson-seed chain
in Fig. 2 in which this hierarchy holds to test our extended
avalanche theory. Numerically however, the chain lengths are
so short that ldir is comparable to L.

These conditions supplement those of Sec. III which de-
rived conditions on the thermal seed so that the first lS l-bit
strongly hybridizes with the seed. That is, Sec. III asked that
ldir > lS > 0.

A. L > ldir condition: Farthest l-bits are not thermalized by
direct processes

To numerically determine whether l-bits are thermalized
by avalanches or by direct coupling with the seed requires
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sufficiently long Anderson chains. That is, L should exceed
ldir. Using the inequality derived in Sec. V A,

lS < ldir < lS + [ξ ] ln
cS

cW
, (70)

we find

L > lS + [ξ ] ln
cS

cW
> 1 + ξc ln

cS

cW
= 10.9 . . . . (71)

Above, we assumed that the chain is in the avalanching regime
([ξ ] > ξc), and that lS � 1 (see Sec. III B).

B. Partial avalanche condition: Dominant fraction of l-bits not
at intermediate couplings

Localized l-bits coexist with a macroscopically large ther-
mal bubble in the partially avalanched regime. The co-
existence results in a bi-modal distribution of single orbital
entanglement entropies. The single orbital entanglement en-
tropies are obtained by tracing out all but one l-bit in each
eigenstate. The bimodality quantifies the nonergodic nature
of the partially avalanched phase (see Table I).

At finite L, the bimodal signature can be washed out by
the l-bits that have intermediate coupling to the bubble and
hence intermediate orbital entropy values. The condition for
intermediate coupling is

cW

c0

√
2 f̄∞L

< φα
1 <

cS

c0

√
2 f̄∞L

, (72)

where c0 = 1
2 Jρ0/

√
d0. This condition follows from the dis-

cussion around Eq. (41).
As φα

1 decays exponentially with α, the number of inter-
mediately coupled l-bits is O(1), as compared to the O(L)
number of localized l-bits. Nevertheless, at finite L, the former
can exceed the latter. Below, we numerically compute the L at
which the two are equal in the Anderson chain.

Figure 6(a) shows the disorder averaged distributions of
x = log2(c0|φα

1 |
√

2 f̄∞L ) for h = hc at different L. The orbital
index is shown in the legend. The violet region marks the
intermediate coupling regime in Eq. (72).

Orbitals for which x falls to the right of the violet region
in the thermal region (x > ln cS) are strongly coupled to the
thermal bubble and avalanche theory predicts that they will
be absorbed into the thermal bubble. Those to the left in the
localized region (x < ln cW) are only perturbatively corrected
by the thermal bubble. As the distributions of x widen and
decrease in height with increasing L, the fraction of l-bits in
the intermediate regime decrease with increasing L.

The disorder averaged total fraction of l-bits in the thermal,
intermediate, and localized regions are plotted in Fig. 6(b).
As expected, the fraction of intermediately coupled l-bits falls
as O(L−1). However, the fraction of intermediate l-bits falls
below the fraction of localized l-bits only at L ≈ 26. Thus, to
see clear signatures of the predicted bimodality of single-site
eigenstate entanglement entropy requires

L � 26. (73)

C. Other conditions

As ldir could be as large as lS + 11 sites, the numerics
described below with L ≈ 10 is likely in the regime ldir � L.

FIG. 6. Finite-size effect due to intermediate couplings between
the l-bits and the thermal bubble. Panel (a) shows the distributions
of the quantity x = log2(c0|φα

1 |
√

2 f̄ L ) for |φα
1 | obtained from exact

diagonalization of an open Anderson chain. Data are shown for
different α (legend inset) and different chain lengths. L-bits with
intermediate coupling to the thermal bubble fall in the violet region.
(b) The total fraction of l-bits lying in the intermediate region (violet
line) scales as L−1. This fraction is less than the total localized
fraction (blue line) at L ≈ 26. Parameters: h = hc, f̄ = f̄c from
Eq. (50).

We therefore do not identify further parameter regimes based
on the hierarchy between ldir and l� or lFS.
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VII. NUMERICAL EVIDENCE FOR
PARTIAL AVALANCHES

We present numerical tests which support the partial
avalanche theory in the Anderson-seed model of Eq. (8).
Specifically, we find that below a threshold disorder strength
(i) l-bits with exponentially small in L bare couplings to
the seed have thermal eigenstate expectation values, (ii) the
matrix-element-to-level-spacing ratio of an operator on the
thermal seed is exponentially large in L, and (iii) the nearest-
neighbor level spacing ratio r̄ flows toward the Poisson value
r̄ = 2 ln 2 − 1 with increasing L in all cases. These results are
explained by the presence of a thermal bubble with ∼ f̄ L < L
l-bits.

We introduce a statistical indicator (denoted by v) in
Sec. VII C which directly probes the effective size of the
thermal bubble, and thus detects the nonergodic nature of
the delocalization in the avalanched regime. It is also insen-
sitive to the spatial inhomogeneity of the thermal bubble.
In contrast, standard spectral signatures such as the half-cut
entanglement entropy (at late times or in eigenstates) and the
energy level spacing that detect violations of the ETH are
difficult to interpret conclusively. The behavior of standard
spectral signatures is discussed in Table I.

Finally, we present numerical tests of the Heisenberg-seed
model in Sec. VII D. As discussed in Sec. IV C, interacting
fermionic chains have a finite density of low-disorder regions,
and thus a finite density of thermal seeds. We therefore expect
that (i) MBL is stable if and only if [ξ ] < ξc, (ii) the avalanche
instability when [ξ ] > ξc leads to complete thermalization and
an ETH phase, and (iii) the L → ∞ dynamical phase diagram
is unaffected by the inclusion of a single finite thermal seed.
Nevertheless, our numerical study in Sec. VII D has three
aims. The first is to demonstrate that the v statistic introduced
in Sec. VII C detects the MBL-thermal transition as a function
of disorder strength. The second is to show that thermalization
is complete in the delocalized phase by measuring the effec-
tive size of the thermal bubble to be ∼L. The third is to test
whether the critical disorder strength shifts to larger values
due to the inclusion of a finite thermal seed in the Heisenberg
model at numerically accessible system sizes. We however
find no evidence of such a shift within the accuracy of our
numerics.

A. Parameter regime

We set J = 1, � = 0, d0 = 16, and WT = 0.8, and present
data on either side of the avalanche threshold hc ≈ 1.37.
These parameters satisfy the conditions laid out in Secs. III
and VI.

Precisely, we satisfy the bandwidth condition Eq. (28),

4WT = 3.2 > J + h = 2.37, (74)

and the coupling strength condition Eq. (30),

J̃1ρ0√
d

≈ 0.45 > cS = 0.31. (75)

Above, we have used J1 = 1
2 Jψ1

1 , ψ1
1 ≈ 1/

√
ξ , ξ ≈ ξc,

and the GOE density of states at maximum entropy ρ0 =
d0/(πWT). We have numerically checked that the first l-bit is

strongly hybridized with the thermal seed at these parameter
values (data not shown).

We note the chain length condition, Eq. (71), is L > 10.9
for the observation of avalanches. Furthermore, we expect
significant bimodality in the distribution of eigenstate expec-
tation values only for L � 26 (see Sec. VI B). Consequently,
for numerically accessible L, we indeed see no evidence for
bimodality.

B. Thermalization of l-bits with exponentially weak coupling to
the thermal seed

Extended avalanche theory (Sec. IV B) predicts that the
thermal bubble has Hilbert space dimension d = d02 f̄∞L and
density of states ρ = ρ02 f̄∞L for h sufficiently smaller than
hc (so that the typical sample avalanches). Thus, an l-bit
hybridizes with the bubble if the coupling to the seed J̃α

exceeds a threshold which is exponentially small in L:

J̃αρ0

√
2 f̄∞L

d0
> cS. (76)

We test Eq. (76) using the von Neumann entropy of the
reduced density matrix obtained by tracing out all l-bits except
α in each eigenstate,

Sα,i = tr(ρ̂α,i ln ρ̂α,i ), (77)

where ρ̂α,i = trᾱ (|ψi〉〈ψi|) is the reduced density matrix of
the αth l-bit in an eigenstate |ψi〉 taken from the middle
third of the energy spectrum of the Anderson-seed chain. The
eigenstate averaged quantity S̄α is defined by averaging Sα,i

over eigenstates taken from the middle third of the spectrum.
Heuristically we expect

S̄α =
{

0 (localized l-bit),
ln 2 (thermal l-bit). (78)

With each value of S̄α , we also record the orbital overlap of the
l-bit onto the first site of the chain φα

1 . Our data thus consist of
a list of pairs (S̄α, φα

1 ) from all l-bits α and different samples.
As we seek to measure the average coupling strength

necessary to thermalize an l-bit, we further average S̄α over
a window of values of φα

1 :

[S(φ′)] = 1

N

∑
φα

1 ∈[φ′/r,φ′r]

S̄α, (79)

where the normalization factor N = ∑
φα

1 ∈[φ′/r,φ′r] 1. In the
plots, we use r = 1.5.

In Fig. 7, we plot [S(φα
1 )] as a function of φα

1 (solid lines).
The points (faded colors) are a random subsample of the
data prior to window averaging [Eq. (79)]. Data are shown
for chain lengths L = 3 . . . 10 (legend inset) for disorder
strengths h = 0.7, 1.3, 1.9 which are respectively well below,
close to, and well above the theoretically predicted avalanche
threshold hc = 1.37. The spread on the unaveraged data is
due to the sample-to-sample variation in the final size of the
thermal bubble. At weak disorder, the leftward drift in the
curve [S(φα

1 )] with increasing L indicates the exponentially
decreasing value of the direct coupling J̃α ∼ φα

1 necessary to
thermalize an l-bit. This qualitatively confirms the avalanche
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FIG. 7. L-bit entanglement entropy in eigenstates as a function
of the orbital matrix element. The eigenstate averaged l-bit entangle-
ment entropy S̄α is plotted as a function of |φα

1 | (points), the orbital
overlap which sets the coupling J̃α to the thermal seed. Each point
corresponds to a sample. The window average of S̄α is additionally
shown (solid lines). For h < hc (top panel), the leftward drift with
increasing L (legend) indicates that the matrix element required
to thermalize l-bits is exponentially decreasing with L. For h > hc

(bottom panel), this drift saturates at sufficiently large L. For h ≈ hc

(center panel), a small drift is visible.

prediction. This drift disappears at strong disorder where the
instability is not present, and thus the thermal bubble is not
growing with L.

To quantitatively study the drift with L identified in Fig. 7,
for each L, h we extract the threshold value φ∗ at which

[S(φ∗)] = 0.7 ln 2. (80)

For φα
1 � φ∗, the coupling is sufficiently small so that the l-bit

is not fully absorbed into the thermal bubble. Equations (76)
and (49) predict the following behavior for φ∗ as L → ∞:

φ∗ ∼
{

e− f̄∞L/ξc with f̄c � f̄∞ � 1 (avalanches),
constant (no instability).

(81)

The numerically extracted values of φ∗ are plotted in Fig. 8.
The figure confirms that φ∗ saturates at large h (h � hc =
1.37) and exponentially decreases with L at smaller values
of h (h � hc = 1.37). We note that the rate of exponential
decrease of φ∗ decreases with h for h < hc, and approaches f̄c

near h = hc (dotted line), as predicted by extended avalanche
theory. We also observe that the saturation value of φ∗ as L →
∞ increases with h above threshold. This is consistent with
a finite thermal bubble whose size decreases with increasing
disorder strength.

To confirm that the observed thermalization cannot be
explained by direct hybridization with the bare seed, we note

FIG. 8. The threshold coupling strength for l-bit thermalization
vs L. At small disorder, the avalanche is almost complete and the
threshold coupling strength decays as φ∗ ∼ 2−L/2 (dashed line). For
0 < h < hc = 1.37, we see that φ∗ ∼ 2−aL/2 with a continuously
decreasing from 1 (dashed line) to f̄c (dotted line). In contrast, for
h > hc, φ∗ saturates to a constant value as L → ∞.

that φ∗ = 0.016 for h = 0.7, L = 11. This value corresponds
to a bare matrix element of level spacing ratio

J̃αρ0√
d0

= Jφ∗ρ0

2
√

d0
= 0.011 � cS = 0.31, (82)

which is more than an order of magnitude below cS, the
ratio necessary to induce thermalization in the absence of the
thermal bubble, and approximately equal to cW = 0.01, where
the effect of the bare coupling is typically perturbative.

Near h = hc, it is unclear whether there is a runaway
thermalization instability in finite-size numerics. As discussed
in Sec. V, the stopping probability is significant for ldir <

max(l�, lFS), and the probability of starting an avalanche
rapidly goes to zero as h → h−

c . Moreover, the fraction of
l-bits absorbed into the thermal bubble will appear to be
nonzero in a crossover region around h = hc at finite L (see
Fig. 5). As the L range is limited, we do not attempt finite-size
scaling here, and leave a detailed numerical study of the
threshold to future work.

C. Exponential enhancement of the bath

Extracting φ∗ requires direct access to the l-bits in the
chain. The method in Sec. VII B thus cannot be easily applied
to interacting chains. In this section, we introduce a statistic
which measures the thermal bubble size and is easily general-
izable to interacting chains.

Consider the full Hamiltonian H [Eq. (8)] with eigenstates
|ψi〉 and eigenenergies Ei. Let us introduce a hypothetical
probe spin with fixed energy splitting hP. This spin is coupled
to the thermal seed by the same operators as the disordered
chain, so that the part of the Hamiltonian involving the probe
spin is

HP = 1
2 (σ+

T ⊗ σ−
P + σ−

T ⊗ σ+
P + hP1 ⊗ σ z

P ). (83)
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The two states |ψi〉 ⊗ |↑〉 and |ψ j〉 ⊗ |↓〉 are related by the
matrix element

V ′
i j = 1

2 〈ψi|σ−
T |ψ j〉〈↑|σ+

P |↓〉 (84)

and separated by the level spacing

δ′
i j = Ei − Ej + hP. (85)

By the arguments in Sec. III B, the two states hybridize if V ′
i j is

much larger than δ′
i j . Thus, the state |ψi〉 ⊗ |↑〉 will hybridize

with at least one other state if the quantity

vi = max
j

ln

∣∣∣∣∣V
′

i j

δ′
i j

∣∣∣∣∣ (86)

is sufficiently large. We take the logarithm in Eq. (86), to
capture the typical value as the ratio V ′

i j/δ
′
i j is broadly dis-

tributed. Finally, we calculate the mean [v] by averaging over
the ensemble of Hamiltonians H and over states i from the
middle third of the spectrum.

What does [v] measure? We argue that as

max
j

V ′
i j

δ′
i j

∼ ρ√
d

∼ e f̄∞L/ξc , (87)

the statistic [v] thus probes the number of l-bits absorbed into
the thermal bubble,

[v] = f̄∞L

ξc
+ [v0]. (88)

Here [v0] is the value of this statistic in the absence of the
coupling between the thermal seed and the disordered chain
(i.e., for V = 0).

Suppose first that the full Hamiltonian H satisfies the
ETH so that f̄∞ = 1. The ETH implies that ln |V ′

i j/δ
′
i j | ∼

1
2 L ln 2 is maximal for j close to i. Consequently, [v] ap-
proaches 1

2 L ln 2 = L/ξc as L → ∞. Next, suppose that the
full Hamiltonian is many-body localized so that f̄∞ = 0.
Here, ln |V ′

i j/δ
′
i j | is largest for states j at finite energy above or

below i, so that [v] approaches a finite O(L0) value as L → ∞.
Finally, in a delocalized nonergodic phase with 0 < f̄∞ < 1,
ln |V ′

i j/δ
′
i j | is maximal when the state j only involves recon-

figurations of the thermal bubble. Such states are typically
separated by exponentially many (in L) intervening states.
These intervening states differ in the state of the thermal
bubble as well as the localized l-bits . Assuming that the
thermal bubble satisfies the ETH, we obtain Eq. (88).

The quantity exp(vi ) is identical to the quantity Gi defined
in Ref. [48]. However, it has not been numerically studied
before. The quantity vi is however distinct from the G statistic
introduced in Ref. [14] because the latter parameter is defined
with j = i + 1 rather than with max j in Eq. (86). As the
matrix elements between nearby states of a delocalized non-
ergodic phase are typically exponentially small in L2, the G
statistic studied in Ref. [14] will not detect partial avalanches.

Figure 9(a) shows [v] − [v0] as a function of L for the
Anderson-seed model. Here we take hP = 2πWT/d0. At suf-
ficiently small disorder strengths (h < hc), typical samples
are predicted to avalanche, and the lines [v] − [v0] = f̄cL/ξc

(black dashed line) and [v] − [v0] = L/ξc (black dotted line)
respectively provide the lower and upper bounds for the

(a)

(b)

FIG. 9. Scaling of [v] with L. Upper panel: The matrix element
to level spacing ratio [v] ∼ f̄ L/ξc is plotted as a function of chain
length L in the Anderson-seed model. Data are shown for various
disorder strengths (legend inset) above and below the transition
hc = 1.37. For a fully thermalizing model [v] ∼ L/ξc (dashed),
at threshold in the Anderson-seed model [v] ∼ f̄cL/ξc (dotted),
whereas below threshold [v] saturates. These different behaviors
are reproduced for h far above and far below the transition. Lower
panel: Analogous data are shown for the Heisenberg-seed model in
the vicinity of the MBL transition (hMBL

c ≈ 3.7). The crossover from
growing to saturating behavior is consistent with this value.

growth rates of the thermal bubbles. Indeed, the curves at h =
0.7, 0.9, and 1.1 appear to grow linearly with L with slopes
between f̄c/ξc and 1/ξc. Above threshold (h > hc), there is
no runaway thermalization instability, and we observe that [v]
indeed saturates. The crossover between linearly increasing
and saturating behavior is approximately at h = hc.

In Fig. 10 we show spectral statistics for the Anderson-seed
model with the same parameters as Fig. 9(a). Specifically,
we plot the mean level spacing ratio r̄ = [min(ri, r−1

i )] where
ri = (Ei+1 − Ei )/(Ei − Ei−1) and averaging is performed over
the middle third of spectrum, and over the ensemble of Hamil-
tonians. r̄ measures level repulsion and takes the values r̄ =
0.531 . . . in an ergodic phase, and r̄ = 0.386 in a localized
phase [4,69]. We see that, in the Anderson-seed model, for
all disorder strengths, r̄ flows toward the localized value with
increasing chain length L. Level repulsion is absent in this
model as even below threshold, where the model avalanches,
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FIG. 10. Variation of level spacing ratio r̄ with L in the
Anderson-seed model. The mean level spacing ratio is plotted over
the middle third of the spectrum for various disorder strengths in the
Anderson-seed model. The thermal (GOE) value r̄ = 0.531 . . . and
the localized (Poisson) values r̄ = 0.386 . . . are shown (horizontal
dashed lines). For all disorder strengths (legend inset) the flow is
toward the localized value, with no indication of flow reversal. This
is due to the coexistence of l-bits with the thermal bubble even below
avalanche threshold.

there are many localized l-bits which coexist with the thermal
bubble.

D. Heisenberg

We now turn to the numerical study of the Heisenberg-seed
model using the v statistic introduced in Sec. VII C.

1. Parameters

We set J = 1, � = 1, WT = 1.6, and d = 32. We collect
data in the vicinity of the MBL transition in the random
Heisenberg model at h = hMBL

c ≈ 3.7 [5,70–72].
These parameters ensure that the bandwidth condition is

satisfied,

4WT = 6.4 >

√
3
2 J2 + 3

4�2J2 + h2 = 3.99 . . . , (89)

as is the condition to thermalize the first l-bit,

J̃1ρ0√
d

= 0.33 > cS = 0.31. (90)

Here we have used that J1 = 1
2 Jψ1

1 , ψ1
1 ≈ 1/

√
ξ , at threshold

ξ = ξc, and the GOE density of states at maximum entropy
ρ0 = d0/(πWT). We numerically check that our choice of
parameters leads to strong hybridization between the seed and
the first physical bit (data not shown).

The length condition, Eq. (71), L > 10.9 is model indepen-
dent and the same as in the Anderson-seed model.

2. Exponential enhancement of the bath

Figure 9(b) shows the ensemble and spectrally averaged
mean [v] [Eq. (86)] as a function of the chain length L for
varying disorder strengths h (legend inset). The dashed line
shows the theoretical upper bound of [v] = L/ξc, when the
entire chain satisfies the ETH. At large disorder, we see that

[v] saturates, indicating that the interacting chain is stably
localized. At low disorder, [v] grows with L; the slope shows a
slight increase with L toward the ETH value (dashed line) for
h < hMBL

c ≈ 3.7. Our finite-size numerics is thus consistent
with a delocalized ETH phase with a thermal bubble size ∼L.
Remarkably, the value of h at which the scaling behavior of
[v] changes is close to the critical value reported in previous
studies hMBL

c ≈ 3.7 [5,70–72], and does not seem significantly
altered by the presence of the seed.

If avalanches underlie the transition out of the MBL phase,
we expect the inclusion of the thermal seed to enhance the
delocalization tendency at finite chain lengths, and thus shift
the location of the transition to larger h. However, we do not
see clear evidence of this shift at accessible system sizes.

VIII. DISCUSSION

We have extended and tested the theory of quantum
avalanches in several respects.

(1) Assuming that a large enough thermal bubble forms,
a single seed partially thermalizes a system with a distribu-
tion of l-bit localization lengths with [ξ ] < ξc. The resulting
avalanched phase violates the ETH and is delocalized but
nonergodic.

(2) Thermal bubbles need to reach a certain size in a
typical sample before they cause runway thermalization. The
required bubble size diverges near the avalanche threshold and
is set by the larger of the two lengths scales l� and lFS (Fig. 1).

(3) For the Anderson chain coupled to a single thermal
seed, we derived the critical disorder strength hc below which
the chain partially avalanches, the fraction of l-bits absorbed
into the thermal bubble for h < hc, and the system parameters
to typically observe avalanches.

(4) We introduced a dimensionless measure [v] of the
effective size of the thermal bubble that the seed is a part
of, and numerically confirmed that the Anderson-seed model
partially avalanches.

We describe a few broader implications of our results
below.

The thermal bubble typically absorbs ∼ldir l-bits as h →
h−

c . However, rarely, it grows past the length scale lasy ∼
max(lFS, l�), and absorbs ∼ f̄cL l-bits. On blocking the chain
into regions of size ldir, the probability of the bubble growing
to size lasy is seen to be exponentially small in the ratio lasy/ldir.
We therefore predict that the mean fraction of l-bits in the
thermal bubble as h → h−

c is

f̄ (h, ldir ) ∼ f̄ce−|h−hc|−2/ldir . (91)

Thus, the growth of the probability in region II of Fig. 1 with
|h − hc| is slower than any power law. This low probability
may explain the absence of avalanches reported in Ref. [52],
as we discuss further below.

Avalanches are suppressed near the threshold even if the
localization length is unique (as is believed to be the case in
MBL systems). A thermal bubble of size l now has significant
stopping probability for l � l� because of the broad distribu-
tion of the couplings between the l-bits and the seed [33,73].
Taking the log couplings to be independently normally dis-
tributed with mean [ln J̃α] ∼ α and variance Var(ln J̃α ) ∼ α,
we obtain the following expression following the steps in
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Sec. V:

pstop(l ) ∼ e−(l/lasy )2
(92)

with lasy ∼ max(lFS, l�). Although the exponent controlling
the divergence of l� ∼ |h − hc|−3/2 is larger than that in
the Anderson-seed case, the asymptotic behavior of lasy suf-
ficiently close to h = hc is unaffected as lasy ∼ lFS ∼ |h −
hc|−2. Following the discussion in the previous paragraph, the
growth of the probability with |h − hc| in region II of Fig. 1 is
slower than any power law in this case as well.

The suppression of avalanches near threshold explains a
number of contradictory results in the literature. Reference
[49] took the coupling between the l-bit α and the seed to be
equal to J exp(−α/ξ ) and reported an ETH avalanched phase
induced by a thermal seed of dimension d = 8 in an L = 12
chain. By neglecting the broad distribution of the couplings,
we believe that Ref. [49] significantly overestimated the prob-
ability of realistic models to avalanche close to threshold
[74]. Reference [52] studied a realistic Heisenberg chain and
reported that a thermal seed of dimension d = 8 has no
destabilizing effect on the MBL phase. This result contradicts
Fig. 1. As short Heisenberg chains typically do not generate
their own large thermal seeds, Fig. 1 predicts a shift of the
MBL-ETH transition to larger disorder strengths on coupling
the chain to an external seed. The apparent contradiction is
explained by the d = 8 seed, which our analysis suggests is
too small to start avalanches in typical samples.

The transition between the localized and avalanched
regime is reminiscent of the infinite-randomness transition
[75–78]. Specifically, for h < hc, the transition is charac-
terized by two length scales which diverge with different
exponents, l� and lFS. The more divergent length scale controls
the universal scaling function of the fraction of absorbed l-bits
near the avalanche threshold:

f̄ (h, ldir ) ∼ F (δhν ldir ), (93)

where F is specified by Eq. (91) and δh = |h − hc|. For uncor-
related disorder, lFS ∼ δh−2 while l� ∼ δh−1, and thus ν = 2.
As in the infinite-randomness case, hyperuniform correlations
in the disorder can reduce the exponent controlling the di-
vergence of lFS while leaving the exponent of l� unchanged
[79]. When the disorder is sufficiently hyperuniform that l� is
the most divergent length scale, the exponent is thus ν = 1.
The quasiperiodic potentials used in previous studies provide
access to this case [7,80–85].

Finally, we comment on the implications of this work
for the MBL transition [19,46–48,57,70–73,80,86–93].
Numerically accessible systems of length L ∼ 10 near the
MBL-ETH transition are likely to be in the intermediate
coupling regime. Assuming that typical samples contain
small thermal seeds, the effective coupling J̃α between the
αth l-bit and the seed takes values between the weak and
strong limits for almost all α:

cW ≈ 0.01 � J̃αρ0√
d0

� cS ≈ 0.31. (94)

In this regime, our single l-bit study suggests that
l-bits partially hybridize with the seed with significant
eigenstate-to-eigenstate variation within a single sample.

Remarkably, numerical studies of the MBL transition have
reported significant eigenstate-to-eigenstate variation in
entanglement entropy and other spectral quantities [80,91].
Interesting directions for future work include the quantitative
description of the finite-size numerics in these terms and
the modification of phenomenological renormalization group
theories of the MBL-ETH transition [19,48,86–88,90,92,93]
to account for the intermediate coupling regime.

Note added. Recently the authors became aware of a related
forthcoming work by Colmenarez, Luitz, and De Roeck [94]
that studies avalanches in MBL systems. We are grateful to W.
De Roeck for discussing these preliminary results.
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APPENDIX A: NUMERICAL EVALUATION OF THE
THRESHOLD VALUES cS, cW

In this Appendix, we numerically determine the constants
cS and cW introduced in Sec. III B in the main text.

We extract the threshold values using a setup consisting
of a thermal bubble coupled to a single spin with coupling
strength J . The thermal bubble’s Hamiltonian R is given by a
GOE matrix with bandwidth 4r, dimension d , and density of
states at maximum entropy ρ = d/(πr). The total Hamilto-
nian is

H = R ⊗ 1 + h
2 1 ⊗ σ z + J (σ+ ⊗ σ− + σ− ⊗ σ+). (A1)

We use the parameter v [Eq. (86)] defined in Sec. VII C to
quantify the extent to which the spin hybridizes with the
bubble

[v] =
[

max
j

ln

∣∣∣∣∣V
′

i j

δ′
i j

∣∣∣∣∣
]
. (A2)

Here V ′
i j = 〈ψi|σ− ⊗ 1|ψ j〉, |ψi〉 are the eigenstates of H , Ei

are the eigenenergies of H , and the energy splitting in the
denominator is given by δ′

i j = Ei − Ej + hP. This corresponds
to the matrix element to level spacing ratio felt by a second
probe qubit with splitting hP. The field hP on the probe spin is
taken to be sufficiently small, so that the density of states of
the thermal bubble can be treated as a constant.

The physical regime of interest is when the couplings and
fields are greater than the energy level spacing on the bubble,
but less than bandwidth of the bubble,

ρ−1 � J, h, hP � 4r. (A3)

In this regime, by the arguments presented in the main text,
[v] is a function of the ratio Jρ/

√
d only. When Jρ/

√
d is

sufficiently small, the spin and bubble barely hybridize and [v]
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FIG. 11. [v] for a GOE matrix coupled to a single spin. The
rescaled logarithm of the matrix element to level spacing ratio is
plotted as a function of the ratio Jρ/

√
d at different values of d

(legend inset) for the model (A1). This rescaled quantity has limiting
values of zero and 1. We identify the values of [v] when it comes
within 10% of its limiting values (red and blue horizontal dashed
lines). The corresponding threshold values of Jρ/

√
d are identified

as cW = 0.01 and cS = 0.31 (vertical dashed lines).

is close to the value [v0] at J = 0. When Jρ/
√

d is sufficiently
large, the spin and the bubble strongly hybridize, and [v]
approaches its maximal value:

[v] → [v0] + ln
√

2 = [v0] + 1

ξc
. (A4)

We define the following threshold values where [v] comes
within 10% of one of these limiting values:

[v] < [v0] + 0.1

ξc
for

Jρ√
d

< cW,

[v] > [v0] + 0.9

ξc
for

Jρ√
d

> cS. (A5)

In Fig. 11, we plot [v] as a function of Jρ/
√

d for the
model Eq. (A1) with parameters h = 1, hP = 1.5, r = 5, and d
values shown in the inset. The data exhibit good collapse with
the exception of small d where the bubble density of states
is too low and hence the condition (A3) is violated. From the
collapsed data, we identify the weak and strong thresholds to
be cW = 0.01 and cS = 0.31, respectively.

For comparison, in Fig. 12 we plot the mean entangle-
ment entropy of the spin (taken over the middle third of
the spectrum), and the intrasample (eigenstate-to-eigenstate)
standard deviation of this quantity for the same parameters as
in Fig. 11. We see that

S ≈ 0,
Jρ√

d
< cW, (A6)

S ≈ ln 2,
Jρ√

d
> cS. (A7)

For intermediate value of Jρ√
d

, the spin partially hybridizes
with the bubble, with large eigenstate-to-eigenstate variation
in the extent of hybridization.

FIG. 12. Eigenstate entanglement entropy of a single spin cou-
pled to a GOE matrix. The mean spin eigenstate entanglement en-
tropy (upper panel) and its intrasample (i.e., eigenstate-to-eigenstate)
standard deviation (lower panel) are plotted as a function of the ratio
Jρ/

√
d for the model (A1). When cW < Jρ/

√
d < cS, the spin is

partially hybridized with the GOE matrix, with the hybridization
extent showing large eigenstate-to-eigenstate variations. Parameters
and legend as in Fig. 11.

Distribution of vi

Here we discuss the distributions of the quantity vi

[Eq. (86)] across eigenstates within a sample. The underlying
quantity

z =
∣∣∣∣∣V

′
i j

δ′
i j

∣∣∣∣∣ (A8)

is broadly distributed, as the denominator δ′
i j has a probability

distribution which remains finite as δ′
i j → 0. The probability

distribution of z thus decays as a power law at large z:

p(z) ∼ z−2. (A9)

For example, the Cauchy distribution, which is the ratio of two
normally distributed random variables, satisfies Eq. (A9).

The definition in Eq. (86) includes a maximum over states j
and a logarithm. Taking the maximum over the index j leaves
the tail of the z distribution unaltered [Eq. (A9)]. Using the
property that the logarithm of a power-law distributed random
variable is exponentially distributed,

p(y) ∼ y−n ⇐⇒ p′(ln y) ∼ e−(n−1) ln y, (A10)

we conclude that the distribution of vi decays exponentially at
large vi,

p(vi ) ∼ e−vi . (A11)

In Fig. 13, we verify these features. In the upper panel,
distributions of vi − [v0] are shown for different values of
Jρ/

√
d (values inset in legend). The drift of the distribution to

larger vi with increasing Jρ/
√

d is precisely the enhancement
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FIG. 13. Distributions of vi. The distributions of vi for different
values of Jρ/

√
d (legend inset) on a linear scale (upper panel) and

a logarithmic scale (lower panel). The widths of the distributions
are significantly larger than the drift with increasing Jρ/

√
d . The

exponential tail (dashed line) indicates the broadly distributed nature
of the ratio max j |V ′

i j/δ
′
i j |. Parameters: d0 = 2048, and those given in

the caption of Fig. 11.

shown in Fig. 11. The dashed line indicates the expected
behavior of p(vi ) ∼ e−vi at large vi.

A prominent feature of these plots is that the distribu-
tions of values across eigenstates is significantly wider than
the shift induced by absorbing a single spin. Recalling that
max j |V ′

i j/δ
′
i j | = evi sets the extent of hybridization of the ith

eigenstate, the width of these distributions is understood as
the origin of the significant spread between the constants
cW and cS. Specifically, the width of the distribution entails
that for spins (or l-bits) with coupling strengths spanning
about two orders of magnitude, there are significant numbers
of resonant and nonresonant eigenstates. The peak in the
standard deviation of S in the lower panel of Fig. 12 also
reflects the wide distribution of the extent of hybridization of
the spin across eigenstates.

APPENDIX B: VARIOUS PROOFS REGARDING
PARTIAL AVALANCHES

In Sec. IV B, we introduced the self-consistency condition
Eq. (46) for the fraction of thermalized l-bits in the disordered
chain. In this Appendix, we derive several useful results which
are stated in the main text. To study Eq. (46) in more detail, it

FIG. 14. Plots of �( f ). �( f ) is plotted for various disorder
strengths (see legend). For strong disorder �( f ) → f and for weak
disorder �( f ) → f − 1 (dashed black lines). The solid black line
shows � = 0. �( f ) is asymptotically increasing, convex, and always
satisfies �(0) = 0. These properties are visually clear. From these
properties various useful results regarding the roots �( f ) = 0 follow.
These forms were computed numerically by exactly diagonalizing
the Anderson model at L = 3000 and 4000 samples.

is useful to define the quantity

�( f ) = f − 1 +
∫ ξc/ f

0
dξ ′

(
1 − f ξ ′

ξc

)
p(ξ ′) (B1)

whose roots �( f ) = 0 are the solutions to the self-consistency
equation (46). �( f ) has several useful properties:

(a) f = 0 is always a root. Specifically, lim f →0+ �( f ) =
0.

(b) �( f ) is differentiable for f � 0; �( f ) has the first
derivative given by

∂ f � = 1 −
∫ ξc/ f

0
dξ ′ ξ

′

ξc
p(ξ ′). (B2)

(c) �( f ) is convex for f � 0. This is seen by further
differentiating to obtain

∂2
f � = ξc p(ξc/ f )

f 3
� 0. (B3)

(d) �( f ) � f − 1. This is easily seen by noting that the
integrand in the second term on the right-hand side of Eq. (B1)
is strictly non-negative over the domain of integration.

(e) �( f ) is continuous provided we make only the as-
sumption that the cumulative distribution function

∫ ξ

0 dξ ′ p(ξ ′)
is continuous.

These properties are all evident in Fig. 14. Using these
properties, we prove the following propositions regarding the
partial avalanche theory:

Proposition 1. If [ξ ] < ξc, then f̄∞ = 0 is the only solution
to Eq. (46).

Proof. We prove the equivalent claim, that �( f ) has ex-
actly one non-negative root, given by f = 0. It was previously
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FIG. 15. The distribution of rescaled localization lengths ξ/[ξ ]
in the Anderson model. At large disorder strengths, the distribution
is narrow and peaked about 1. However, with decreasing disorder,
the distribution develops a double peak, with the taller peak moving
to smaller values of ξ/[ξ ]. The distributions were computed numeri-
cally by exactly diagonalizing the Anderson model at L = 3000 and
4000 samples.

noted that f = 0 is always a root. To see that this is the
only root for [ξ ] < ξc, we note that the first derivative of �,
evaluated at f = 0,

∂ f �| f =0 = lim
f →0+

(
1 −

∫ ξc/ f

0
dξ ′ ξ

′

ξc
p(ξ ′)

)
(B4)

= 1 − [ξ ]

ξc
, (B5)

is positive for [ξ ] < ξc. As �( f ) is convex for f > 0, Eq. (B5)
further implies there are no further non-negative roots.

Proposition 2. If [ξ ] > ξc, there is exactly one other solu-
tion f̄∞ to Eq. (46).

Proof. We prove the equivalent claim, that �( f ) has ex-
actly two non-negative roots, one at f = 0, and one in f ∈
(0, 1]. It was previously noted that f = 0 is always a root. The
existence of the second root in the interval f ∈ (0, 1] follows
from (i) the first derivative ∂ f �| f =0 < 0, which implies that
�( f ) < 0 for sufficiently small f > 0; (ii) �(1) � 0, which
follows from �( f ) � f − 1; (iii) the continuity of �( f ). That
there are no further roots follows from the convexity of �( f )
for f > 0.

Proposition 3. If [ξ ] �= ξc, then f̄∞ �∈ (0, ξc/ξmax].
Proof. We prove the equivalent claim that �( f ) has

no roots in (0, ξc/ξmax] for [ξ ] �= ξc. Assume that f ∈
(0, ξc/ξmax]. Then, the support of p(ξ ) falls entirely within the
domain of integration, and

�( f ) = f

(
1 − [ξ ]

ξc

)
. (B6)

Thus, the only root for f ∈ (0, ξc/ξmax] occurs for [ξ ] = ξc.

1. Evaluation of pstop

In this section, we derive the result quoted in Sec. V, that
the probability pstop [Eq. (58)] of a thermal bubble of size
l ceasing to grow is exponentially small in l/l�, where the

FIG. 16. Extracting hc from the avalanche condition. At the
avalanche threshold, [ξ ] = ξc. The plot shows ξc/[ξ ] as a function
of the disorder strength for different chain lengths (legend inset). We
find hc = 1.37 . . . (vertical dashed line). Data for 4000 samples.

length scale l� diverges as l� ∼ |h − hc|−1 at the avalanche
threshold. We begin by recalling the definition of pstop,

pstop(l ) =
L∏

α=l+1

∫ α/( f̄∞l/ξc+lW/[ξ ])

0
dξ ′ p(ξ ′)

= exp

(
L∑

α=l+1

ln
∫ α/( f̄∞l/ξc+lW/[ξ ])

0
dξ ′ p(ξ ′)

)
, (B7)

where we have rewritten the product as an exponentiated sum.
As the integrand is zero for α/( f̄∞l/ξc + lW/[ξ ]) > ξmax, we
assume a sufficiently long chain L > l f̄∞ξmax/ξc, and replace
the upper bound of the sum with infinity:

pstop(l ) = exp

( ∞∑
α=l+1

ln
∫ α/( f̄∞l/ξc+lW/[ξ ])

0
dξ ′ p(ξ ′)

)
. (B8)

Next, we replace the sum with an integral. The Riemann
sum over α in the above equation is O(l1), whereas the error
incurred from replacing it with an integral is O(l0). Thus, for
sufficiently large l we are at liberty to make this replacement.
We further neglect the subleading in l corrections to the upper
bound of the integral over ξ . We then obtain

pstop(l ) = exp

(∫ ∞

l
dα ln

∫ (αξc )/( f̄∞l )

0
dξ ′ p(ξ ′) + O(l0)

)

= exp

(
f̄∞l

ξc

∫ ∞

ξc/ f̄∞
dx ln

∫ x

0
dξ ′ p(ξ ′) + O(l0)

)
.

(B9)

In the second line of the equation above we have simply
made the replacement x = (ξcα)/( f̄∞l ). Thus, we see that for
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FIG. 17. Localization length as a function of single-particle en-
ergy ε̃. At any disorder strength (see legend), the localization length
is maximal at ε̃ = 0. We extract ξmax at each h by averaging the
localization length over a small energy window around ε̃ = 0 [see
Eq. (C4)]. Data for L = 3000 and 4000 samples.

l � 1, pstop ∼ e−l/l� with l� given by

1

l�
= − f̄∞

ξc

∫ ∞

ξc/ f̄∞
dx ln

∫ x

0
dξ ′ p(ξ ′). (B10)

This sets the length scale to which the thermal bubble must
grow to set off the thermalization instability.

As the avalanche threshold is approached, this length scale
diverges. This can be seen by rewriting Eq. (B10),

1

l�
= − f̄∞

ξc

∫ ξmax

ξc/ f̄∞
dx ln

(
1 −

∫ ξmax

x
dξ ′ p(ξ ′)

)
. (B11)

Note that (i) x ∈ [ξc/ f̄∞, ξmax], and (ii) f̄∞ → ξc/ξmax as h →
h−

c . Thus, the argument of the logarithm is close to unity, and
may be Taylor expanded:

1

l�
= f̄∞

ξc

∫ ξmax

ξc/ f̄∞
dx

∫ ξmax

x
dξ ′ p(ξ ′) + · · ·

= f̄∞
ξc

∫ ξmax

ξc/ f̄∞
dξ ′ p(ξ ′)

(
ξ ′ − ξc

f̄∞

)
+ · · · . (B12)

In the second step, we switched the order of integration, and
performed one of the subsequent integrals. The higher-order
terms may be neglected as they are asymptotically smaller
than the leading order terms in the limit of interest, where
1/l� → 0. Rearranging the above equation and substituting in
Eq. (46) we then obtain

1

l�
=

(
f̄∞[ξ ]

ξc
− 1

)
−

∫ ξc/ f̄∞

0
dξ ′ p(ξ ′)

(
f̄∞ξ ′

ξc
− 1

)

=
(

f̄∞[ξ ]

ξc
− 1

)
− ( f̄∞ − 1)

= f̄∞

(
[ξ ]

ξc
− 1

)
. (B13)

FIG. 18. Extracting the threshold thermal fraction f̄c. As the
avalanche threshold is approached from the avalanching regime,
f̄∞ → ξc/ξmax. The plot shows the ratio ξc/ξmax as a function of h.
The vertical dashed line marks h = hc, at which we find f̄c ≈ 0.67.
Data for 4000 samples.

This is the result given in the main text as Eq. (59). Sufficiently
close to the threshold, we may expand in powers of h − hc,

[ξ ] = ξc + ∂h[ξ ]|h=hc
(h − hc) + · · · ,

f̄∞ = f̄c + ∂h f̄∞
∣∣
h→h−

c
(h − hc) + · · · , (B14)

to obtain

1

l�
= f̄c

ξc

∂[ξ ]

∂h

∣∣∣∣
h=hc

(h − hc) + O(h − hc)2. (B15)

APPENDIX C: NUMERICAL EVALUATION OF THE
ANDERSON CRITICAL FIELD hc AND THRESHOLD

THERMAL FRACTION f̄c

In this Appendix, we numerically calculate the critical
disorder strength hc ≈ 1.37 and f̄c ≈ 0.67 [as quoted in the
main text (50)] for the Anderson model

Jφα
n+1 + Jφα

n−1 + 2hnφ
α
n = 2ε̃αφα

n (C1)

with box disorder hn ∈ [−h, h].

1. Calculation of hc

The mean localization length ξmax is a monotonically de-
creasing function of the disorder strength. At h = hc, ξmax

equals the DRH value ξc. The only ingredient necessary to
find [ξ ] is the distribution of localization lengths p(ξ ). To
obtain p(ξ ) we numerically obtain the eigenorbitals of the
Anderson model (C1) with periodic boundary conditions. The
localization length of each orbital is then determined by a least
squares fit to the relationship

−|r|
ξα

+ const. = ln

(
L∑

n=1

∣∣φα
n φα

n+r

∣∣), (C2)

where −L/2 < r < L/2. The distribution of values of ξα ob-
tained from diagonalizing many such Anderson Hamiltonians
provides a numerical estimate of p(ξ ). Example distributions
of p(ξ ) obtained this way are shown in Fig. 15.
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From these distributions, [ξ ] is easily calculated to equal ξc

at hc = 1.37 . . . (see Fig. 16).

2. Calculation of the thermal fraction of l-bits f̄∞

To obtain f̄∞ as a function of h, we numerically solve for
the roots of �( f ) in Eq. (B1). The form of f̄∞ extracted in this
way is plotted in Fig. 3 in the main text (green solid line).

3. Calculation of the critical thermal fraction f̄c

As the avalanche threshold is approached from the
avalanching regime, the fraction of thermal l-bits approaches
the threshold value of f̄c:

lim
h→h−

c

f̄∞ = f̄c = [ξ ]

ξmax

∣∣∣∣
[ξ ]=ξc

= ξc

ξmax|[ξ ]=ξc

. (C3)

To obtain ξmax at the avalanche threshold, we use that the
localization length is maximal in the center of the single-
particle spectrum (see, e.g., Fig. 17):

ξmax = [ξ (ε̃ = 0)]. (C4)

Numerically, the average is taken over orbitals with energies
in the window ε̃α ∈ [− J+h

100 , J+h
100 ], a range significantly smaller

than that over which ξ (ε) varies (see Fig. 17).
The value of f̄c = [ξ ]/ξmax|h=hc

= 0.67 . . . (dashed lines).
Convergence to this value is shown for sufficiently long
disordered chains (L values inset) in Fig. 18.
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